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Abstract

We introduce a new variational formulation for the Brinkman-Darcy equations formulated
in terms of the scaled Brinkman vorticity and the global pressure. The velocities in each
subdomain are fully decoupled through the momentum equations, and can be later recovered
from the principal unknowns. A new finite element method is also proposed, consisting in equal-
order Nédélec and piecewise continuous elements, for vorticity and pressure, respectively. The
error analysis for the scheme is carried out in the natural norms, with bounds independent of the
fluid viscosity. An adequate modification of the formulation and analysis permits us to specify
the presentation to the case of axisymmetric configurations. We provide a set of numerical
examples illustrating the robustness, accuracy, and efficiency of the proposed discretisation.
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1 Introduction

In this paper we develop the mathematical and numerical analysis for a set of partial differential
equations modelling the flow of an incompressible fluid within two porous domains separated by
a clearly defined interface. One medium consists of a permeable material composed by an array
of low concentration fixed particles, where viscous effects of the flow are described by Brinkman
equations (written in terms of vorticity, velocity and pressure). The second subdomain is a classical
porous medium constituted by connected porous matrices where Darcy’s law (expressed in terms of
the filtration velocity and pressure) governs the non-viscous displacement of the fluid. Situations
of this kind might be encountered in several applicative problems in geophysics or hydrogeology,
including for instance, hydrocarbon migration, or the study of groundwater flows passing through
soils characterised by intrinsic properties with high disparity (such as fractures). Conditions at the
interface would naturally include continuity of normal velocities and additional terms accounting
for normal and tangential stress preservation, whose specific form will depend on the features of the
problem at hand.
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If the permeability of the viscous domain goes to infinity, one readily recovers the classical Stokes
flow, and the literature is populated with numerous formulations and methods to solve the Stokes-
Darcy and Navier-Stokes–Darcy equations (see e.g. [5–7,9,10,12,16–18,20–22,26] and the references
therein). In contrast, dedicated Brinkman-Darcy models have been studied in [8,13] (using velocity-
pressure formulations), whereas the setting described above (including also the Brinkman vorticity)
has been proposed only quite recently [2] (along with a fully-mixed finite element method solving for
vorticity-velocity-pressure on the viscous domain and velocity-pressure on the non-viscous domain).

Using fairly common boundary conditions (no-slip velocities on the boundary of the Brinkman
domain, plus slip velocity conditions on the boundary of the Darcy domain), and exploiting regularity
assumptions together with the specific form of the momentum equations on the Darcy and Brinkman
domains, we are here able to decouple the velocities from the rest of the set of governing equations,
in such a way that the final problem is solved only using the vorticity of the Brinkman domain and
the global pressure. In fact, a similar splitting (but regarding only the Brinkman equations) has
been introduced in [4] (see also related strategies in [14,15]). The numerical method is characterised
by Nédélec and piecewise continuous finite elements of degree k ≥ 1 for the Brinkman vorticity and
for the global pressure, respectively, which entails a quite low computational cost (when compared
with the methods from e.g. [2, 8, 13]). Its optimal convergence to the corresponding weak solution
is established using classical arguments and the approximation properties of the specific finite ele-
ment spaces, and the obtained error bounds turn out to be fully independent of the fluid viscosity
(vanishing in the Darcy limit and being relatively large in the Stokes limit). In addition, if the fluid
flow and the domain at hand are considered invariant to rotations in the meridional direction, we
can rewrite the problem in cylindrical coordinates, reducing the (initially three-dimensional) formu-
lation into its axially symmetric form. Although the functional framework will necessarily undergo
natural modifications, the overall structure of the analysis will remain essentially the same as in the
Cartesian case.

The remainder of this paper has been organised in the following manner. The governing equations
and the continuous variational formulation stated in terms of Brinkman vorticity and global pressure
are presented in Section 2. Their approximation via finite elements together with the well-posedness
and error analysis of the constructed schemes will be provided in Section 3. Section 4 remarks how
the steps in each proof are modified in the case of axisymmetric formulations, and a few numerical
tests (illustrating the convergence of our method in diverse settings) are reported in Section 5.

2 The model problem

Let ΩB and ΩD be open, bounded subsets of Rd (with d ∈ {2, 3}) having Lipschitz–continuous
boundaries, such that ∂ΩB ∩ ∂ΩD = Σ 6= ∅ and ΩB ∩ ΩD = ∅. These domains will represent the
regions where viscous and non-viscous flow will be governed by Brinkman and Darcy equations,
respectively. The overall porous medium is Ω := ΩB ∪ ΩD with boundary Γ = ∂Ω. Figure 1 gives a
schematic representation of the geometry in different scenarios (where the middle and right panels
will be relevant in the discussion of Section 4).

Using standard notation, the system of interest can be written as the following boundary value
problem. Given smooth data fB ∈ L2(ΩB)d, fD ∈ L2(ΩD)d and gD ∈ L2(ΩD), find the velocity,
scaled vorticity, and pressure in the Brinkman domain (uB, ωB and pB, respectively) together with
the filtration velocity and pressure in the Darcy domain (uD and pD), such that

κ−1
D uD +∇pD = fD in ΩD, (2.1)

κ−1
B uB +

√
ν curlωB +∇pB = fB in ΩB, (2.2)

ωB −
√
ν curluB = 0 in ΩB, (2.3)

divuB = 0 in ΩD, (2.4)

2



Ω

ΩD

ΩB

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

ΩB

ΩD

∂Ωa

B

Σ
a

∂Ωa

D

ΩB

Σ
Γs

Ω Ω
a

Ω
a

D

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

Ω
a

B

ΩD

∂Ωa

B

Σ
a

∂Ωa

D

ΩB

Σ
Γs

Ω Ω
a

Ω
a

D

Figure 1: Sketch of a full three dimensional domain partitioned into the Darcy and Brinkman
subdomains (left), the case of an axially symmetric domain (centre), and its restriction to the
meridional plane defined by the symmetry axis Γs (right).

divuD = gD in ΩD, (2.5)

(uD|ΩD
− uB|ΩB

) · n = 0 on Σ, (2.6)

pD − pB = 0 on Σ, (2.7)

ωB × n = 0 on Σ, (2.8)

uD · n = 0 on ∂ΩD \ Σ, (2.9)

uB = 0 on ∂ΩB \ Σ, (2.10)

where ν > 0 is the viscosity of the fluid, κD and κB are bounded, symmetric and positive definite
tensors describing the permeability properties of the Darcy and Brinkman regions, respectively.
Here (2.1)-(2.2) state the momentum conservation in each subdomain in the absence of inertial
effects, equation (2.3) defines the constitutive relation for the additional unknown of scaled Brinkman
vorticity, mass conservation is accounted for in (2.4)-(2.5), and the motion of the incompressible fluid
is constrained by slip conditions on ∂ΩD \ Σ, and no-slip conditions on ∂ΩB \ Σ (cf. (2.9)-(2.10)).
Note that if d = 2 then ωB is the scalar vorticity, and the operator curl coincides with the two-
dimensional rotated gradient.

The system is closed after providing suitable coupling conditions at the interface Σ. These
conditions definitely depend on the configuration of the physical phenomenon and the formulation
of the boundary value problem, but a common assumption is the continuity of normal velocities
across the interface (2.6), as well as the balance of normal forces. The conservation of tangential
stresses across the interface requires a much more delicate study, and we simply consider continuity of
the pressure (2.7). Then, according to the simplified Beavers-Joseph-Saffman condition from [21, eq.
(2.5)], for (2.7) to hold, one infers that the tangential Brinkman vorticity must vanish, as we impose
in (2.8). We do refer to the motivating discussion in [25] (see also [6,19] and the references therein),
and only mention that similar transmission conditions (as the ones assumed here) have been also
employed in [2, 6, 7, 11] to produce numerical results coherent with the relevant physical scenario
under consideration.

At this point we stress that an analogous set of governing equations has been introduced in [2],
but prescribing both slip velocities and tangential vorticity on the whole ∂ΩB, and therefore making
use of a different functional setting leading to a variational formulation and a discretisation requiring
additional unknowns, and carrying out an analysis in a substantially different manner.

In order to derive a weak formulation for (2.1)-(2.10) (on which the subsequent discretisation
will be based), we recall that for any s ≥ 0, the symbol ‖·‖s,Ω denotes the norm of the Sobolev space
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Hs(Ω) or Hs(Ω)d, adopting the usual convention H0(Ω) = L2(Ω). If d = 3 we will also require the
Hilbert space

Hs(curl; Ω) =
{
θ ∈ Hs(Ω)3 : curlθ ∈ Hs(Ω)3

}
,

endowed with the norm ‖θ‖2Hs(curl;Ω) = ‖θ‖2s,Ω + ‖curlθ‖2s,Ω, and we will denote H(curl; Ω) =

H0(curl; Ω). If d = 2 then we recall the characterisation Hs(curl; Ω) ≡ H1(Ω). With these consid-
erations in mind, let us introduce the following functional spaces

Z := {θ ∈ H(curl; ΩB) : θ × n = 0 on Σ} and Q := H1(Ω) ∩ L2
0(Ω).

We proceed to equip Q with its natural norm, and Z with a viscosity-dependent weighted norm:

‖q‖Q :=
(
‖q‖20,Ω + ‖∇q‖20,Ω

)1/2
, ‖θ‖Z :=

(
‖θ‖20,ΩB

+ ν‖ curlθ‖20,ΩB

)1/2
.

If d = 2, then Z = {θ ∈ H1(ΩB) : θ = 0 on Σ}.
Testing (2.3) against a generic θ ∈ Z, integrating by parts, and using the boundary conditions

(2.10), (2.8), we can assert that∫
ΩB

ωB · θ −
√
ν

∫
ΩB

uB · curlθ = 0 ∀θ ∈ Z. (2.11)

Next, from (2.2) we readily have

κ−1
B uB = fB −

√
ν curlωB −∇pB in ΩB, (2.12)

and after replacing (2.12) in (2.11), we obtain∫
ΩB

ωB · θ + ν

∫
ΩB

κB curlωB · curlθ +
√
ν

∫
ΩB

κB∇pB · curlθ =
√
ν

∫
ΩB

κBfB · curlθ ∀θ ∈ Z.

(2.13)
Similarly, testing equations (2.1) and (2.2) against ∇q ∈ L2(Ω)d, integrating by parts, and using the
coupling conditions, we obtain∫

ΩD

κD∇pD ·∇q+
√
ν

∫
ΩB

κB curlωB ·∇q+

∫
ΩB

κB∇pB ·∇q =

∫
ΩD

κDfD ·∇q+

∫
ΩD

gDq+

∫
ΩB

κBfB ·∇q,

which holds for all q ∈ Q.

We can now define a global pressure field p ∈ Q such that p|ΩB = pB and p|ΩD = pD, and therefore
the steps above lead to the following variational formulation of (2.1)-(2.10): Find (ωB, p) ∈ Z × Q
such that

A((ωB, p), (θ, q)) = F(θ, q) ∀(θ, q) ∈ Z×Q, (2.14)

where the bilinear form A : (Z×Q)× (Z×Q)→ R and linear functional F : Z×Q→ R are defined
by

A((ωB, p), (θ, q)) :=

∫
ΩB

ωB · θ +

∫
ΩB

κB(
√
ν curlωB +∇pB) · (

√
ν curlθ +∇q) +

∫
ΩD

κD∇pD · ∇q,

F(θ, q) :=

∫
ΩB

κBfB · (
√
ν curlθ +∇q) +

∫
ΩD

κDfD · ∇q +

∫
ΩD

gDq.

An appropriate modification of the arguments in [2] leads to the unique solvability of (2.1)-(2.10)
and problem (2.14).
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3 Finite element discretisation

In this section we introduce a Galerkin scheme associated to problem (2.14), we specify the finite
dimensional subspaces to employ, and analyse the well-posedness of the resulting methods using
suitable assumptions on the finite element spaces. The section also contains a derivation of error
estimates.

3.1 Formulation and solvability

Let {Th(ΩB)}h>0 and {Th(ΩD)}h>0 be shape-regular families of partitions of the domains ΩB and
ΩD, respectively, by tetrahedrons (if d = 3, or triangles if d = 2) T of diameter hT . We assume
that they match in Σ so that Th(ΩB) ∪ Th(ΩD) forms a partition of the global porous domain Ω̄,
having meshsize h := max{hT : T ∈ Th(Ω)}. Given an integer k ≥ 1 and a set S ⊂ Rd, the space
of polynomial functions defined in S and having total degree ≤ k will be denoted by Pk(S).

For any T ∈ Th(ΩB) we recall the definition of the local Nédélec space:

Nk(T ) := Pk−1(T )3 ⊕Rk(T ),

where Rk(T ) is the subspace of Pk(T )3} composed by homogeneous polynomials of degree k, and
orthogonal to x. The finite element spaces for the approximation of the Brinkman vorticity and the
global pressure are then defined as

Zh := {θh ∈ Z : θh|T ∈ Nk(T ) ∀T ∈ Th(ΩB)}, (3.1)

Qh := {qh ∈ Q : qh|T ∈ Pk(T ) ∀T ∈ Th(Ω)}, (3.2)

which are subspaces of Z and Q, respectively. If d = 2, then Zh = {θh ∈ Z : θh|T ∈ Pk(T ) ∀T ∈
Th(ΩB)}.

Therefore, a Galerkin scheme associated with the continuous variational formulation (2.14) reads
as follows: Find (ωB,h, ph) ∈ Zh ×Qh such that

A((ωB,h, ph), (θh, qh)) = F(θh, qh) ∀(θh, qh) ∈ Zh ×Qh. (3.3)

Theorem 3.1 (Solvability of the Galerkin method) The discrete problem (3.3) is well-posed.

Proof. Since (3.3) consists of a square linear system, it suffices to establish the uniqueness. Assuming
that the data are homogeneous fB = 0, fD = 0 and gD = 0, we can choose (θh, qh) = (ωB,h, ph) as
test functions in the Galerkin formulation. This leads to

‖ωB,h‖20,ΩB
+ ‖
√
ν curlωB,h +∇pB,h‖20,ΩB

+ ‖∇pD,h‖20,ΩD
= 0,

implying that ωB,h = 0 in ΩB and ph = 0 in Ω. �

3.2 Error estimates

Let us introduce, for s > 1/2, the Nédeléc global interpolation operator Rh : Hs(curl; ΩB)∩Z→ Zh
(cf. [1]), satisfying the following approximation property.

Lemma 3.2 For all θ ∈ Hs(curl; ΩB) with s ∈ (1/2, k], there exists C > 0 independent of h, such
that

‖θ −Rhθ‖Z ≤ Chs‖θ‖Hs(curl;ΩB).
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On the other hand, for all s > 1/2, the usual Lagrange interpolant Πh : H1+s(Ω)∩Q→ Qh features
a similar property.

Lemma 3.3 For all q ∈ H1+s(Ω), s ∈ (1/2, k] there exists C > 0, independent of h, such that

‖q −Πhq‖Q ≤ Chs‖q‖H1+s(Ω).

The following auxiliary result will be used in the derivation of the error error estimates.

Lemma 3.4 For all (θ, q) ∈ Z×Q, there exist C1, C2 > 0 such that

C1(‖θ‖20,ΩB
+ ‖
√
ν curlθ +∇q‖20,ΩB

+ ‖∇q‖20,ΩD
+ ‖q‖20,Ω) ≤ A((θ, q), (θ, q)), (3.4)

and
A((θ, q), (θ, q)) ≤ C2(‖θ‖20,ΩB

+ ‖
√
ν curlθ +∇q‖20,ΩB

+ ‖∇q‖20,ΩD
+ ‖q‖20,Ω). (3.5)

Proof. For a given (θ, q) ∈ Z×Q there holds that

‖q‖0,Ω ≤ ‖∇q‖−1,Ω := sup
v∈H1

0(Ω)d\{0}

(v,∇q)0,Ω

‖v‖1,Ω
= sup

v∈H1
0(Ω)d\{0}

(v,∇qB)0,ΩB
+ (v,∇qD)0,ΩD

‖v‖1,Ω

= sup
v∈H1

0(Ω)d\{0}

(v,∇qB +
√
ν curlθ)0,ΩB

− (v,
√
ν curlθB)0,ΩB

+ (v,∇qD)0,ΩD

‖v‖1,Ω

= sup
v∈H1

0(Ω)d\{0}

(v,∇qB +
√
ν curlθB)0,ΩB −

√
ν(θB, curlv)0,ΩB + (v,∇q)0,ΩD

‖v‖1,Ω

≤ sup
v∈H1

0(Ω)d\{0}

(‖∇qB +
√
ν curlθB‖0,ΩB

+ ‖∇qD‖0,ΩD
)‖v‖0,ΩB

+
√
ν‖θB‖0,ΩB

‖ curlv‖0,ΩB

‖v‖1,Ω
≤ C(‖∇qB + curlθB‖0,ΩB + ‖θB‖0,ΩB + ‖∇qD‖0,ΩD).

Thus (3.4) follows. Finally, (3.5) is obtained directly from triangle inequality. �

Theorem 3.5 (Optimal convergence) Assume that ωB ∈ Hs(curl; ΩB), and p ∈ H1+s(Ω), for
some s ∈ (1/2, k]. Then, there exists C > 0 independent of h and ν, such that

‖ωB − ωB,h‖0,ΩB + ‖
√
ν curl(ωB − ωB,h) +∇(pB − pB,h)‖0,ΩB

+ ‖∇(pD − pD,h)‖0,ΩD + ‖p− ph‖0,Ω ≤ Chs
(
‖ωB‖Hs(curl;ΩB) + ‖p‖H1+s(Ω)

)
.

Proof. The result is a consequence of the error equation

A((ωB − ωB,h, p− ph), (θh, qh)) = 0 ∀(θh, qh) ∈ Zh ×Qh, (3.6)

in combination with Lemmas 3.4, 3.2 and 3.3. �

Our next result establishes a duality argument, permitting us to improve the convergence of the
vorticity and global pressure errors in the L2−norm.

Theorem 3.6 (An L2−estimate) Assume that ωB ∈ Hs(curl; ΩB), and p ∈ H1+s(Ω), for some
s ∈ (1/2, k]. Then, there exists C > 0 independent of h and ν, such that

‖ωB − ωB,h‖0,ΩB + ‖p− ph‖0,Ω ≤ Ch1+s
(
‖ωB‖Hs(curl;ΩB) + ‖p‖H1+s(Ω)

)
.
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Proof. Let us consider the following well-posed problem

A((ω̃, p̃), (θ, q)) =

∫
ΩB

(ωB − ωB,h) · θ +

∫
Ω

(p− ph)q ∀(θ, q) ∈ Z×Q, (3.7)

and let us assume the additional regularity ω̃ ∈ H1(curl; ΩB) and p̃ ∈ H2(Ω). Moreover, we also
assume that there exists a constant C > 0, independent of ν such that

‖ω̃‖H1(curl;ΩB) + ‖p̃‖H2(Ω) ≤ C(‖ωB − ωB,h‖0,ΩB
+ ‖p− ph‖0,Ω). (3.8)

Then we can choose (θ, q) = (ωB − ωB,h, p− ph) in (3.7), to obtain

‖ωB − ωB,h‖20,ΩB
+ ‖p− ph‖20,Ω = A((ω̃, p̃), (ωB − ωB,h, p− ph)),

and the required result follows as a consequence of (3.6) together with Lemmas 3.2, 3.3, the bound
(3.8), and Theorem 3.5. �

3.3 Recovering the velocity field

The solution of the continuous and discrete problems (2.14) and (3.3), deliver the Brinkman vorticity
and global pressure (ωB, p) ∈ Z×Q and (ωB,h, ph) ∈ Zh ×Qh, respectively. From these quantities
we can readily obtain the continuous and discrete velocities. In fact, according to (2.12) and (2.1)
we have

uB = κB

(
fB −

√
ν curlωB −∇pB

)
in ΩB, (3.9)

uD = κD (fD −∇pD) in ΩD. (3.10)

Similarly, at the discrete level (3.9)-(3.10) correspond to computing the Brinkman and Darcy veloc-
ities as a post-process from the discrete Brinkman vorticity and the global pressure:

uB,h = κB

(
PhfB −

√
ν curlωB,h −∇pB,h

)
in ΩB, (3.11)

uD,h = κD (PhfD −∇pD,h) in ΩD, (3.12)

where Ph : L2(Ω)d → Uh := {vh ∈ L2(Ω)d : vh|T ∈ Pk−1(T )d ∀T ∈ Th(Ω)} is the L2-orthogonal
projector satisfying for any s ∈ (0, k]

‖v − Phv‖0,Ω ≤ Chs‖v‖s,Ω. (3.13)

Note that both uB,h and uD,h are element-wise discontinuous, and, should further features be
sought (e.g. local divergence-free), one requires additional projection steps (see for instance [23]).
In any case, the rate of convergence of the velocity postprocessing can be quantified as follows.

Theorem 3.7 (Convergence of the velocity postprocessing) Let ωB ∈ Z and p ∈ Q be the
unique solutions of (2.14) and ωB,h ∈ Zh and ph ∈ Qh be the unique solutions of (3.3). Assume
that ωB ∈ Hs(curl; ΩB), p ∈ H1+s(Ω), fD ∈ Hs(ΩD)d and fB ∈ Hs(ΩB)d, for some s ∈ (1/2, k].
Then, there exists C > 0 independent of h and ν, such that

‖uB − uB,h‖0,ΩB + ‖uD − uD,h‖0,ΩD ≤ Chs(‖fB‖s,ΩB + ‖fD‖s,ΩD + ‖ωB‖Hs(curl;ΩB) + ‖p‖1+s,Ω).

Proof. Collecting the results from (3.9), (3.10), (3.11) and (3.12), and using triangle inequality, it
follows that

‖uB − uB,h‖0,ΩB + ‖uD − uD,h‖0,ΩD ≤ C (‖fB − PhfB‖0,ΩB + ‖fD − PhfD‖0,ΩD

+‖
√
ν curl(ωB − ωB,h) +∇(pB − pB,h)‖0,ΩB

+‖∇(pD − pD,h)‖0,ΩD
) .

Then the desired result is obtained from Theorem 3.5 and (3.13). �
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4 Reduction to the axisymmetric case

Let us now consider d = 3 and assume that the data, the porous domain Ω along with its subdomains,
and the expected flow properties are all symmetric with respect to a given axis Γs. Therefore the
governing equations can be redefined in the meridional domain Ωa (see Figure 1, right panel), the
Brinkman and Darcy velocities involve only the radial and vertical components, and the Brinkman
vorticity is now the scalar field ωB =

√
ν rotuB

1. In analogy to (2.1)-(2.10), the boundary value
problem now reads

κ−1
D uD +∇pD = fD, and diva uD = gD in Ωa

D, (4.1)

κ−1
B uB +

√
ν curla ωB +∇pB = fB, diva uB = 0, and ωB −

√
ν rotuB = 0 in Ωa

B, (4.2)

(uB|Ωa
B
− uD|Ωa

D
) · n = 0, pB|Ωa

B
− pD|Ωa

D
= 0, and ωB = 0 on Σa, (4.3)

uD · n = 0 on ∂Ωa
D \ Σa, (4.4)

uB = 0 on ∂Ωa
B \ Σa. (4.5)

In order to adapt the analysis presented in the previous sections to axisymmetric enclosures, we
require a modification of the functional spaces as advanced in [24]. We begin by denoting Lpα(Ωa)
the weighted Lebesgue space of measurable functions ϕ satisfying

‖ϕ‖pLpα(Ωa) :=

∫
Ωa

|ϕ|p rα drdz <∞,

and L2
1,0(Ωa) will denote its restriction to functions with zero weighted integral. The weighted

Sobolev space Hk
r (Ωa) consists of all functions in L2

1(Ωa) whose derivatives of order ≤ k are also in
L2

1(Ωa), and its semi-norm is defined as usual. For k = 1 we have

|ϕ|2H1
1(Ωa) :=

∫
Ωa

(
|∂rϕ|2 + |∂zϕ|2

)
r drdz ,

and the space H̃1
1(Ωa

B) := H1
1(Ωa

B) ∩ L2
−1(Ωa

B), equipped with the norm

‖ϕ‖H̃1
1(Ωa

B) :=
(
‖ϕ‖2L2

1(Ωa
B) + ν |ϕ|2H1

1(Ωa
B) + ν ‖ϕ‖2L2

−1(Ωa
B)

)1/2

,

is a Hilbert space. The space H(curla,Ω
a
B) := {ϕ ∈ L2

1(Ωa
B) : curla ϕ ∈ L2

1(Ωa
B)} will be provided

with the norm ‖ϕ‖2H(curla,Ωa
B) = ‖ϕ‖2

L2
1(Ωa

B)
+ ν‖ curla ϕ‖2L2

1(Ωa
B)2

, and we notice that ‖ · ‖H(curla,Ωa
B)

and ‖·‖H̃1
1(Ωa

B) are equivalent norms.

A variational formulation for system (4.1)-(4.5) can be derived as in Section 2. In particular,
we repeat the arguments in (2.11)-(2.13) together with Lemmas 1.2 and 1.3 from [3], to obtain the
following variational formulation: Find (ωB, p) ∈ Za ×Qa such that

Aa((ωB, p), (θ, q)) = Fa(θ, q) ∀(θ, q) ∈ Za ×Qa, (4.6)

where the associated functional spaces are

Za := {ϕ ∈ H̃1
1(Ωa

B) : ϕ = 0 on Σa}, Qa := H1
1(Ωa) ∩ L2

1,0(Ωa),

and the bilinear form Aa : (Za ×Qa)× (Za ×Qa)→ R and linear functional Fa : Za ×Qa → R are
now specified as

Aa((ωB, p), (θ, q)) :=

∫
Ωa

B

ωBθ r drdz +

∫
Ωa

B

κB(
√
ν curla ωB +∇pB) · (

√
ν curla θ +∇q) r drdz

1We recall that the needed differential operators in axisymmetric coordinates are diva v := ∂zvz + 1
r
∂r(rvr),

rotv := ∂rvz − ∂zvr, ∇ϕ := (∂rϕ, ∂zϕ)T , and curla ϕ := (∂zϕ,−r−1∂r(rϕ))T .
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+

∫
Ωa

D

κD∇pD · ∇q r drdz ,

Fa(θ, q) :=

∫
Ωa

B

κBfB · (
√
ν curla θ +∇q) r drdz +

∫
Ωa

D

κDfD · ∇q r drdz +

∫
Ωa

D

gDq r drdz ,

Introducing the finite element subspaces (for any k ≥ 1)

Za
h := {θh ∈ Za : θh|T ∈ Pk(T ) ∀T ∈ Th(Ωa

B)} , (4.7)

Qa
h := {qh ∈ Qa : qh|T ∈ Pk(T ) ∀T ∈ Th(Ωa)} , (4.8)

we can write a Galerkin scheme associated to (4.6): Find (ωB,h, ph) ∈ Za
h ×Qa

h such that

Aa((ωB,h, ph), (θh, qh)) = Fa(θh, qh) ∀(θh, qh) ∈ Za
h ×Qa

h. (4.9)

As in Section 3.3 we can compute continuous and discrete velocities using

uB = κB

(
fB −

√
ν curla ωB −∇pB

)
in Ωa

B, uD = κD (fD −∇pD) in Ωa
D, (4.10)

and

uB,h = κB

(
PhfB −

√
ν curla ωB,h −∇pB,h

)
in Ωa

B, uD,h = κD (PhfD −∇pD,h) in Ωa
D.

(4.11)

On the other hand, the well-posedness analysis and error estimates for (4.9) can be established fol-
lowing the lines of Section 3 in combination with the following well-known result (cf. [24, Lemma 6.3]).

Lemma 4.1 There exists C > 0, independent of h and ν, such that for all θ ∈ Hk+1
1 (Ωa) :

‖θ −Πhθ‖H̃1
1(Ωa) ≤ Ch

k ‖θ‖Hk+1
1 (Ωa) ,

where Πh : H̃1
1(Ωa) ∩H2

1(Ωa)→ Za
h is the Lagrange interpolator of a sufficiently smooth θ.

Theorem 4.2 (Convergence of the axisymmetric solution) Let us consider (ωB, p) ∈ Za ×
Qa, and (ωB,h, ph) ∈ Za

h × Qa
h to be the unique solutions of the continuous and discrete problems

(4.6) and (4.9), respectively. For k ≥ 1, assume that ωB ∈ Hk+1
1 (Ωa

B), p ∈ Hk+1
1 (Ωa), fD ∈ Hk

1(Ωa
D)2

and fB ∈ Hk
1(Ωa

B)2. Then, there exist C, Ĉ > 0 independent of h and ν such that

‖ωB − ωB,h‖0,Ωa
B

+ ‖
√
ν curl(ωB − ωB,h) +∇(pB − pB,h)‖0,ΩB

+ ‖∇(p− ph)‖0,Ωa
D

+ ‖p− ph‖0,Ωa + ‖uB − uB,h‖0,Ωa
B

+ ‖uD − uD,h‖0,Ωa
D

≤ Chk
(
‖ωB‖Hk+1

1 (Ωa
B) + ‖p‖Hk+1

1 (Ωa) + ‖fB‖Hk1 (Ωa
B) + ‖fD‖Hk1 (Ωa

D)

)
,

and

‖ωB − ωB,h‖0,Ωa
B

+ ‖p− ph‖0,Ωa ≤ Ĉhk+1
(
‖ωB‖Hk+1

1 (Ωa
B) + ‖p‖Hk+1

1 (Ωa)

)
.

Proof. The first error estimate follows as a direct consequence of Lemma 4.1 and (4.10)-(4.11). The
second estimate follows by a standard duality argument (see Theorem 3.6). �
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h euB
0 rate euD

0 rate eωB
0 rate e

(ωB,pB)
1 rate epD1 rate ep0 rate

(k = 1)

0.707 0.2755 – 0.1084 – 0.0164 – 0.3901 – 0.3235 – 0.0700 –
0.500 0.1308 0.90 0.0507 1.47 0.0105 1.41 0.2978 0.97 0.2304 0.97 0.0407 1.68
0.326 0.0677 1.14 0.0354 0.84 0.0029 2.09 0.1798 1.01 0.1359 1.23 0.0139 2.05
0.199 0.0382 1.16 0.0204 1.12 0.0007 2.07 0.0997 1.02 0.0807 1.05 0.0046 2.02
0.094 0.0200 0.96 0.0112 0.99 0.0002 1.97 0.0504 0.99 0.0417 0.98 0.0012 1.94
0.048 0.0101 1.01 0.0060 0.94 5.54e-5 1.95 0.0260 0.98 0.0212 1.00 0.0003 1.99
0.025 0.0052 1.03 0.0029 1.07 1.53e-5 1.98 0.0130 1.06 0.0105 1.08 7.60e-5 2.02
0.013 0.0026 1.11 0.0015 1.08 4.39e-6 2.00 0.0066 1.09 0.0053 1.09 1.97e-5 2.02
0.007 0.0013 1.07 0.0007 1.17 1.35e-6 1.98 0.0032 1.18 0.0026 1.15 4.95e-6 2.01
0.004 0.0007 1.10 0.0003 1.09 3.65e-7 1.99 0.0016 1.11 0.0014 1.00 1.26e-6 1.99

(k = 2)

0.707 0.2157 – 0.0938 – 0.0030 – 0.1269 – 0.0677 – 0.0105 –
0.500 0.0977 2.08 0.0419 2.07 0.0015 1.91 0.0751 1.81 0.0224 3.25 0.0020 3.20
0.326 0.0466 1.97 0.0198 1.75 0.0003 3.07 0.0225 2.12 0.0084 2.07 0.0006 3.12
0.199 0.0153 2.05 0.0075 1.96 7.42e-5 2.99 0.0073 2.06 0.0027 2.10 8.50e-5 3.08
0.094 0.0040 1.98 0.0023 1.79 1.07e-5 2.87 0.0018 1.85 0.0007 1.97 9.59e-6 2.91
0.048 0.0010 1.96 0.0006 1.98 1.59e-6 2.85 0.0005 1.98 0.0002 2.00 1.25e-6 3.01
0.025 0.0003 2.09 0.0002 2.11 2.12e-7 3.11 0.0001 2.10 4.77e-5 2.12 1.59e-7 3.01
0.013 7.27e-5 2.19 4.51e-5 2.15 2.75e-8 3.03 3.23e-5 2.20 1.22e-5 2.01 3.12e-8 3.01
0.007 1.73e-5 2.10 1.49e-5 2.17 4.03e-9 2.98 1.02e-5 2.09 3.85e-6 1.89 1.02e-8 3.00
0.004 4.55e-6 2.03 5.36e-6 2.09 1.02e-9 2.49 3.91e-6 1.99 9.45e-7 1.98 4.24e-9 3.01

(k = 3)

0.707 0.0583 – 0.0285 – 0.0024 – 0.2307 – 0.1697 – 0.0268 –
0.500 0.0303 2.88 0.0058 2.96 0.0011 3.26 0.0433 3.82 0.0113 4.80 0.0016 4.96
0.326 0.0054 3.21 0.0025 2.94 0.0001 4.27 0.0066 3.40 0.0041 3.43 0.0001 4.48
0.199 0.0009 3.12 0.0004 3.32 1.11e-5 4.17 0.0007 3.33 0.0003 3.30 8.01e-6 4.23
0.094 0.0001 2.98 7.93e-5 2.94 6.66e-7 4.16 6.89e-5 3.25 3.25e-5 3.23 2.90e-7 4.23
0.048 1.65e-5 3.07 1.17e-5 2.85 4.17e-8 4.13 7.54e-6 3.20 2.39e-6 3.19 1.10e-8 4.18
0.025 2.21e-6 3.02 1.43e-6 3.24 2.78e-9 4.10 9.24e-7 3.14 1.51e-7 3.02 3.7e-10 4.10
0.013 2.95e-7 3.00 1.85e-7 3.03 1.9e-10 4.06 1.22e-7 3.08 1.03e-8 3.00 1.5e-11 4.07
0.007 2.99e-8 3.00 1.75e-8 2.98 1.0e-11 3.99 1.18e-8 3.17 1.21e-9 3.10 2.2e-12 3.78
0.004 4.01e-9 2.99 1.86e-9 2.99 8.2e-13 4.31 1.16e-9 2.95 1.8e-10 2.87 1.4e-13 3.93

Table 1: Test 1. Experimental accuracy of the proposed finite element method against manufactured
exact solutions. Convergence achieved using a scheme of increasing order k ∈ {1, 2, 3} (from top to
bottom).

5 Numerical results

The following set of examples serves to confirm numerically the convergence rates anticipated in
Theorems 3.5, 3.6 and 3.7, and Theorem 4.2.

Test 1: Experimental convergence in 2D. We begin with a two-dimensional example where the
Brinkman and Darcy subdomains ΩB = (0, 1)2, ΩD = (0, 1)× (1, 3/2) are separated by the segment
Σ = (0, 1) × {1}. We choose arbitrary model parameters κD = 0.02 I, κB = 0.05 I, and ν = 0.01;
and propose the following closed-form solutions to (2.1)-(2.5):

uB =

(
sin(πx)2 sin(πy)2 cos(πy)
− 1

3 sin(2πx) sin(πy)3

)
,uD = uB×

(
0

3
2−y

)
, ωB =

√
ν curluB, p =

(
x− 1

2

)3

−
(
y− 3

2

)3

,

which satisfy exactly the boundary and interface conditions (2.6)-(2.10). Notice that uD is not diver-
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Figure 2: Test 1. Numerical solution of the Brinkman-Darcy coupled problem, generated with the
lowest order method. Brinkman vorticity (left), global pressure (centre), and postprocessed velocities
(right).

gence free, but gD (and analogously the forcing terms fB, fD) are constructed from the manufactured
solutions above. Two families of successively refined unstructured meshes for ΩB and ΩD are gener-
ated, matching on the interface as required by the conformity of the global pressure approximation.
We stress that the discrete velocities are obtained as postprocess from the discrete Brinkman vortic-
ity and discrete global pressure. Moreover, the zero-mean condition enforcing the uniqueness of the
global pressure is implemented using a scalar Lagrange multiplier (adding one row and one column
to the matrix system that solves for ωB,h and ph). All linear systems are solved using the direct
method MUMPS. Errors between the exact and approximate solutions are measured in the norms
involved in the convergence analysis of Section 3.2, and will adopt the following notation

e
(ωB,pB)
1 = ‖

√
ν curl(ωB − ωB,h) +∇(pB − pB,h)‖0,ΩB

, epD1 = ‖∇(pD − pD,h)‖0,ΩD
,

whereas es0 will denote the L2−norm of the error associated to the generic quantity s. The obtained
error history is reported in Table 1. The asymptotic O(hk) decay of the error observed for each
field (except for the Brinkman vorticity and global pressure in their L2−norms, which exhibit a
decay of O(hk+1)), indicates an overall optimal convergence of the proposed method as predicted by
Theorems 3.5, 3.6, and 3.7. Sample approximate solutions generated with the lowest order method
are displayed in Figure 2, showing accurate profiles, also near the interface.

Test 2: Cracked porous media. Our next test focuses on the simulation of flow in fractured
porous structures, and the test configuration has been adapted from [2]. A box of two porous
materials having different volume fractions of calcarenite and sand is considered, where the interface
between the Brinkman and Darcy subdomains is a smoothed “V-shaped” surface (see also [6, 9]).
The domain size is now [0, 1.5] × [0, 0.2] × [0, 1], the Darcy subdomain is located below Σ, and
external forces on both domains correspond to gravity, and a smooth flow rate in the x−direction
fB = fD = (0.1 cos2(πxz), 0,−0.98)T . The permeabilities and viscosity are set to κB = 5 I, κD = 1 I,
and ν = 0.001. The unstructured tetrahedral mesh consists of approximately 1300K elements and
250K vertices. We use the same strategy to impose zero-mean pressure as in the previous test, but
now the linear systems are inverted with the BICGSTAB Krylov solver, and the discrete Brinkman
vorticity is approximated using Nédélec elements with k = 1. The generated numerical solutions are
presented in Figure 3.

Test 3: Accuracy assessment in an axisymmetric enclosure. We finally turn to the veri-
fication of the convergence analysis in the axisymmetric case, for which we construct a cylindrical
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Figure 3: Test 2. Numerical solution of the Brinkman-Darcy coupled problem, generated with
the lowest order method. Brinkman vorticity magnitude and streamlines (top left), iso-surfaces of
the global pressure (top right), and postprocessed velocities (magnitudes on the bottom left, and
example of the x−component and streamlines on bottom right).

domain of height 4, representing a simplified oil filter (see a similar test in [3]). We write the prob-
lem and its discretisation using a half cross-section of the domain, with minimum and maximum
radii 0.5 and 2, respectively. The Brinkman subdomain (located on the upper part of the filter) is
separated from the Darcy domain by a curved interface Σa parametrised, in the meridional axisym-
metric coordinates, as (r, z) = (t, 2 + 0.2t + 0.1t cos[6πt − 3π]), with t ∈ (0, 2). The permeabilities
in each domain are constant κB = 500 I, κD = 100 I, and the fluid viscosity is ν = 0.01. We con-
struct smooth forcing terms representing an external motion of the filter fB = (0,−νr sin2(πrz))T ,
fD = (0, νz2 cos(2πrz))T , and choose gD = −ν sin(πr) sin(πz). Interface and boundary conditions
are imposed as in (4.3)-(4.5), and in the absence of a closed-form solution to the problem we generate
a reference numerical solution with a method of order k = 3, and using a highly refined mesh for
the axisymmetric domain. Then we produce a sequence of coarser meshes and obtain approximate
solutions using (4.9) with k = 2. We compute errors against the reference fine solution and collect
the result of the convergence history in Table 2. Again we evidence optimal rates of convergence,
this time according to Theorem 4.2. We also depict the numerical solutions and extrude into the
cylindrical domain the approximate Brinkman vorticity, global pressure and individual velocities
(see Figure 4).
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Figure 4: Test 3. Numerical solution of the axisymmetric Brinkman-Darcy coupled problem, gener-
ated with the second order method. Brinkman vorticity and sketch of curved interface and symmetry
axis (top left), distribution of global pressure (top, second panel), and radial and vertical components
of the postprocessed velocities (top third and right figures). The bottom row shows different views
of the axisymmetric solutions extruded to the three-dimensional domain (only an angle of 3π/4 is
plotted for visualisation purposes).

h euB
0,a rate euD

0,a rate eωB
0,a rate e

(ωB,pB)
1,a rate epD1,a rate ep0,a rate

0.7311 0.4045 – 0.4024 – 0.0281 – 0.1012 – 0.0615 – 0.0252 –
0.5193 0.1814 2.13 0.2062 1.97 0.0120 2.45 0.0429 1.91 0.0452 2.06 0.0061 2.92
0.3242 0.0802 1.85 0.0689 1.94 0.0027 2.82 0.0201 1.94 0.0151 1.93 0.0028 2.95
0.2141 0.0322 1.95 0.0281 2.02 0.0008 2.99 0.0083 1.96 0.0077 1.96 0.0005 2.98
0.1162 0.0080 1.98 0.0064 1.96 1.10e-4 3.00 0.0025 1.94 0.0022 1.94 8.31e-5 2.92
0.0533 0.0020 1.95 0.0016 2.01 1.71e-5 2.97 0.0006 1.97 0.0004 1.95 1.22e-5 2.99
0.0316 0.0006 2.04 0.0005 2.04 2.18e-6 2.93 0.0002 2.03 7.98e-5 1.96 1.58e-6 3.03
0.0150 1.16e-4 1.98 1.04e-4 1.98 2.80e-7 2.87 4.55e-5 1.93 2.32e-5 2.08 2.01e-7 2.98
0.0079 3.41e-5 2.01 2.71e-5 1.95 4.79e-8 2.95 1.21e-5 2.02 5.47e-6 1.94 1.95e-8 2.95
0.0042 8.63e-6 1.97 7.01e-6 1.93 1.35e-8 2.98 2.72e-6 1.97 1.67e-6 1.96 1.90e-9 2.96

Table 2: Test 3. Error history associated to the finite element method with order k = 2, in an
axisymmetric setting. Errors measured in the weighted norms (denoted with subscript a), and
computed against a reference fine-mesh solution obtained with a higher order method.
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