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Abstract

In this paper we undertake an a posteriori error analysis along with its adaptive computation of a
new augmented fully–mixed finite element method that we have recently proposed to numerically
simulate heat driven flows in the Boussinesq approximation setting. Our approach incorporates
as additional unknowns a modified pseudostress tensor field and an auxiliary vector field in the
fluid and heat equations, respectively, which possibilitates the elimination of the pressure. This un-
known, however, can be easily recovered by a postprocessing formula. In turn, redundant Galerkin
terms are included into the weak formulation to ensure well-posedness. In this way, the resulting
variational formulation is a four-field augmented scheme, whose Galerkin discretization allows a
Raviart-Thomas approximation for the auxiliary unknowns and a Lagrange approximation for the
velocity and the temperature. In the present work, we propose a reliable and efficient, fully-local
and computable, residual–based a posteriori error estimator in two and three dimensions for the
aforementioned method. Standard arguments based on duality techniques, stable Helmholtz de-
compositions, and well–known results from previous works, are the main underlying tools used
in our methodology. Several numerical experiments illustrate the properties of the estimator and
further validate the expected behaviour of the associated adaptive algorithm.
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1 Introduction

We have recently analyzed in [11] the solvability and numerical approximation of a new variational for-
mulation for the stationary Boussinesq problem modelling natural convection. There, an augmented
fully-mixed formulation was introduced where a pseudostress tensor, linking the velocity with the con-
vective term, and a vector field involving the temperature, its gradient and the velocity, are introduced
as auxiliary unknowns. Then, using the incompressibility of the fluid, the pressure is eliminated, and
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as a result, a four-field system of equations is derived, where the aforementioned auxiliary variables,
along with the velocity and the temperature of the fluid, are the main unknowns of the system of
equations. The resulting variational formulation is enriched with Galerkin-type terms arising from the
constitutive and equilibrium equations, and the Dirichlet boundary conditions, allowing the utilization
of the Lax-Milgram Lemma and a fixed-point strategy (see also [13]) to prove the unique solvability of
the problem. At the discrete level, this new augmented fully-mixed formulation allows the utilization
of the same family of finite element subspaces for approximating the unknowns of both, the Navier-
Stokes and convection-diffusion equations, which constitutes a significant advantage from a practical
point of view since it permits to unify and simplify the computational implementation of the resulting
discrete scheme. In particular, Raviart-Thomas spaces of order k for the auxiliary unknowns and con-
tinuous piecewise polynomials of degree ≤ k + 1 for the velocity and the temperature can be utilized
yielding optimal convergence. The work [11] described above, extends the results obtained in [12],
where an augmented primal-mixed approach for the stationary Boussinesq model was proposed. The
name primal-mixed means that a primal formulation with a Lagrange multiplier (to impose weakly the
Dirichlet boundary condition) is considered for the convection–diffusion equations whereas the same
augmented mixed approach utilized in [11] is employed for the Navier-Stokes equations. We emphasize
that, differently from the scheme in [12], no boundary unknowns (Lagrange multipliers) are needed in
[11], which leads to an improvement of the method from both, theoretical and computational point of
view.

On the other hand, residual-based a posteriori error estimators are mathematical tools typically used
to guide adaptive mesh refinement in order to reduce the computational cost and also guarantee an
adequate convergence behavior of the Galerkin approximations of linear as well as nonlinear boundary
value problems, even under the eventual presence of singularities. In general, a global estimator θ
depends on local estimators θT defined on each element T of a given mesh Th. Then, θ is said to be
efficient (resp. reliable) if there exists a constant Ceff > 0 (resp. Crel > 0), independent of meshsizes,
such that

Ceffθ + h.o.t ≤ ‖error‖ ≤ Crelθ + h.o.t,

where h.o.t. is a generic expression denoting one or several terms of higher order. In particular, the
a posteriori error analysis of mixed variational formulations has already been widely investigated by
many authors (see, e.g. [1, 2, 4, 5, 8, 20, 21, 23, 25], and the references therein). These contributions
refer mainly to reliable and efficient a posteriori error estimators based on local and global residuals,
local problems, postprocessing, and functional-type error estimates. In addition, the applications in-
clude the Stokes and Navier-Stokes equations, Poisson problem, linear elasticity, and general elliptic
partial differential equations of second order. Nevertheless, only a couple of adaptive numerical tech-
niques based on a posteriori error estimators have been proposed in the literature for the Boussinesq
problem, and essentially for primal schemes only (see [3, 29]). The only previous contribution dealing
with mixed formulations and adaptive refinements is [17], where the authors introduce appropriate
refinement rules to recover the quasi-optimality of the method proposed in [16] under the presence
of singular behaviours near non-convex corner points. Up to our knowledge, the first a posteriori
error analysis for the Boussinesq problem, using a mixed approach for the Navier-Stokes equations,
has been provided recently in [10]. There, a reliable and efficient residual-based a posteriori error
estimator for the method analyzed in [12] is derived, which turns to be non-local due to the presence
of the H1/2-norm of a residual term involving the temperature on the boundary. Partially following
known approaches, the proof of reliability in [10] makes use of continuous inf–sup conditions, a stable
Helmholtz decomposition and the local approximation properties of the Clément and Raviart–Thomas
operators. In addition, inverse inequalities, and the localization technique based on element–bubble
and edge–bubble functions, are the main tools for proving the efficiency of the estimator.
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Motivated by the discussion above, our goal in this paper is to additionally contribute in the
direction of [10] and provide the a posteriori error analysis of the augmented fully–mixed variational
approach introduced in [11]. More precisely, here we introduce a residual–based a posteriori error
indicator for the method proposed in [11] which, differently to the estimator provided in [10], is fully–
local and fully–computable. The rest of this work is organized as follows. In Section 2, we first
recall from [11] the model problem and the corresponding augmented fully–mixed formulation as well
as the associated Galerkin scheme. In Section 3, we derive the reliable and efficient residual–based
a posteriori error estimator for our Galerkin scheme in two dimensions and its three–dimensional
counterpart is provided in Section 4. Finally, in Section 5 we show some numerical results confirming
the reliability and efficiency of the estimator, and illustrating the good performance of the associated
adaptive algorithm for our finite element method.

We end this section by recalling some definitions and fixing useful notations. Given the vector fields
v = (vi)i=1,n and w = (wi)i=1,n, with n ∈ {2, 3}, we set the gradient, divergence, and tensor product
operators, by

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n.

Furthermore, for any tensor fields τ := (τij)i,j=1,n and ζ := (ζij)i,j=1,n, we define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, by

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τijζij , and τ d := τ − 1

n
tr(τ )I,

where I is the identity matrix in Rn×n. When no confusion arises, | · | will denote the Euclidean norm
in Rn or Rn×n. Additionally, we will utilize standard simplified terminology for Sobolev spaces and
norms. In particular, if O is a domain, Γ is an open or closed Lipschitz curve (respectively surface in
R3), and r ∈ R, we define

Hr(O) := [Hr(O)]n, Hr(O) := [Hr(O)]n×n, and Hr(Γ) := [Hr(Γ)]n,

and adopt the usual convention of writing L2(O),L2(O), and L2(Γ) instead of H0(O),H0(O), and
H0(Γ), respectively. The corresponding norms are denoted by ‖ · ‖r,O for Hr(O), Hr(O) and Hr(O),
and ‖ · ‖r,Γ for Hr(Γ) and Hr(Γ). We also write | · |r,O for the Hr-seminorm. In addition, we recall
that

H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
,

is a standard Hilbert space (see, e.g. [7, 26]), and the space of matrix valued functions whose rows
belong to H(div;O) will be denoted by H(div;O). The norms of H(div;O) and H(div;O) are denoted
by ‖ · ‖div,O and ‖ · ‖div,O, respectively. Note also that H(div;O) can be characterized as the space of
matrix valued functions τ such that ctτ ∈ H(div;O) for any constant column vector c. In addition,
it is easy to see that there holds:

H(div;O) = H0(div;O) ⊕ P0(O) I ,

where

H0(div;O) :=

{
τ ∈ H(div;O) :

∫
O

trτ = 0

}
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and P0(O) is the space of constant polynomials on O. More precisely, each τ ∈ H(div;O) can be
decomposed uniquely as:

τ = τ 0 + c I , with τ 0 ∈ H0(div;O) and c :=
1

n |O|

∫
O

tr τ ∈ R .

Such a decomposition will be exploited in the subsequent analysis of weak formulations.

Furthermore, given an integer k ≥ 0 and a set M ⊆ Rn,Pk(M) denotes the space of polynomials
on M of degree ≤ k. In addition, we set Pk(M) := [Pk(M)]n and Pk(M) := [Pk(M)]n×n. Finally,
throughout the rest of the paper, we employ 0 to denote a generic null vector (including the null
functional and operator), and use C and c, with or without subscripts, bars, tildes or hats, to denote
generic constants independent of the discretization, which may take different values at different places.

2 The stationary Boussinesq problem

2.1 The model problem

Let Ω ∈ Rn, with n ∈ {2, 3}, be a bounded domain with Lipschitz–boundary Γ. Then the Boussinesq
problem is given by the nonlinear, coupled system of partial differential equations

−µ∆u + (∇u)u + ∇p − ϕ g = 0 , divu = 0 in Ω ,

−div(K∇ϕ) + u · ∇ϕ = 0 in Ω ,
(2.1)

where the unknowns are the velocity u, the pressure p and the temperature ϕ of a fluid occupying the
region Ω. We prescribe the Dirichlet boundary conditions

u = uD , and ϕ = ϕD on Γ , (2.2)

with uD ∈ H1/2(Γ) and ϕD ∈ H1/2(Γ). The rest of data we consider are the gravitational force
g ∈ L∞(Ω), the fluid viscosity µ > 0, and the uniformly positive definite tensor K ∈ L∞(Ω), describing
the thermal conductivity and satisfying

K−1 c · c ≥ κ0 |c|2 ∀ c ∈ Rn ,

where κ0 is some positive constant. As usual, the Dirichlet datum uD must satisfy the compatibility
condition ∫

Γ
uD · ν = 0 ,

which is forced by the incompressibility condition. In addition, it is well known that the uniqueness

of a pressure solution of (2.1) is ensured in the space L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Now to derive our mixed approach we include as auxiliary variables the pseudostress tensor σ and
the vector p defined, respectively, by

σ := µ∇u − (u⊗ u) − p I , and p := K∇ϕ − ϕu in Ω ,

and rewrite (2.1)–(2.2) equivalently as the set of first order equations (see [11, Section 2]):

4



µ∇u − (u⊗ u)d = σd in Ω, −div(σ) − ϕ g = 0 in Ω,

K−1 p + K−1 ϕ u = ∇ϕ in Ω, div(p) = 0 in Ω,

u = uD on Γ, ϕ = ϕD on Γ and

∫
Ω

tr(σ + u⊗ u) = 0 .

(2.3)

Note from the definition of σ and the incompressibility condition of the fluid, that the pressure p
can be recovered in terms of σ and u as follows

p = − 1

n
tr(σ + u⊗ u ) in Ω .

2.2 The augmented fully–mixed variational formulation

Proceeding as in [11], that is, multiplying equations (2.3) by suitable test functions, integrating by
parts, utilizing the Dirichlet boundary conditions, and adding the Galerkin type terms

κ1

∫
Ω

(
µ∇u − σd − (u⊗ u)d

)
: ∇v = 0 ∀v ∈ H1(Ω) ,

κ2

∫
Ω

divσ · div τ + κ2

∫
Ω
ϕ g · div τ = 0 ∀ τ ∈ H0(div; Ω) ,

κ3

∫
Γ
u · v = κ3

∫
Γ
uD · v ∀v ∈ H1(Ω) ,

and

κ4

∫
Ω

(
K−1 p − ∇ϕ + K−1ϕu

)
· ∇ψ = 0 ∀ψ ∈ H1(Ω) ,

κ5

∫
Ω

div p div q = 0 ∀q ∈ H(div; Ω) ,

κ6

∫
Γ
ϕψ = κ6

∫
Γ
ϕD ψ ∀ψ ∈ H1(Ω) ,

where (κ1 , . . . , κ6) is a vector of positive parameters to be suitably chosen (see Theorem 2.1 below),
we arrive at the variational problem: Find (σ, u, p, ϕ ) ∈ H0(div; Ω) ×H1(Ω) ×H(div; Ω) × H1(Ω),
such that

A((σ,u), (τ ,v)) + Bu((σ,u), (τ ,v)) =
(
Fϕ + FD

)
(τ ,v) ∀ (τ ,v) ∈ H0(div; Ω)×H1(Ω) ,

Ã((p, ϕ), (q, ψ)) + B̃u((p, ϕ), (q, ψ)) = F̃D(q, ψ) ∀ (q, ψ) ∈ H(div; Ω)×H1(Ω) ,
(2.4)

where the forms A, Bw, Ã, and B̃w are defined, respectively, as

A( (σ,u) , (τ ,v) ) :=

∫
Ω
σd : ( τ d − κ1∇v ) +

∫
Ω

(µu + κ2 div(σ) ) · div(τ )

− µ

∫
Ω
v · div(σ) + µκ1

∫
Ω
∇u : ∇v + κ3

∫
Γ
u · v ,

(2.5)

Bw( (σ,u) , (τ ,v) ) :=

∫
Ω

(u⊗w)d : ( τ d − κ1∇v ) , (2.6)

Ã( (p, ϕ) , (q, ψ) ) :=

∫
Ω
K−1 p · ( q − κ4∇ψ ) +

∫
Ω

(ϕ + κ5 div(p) ) div(q)

−
∫

Ω
ψ div(p) + κ4

∫
Ω
∇ϕ · ∇ψ + κ6

∫
Γ
ϕψ ,

(2.7)
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and

B̃w( (p, ϕ) , (q, ψ) ) :=

∫
Ω
K−1 ϕw · ( q − κ4∇ψ ), (2.8)

for all (σ,u) , (τ ,v) ∈ H0(div; Ω) × H1(Ω), for all (p, ϕ) , (q, ψ) ∈ H(div; Ω) × H1(Ω), and for all
w ∈ H1(Ω). Note that A and Ã are bilinear as well as Bw and B̃w (for a fixed w ∈ H1(Ω)). In
addition, given ϕ ∈ H1(Ω), Fϕ, FD, and F̃D are the bounded linear functionals given by

Fϕ(τ ,v) :=

∫
Ω
ϕg · (µv − κ2 div(τ ) ) ∀ (τ ,v) ∈ H0(div; Ω) × H1(Ω) , (2.9)

FD(τ ,v) := κ3

∫
Γ
uD · v + µ 〈 τν ,uD 〉Γ ∀ (τ ,v) ∈ H0(div; Ω) × H1(Ω) , (2.10)

and

F̃D(q, ψ) := κ6

∫
Γ
ϕD ψ + 〈q · ν , ϕD 〉Γ ∀ (q, ψ) ∈ H(div; Ω) × H1(Ω) . (2.11)

As explained in [11, 12] it is possible to prove that the forms above satisfy:

|A( (σ,u) , (τ ,v) )| ≤ ‖A‖ ‖(σ,u)‖ ‖(τ ,v)‖ , (2.12)

|Ã( (p, ϕ) , (q, ψ) )| ≤ ‖Ã‖ ‖(p, ϕ)‖ ‖(q, ψ)‖ , (2.13)

|Bw((σ,u), (τ ,v))| ≤ c1(Ω) (κ2
1 + 1 )1/2 ‖w‖1,Ω ‖u‖1,Ω ‖(τ ,v)‖, (2.14)

|B̃w( (p, ϕ) , (q, ψ) )| ≤ (κ2
4 + 1 )1/2 ‖K−1‖∞,Ω c2(Ω) ‖w‖1,Ω ‖ϕ‖1,Ω ‖(q, ψ)‖ , (2.15)

for all (σ,u) , (τ ,v) ∈ H0(div; Ω) × H1(Ω), (p, ϕ) , (q, ψ) ∈ H(div; Ω) × H1(Ω), and for all w ∈
H1(Ω). In (2.14) and (2.15) the constants c1(Ω) and c2(Ω) depend only on Ω, whereas in (2.12) and
(2.13) the constants ‖A‖ and ‖Ã‖, denoting the norms of the bounded linear operators induced by
the respective bilinear forms, depend on Ω, the physical parameters µ and K, and the constants κi,
i ∈ {1, . . . , 6}. Furthermore, it can be also proved that A and Ã are strongly elliptic. In fact, for
A we have that for each κ1 ∈ (0, 2 δ), with δ ∈ (0, 2µ) , and κ2 , κ3 > 0 , there exists a positive
constant α(Ω), depending only on µ , κ1, κ2, κ3, and Ω, such that (see [12, Lemma 3.3] for details)

A( (τ ,v) , (τ ,v) ) ≥ α(Ω) ‖(τ ,v)‖2 ∀ (τ ,v) ∈ H0(div; Ω) × H1(Ω),

whereas if κ4 ∈
(

0,
2κ0 δ̃

‖K−1‖∞,Ω

)
, with δ̃ ∈

(
0,

2

‖K−1‖∞,Ω

)
, and κ5, κ6 > 0, for Ã we deduce that

there exists α̃(Ω) > 0, depending only on K , κ4, κ5, κ6 and Ω, such that (see [11, Lemma 3.3] for
details)

Ã( (q, ψ) , (q, ψ) ) ≥ α̃(Ω) ‖(q, ψ)‖2 ∀ (q, ψ) ∈ H(div; Ω) × H1(Ω).

The following result taken from [11] establishes the well-posedness of (2.4).

Theorem 2.1 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2µ), κ4 ∈
(

0,
2κ0 δ̃

‖K−1‖∞,Ω

)
, with δ̃ ∈

(
0,

2

‖K−1‖∞,Ω

)
,

and κ2, κ3, κ5, κ6 > 0. Given r ∈
(
0,min{ r0, r̃0}

)
, with r0 and r̃0 given by

r0 :=
α(Ω)

2 (κ2
1 + 1)1/2 c1(Ω)

and r̃0 :=
α̃(Ω)

2 (κ2
4 + 1 )1/2 ‖K−1‖∞,Ω c2(Ω)

, (2.16)
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respectively, let Wr :=
{

(w, φ) ∈ H : ‖(w, φ)‖ ≤ r
}

, and assume that the data g, uD, and ϕD

satisfy

cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ c

S̃

{
‖ϕD‖0,Γ + ‖ϕD‖1/2,Γ

}
≤ r . (2.17)

and
CT

(
‖g‖∞,Ω + cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

})
< 1 , (2.18)

where cS, c
S̃

and CT are the positive constants in [11, Lemma 3.1], [11, Lemma 3.3] and [11, Lemma
3.8], respectively. Then, there exists a unique (σ,u,p, ϕ) ∈ H0(div; Ω)×H1(Ω)×H(div; Ω)×H1(Ω)
solution to (2.4), with (u, ϕ) ∈ Wr . Moreover, there holds

‖(σ,u)‖ ≤ cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
,

and
‖(p, ϕ)‖ ≤ c

S̃

{
‖ϕD‖0,Γ + ‖ϕD‖1/2,Γ

}
.

2.3 The augmented fully–mixed finite element method

Here, for clarity of exposition of the a posteriori error estimator to be defined next in Section 3, we
introduce a Galerkin scheme of (2.4) by restricting ourselves to the particular case provided in [11,
Section 4.3]. To that end, we let Th be a regular triangulation of Ω consisting of triangles/tetrahedra

of diameter hT , and meshsize h := max
{
hT : T ∈ Th

}
, consider an integer k ≥ 0, and for each

T ∈ Th we denote by
RTk(T ) := Pk(T ) + Pk(T )x ,

the local Raviart–Thomas space of order k, where, according to the notations described in the Section
1, Pk(T ) := [ Pk(T ) ]n, and x is the generic vector in Rn. Similarly, C(Ω) = [C(Ω)]n. Then, we
introduce the finite element subspaces approximating the unknowns σ and u as

Hσh :=
{
τ h ∈ H0(div; Ω) : ct τ h

∣∣∣
T
∈ RTk(T ) ∀ c ∈ Rn ∀T ∈ Th

}
,

and
Hu
h :=

{
vh ∈ C(Ω) : vh

∣∣∣
T
∈ Pk+1(T ) ∀T ∈ Th

}
.

In turn, we define the approximating spaces for p and the temperature ϕ as

Hp
h :=

{
qh ∈ H(div; Ω) : qh

∣∣∣
T
∈ RTk(T ) ∀T ∈ Th

}
and

Hϕ
h :=

{
ψh ∈ C(Ω) : ψh

∣∣∣
T
∈ Pk+1(T ) ∀T ∈ Th

}
.

Then, with the forms defined through (2.5)-(2.11), the Galerkin scheme of (2.4) reads: Find
(σh, uh, ph, ϕh ) ∈ Hσh × Hu

h × Hp
h × Hϕ

h such that

A( (σh,uh) , (τ h,vh) ) + Buh
( (σh,uh) , (τ h,vh) ) = Fϕh

( (τ h,vh) ) + FD( (τ h,vh) )

Ã( (ph, ϕh) , (qh, ψh) ) + B̃uh
( (ph, ϕh) , (qh, ψh) ) = F̃D( (qh, ψh) ) ,

(2.19)

for all ( τ h, vh, qh, ψh ) ∈ Hσh × Hu
h × Hp

h × Hϕ
h .

The following theorems, also taken from [11], provide the well–posedness of (2.19), the associated
Céa estimate, and the corresponding theoretical rate of convergence.
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Theorem 2.2 Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2µ), κ4 ∈
(

0,
2κ0 δ̃

‖K−1‖∞,Ω

)
, with δ̃ ∈

(
0,

2

‖K−1‖∞,Ω

)
,

and κ2, κ3, κ5, κ6 > 0. Given r ∈
(
0,min{ r0, r̃0}

)
, with r0 and r̃0 given by (2.16), let Wr,h :={

(wh, φh) ∈ Hh : ‖(wh, φh)‖ ≤ r
}

, and assume that the data g, uD, and ϕD satisfy (2.17) and

(2.18). Then, the Galerkin scheme (2.19) has a unique solution (σh,uh,ph, ϕh) ∈ Hσh×Hu
h×Hp

h×Hϕ
h ,

with (uh, ϕh) ∈ Wr,h, and there hold

‖(σh,uh)‖ ≤ cS

{
r ‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
, (2.20)

and
‖(ph, ϕh)‖ ≤ c

S̃

{
‖ϕD‖0,Γ + ‖ϕD‖1/2,Γ

}
.

Theorem 2.3 Assume that the data g, uD and ϕD satisfy:

Ci(g,uD, ϕD) ≤ 1

2
∀ i ∈ {1, 2} ,

with C1 and C2 be the positive constants, independent of h, provided in [11, Lemma 5.3]. Then, there
exists a positive constant C1, independent of h, such that

‖(σ,u)− (σh,uh)‖ + ‖(p, ϕ)− (ph, ϕh)‖

≤ C1

{
dist

(
(σ,u),Hσh ×Hu

h

)
+ dist

(
(p, ϕ),Hp

h ×Hϕ
h

)}
.

Moreover, if the exists s > 0 such that σ ∈ Hs(Ω) , divσ ∈ Hs(Ω) , u ∈ Hs+1(Ω) , p ∈ Hs(Ω) ,
div p ∈ Hs(Ω) , and ϕ ∈ Hs+1(Ω) , then there exists C2 > 0, independent of h, such that there holds

‖(σ,u) − (σh,uh)‖ + ‖(p, ϕ) − (ph, ϕh)‖

≤ C2 h
min{s,k+1}

{
‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖s+1,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖ϕ‖s+1,Ω

}
.

3 A posteriori error estimation: the 2D–case

3.1 The residual–based error estimator

We start by introducing a few useful notations for describing local information on elements and edges.
Let Eh be the set of edges of Th, and define

Eh(Ω) := { e ∈ Eh : e ⊆ Ω } and Eh(Γ) := { e ∈ Eh : e ⊆ Γ } .

For each T ∈ Th, we similarly denote

Eh,T (Ω) = { e ⊆ ∂T : e ∈ Eh(Ω) } and Eh,T (Γ) = { e ⊆ ∂T : e ∈ Eh(Γ) } .

We also define unit normal and tangential vectors νe and se, respectively, on each edge by

νe := (ν1, ν2)t and se := (−ν2, ν1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write s and ν instead of se and νe, respectively.
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The usual jump operator [[ · ]] across internal edges are defined for piecewise continuous matrix,
vector, or scalar-valued functions ζ by

[[ζ]] = (ζ
∣∣
T+

)|e,− (ζ
∣∣
T−

)|e with e = ∂T+ ∩ ∂T−,

where T+ and T− are the triangles of Th having e as a common edge. In addition, given scalar, vector
and matrix valued fields φ, ψ = (ψ1, ψ2) and ζ = (ζi,j)1≤i,j≤2, respectively, we set

curl(φ) =

 ∂φ
∂x2

− ∂φ
∂x1

 , rot(ψ) =
∂ψ2

∂x1
− ∂ψ1

∂x2
and curl(ζ) =

 ∂ζ12
∂x1
− ∂ζ11

∂x2

∂ζ22
∂x1
− ∂ζ21

∂x2

 ,

where the derivatives involved are taken in the distributional sense.

Now, we let (σh, uh, ph, ϕh ) ∈ Hσh × Hu
h × Hp

h × Hϕ
h be the unique solution of (2.19) and for

each T ∈ Th, we define the local indicators

θ2
T,f := ‖µ∇uh − σd

h − (uh ⊗ uh)d‖20,T + ‖div(σh) + ϕh g‖20,T

+h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T +

∑
e∈Eh,T (Ω)

he ‖[[(σh + uh ⊗ uh)d s]]‖20,e

+
∑

e∈Eh,T (Γ)

‖uh − uD‖20,e + he

∥∥∥(σh + uh ⊗ uh)ds − µ
duD
ds

∥∥∥2

0,e
,

(3.1)

θ2
T,h := ‖K−1ph + K−1ϕh uh − ∇ϕh‖20,T + ‖div(ph)‖20,T

+h2
T ‖rot

(
K−1ph + K−1ϕh uh

)
‖20,T +

∑
e∈Eh,T (Ω)

he ‖[[
(
K−1ph + K−1ϕh uh

)
· s]]‖20,e

+
∑

e∈Eh,T (Γ)

‖ϕh − ϕD‖20,e + he

∥∥∥(K−1ph + K−1ϕh uh
)
· s − dϕD

ds

∥∥∥2

0,e
,

(3.2)

based on which we define now the global a posteriori error estimator:

θ :=

{ ∑
T∈Th

θ2
T,f +

∑
T∈Th

θ2
T,h

}1/2

. (3.3)

Observe, from the strong form of the problem (cf. (2.3)) and the regularity of the weak solution at the
continuous level (cf. (2.4)), that each term defining θ has a residual character, and differently from the
corresponding one derived for our mixed–primal approach in [10], this is fully-local and computable;
an advantageous feature for practical purposes in order to define and validate the performance of the
associated adaptive algorithm.

Let us now introduce the main result of this work.

Theorem 3.1 Let (σ,u,p, ϕ) and (σh,uh,ph, ϕh) be the unique solutions to problems (2.4) and
(2.19) and further assume that the Dirichlet data uD and ϕD are piecewise polynomials in H1(Γ)
and H1(Γ), respectively. Then, there exist positive constants Crel, Ceff > 0, depending on physical and
stabilization parameters, but independent of h, such that

Ceff θ ≤ ‖(σ,u,p, ϕ) − (σh,uh,ph, ϕh)‖ ≤ Crel θ , (3.4)

provided the data is sufficiently small (cf. Lemma 3.3).
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In this result, the requirement on uD and ϕD to be piecewise polynomials is only to show the
lower bound of the estimator θ (cf. Lemma 3.15 in [10] and Lemma 3.11 below), and is a technical
assumption just to simplify the presentation. However, this can be relaxed by assuming that they are
sufficiently smooth on Γ. By doing so one could use suitable polynomial approximations to derive the
lower bound of θ which would yield high–order terms.

The proof of Theorem 3.1 is carried out through Sections 3.2 and 3.3. There, we show separately
that the estimator θ satisfies the upper (reliability property) and lower (efficiency property) bounds
of the expression (3.4).

3.2 Reliability of the estimator

3.2.1 Preliminary error estimates

We begin the derivation of the upper bound of (3.4) by recalling that, since ‖u‖1,Ω ≤ r by Theorem
2.1, the bilinear form A + Bu is elliptic on H0(div; Ω)×H1(Ω) with ellipticity constant α(Ω)/2 (see
[11, Section 3.3]). Then, proceeding analogously to the proof of [10, Lemma 3.2], that is by using a
global inf-sup condition, we obtain that there exists C > 0, independent of h, such that

‖(σ,u) − (σh,uh)‖ ≤ C
{
‖µ∇uh − (uh ⊗ uh)d − σd

h‖0,Ω + ‖div(σh) + ϕh g‖0,Ω

+ ‖uh − uD‖0,Γ + ‖g‖∞,Ω ‖ϕ− ϕh‖1,Ω + ‖uh‖1,Ω ‖u− uh‖1,Ω +
∥∥Rf

∥∥}, (3.5)

where Rf : H0(div; Ω) −→ R is the functional defined as

Rf(τ ) = Fϕh
(τ ,0) + FD(τ ,0) − A( (σh,uh) , (τ ,0) ) − Buh

( (σh,uh) , (τ ,0) ) (3.6)

and A, Buh
, Fϕh

and FD are the forms given by (2.5)-(2.6) and (2.9)-(2.10).

Next we derive an analogous preliminary bound for the error associated to the heat variables.

Lemma 3.2 There exists a positive constant C > 0, independent of h, such that

‖(p, ϕ) − (ph, ϕh)‖ ≤ C
{
‖K−1ph + K−1ϕh uh − ∇ϕh‖0,Ω + ‖div(ph)‖0,Ω

+ ‖ϕh − ϕD‖0,Γ + ‖K−1‖∞,Ω ‖ϕ− ϕh‖1,Ω + ‖ϕ‖1,Ω ‖u− uh‖1,Ω +
∥∥Rh

∥∥}, (3.7)

where Rh : H(div; Ω) −→ R is the functional defined as

Rh(q) = F̃D(q, 0) − Ã( (ph, ϕh) , (q, 0) ) − B̃uh
( (ph, ϕh) , (q,0) ), (3.8)

and Ã, B̃uh
, and F̃D are the forms given by (2.7)-(2.8) and (2.11).

Proof. According to [11, Lemma 3.3] and the fact that ‖u‖1,Ω ≤ r, we have that the bilinear form

Ã + B̃u is uniformly elliptic on H(div; Ω)× H1(Ω) with a positive constant α̃(Ω)/2, independent of
u. This implies that

α̃(Ω)

2
‖(p, ϕ) − (ph, ϕh)‖ ≤ sup

(q,ψ)∈H(div;Ω)×H1(Ω)
(q,ψ)6=0

(
Ã + B̃u

)
( (p, ϕ) − (ph, ϕh) , (q, ψ) )

‖(q, ψ)‖

= sup
(q,ψ)∈H(div;Ω)×H1(Ω)

(q,ψ) 6=0

F̃D(q, ψ)−
(
Ã + B̃uh

)
((ph, ϕh), (q, ψ))− B̃u−uh

((ph, ϕh), (q, ψ))

‖(q, ψ)‖
.

(3.9)
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Then, manipulating terms and using the Cauchy-Schwarz and Hölder’s inequalities, we find that

F̃D(q, ψ)−
(
Ã + B̃uh

)
( (ph, ϕh) , (q, ψ) )− B̃u−uh

( (ph, ϕh) , (q, ψ) )

≤
{
κ4 ‖K−1ph + K−1ϕh uh − ∇ϕh‖0,Ω + ‖div(ph)‖0,Ω + κ6 ‖ϕh − ϕD‖0,Γ

}
‖ψ‖1,Ω

+ ‖K−1‖∞,Ω ‖ϕh‖1,Ω ‖u− uh‖1,Ω ‖(q, ψ)‖ + Rh(q) .

Next, by adding and substracting ϕ in the norm ‖ϕh‖1,Ω appearing in the last row, using that ‖u‖1,Ω
and ‖uh‖1,Ω are upperly bounded by r, replacing then back in (3.9), and simplifying the resulting
expression, we easily obtain (3.7) with a constant C > 0 depending only on r and the stabilization
parameters κi (i = 4, 6). �

As a straightforward consequence of the foregoing analysis we derive now a preliminary upper bound
for the total error.

Lemma 3.3 Assume that the data is sufficiently small so that the constant C(g,K−1,uD, ϕD), defined
below in (3.12) is such that C(g,K−1,uD, ϕD) ≤ 1/2. Then, the total error satisfies

‖(σ,u,p, ϕ)− (σh,uh,ph, ϕh)‖

≤ C
{
‖µ∇uh − (uh ⊗ uh)d − σd

h‖0,Ω + ‖div(σh) + ϕhg‖0,Ω + ‖uh − uD‖0,Γ

+ ‖K−1ph + K−1ϕhuh −∇ϕh‖0,Ω + ‖div(ph)‖0,Ω + ‖ϕh − ϕD‖0,Γ

+
∥∥Rf

∥∥ +
∥∥Rh

∥∥} .
(3.10)

where C depends on data and stabilization parameters but is independent of h, and Rf and Rh are the
linear functionals defined by (3.6) and (3.8), respectively.

Proof. Combining the estimates (3.5) and (3.7), we get

‖(σ,u,p, ϕ)− (σh,uh,ph, ϕh)‖

≤ C
{(
‖g‖∞,Ω + ‖uh‖1,Ω + ‖K−1‖∞,Ω + ‖ϕ‖1,Ω

)
‖(u, ϕ)− (uh, ϕh)‖

+ ‖µ∇uh − (uh ⊗ uh)d − σd
h‖0,Ω + ‖div(σh) + ϕhg‖0,Ω + ‖uh − uD‖0,Γ

+ ‖K−1ph + K−1ϕhuh −∇ϕh‖0,Ω + ‖div(ph)‖0,Ω + ‖ϕh − ϕD‖0,Γ

+
∥∥Rf

∥∥ +
∥∥Rh

∥∥} .
(3.11)

Then, using the a priori estimates for uh and ϕ provided by Theorems 2.1 and 2.2, the factor multi-
plying ‖(u, ϕ)− (uh, ϕh)‖ on the right-hand side of the above inequality can be bounded by

C(g,K−1,uD, ϕD) := ‖g‖∞,Ω + cS

{
r‖g‖∞,Ω + ‖uD‖0,Γ + ‖uD‖1/2,Γ

}
+ ‖K−1‖∞,Ω + c

S̃

{
‖ϕD‖0,Γ + ‖ϕD‖1/2,Γ

}
.

(3.12)

Finally, (3.11) and the assumption on C(g,K−1,uD, ϕD) imply (3.10), which completes the proof. �

11



3.2.2 Estimation of the dual norms

Based on standard arguments used in duality techniques for a posteriori error analyses of mixed finite
element schemes [5, 10, 20, 21, 22, 24, 25], in this Section we estimate Rh and Rf in their respective
norms. We begin with the upper bound for Rf whose proof can be found in [10, Lemma 3.11].

Lemma 3.4 Assume that uD ∈ H1(Γ). Then, there exists a positive constant C > 0, independent of
h, such that

‖Rf‖ ≤ C

{ ∑
T∈Th

h2
T ‖µ∇uh − σd

h − (uh ⊗ uh)d‖20,T + κ2
2 ‖divσh + ϕh g‖20,T

h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T +

∑
e∈Eh(Ω)

he ‖ [[(σh + uh ⊗ uh)d s
)
]]‖20,e

+
∑

e∈Eh(Γ)

he

{∥∥∥(σh + uh ⊗ uh)d s − µ
duD
ds

∥∥∥2

0,e
+ ‖u− uD‖20,e

}}1/2

.

(3.13)

We now turn to the derivation of the corresponding estimate for Rh. To that end we first introduce
some definitions and recall some standard results.

Let Πk
h : H1(Ω) −→ RTk(Th) be the usual Raviart–Thomas interpolation operator. It is well

known that this operator satisfies the following approximation properties (see, [7, Section III.3.3], [18,
Section 3.4.4] and [28, Lemma 1.130], for instance):

• For each ζ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1,

‖ζ − Πk
h(ζ)‖0,T ≤ C hmT |ζ|m,T ∀T ∈ Th . (3.14)

• For each ζ ∈ H1(Ω) such that div(ζ) ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖div(ζ − Πk
h(ζ))‖0,T ≤ C hmT |div ζ|m,T ∀T ∈ Th . (3.15)

• For each ζ ∈ H1(Ω), there holds

‖ζ · ν − Πk
h(ζ) · ν‖0,e ≤ C h1/2

e |ζ|1,Te , (3.16)

where Te is the element of Th having e as an edge.

In turn, we consider the space Xh =
{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
and denote by

Ih : H1(Ω) −→ Xh the Clément interpolation operator. From this operator we will only utilize the
following local estimates (see [9]): For each v ∈ H1(Ω) there hold

‖v − Ihv‖0,T ≤ C hT |v|1,∆(T ) ∀T ∈ Th , and ‖v − Ihv‖0,e ≤ C h1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh , (3.17)

where ∆(T ) and ∆(e) are the unions of all elements intersecting T and e, respectively.

Finally we recall from [14, Lemma 3.4] the following result which provides the last ingredient we
need: a stable Helmholtz decomposition of the space H(div; Ω).

Lemma 3.5 For each q ∈ H(div; Ω) there exist z ∈ H2(Ω) and φ ∈ H1(Ω), such that

q = ∇z + curl(φ) in Ω , and ‖z‖2,Ω + ‖φ‖1,Ω ≤ C ‖q‖div,Ω . (3.18)
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To start the derivation of the upper bound of Rh we first notice, according to its own definition,
that there holds

Rh(qh) = 0 ∀qh ∈ Hp
h .

In turn, given q ∈ H(div; Ω) and provided its Helmholtz decomposition q = ∇z + curl(φ) with
z ∈ H2(Ω) and φ ∈ H1(Ω), we let

qh := Πk
h(∇z) + curl(Ihφ) ∈ Hp

h .

Then, using that 〈∇z ·ν , ϕh 〉Γ =
∫

Ω ϕh div(∇z) +
∫

Ω∇ϕh ·∇z, and performing simple computations,
it is not difficult to see that

Rh(q) = Rh(q− qh) = Rh(∇z −Πk
h(∇z)) + Rh(curl(φ− Ihφ)) , (3.19)

where

Rh(∇z− Πk
h(∇z)) =

∫
Ω

(
∇ϕh −K−1ph −K−1ϕhuh

)
· (∇z −Πk

h(∇z))

−κ5

∫
Ω

div(ph) div(∇z −Πk
h(∇z)) + 〈∇z · ν −Πk

h(∇z) · ν, ϕD − ϕh 〉Γ
(3.20)

and

Rh(curl(φ− Ihφ)) := −
∫

Ω

(
K−1ph−K−1ϕhuh

)
· curl(φ− Ihφ) + 〈 curl(φ− Ihφ) ·ν , ϕD 〉Γ . (3.21)

In this way, to derive the desired estimate for Rh, in what follows we make use of the approximation
properties of Πk

h and Ih and estimates (3.20) and (3.21). We begin with the upper bound of (3.20).

Lemma 3.6 There exists a positive constant C, independent of h, such that

Rh(∇z −Πk
h(∇z)) ≤ C

{ ∑
T∈Th

h2
T ‖∇ϕh −K−1ph −K−1ϕhuh‖20,T

+
∑
T∈Th

κ2
5 ‖div(ph)‖20,T +

∑
e∈Eh(Γ)

he‖ϕD − ϕh‖20,e

}1/2

‖q‖div,Ω.

(3.22)

Proof. On the one hand, combining the Cauchy-Schwarz inequality and the property (3.14) with
m = 1 we get∣∣∣ ∫

T

(
∇ϕh −K−1ph −K−1ϕhuh

)
· (∇z −Πk

h(∇z))
∣∣∣ ≤ hT

∥∥∇ϕh −K−1ph −K−1ϕhuh
∥∥

0,T
|∇z|1,T .

On the other hand, employing the approximation property (3.15) with m = 0, and using next that
div(∇z) = div(q), we also find that∣∣∣κ5

∫
T

div(ph) div(∇z −Πk
h(∇z))

∣∣∣ ≤ C κ5 ‖div(ph)‖0,T ‖div(q)‖0,T .

The property (3.16) allows us to state that∣∣∣ 〈∇z · ν −Πk
h(∇z) · ν, ϕD − ϕh 〉Γ

∣∣∣ ≤ C

{ ∑
e∈Eh(Γ)

he‖ϕD − ϕh‖20,e

}1/2

|∇z|1,Ω

Then, from the regularity of the mesh, the estimate (3.22) follows as a direct consequence of (3.18)
and the Cauchy-Schwarz inequality. �

The following lemma establishes the upper bound for (3.21).
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Lemma 3.7 Assume that ϕD ∈ H1(Γ). Then, there exists a positive constant C > 0, independent of
h, such that

Rh(curl(φ− Ihφ)) ≤ C

{ ∑
T∈Th

h2
T ‖rot

(
K−1ph −K−1ϕhuh

)
‖20,T

+
∑

e∈Eh(Ω)

he‖ [[
(
K−1ph −K−1ϕhuh

)
· s]]‖20,e

+
∑

e∈Eh(Γ)

he

∥∥∥(K−1ph −K−1ϕhuh
)
· s− dϕD

ds

∥∥∥2

0,e

}1/2

‖q‖div,Ω.

(3.23)

Proof. Similarly to [14, Lemma 3.10] we integrate by parts on each element and on the boundary (the
latter requires that ϕD ∈ H1(Γ)), and apply estimates (3.17), to find that

Rh(curl(φ− Ihφ)) = −
∑
T∈Th

∫
T

(
K−1ph −K−1ϕhuh

)
· curl(φ− Ihφ)

+ 〈curl(φ− Ihφ) · ν , ϕD 〉Γ

= −
∑
T∈Th

∫
T

rot
(
K−1ph −K−1ϕhuh

)
(φ− Ihφ)

+
∑

e∈Eh(Ω)

∫
e

[[
(
K−1ph −K−1ϕhuh

)
· s]](φ− Ihφ)

+
∑

e∈Eh(Γ)

∫
e

{(
K−1ph −K−1ϕhuh

)
· s − dϕD

ds

}
(φ− Ihφ)

≤ C

{ ∑
T∈Th

hT ‖rot
(
K−1ph −K−1ϕhuh

)
‖0,T ‖φ‖1,∆(T )

+
( ∑
e∈Eh(Ω)

h1/2
e

∥∥[[
(
K−1ph −K−1ϕhuh

)
· s]]
∥∥

0,e

+
∑

e∈Eh(Γ)

h1/2
e

∥∥∥(K−1ph −K−1ϕhuh
)
· s − dϕD

ds

∥∥∥
0,e

)
‖φ‖1,∆(e)

}
.

Then, using again the bound in (3.18), the fact that the number of triangles in ∆(T ) and ∆(e) are
bounded, and applying the Cauchy–Schwarz inequality we easily obtain (3.23). �

We are now in position of establishing the upper bound for Rh.

Lemma 3.8 There exists a positive constant C > 0, independent of h, such that

‖Rh‖ ≤ C

{ ∑
T∈Th

h2
T ‖∇ϕh −K−1ph −K−1ϕhuh‖20,T + κ2

5 ‖div(ph)‖20,T

+h2
T ‖rot

(
K−1ph −K−1ϕhuh

)
‖20,T +

∑
e∈Eh(Ω)

he ‖ [[
(
K−1ph −K−1ϕhuh

)
· s]]‖20,e

+
∑

e∈Eh(Γ)

he

(∥∥∥(K−1ph −K−1ϕhuh
)
· s − dϕD

ds

∥∥∥2

0,e
+ ‖ϕh − ϕD‖20,e

)}1/2

.

(3.24)

Proof. It suffices to use the identity (3.19) and estimates (3.22) and (3.23). �
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To close this section, we note that the terms h2
T ‖µ∇uh − σd

h − (uh⊗uh)d‖0,T , h2
T ‖∇ϕh−K−1ph−

K−1ϕhuh‖0,T , he ‖uh−uD‖0,T and he ‖ϕh−ϕD‖0,T , appearing in the estimates (3.13) and (3.24) are
clearly dominated by ‖µ∇uh − σd

h − (uh⊗uh)d‖0,T , ‖∇ϕh−K−1ph−K−1ϕhuh‖0,T , ‖uh−uD‖0,T
and ‖ϕh − ϕD‖0,T , respectively, already appearing in the first total preliminary estimate provided by
Lemma 3.3. As a result, the reliability property of θ (cf. upper bound in Theorem 3.1) is deduced
from this fact and a combination of Lemmas 3.3, 3.4 and 3.8, and the resulting multiplicative constant,
denoted by Crel, is clearly independent of h.

3.3 Efficiency

In this section we focus on showing the lower bound in (3.4). To do so, we firstly note that the estimator
θT,f (cf. (3.1)) associated to the fluid equations retains the same structure of the corresponding one
in our adaptive mixed–primal method [10], from where we immediately deduce its efficiency property
and state it through the next result as follows.

Lemma 3.9 Let (σ,u, ϕ) and (σh,uh, ϕh) be the unique solutions to problems (2.4) and (2.19), re-
spectively, and assume that the trace uD is a piecewise polynomial in H1(Γ). Then, there exists a
positive constant C, depending on physical constants and on the stabilization parameters, but indepen-
dent of h, such that

C

{ ∑
T∈Th

θ2
T,f

}1/2

≤ ‖(σ,u, ϕ) − (σh,uh, ϕh)‖ .

Proof. It essentially follows by combining Lemmas 3.14 and 3.15 in [10, Section 3.3]. �

Next, to state an analogous estimate for the terms involved in the indicator θT,h (cf. (3.2)), we
make extensive use of the original system of equations (2.3), which is recovered from the augmented
continuous formulation (2.4) by choosing suitable test functions and integrating by parts backwardly
the corresponding equations. We begin with the estimates for the zero order terms appearing in the
definition of θT,h.

Lemma 3.10 There holds

‖div(p) − div(ph)‖0,T ≤ ‖p − ph‖div,T ∀T ∈ Th.

Moreover, there exist C1, C2 > 0, independent of h, such that∑
T∈Th

‖K−1 ph + K−1 ϕh uh − ∇ϕh‖20,T ≤ C1 ‖(u,p, ϕ) − (uh,ph, ϕh)‖2

and ∑
e∈Eh(Γ)

‖ϕh − ϕD‖20,e ≤ C2 ‖ϕ− ϕh‖21,Ω .

Proof. First, since div(p) = 0 in Ω, it readily follows that

‖div(ph)‖0,T = ‖div(p) − div(ph)‖0,T ≤ ‖p − ph‖div,T .

In turn, since ϕ|Γ = ϕD, by the trace inequality in H1(Ω) we easily have that∑
e∈Eh(Γ)

‖ϕh − ϕD‖20,e ≤ C ‖ϕ− ϕh‖21,Ω .
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Likewise, to state the second statement we use that K−1 p + K−1 ϕu − ∇ϕ = 0 in Ω and the identity

ϕ u− ϕh uh = (u − uh)ϕ + (ϕ − ϕh)uh , (3.25)

to deduce from the triangle inequality that

‖K−1 ph + K−1 ϕh uh − ∇ϕh‖20,T ≤ C

{
‖K−1‖2∞,Ω‖p− ph‖20,T

+ ‖K−1‖2∞,Ω‖ (u− uh)ϕ + (ϕ− ϕh)uh‖20,T + ‖∇(ϕ− ϕh)‖20,T

}
,

(3.26)

and hence, the proof concludes by adding on T ∈ Th, and using the Hölder inequality, a Sobolev
embedding and the fact that ‖uh‖1,Ω, ‖ϕ‖1,Ω ≤ r (see Theorems 2.1 and 2.2) to bound the second
term at the right-hand side of (3.26) as∑

T∈Th

‖(u− uh)ϕ + (ϕ− ϕh)uh‖20,T

≤ ‖u− uh‖2L4(Ω)‖ϕ‖
2
L4(Ω) + ‖ϕ− ϕh‖2L4(Ω)‖uh‖

2
L4(Ω)

≤ C(r)
{
‖u− uh‖21,Ω + ‖ϕ− ϕh‖21,Ω

}
,

and the resulting constant C1 depends on K and r but is independent on h. �

The corresponding bounds for the remaining terms defining θT,h are stated next.

Lemma 3.11 There exist C3, C4 > 0, independent of h, such that∑
T∈Th

h2
T ‖rot

(
K−1ph −K−1ϕhuh

)
‖20,T ≤ C3 ‖(u,p, ϕ) − (uh,ph, ϕh)‖2 , (3.27)

∑
e∈Eh(Ω)

he‖ [[
(
K−1ph −K−1ϕhuh

)
· s]]‖20,e ≤ C4 ‖(u,p, ϕ) − (uh,ph, ϕh)‖2 . (3.28)

In addition, if ϕD is piecewise polynomial on each e ∈ Eh(Γ), then there exists C5 > 0, independent of
h, such that∑

e∈Eh(Γ)

he

∥∥∥(K−1ph −K−1ϕhuh
)
· s − dϕD

ds

∥∥∥2

0,e
≤ C5 ‖(u,p, ϕ) − (uh,ph, ϕh)‖2 .

Proof. For the derivation of the first two inequalities, it suffices to use Lemmas 6.1 and 6.2 in [8] or
Lemmas 3.19 and 3.20 in [14]. Indeed, from there we have that for each piecewise polynomial ρh in
Th, and for each ρ ∈ L2(Ω) with rot(ρ) = 0 in Ω, there exists C > 0, independent of h, satisfying

hT ‖rot(ρh)‖0,T ≤ C ‖ρ− ρh‖0,T and h
1/2
e ‖[[ρh s]]‖0,e ≤ C ‖ρ− ρh‖0,ωe . (3.29)

Thus, taking ρh := K−1 ph + K−1 ϕh uh and ρ := K−1 p + K−1 ϕu = ∇ϕh in (3.29), adding on
T ∈ Th and on e ∈ Eh, and by proceeding as in (3.25)-(3.26) we can easily obtain (3.27) and (3.28). In
turn, these same arguments combined with Lemma 3.26 in [14] (which requires ϕD to be a piecewise
polynomial in H1(Γ)) allows us to deduce the last inequality. We omit further details since the result
can be deduced analogously to [10, Lemma 3.15]. �

We end this section by noticing that the efficiency property of the estimator θ is a consequence of
its own definition and Lemmas 3.9, 3.10 and 3.11.
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4 A posteriori estimation: the 3d–case

In this section we briefly discuss how the a posteriori error analysis can be extended to the three
dimensional case. To that end we first need to introduce some additional notations.

Given ψ = (ψ1, ψ2, ψ3) a sufficiently smooth vector field, we let

curl(ψ) := ∇×ψ =
(∂ψ3

∂x2
− ∂ψ2

∂x3
,
∂ψ1

∂x3
− ∂ψ3

∂x1
,
∂ψ2

∂x1
− ∂ψ1

∂x2

)
,

and given any tensor field ζ = (ζij)1≤i,j≤3 we define

curl ζ :=

 curl(ζ11, ζ12, ζ13)
curl(ζ21, ζ22, ζ23)
curl(ζ31, ζ32, ζ33)

 and ζ × ν :=

 (ζ11, ζ12, ζ13)× ν
(ζ21, ζ22, ζ23)× ν
(ζ31, ζ32, ζ33)× ν

 ,

Then, the local estimators θT,f and θT,h take the form

θ2
T,f := ‖µ∇uh − σd

h − (uh ⊗ uh)d‖20,T + ‖div(σh) + ϕh g‖20,T

+h2
T ‖curl

(
(σh + uh ⊗ uh)d

)
‖20,T +

∑
e∈Eh,T (Ω)

he ‖[[(σh + uh ⊗ uh)d × ν]]‖20,e

+
∑

e∈Eh,T (Γ)

‖uh − uD‖20,e + he

∥∥∥(σh + uh ⊗ uh)d × ν − µ∇uD × ν
∥∥∥2

0,e
,

θ2
T,h := ‖K−1ph + K−1ϕh uh − ∇ϕh‖20,T + ‖div(ph)‖20,T

+h2
T ‖curl

(
K−1ph + K−1ϕh uh

)
‖20,T +

∑
e∈Eh,T (Ω)

he ‖[[
(
K−1ph + K−1ϕh uh

)
× ν]]‖20,e

+
∑

e∈Eh,T (Γ)

‖ϕh − ϕD‖20,e + he

∥∥∥(K−1ph + K−1ϕh uh
)
× ν − ∇ϕD × ν

∥∥∥2

0,e
,

and the global a posteriori error indicator is defined as

θ :=

{ ∑
T∈Th

θ2
T,f +

∑
T∈Th

θ2
T,h

}1/2

.

The reliability of this estimator can be proved essentially by using the same arguments employed
for the two dimensional case. In particular, analogously to the 2D case, here it is needed a stable
Helmholtz decomposition for H(div; Ω). This result taken from [19, Theorem 3.1] is established next.

Lemma 4.1 For each v ∈ H(div; Ω) there exist z ∈ H2(Ω) and χ ∈ H1(Ω), such that there hold
v = ∇z + curlχ in Ω, and

‖z‖2,Ω + ‖χ‖1,Ω ≤ C‖v‖div;Ω ,

where C is a positive constant independent of v.

Finally, to prove the efficiency of the three dimensional estimator it suffices to estimate the new
terms since the analysis of the rest of the terms is straightforward. The following lemma provides
these desired estimates, where, for the sake of simplicity, we assume that uD and ϕD are piecewise
polynomials. Otherwise, these data are replaced by suitable polynomial approximations of them,
yielding high order terms in the error estimate (3.4).
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Lemma 4.2 There exist positive constants ci , i ∈ {1, 2, 3}, independent of h, such that

a)
∑
T∈Th

h2
T ‖curl

(
K−1ph + K−1ϕh uh

)
‖20,T ≤ c1 ‖(u,p, ϕ) − (uh,ph, ϕh)‖2.

b)
∑

e∈Eh,T (Ω)

he ‖ [[
(
K−1ph + K−1ϕh uh

)
× ν]]‖20,e ≤ c2 ‖(u,p, ϕ) − (uh,ph, ϕh)‖2.

c)
∑

e∈Eh,T (Γ)

he

∥∥∥(K−1ph + K−1ϕh uh
)
× ν − ∇ϕD × ν

∥∥∥2

0,e
≤ c2 ‖(u,p, ϕ) − (uh,ph, ϕh)‖2.

Proof. By applying (3.25) and the fact that ‖uh‖1,Ω, ‖ϕ‖1,Ω ≤ r, estimates a), b) and c) can be deduced
from a slight modification of the proofs of [23, Lemma 4.9], [23, Lemma 4.10] and [23, Lemma 4.13],
respectively. �

5 Numerical Results

Our objective here is to illustrate the properties of the a posteriori error estimator θ (cf. (3.3)) studied
in the previous sections via an associated adaptive algorithm. To this end, we report below a couple of
examples implemented in the two–dimensional setting using the public domain finite element software
FreeFem++ which provides the automatic adaptation procedure tool adaptmesh [27].

As usual, the errors and the experimental convergence rates will be computed as

e(σ) := ‖σ − σh‖div;Ω , e(u) := ‖u− uh‖1,Ω ,

e(p) := ‖p− ph‖div;Ω , e(ϕ) := ‖ϕ− ϕh‖1,Ω

and

r(σ) :=
−2 log(e(σ)/e′(σ))

log(N/N ′)
, r(u) :=

−2 log(e(u)/e′(u))

log(N/N ′)

r(p) :=
−2 log(e(p)/e′(p))

log(N/N ′)
, r(ϕ) :=

−2 log(e(ϕ)/e′(ϕ))

log(N/N ′)
,

where N and N ′ denote the total degrees of freedom associated to two consecutive triangulations with
errors e(·) and e′(·). In turn, the total error, the total convergence rate and the effectivity index
associated to the global estimator θ are denoted and defined, respectively, as

e =
{
e(σ)2 + e(u)2 + e(p)2 + e(ϕ)2

}1/2
, r =

−2 log(e/e′)

log(N/N ′)
, and eff(θ) =

e

θ
.

Test 1: accuracy assessment.

In this example we test the accuracy of our method as well as the reliability and the effectivity
properties of the a posteriori error estimator θ (3.3) via the the associated effectivity index eff(θ)
by using both quasi–uniform and adaptive refinement strategies. We consider on Ω = (−1, 1)2 the
smooth solution (u, p, ϕ) to problem (2.1) given by

u(x1, x2) =

(
2π cos(πx2) sin2(πx1) sin(πx2)
−2π cos(πx1) sin(πx1) sin2(πx2)

)
, p(x1, x2) = 5x1 sinx2 and ϕ(x1, x2) = ex1+x2 ,
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in terms of which we properly define the corresponding right–hand side functions and the Dirichlet
data ϕD and uD. We take here the gravitational force g = (0,−1)t , the kinematic viscosity µ = 0.5
and the thermal conductivity tensor K = ex1+x2I, which yields κ0 = e−2 and ‖K−1‖∞,Ω = e2. In turn,
the stabilization parameters are optimally chosen as in [11], that is,

κ1 = µ = 0.5 κ2 = 1 , κ3 = µ2/2 = 0.125,

κ4 =
κ0

‖K−1‖2∞,Ω
= e−6 , κ5 =

κ0

2
=

1

2
e−2 , κ6 =

κ0

2‖K−1‖∞,Ω
=

1

2
e−4.

(5.1)

In Table 1 we present the convergence history for the fully-mixed approximation using the two
lowest order methods (k = 0, 1) of the Boussinesq problem both under quasi-uniform and adaptive
refinement. As expected, it is observed in each case that the individual and the total convergence
rates are optimal, and that the corresponding effectivity index remains always bounded.

Test 2: a vortex in a unit box.

In our second example we consider a known solution problem on the unit square Ω := (0, 1)× (0, 1)
[15, 29], in which the velocity u = (u1,u2), the pressure p and the temperature ϕ solution to (2.1)
are given, respectively, by

u1(x1, x2) =
[ (

1 − cos
(2π(er1x1 − 1)

er1 − 1

))
sin
(2π(er2x2 − 1)

er2 − 1

) ] r2

2π

er2x2

er2 − 1
,

u2(x1, x2) =
[
−
(

1 − cos
(2π(er2x2 − 1)

er2 − 1

))
sin
(2π(er1x1 − 1)

er1 − 1

) ] r1

2π

er1x1

er1 − 1
,

p(x1, x2) = r1 r2 sin
(2π(er1x1 − 1)

er1 − 1

)
sin
(2π(er2x2 − 1)

er2 − 1

) er1x1+r2x2

(er1 − 1)(er2 − 1)
,

where r1 and r2 are positive parameters and

ϕ(x1, x2) = u1(x1, x2) + u2(x1, x2) .

Here, the velocity vector field u is similar to a counter clockwise vortex whose center (x̂1, x̂2), depending
on the choice of r1 and r2, has the coordinates

x̂1 =
1

r1
log
(er1 + 1

2

)
, and x̂2 =

1

r2
log
(er2 + 1

2

)
.

We have particularly taken r1 = r2 = 4.5, case in which x̂1 = x̂2 ≈ 0.829, and so the vortex is located
near the top–right corner of the domain. Again, the corresponding source terms in the Boussinesq
model are defined so that the corresponding exact solution is given by (u, p, ϕ), the physical coeficients
are taken as µ = 0.5, K = I and g = (0,−1)t, and thus, the parameters κ1, κ2 and κ3 are given as in
(5.1) in the previous example. The remaining stabilization parameters take now the form

κ4 =
κ0

‖K−1‖2∞,Ω
= 1 , κ5 =

κ0

2
= 0.5 , κ6 =

κ0

2‖K−1‖∞,Ω
= 0.5. (5.2)

In Table 2, we present the numerical results we have obtained by quasi-uniform refinements and
adaptive procedures, both for the finite element families RT0 − P1 −RT0 − P1 (k = 0) and RT1 −
P2 −RT2 −P1 (k = 1). In each case, it is observed that the effective indexes eff(θ) remain bounded
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N e(σ) r(σ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) e r eff(θ)

Fully–mixed RT0 −P1 −RT0 − P1 scheme with quasi-uniform refinement

159 178.475 – 29.710 – 8.760 – 2.784 – 181.003 – 0.952
423 143.352 0.448 19.920 0.747 6.808 0.515 1.271 1.603 144.895 0.455 0.946

1251 82.591 1.017 12.388 0.876 3.380 1.292 0.475 1.816 83.584 1.015 0.901
4215 45.894 0.967 6.945 0.953 1.904 0.944 0.244 1.095 46.456 0.967 0.879

15795 23.356 1.023 3.583 1.002 1.002 0.973 0.120 1.073 23.650 1.022 0.864
61311 11.897 0.995 1.801 1.014 0.505 1.010 0.058 1.064 12.043 0.995 0.860

237701 6.020 1.005 0.908 1.011 0.250 0.037 0.031 0.936 6.093 1.006 0.851

Fully–mixed RT0 −P1 −RT0 − P1 scheme with adaptive refinement according to θ

963 95.313 – 14.834 – 4.287 – 0.0609 – 96.557 – 0.918
2472 57.533 1. 071 8.706 1.130 2.521 1.127 0.365 1.086 58.244 1.072 0.892
3933 45.537 1.007 7.157 0.844 1.798 1.454 0.274 1.244 46.132 1.004 0.881
6636 34.326 1.080 5.405 1.073 1.474 0.760 0.204 1.116 34.781 1.080 0.867

18210 20.854 0.987 3.357 0.943 0.899 0.980 0.125 0.970 21.142 0.986 0.863
30993 15.874 1.026 2.552 1.031 0.664 1.140 0.088 1.329 16.091 1.027 0.860
52338 12.196 1.006 1.977 0.975 0.513 0.981 0.071 0.829 12.366 1.005 0.856

Fully–mixed RT1 −P2 −RT1 − P2 scheme with quasi-uniform refinement

495 112.121 – 19.406 – 4.354 – 0.836 – 113.874 – 0.859
1383 50.490 1.553 9.047 1.486 2.215 1.315 0.403 1.421 51.344 1.551 0.726
4209 18.010 1.852 2.785 2.117 0.688 1.102 0.071 3.126 18.237 1.860 0.669

14439 5.628 1.887 0.819 1.987 0.225 1.813 0.011 2.969 5.692 1.889 0.669
54381 1.462 2.033 0.209 2.058 0.060 1.992 0.002 2.591 1.479 2.033 0.669

213411 0.372 2.003 0.055 1.953 0.015 2.035 0.000 2.493 0.376 2.002 0.669
829029 0.095 2.019 0.014 2.027 0.004 2.033 0.000 2.152 0.096 2.019 0.667

Fully–mixed RT1 −P2 −RT1 − P2 scheme with adaptive refinement according to θ

3219 26.293 – 3.226 – 1.111 – 0.113 – 26.513 – 0.747
5199 15.451 2.218 2.358 1.307 0.516 3.202 0.038 4.549 15.639 2.202 0.683
9165 8.351 2.171 1.208 2.361 0.374 1.134 0.029 0.991 8.446 2.173 0.690

17301 4.716 1.799 0.707 1.687 0.161 2.659 0.009 3.735 4.771 1.795 0.674
35490 2.182 2.145 0.334 2.089 0.068 2.397 0.004 1.880 2.208 2.144 0.689
67074 1.164 1.974 0.193 1.726 0.037 1.944 0.002 2.111 1.181 1.968 0.677

131688 0.575 2.090 0.100 1.938 0.018 2.183 0.001 1.897 0.584 2.086 0.677

Table 1: Test 1: Convergence history and effectivity indexes for the fully-mixed approximation of
the Boussinesq problem under quasi-uniform and adaptive refinement according to the indicator θ
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Figure 1: Test 2: Decay of the total error with respect to the number of degrees of freedom using
quasi-uniform and adaptive refinement strategies for k = 0.

and that the errors of the adaptive procedures decrease much faster than those obtained by the quasi–
uniform ones. In fact, this reduction of the computational cost by adaptivity can be much better
observed in Figures 1 and 2 where we plot the total error e versus the degrees of freedom N for both
refinement strategies. In addition, Figure 3 shows how the refinement process is concentrated near the
top–right corner of the domain because of the vortex there; this means that the algorithm induced by
the a posteriori estimator θ indeed properly guides the adaptive refinement process according to the
quality of the total error approximation. We also present in Figure 3 some adapted meshes derived
by the refinement process (first panel), and the post-processed pressure, the temperature vector field,
the velocity magnitude and the post-processed vorticity along with the velocity vector field (second
panel).

Test 3: adaptivity in a nonconvex domain

In this numerical experiment we set the problem in the nonconvex pacman domain

Ω := { (x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1} \ (0, 1)2 ,

and the smooth solution (u, p, ϕ) where u is the same velocity vector field considered in the first test,
the pressure is given by

p(x1, x2) = 5x1 sinx2 + p0 , where p0 ∈ R is such that

∫
Ω
p = 0 ,

and the temperature is defined by

ϕ(x1, x2) =
y

(x1 − a)2 + (x2 − b)2
, with a, b ∈ R.

We here particularly take a = b = 0.05 so that the scalar field ϕ and the components of the vector
variable p (depending on the temperature gradient) exhibit a singular behavior near the origin. In
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N e(σ) r(σ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) e r eff(θ)

Fully–mixed RT0 −P1 −RT0 − P1 scheme with quasi-uniform refinement

267 117.421 – 6.314 – 125.925 – 7.732 – 172.466 – 0.999
1035 81.901 0.532 4.430 0.523 88.576 0.519 4.582 0.771 120.806 0.526 0.994
3771 39.806 1.116 1.900 1.309 39.993 1.230 2.003 1.281 56.494 1.176 0.987

14991 20.792 0.941 0.999 0.932 19.933 1.009 1.027 0.968 28.839 0.974 0.984
58995 10.510 0.996 0.533 0.917 10.034 1.002 0.543 0.930 14.551 0.999 0.982

236739 5.095 1.042 0.253 1.073 4.928 1.023 0.263 1.043 7.098 1.033 0.981
931359 2.560 1.005 0.128 0.995 2.434 1.030 0.130 1.029 3.537 1.017 0.981

Fully–mixed RT0 −P1 −RT0 − P1 scheme with adaptive refinement according to θ

291 89.192 – 5.062 – 68.256 – 5.052 – 112.540 – 0.980
765 40.105 1.654 2.498 1.461 35.929 1.328 2.448 1.499 53.953 1.521 0.977

2580 16.642 1.447 0.909 1.663 15.235 1.411 0.889 1.666 22.598 1.432 0.979
11229 7.608 1.064 0.452 0.950 6.542 1.150 0.421 1.016 10.053 1.101 0.973
48111 3.557 1.045 0.218 1.002 3.134 1.012 0.208 0.969 4.750 1.031 0.971

205935 1.718 1.001 0.104 1.018 1.490 1.023 0.097 1.049 2.279 1.010 0.971

Fully–mixed RT1 −P2 −RT1 − P2 scheme with quasi-uniform refinement

855 67.887 – 4.155 – 49.064 – 4.314 – 83.975 – 0.968
3429 23.739 1.513 1.757 1.239 22.842 1.101 2.064 1.059 33.055 1.343 0.959

13029 11.525 1.083 0.408 2.188 10.301 1.193 0.488 2.163 15.471 1.137 0.975
51297 2.951 1.988 0.087 2.255 2.841 1.880 0.098 2.349 4.098 1.939 0.967

203895 0.810 1.874 0.025 1.807 0.768 1.896 0.026 1.917 1.117 1.884 0.924
822159 0.192 2.065 0.006 2.064 0.184 2.050 0.006 2.067 0.266 2.058 0.926

Fully–mixed RT1 −P2 −RT1 − P2 scheme with adaptive refinement according to θ

939 57.224 – 2.697 – 40.541 – 2.520 – 70.227 – 0.973
2427 15.427 2.761 0.395 4.046 13.671 2.289 0.364 4.075 20.620 2.581 0.984
8184 2.448 3.029 0.108 2.134 2.164 3.033 0.093 2.245 3.270 3.030 0.940

33336 0.555 2.113 0.026 2.028 0.479 2.147 0.021 2.119 0.734 2.128 0.943
128085 0.136 2.090 0.007 1.978 0.124 2.008 0.007 1.632 0.184 2.056 0.942

Table 2: Test 2: Convergence history and effectivity indexes for the fully-mixed approximation of
the Boussinesq problem under quasi-uniform and adaptive refinement according to the indicator θ.
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Figure 2: Test 2: Decay of the total error with respect to the number of degrees of freedom using
quasi-uniform and adaptive refinement strategies for k = 1.

Figure 3: Test 2: Snapshots of adapted meshes (first panel), post–processed pressure, temperature,
velocity magnitude, and post-processed vorticity component ω21,h along with the velocity field over
the 7th adapted mesh (second panel) with k = 0, and r1 = r2 = 4.5.
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Figure 4: Test 3: Decay of the total error with respect to the number of degrees of freedom using
quasi-uniform and adaptive refinement strategies for k = 0.

turn, the physical coefficients are taken as µ = 0.5, K = I and g = (0,−1)t, and thus, the parameters
κ1, κ2 and κ3 are given as in (5.1) and κ4, κ5 and κ6 by (5.2).

In Table 3, we summarize the convergence history associated to the augmented fully–mixed method
for the Boussinesq problem using both quasi–uniform and adaptive refinement processes with the
approximation orders k = 0 and k = 1. We observe that the individual convergence rates for the
tensor σ and the velocity u are always quasi–optimal but, when using the quasi–uniform refinement
strategy, the convergence of the approximation for vector p and the temperature field ϕ is oscillating,
slower and/or lower than the expected one. This fact is even more evident for the case in which
k = 1, where the total convergence rate is sub-optimal using quasi–uniform refinements; as expected
due to the presence of the singularity. In turn, it can be observed that the adaptive algorithm not
only restores the quasi–optimality in all the cases but also significantly reduces the computational
cost. In fact, the latter statement can be better observed in Figures 4 and 5, where we contrast the
total error decay with respect to the degrees of freedom using both refinement strategies for k = 0 and
k = 1, respectively. In both cases, we clearly see that the total error decreases much faster with the
adaptive algorithm, and with the expected convergence rates. Finally, in the first panel of Figure 6, we
present some snapshots of adapted meshes obtained with the adaptive method and we observe there
that the refinement process is concentrated in the origin, which is the zone with highest gradients.
This illustrates that the a posteriori error estimator is indeed able to recognize the region in which
the numerical approximation is deteriorated. In the second panel of Figure 6 we further present the
velocity magnitude, the postprocessed pressure and the temperature vector fields obtained in some
iterations using the adaptive method.
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N e(σ) r(σ) e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) e r eff(θ)

Fully–mixed RT0 −P1 −RT0 − P1 scheme with quasi-uniform refinement

243 102.675 – 15.996 – 543.190 – 37.981 – 554.343 – 0.986
807 63.164 0.810 9.755 0.824 471.866 0.235 28.774 0.463 477.043 0.250 0.980

2823 33.516 1.012 5.2229 0.996 675.438 -0.573 27.200 0.090 676.836 -0.559 0.990
10959 17.032 0.998 2.612 1.023 490.267 0.472 18.597 0.561 490.922 0.474 0.989
43275 8.440 1.022 1.308 1.007 333.568 0.561 12.095 0.626 333.896 0.561 0.987

172647 4.222 1.001 0.657 0.995 199.337 0.744 6.819 0.828 199.499 0.744 0.986
708363 2.069 1.011 0.324 1.002 104.936 0.909 3.492 0.948 105.015 0.909 0.982

Fully–mixed RT0 −P1 −RT0 − P1 scheme with adaptive refinement according to θ

618 70.158 – 10.644 – 472.867 – 28.836 – 479.030 – 0.982
1056 60.905 0.528 9.414 0.458 425.140 0.397 22.882 0.863 430.193 0.401 0.991
1653 56.541 0.332 8.740 0.332 328.488 1.151 11.967 2.893 333.648 1.134 0.986
4158 37.584 0.885 5.748 0.909 130.223 2.006 5.207 1.804 135.760 1.950 0.971

16812 19.770 0.920 3.155 0.859 48.568 1.412 2.271 1.188 52.582 1.358 0.945
111366 7.680 1.000 1.224 1.002 17.918 1.055 0.857 1.031 19.552 1.046 0.929
896418 2.692 1.005 0.429 1.005 6.336 0.997 0.301 1.003 6.904 0.998 0.888

Fully–mixed RT1 −P2 −RT1 − P2 scheme with quasi-uniform refinement

771 43.271 – 5.593 – 350.846 – 23.452 – 354.326 – 0.883
2673 13.570 1.865 2.012 1.645 236.824 0.632 17.040 0.514 237.832 0.641 0.851
9585 4.058 1.891 0.566 1.986 402.511 -0.831 16.065 0.092 402.852 -0.825 0.969

37773 9.995 2.050 0.148 1.956 184.503 1.138 6.280 1.370 184.613 1.138 0.913
150303 0.247 2.018 0.036 2.047 83.432 1.149 2.632 1.259 83.474 1.149 0.940
601953 0.062 1.996 0.009 1.998 29.606 1.493 0.840 1.646 29.618 1.494 0.887

Fully–mixed RT1 −P2 −RT1 − P2 scheme with adaptive refinement according to θ

2034 17.593 – 2.375 – 238.165 – 16.547 – 239.398 – 0.893
3288 14.285 0.867 1.930 0.864 220.719 0.317 11.457 1.531 221.486 0.324 0.975
5226 10.065 1.511 1.353 1.533 78.069 4.486 2.470 6.623 78.766 4.462 0.926

15618 3.618 1.869 0.513 1.772 14.219 3.111 0.564 2.698 14.692 3.068 0.920
70968 0.816 1.968 0.122 1.898 2.156 2.492 0.092 2.396 2.310 2.444 0.919

367374 0.155 2.020 0.024 1.978 0.399 2.052 0.017 2.054 0.429 2.048 0.922

Table 3: Test 3: Convergence history and effectivity indexes for the fully-mixed approximation of
the Boussinesq problem under quasi-uniform and adaptive refinement according to the indicator θ on
the nonconvex pacman domain
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Figure 5: Test 3: Decay of the total error with respect to the number of degrees of freedom using
quasi-uniform and adaptive refinement strategies for k = 1.

Figure 6: Test 3: Snapshots of adapted meshes according to the indicator θ (first row), velocity,
post–processed pressure and temperature obtained in the 7th adaptive iteration (second row).
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[10] E. Colmenares, G. N. Gatica and R. Oyarzúa, A posteriori error analysis of an augmented
mixed–primal formulation for the stationary Boussinesq model. Calcolo, to appear.

[11] E. Colmenares, G. N. Gatica and R. Oyarzúa, An augmented fully–mixed finite element
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