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Abstract

We introduce a perfectly matched layer approach for finite element calculations

of diffraction by metallic surface-relief gratings. We use a non-integrable ab-

sorbing function which allows us to use thin absorbing layers which reduce the

computational time when simulating this type of structure. In addition, we nu-

merically determine the best choice of the absorbing layer parameters and show

that they are independent of the wavelength.

Keywords: periodic diffraction grating, perfectly matched layer, finite element

method

1. Introduction

Thin film photovoltaic (PV) devices comprising a periodically corrugated

metallic backreflector have become of interest over the last three decades [1, 2,

3, 4, 5, 6, 7, 8]. The purpose of this periodic surface-relief grating is to excite

surface plasmonic polariton (SPP) waves and thereby enhance the electromag-5

netic field in the structure. Recently, solar devices based on one dimensional

surface-relief gratings have been proposed and studied numerically: amorphous

silicon thin film tandem solar cell [6], rugate filters [9, 10], periodic multilay-

ered isotropic dielectric material on top of the metallic backreflector [8], among

others. Moreover, numerical optimization of optical and geometric parameters10
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has been performed in order to maximize quantities of interest such as light ab-

sorption, solar-spectrum-integrated power-flux density and spectrally averaged

electron-hole pair density [11, 12]. Computing these quantities requires solving

Maxwell’s equations in the frequency domain for each wavelength in the spec-

tral regime. In addition, during an optimization process, the equations must15

be solved for a range of parameters, which might be computationally expen-

sive. That is why efficient numerical methods for frequency-domain Maxwell’s

equations must be developed. Well known numerical techniques are the exact

modal method [13], the commonly used method of moments [14, 15], the rigor-

ous coupled-wave approach (RCWA) [16, 17], the finite element method (FEM)20

[18], and the finite-difference time-domain (FDTD) method [19]

In this work we focus on FEM applied to one dimensional grating problems

since it is suitable for simulating complicated structures such us devices compris-

ing different materials and surface-relief shapes [11, 12]. Roughly speaking, after

decoupling the two polarization states, TE (transverse electric) and TM (trans-25

verse magnetic), the problem reduces to solving two Helmholtz equations on the

xz-plane. Because of the periodicity of the grating and the quasi-periodicity

of the solution, the unbounded domain is truncated in the x-direction using

quasi-periodic boundary conditions on the vertical walls. In the z-direction,

the truncation of the domain must be done in such a way that outward prop-30

agating waves are chosen. This can be achieved, for example, through suitable

approximations of the Dirichlet-to-Neumann (DtN) operators. For instance, the

technique implemented in [11] and [12] considers a Fourier-FEM approach that

involves a finite element approximation inside the device and a representation

of the DtN operators based on a Fourier series expansion of the fields in the35

unbounded regions above and below the structure. Its main drawback is the

potentially high computational cost since the equations need to be solved as

many times as the number of terms in the truncated Fourier series. In addition

this approach does not scale well to three dimension. We refer to [20, Section

3C], for further details.40

In this work we propose a different approach that uses a perfectly matched
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layer (PML) placed above and below the structure. A PML is an artificial

layer that absorbs the outward propagating waves. In this case, the equations

will be solved in a slightly bigger domain but only once, which might lead

to a significant reduction of the computational cost. A PML approach with45

integrable absorption function applied to grating problems has been introduced

in [21]. There, the PML attenuates both outgoing and evanescent waves thanks

to a suitable choice of the complex-valued absorbing function. In addition,

numerical results reported in [21] are robust with respect to the thickness of the

PML and a thickness between 50% and 150% of the grating period produces50

satisfactory results. On the other hand, in the context of time-harmonic acoustic

scattering problems, a PML based on an absorbing function with unbounded

integral has been introduced in [22]. This PML is also robust and able to absorb

plane waves without any spurious reflection (see [23, 24] for further analysis and

results). Moreover, since the integral of the absorbing function is infinite, the55

outgoing waves are rapidly absorbed, allowing us to use a PML with thickness

significantly smaller than that of [21]. Furthermore, we show that the PML

from [22] may be used to absorb both evanescent and propagating modes.

Based on the idea in [22], we propose and numerically study a PML with a

non-integrable absorbing function applied to a structure comprising a periodic60

multilayered isotropic dielectric material on top of a metallic backreflector. The

same technique can easily be applied to other structures as mentioned above

([6, 8, 9, 10, 11, 12]). The rest of this paper is organized as follows. First, the

model problem is specified in Section 2. Then, the PML technique is introduced

in Section 3 with the corresponding FEM discretization introduced in Section65

4. In Section 5 we consider two examples to test the proposed PML and we end

with some concluding remarks in Section 6.

2. Model setting

The problem of electromagnetic wave diffraction is based on solving Maxwell’s

equations in the three-dimensional Euclidean space occupied by a diffraction
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grating:
∇×E = iωµ0H,

∇×H = −iωε0εrE,
(1)

where E and H are the electric and magnetic fields respectively. Here, an

exp(−iωt) dependence on time t is implicit, with ω denoting the angular fre-70

quency. The free-space wavenumber, the free-space wavelength, and the intrin-

sic impedance of the free space are denoted by k0 := ω
√
ε0µ0, λ0 := 2π/k0,

and η0 :=
√
µ0/ε0, respectively, with µ0 being the permeability and ε0 the

permittivity of free space. The relative electric permittivity εr is a piecewise

constant function specified below. In this paper vectors are in boldface, Carte-75

sian unit vectors are identified as ûx, ûy and ûz, and the position vector reads

r = xûx + yûy + zûz.

The solar-cell structure is assumed to occupy the region Φ := {r ∈ R3 : 0 <

z < Lt := Ld+Lg +Lm} with the notation shown in Fig. 1. Within this region,

the relative permittivity εr is a periodic function of x ∈ (−∞,∞) with period L80

and also varies with z ∈ Φ but not with y ∈ (−∞,∞); consequently, εr(x, z) =

εr(x±mL, z), m ∈ Z. The half-spaces {r ∈ R3 : z < 0} and {r ∈ R3 : z > Lt}
are occupied by air; hence, the relative permittivity εr(x, z) ≡ 1 in both half-

spaces. The region 0 < z < Ld is occupied by a periodic multilayered isotropic

dielectric (PMLID) material comprising M layers, as shown in Fig. 1. The85

relative permittivity is constant on each of this layers. The region Ld+Lg < z <

Lt is occupied by a spatially homogeneous metal with relative permittivity εm

and thickness Lm. Finally, the region Ld < z < Ld +Lg contains a periodically

corrugated metal/dielectric interface of period L along the x axis. The relative

permittivity in this zone is either εm or that of the first layer of the dielectric90

material as Fig. 1 also shows.

Since the domain is infinite in the y-direction, and the solution does not

depend on this variable, we can consider a two-dimensional cross-section par-

allel to the xz-plane. In such a case, the Maxwell system can be simplified by

considering the two fundamental polarizations:95
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Figure 1: Schematic of of the structure considering a cross-section parallel to

the xz-plane. M layers of an Ld- thick PMLID material on top of an L-periodic

surface-relief grating of height Lg. A metallic backreflector of thickness Lm is

below the grating. An incoming light is incident to the structure with angle θ.

• Transverse Electric mode (TE) or s-polarization state. The elec-

tric field E is parallel to the y axis: E = (0, Ey, 0), where Ey is indepen-

dent of y, and the magnetic field is given by H = (Hx, 0, Hz); so from (1)

Ey satisfies the Helmholtz problem

∆Ey + k2
0εrEy = 0. (2)

• Transverse Magnetic mode (TM) or p-polarization state. The

magnetic field H is parallel to the y axis: H = (0, Hy, 0), where Hy is

independent of y, and the electric field is given by E = (Ex, 0, Ez); so

from (1) Hy satisfies

∇ ·
(

1

εr
∇
(
− η0Hy

))
− k2

0η0Hy = 0. (3)

The boundary z = 0 of the structure is illuminated by an obliquely incident

plane wave whose electric field phasor is given by

Einc(r) = [asûy +ap(−ûx cos θ+ ûz sin θ)]× exp{ik0[x sin θ+ z cos θ]}, z ≤ 0,

(4)
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and the corresponding magnetic field phasor by

H inc(r) =
1

iωµ0
∇×Einc(r), z ≤ 0. (5)

Here, θ is the angle of incidence with respect to the z-axis, as is the am-

plitude of the s-polarized component, and ap the amplitude of the p-polarized

component, all of them are data of the problem.

Eqs. (2) and (3) can be written in a common form as the following Helmholtz

equation:

∇ ·
(
B∇u

)
+ k2

0bu = 0 in R2, (6)

where u = Ey, B = 1 and b = εr for the s-polarization state; and u = −η0Hy,

B =
1

εr
and b = 1 for the p-polarization state. All of these being functions of x100

and z but not of y.

The periodic character of the coefficients and the quasi-periodic incident

wave allow us to restrict the problem to a period 0 < x < L, with a solution

satisfying the quasi-periodicity conditions

u(L, z) = exp(iαL)u(0, z),
∂u

∂x
(L, z) = exp(iαL)

∂u

∂x
(0, z),



 z ∈ R, (7)

where α := k0 sin θ. In addition, the strip (0, L) × R is also truncated to Ω :=

(0, L) × (0, Lt) and the effect of the radiation conditions at infinity must be

properly taken into account. In particular, we will use a PML approach to

reduce the problem to a bounded domain by truncation in z-direction. To do105

this we will have to consider also appropriate transmission condition on z = 0

and z = Lt.

Summarizing, we are lead to solve two problems, one for the s-polarization

and the other for the p-polarization. The data of each of these two problems are

computed from the corresponding components of the incident plane wave (4):

uinc =





as exp{ik0[x sin θ + z cos θ]}, for the s-polarization,
ap exp{ik0[x sin θ + z cos θ]}, for the p-polarization.

(8)
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3. A PML approach

As stated above, the radiation conditions at infinity will be modeled by

means of the perfectly matched layer technique similar to that from [22]. It is110

based on placing absorbing layers of anisotropic damping material above and be-

low the domain of interest Ω, which absorb the scattered field transmitted to the

exterior of the domain. We introduce two PML domains: ΩA− := (0, L)×(−δ1, 0)

and ΩA+ := (0, L) × (Lt, Lt + δ2), δ1, δ2 > 0 (see Fig. 2). We denote the whole

PML domain by ΩA := ΩA− ∪ΩA+. Let Γ− and Γ+ denote the interfaces between115

the physical domain and the layers, and ΓA− and ΓA+ the outer boundaries. We

set uA to be the solution in the PML domain ΩA. Note that the PML layers

directly contact the structure with no air layers.

ΩA
−

ΩA
+

ΓA
−

Γ−

Γ+

ΓA
+

δ1

δ2

Figure 2: Domain with PML layers in ΩA+ and ΩA− of thicknesses δ1 and δ2,

resp. Γ+ and Γ− denote the interface between the physical domain and the

PML regions. ΓA+ and ΓA− correspond to the outer top and bottom boundaries.

We consider a PML method, where the unknown uA in the absorbing layers

satisfies the equation

∂2uA

∂x2
+

1

γ

∂

∂z

(
1

γ

∂uA

∂z

)
+ k2

0u
A = 0 in ΩA,

where γ is an appropriate function to be specified. In order to attenuate both,

outgoing and evanescent waves, it is shown in [21] that γ must be chosen as
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γ = σ1 + iσ2, with σ1 and σ2 both functions of z with large integrals in both

parts of the PML domain. On the other hand, it is shown in [22] that it is

preferable to choose as σ2 an unbounded function with infinite integral. We

propose the following choice:

γ(z) :=





1, z ∈ (0, Lt),

(1 + i)σ(z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),

where the variable absorption coefficient σ(z) is a non-integrable function such

that ∫ 0

−δ1
σ(s)ds = +∞ and

∫ Lt+δ2

Lt

σ(s)ds = +∞.

In particular, based on the numerical experimentation reported in [22], we

choose the unbounded smooth positive function σ : (−δ1, 0)∪ (Lt, Lt + δ2)→ R

defined by

σ(z) :=





1

βk0(z + δ1)
, z ∈ (−δ1, 0),

1

βk0(Lt + δ2 − z)
, z ∈ (Lt, Lt + δ2),

(9)

where the parameter β will be determined experimentally in order to minimize

the error introduced by this PML technique.120

According to the results from [22] the use of this PML should lead to exact

results, up to discretization errors. This agrees with more recent results from

[21] where it is shown that the error in the solution obtained by using a PML

is inversely proportional to the integral of σ (see Theorem 2.4 from [21]).
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Altogether, u and uA will be the solution of the following equations:




∇ · (B∇u) + k2
0bu = 0 in Ω,

∂2uA

∂x2 + 1
γ
∂
∂z

(
1
γ
∂uA

∂z

)
+ k2

0u
A = 0 in ΩA,

u(L, z) = eiαLu(0, z), z ∈ (0, Lt),

uA(L, z) = eiαLuA(0, z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),

∂u
∂x (L, z) = eiαL ∂u∂x (0, z), z ∈ (0, Lt),

∂uA

∂x (L, z) = eiαL ∂u
A

∂x (0, z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),

u = uA + uinc on Γ−,

u = uA on Γ+,

B ∂u
∂z = 1

γ
∂uA

∂z + ∂uinc
∂z on Γ−,

B ∂u
∂z = 1

γ
∂uA

∂z on Γ+,

uA = 0 on ΓA−,

uA = 0 on ΓA+,

(10)

In order to write a weak formulation of this problem, we introduce the following

function spaces:

V :=
{
v ∈ H1(Ω) : v(L, z) = eiαLv(0, z), z ∈ (0, Lt)

}
,

V A :=
{
vA ∈ H1(ΩA) : vA(L, z) = eiαLvA(0, z), z ∈ (−δ1, 0) ∪ (Lt, Lt + δ2),

vA = 0 on ΓA− ∪ ΓA+
}
.

We consider test functions (v, vA) ∈ V × V A such that v = vA on Γ− ∪ Γ+.125

Multiplying the first equation by v and the second one by vA, integrating by

parts and using the remaining equations, we are lead to the following problem:

Find (u, uA) ∈ V × V A such that u = uA + uinc on Γ−, u = uA on Γ+ and
∫

Ω

(
B∇u · ∇v − k2

0buv
)
dx dz

+

∫

ΩA

(
γ
∂uA

∂x

∂vA

∂x
+

1

γ

∂uA

∂z

∂vA

∂z
− γk2

0u
AvA

)
dx dz =

∫

Γ−

∂uinc

∂z
v ds

(11)

∀(v, vA) ∈ V × V A : v = vA on Γ− ∪ Γ+.
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4. Finite element discretization130

Let {Th}h>0 be a regular family of triangulations of Ω ∪ ΩA, where each

triangle lies in either Ω or ΩA, so that the triangles match on the common

interfaces Γ− and Γ+. As usual, h denotes the mesh-size (diameter of the larger

triangle in Th). Given k ≥ 1 let

Vh := {vh ∈ V : vh|T ∈ Pk(T ) ∀T ∈ Th : T ⊂ Ω},
V Ah := {vAh ∈ V A : vAh |T ∈ Pk(T ) ∀T ∈ Th : T ⊂ ΩA},

where Pk(T ) is the set of polynomials of degree not greater than k over the

element T .

We introduce the discrete problem associated to Eq. (11): Find (uh, u
A
h ) ∈

Vh × V Ah such that uh = uAh + I(uinc) on Γ−, uh = uAh on Γ+ and
∫

Ω

(
B∇uh · ∇vh − k2

0buhvh
)
dx dz

+

∫

ΩA

(
γ
∂uAh
∂x

∂vAh
∂x

+
1

γ

∂uAh
∂z

∂vAh
∂z
− γk2

0u
A
h v

A
h

)
dx dz =

∫

Γ−

∂uinc

∂z
vh ds

(12)

∀ (vh, v
A
h ) ∈ Vh× V Ah : vh = vAh on Γ− ∪Γ+, where I(·) is the Lagrange interpo-135

lation operator in V Ah .

In order to obtain the matrix form of problem (12), we consider as usual the

nodal basis {ψj}Nh
j=1 of the finite element spaces Vh and V Ah . Let us remark that

some of the element matrices involve the non integrable function γ. Thus, it is

not clear in principle that the integrals leading to these element matrices must140

be finite. However, they are finite as we show in what follows.

The integrals that involve unbounded functions are those posed on triangles

intersecting either ΓA− or ΓA+. We focus on the former, but the same analysis

holds for the latter. We must distinguish two cases: elements with an edge on

ΓA− and elements with only one vertex on ΓA−. Moreover, according to Eq. (12),

we have to consider two type of integrals with unbounded functions:
∫

T

γk2
0ψiψjdx dz and

∫

T

γ
∂ψi
∂x

∂ψj
∂x

dx dz, (13)

since the third type
∫

T

1

γ

∂ψi
∂z

∂ψj
∂z

dx dz does not involve unbounded functions.
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z = −δ1ΓA
−

T

Figure 3: Element T with an edge on ΓA−.

First, consider a triangle T with an edge on ΓA− as Fig. 3 shows. Since uA = 0

on ΓA−, we do not have to consider the basis functions associated to nodes on ΓA−.

For each of the other basis function ψi in T , ψi
∣∣
ΓA
−

= 0 and hence
∂ψi
∂x

∣∣
ΓA
−

= 0.145

Then
∂ψi
∂x

is a polynomial of degree k − 1 which vanishes on the line z = −δ1.

Therefore, we may write
∂ψi
∂x

(x, z) = (z + δ1)qi(x, z), qi ∈ Pk−2(T ) and, hence,

ψi(x, z) = (z + δ1)Qi(x, z), where Qi(x, z) is a primitive in x of qi. Then, by

using the explicit form (9) of γ(z), it follows that
∫

T

γ(z)k2
0ψi(x, z)ψj(x, z) dx dz =

(1 + i)k0

β

∫

T

(z + δ1)Qi(x, z)Qj(x, z) dx dz,

which involves only polynomial functions. On the other hand, for the second150

integral in (13), we have
∫

T

γ(z)
∂ψi
∂x

(x, z)
∂ψj
∂x

(x, z) dx dz =
1 + i

βk0

∫

T

(z + δ1)qi(x, z)qj(x, z) dx dz,

which also involves only polynomial functions. Therefore, in this case, both

integrals in (13) can be safely computed with standard quadrature rules.

Secondly, we consider an element T with only one vertex on ΓA−. We will

show that for any continuos function g(x, z) the integral
∫

T

|γ(z)g(x, z)| dx dz155

is finite, so that both integrals in (13) will be finite.

We use polar coordinates (r, φ) centered at the vertex of T on ΓA−. We cover

the element T by a circular section T̃ as shown in Fig. 4 with 0 < φ1 < φ2 < π.

Then,
∫

T

|γ(z)g(x, z)| dx dz ≤
∫

T̃

∣∣∣∣
1 + i

βk0(z + δ1)
g(x, z)

∣∣∣∣ dx dz

=
√

2

∫ φ2

φ1

∫ R

0

|g(−r cosφ,−δ1 + r sinφ)|
βk0r sinφ

r dr dφ

11



which is finite because sinφ ≥ min{sinφ1, sinφ2} > 0 and g is bounded. There-160

fore, we conclude that all the integrals that have to be computed in the proposed

method are finite in spite of the unbounded character of the function γ.

(x, z)

r cosφ

r sinφ
φ

z = −δ1

T

T̃

φ
=
φ 1

φ
=
φ
2

ΓA
−

Figure 4: Element T with only one vertex on ΓA−. A circular section T̃ is

represented by a polar coordinate system (r, φ).

5. Numerical tests

In this section, we report the results obtained by applying the proposed PML

technique. We present some numerical examples that allow us to assess the

performance of the method. In addition, optimal values of the PML parameters

β and δ = δ1 = δ2 will be experimentally determined. Besides the field u,

another quantity of physical relevance is the absorptance defined as follows. Let

P :=
1

2µ0
Re
(
E ×H

)
denote the time-averaged Poynting vector. It represents

the time-averaged energy flux density per unit area. The absoprtance is then

defined as

A :=

∫

∂Ω

P · ν ds
∫

Γ−

P inc · ν ds
(14)

where P inc is the time-averaged Poynting vector associated to the incident field.

In other words, in an “ideal” solar device, all the energy would be kept inside165

the structure and thus the absorptance would be equal to one. In order to

calculate A, we again decouple the fields in both polarization states. For the

s-polarization, we haveE×H = (EyHz, 0, EyHx). Then, considering the quasi-
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periodic boundary conditions of Ey, Hx and Hz, by expressing Hx in terms of

u := Ey we obtain170

∫

∂Ω

P · ν ds =
i

ωµ2
0

Re

{
−
∫

Γ−

u
∂u

∂z
ds+

∫

Γ+

u
∂u

dz
ds

}
.

So, for the s-polarization, the above expression of the absorptance becomes

As = Re





−
∫

Γ−

u
∂u

∂z
ds+

∫

Γ+

u
∂u

dz
ds

∫

Γ−

uinc
∂uinc
dz

ds




. (15)

Proceeding analogously for the p-polarization, the absorptance in this case

reads

Ap = Re





−
∫

Γ−

1

εr

∂u

∂z
u ds+

∫

Γ+

1

εr

∂u

∂z
u ds

∫

Γ+

∂uinc
∂z

uinc ds




, (16)

where the coefficient εr on Γ− or Γ+ is that of the physical domain.

The domain Ω was discretized into Ne triangles and we have used cubic finite

elements (k = 3). Let uq,h denote the values of uq, delivered by our PML finite

element method for a specific choice of h, with the polarization state of the

incident plane wave being either q = s or q = p. The respective approximations175

of absorptances Aq,h are computed from (15) and (16) by using the finite element

solution uq,h instead of uq. Note that the computation of Aq,h uses first-order

derivatives of the finite element solution. This is the reason why the order of

convergence for these quantities will be lower than for the numerical solution

uq,h, as will be shown below. To avoid this, we have also computed an alternative180

approximation Âq,h of the absorptances by using the approach described in [20],

which is based on Fourier expansions of the solution in the unbounded domains

(0, L)× (−∞, 0) and (0, L)× (Lt, ∞) and only requires to compute the Fourier

coefficients of the finite element solution uh on Γ− and Γ+ (see [20, Section 2] for

further details). This approach avoids differentiating the finite element solution185

and, hence, it should preserve the optimal order of convergence. We point out

that this Fourier-based approach is used only to calculate absorptances and not

to compute the solution uh as in the Fourier-FEM method.

13



In all our tests we have taken L = 400 nm. The periodic multilayered

isotropic dielectric material was taken to comprise M = 9 layers of fixed thick-190

ness d = 100 nm each one. The height of the grating and the thickness of the

metal were taken Lg = 25 nm and Lm = 50 nm respectively. These are repre-

sentative values for structures suggested in the literature [8, 9, 10]. The relative

permittivities εr of each material depend on the wavelength λ0. We have used

the physical data from [25] to determine the permittivities for each wavelength.195

In most of the tests that we report in what follows, we have taken λ0 = 450 nm

and θ = 0. We will explicitly specify when this is not the case.

5.1. Test 1: Planar backreflector

We have chosen for this test a problem where the solution uq, q ∈ {s, p} of
Eq. (12) can be exactly determined everywhere using a textbook approach [26,200

Section 1.6]: a metal with a planar metallic backreflector (see Fig. 5).

ΩA
−

ΩA
+

ΓA
−

Γ−

Γ+

ΓA
+

δ

δ

Lm

Ld

z = 0

X

Z

2

1

4

5

6

7

8

3

9

Figure 5: Domain Test 1. The PMLID material of total thickness Ld, comprises

M = 9 layers on top of a planar metallic backreflector of thickness Lm. The

PML regions ΩA+ and ΩA− have a thickness of δ.
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Figure 6: Uniform first mesh discretizing the domain in Fig. 5.

To numerically solve this problem, we have used succesive uniform refine-

ments of the mesh shown in Fig. 6. As it can be seen from this figure, we have

not used more refined meshes for the PML than for the rest of the domain.

For each polarization state, we have computed the errors

euq :=

(∫

Ω

|uq − uq,h|2
)1/2

and eAq
:= |Aq −Aq,h|, q ∈ {s, p}. (17)

In order to determine the optimal values of the PML thickness δ and the205

parameter β in the absorbing coefficient (9), we solved the problem with different

values of these parameters (0.1 ≤ β ≤ 5 and 50 nm ≤ δ ≤ 350 nm) and different

values of the mesh size h and computed the corresponding errors. First, in

results not shown here, we observed that in all cases the optimal value of β

is around 0.3. Secondly, also in results not shown, we observed that there is210

almost no advantage in using δ >100 nm. In fact, the errors with δ = 100 nm

and δ = 350 nm differ in less than 1% for all the meshes. Consequently, we chose

δ = 100 nm. Let us remark that the thickness of the PML remains constant for

different mesh sizes h. One could be tempted to use a PML with a fixed number

15



of element layers, so that its thickness becomes smaller as h goes to zero. We215

assessed this approach but the results showed that this is not a good strategy

because in such case the PML error does not reduce with h.

With this value of δ fixed, we refined the search of an optimal value of the

parameter β by solving again the problem with different mesh sizes h. In Fig. 7

we display the error euq
, q ∈ {s, p} for δ = 100 nm and β varying between 0 and220

5, for four succesively refined meshes. The error curves in this figure show that,

for β varying between 0.2 and 0.4, the results do not significantly change. In

fact, we have repeated the experiments that follow in this section with different

values of β in this range and different values of δ ≥ 100 nm and the results

were essentially the same. Finally, in order to confirm that the optimal value225

of β is also independent of the wavelength λ0, we repeated the experiment with

different values of this parameter (λ0 = 600 nm, λ0 = 750 nm and λ0 = 900 nm)

and in all tests the optimal value of β did not change.

(a)
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0
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−10

10
−5

β

e u
p

Ne = 1472
4Ne
16Ne
64Ne

(b)

Figure 7: Test 1. Errors eus
(a) and eup

(b), for 0 < β < 5, δ = 100 nm,

λ0 = 450 nm and four succesively refined meshes. Ne: number of elements of

the mesh from Fig. 6.

We report in Fig. 8 error curves for eu and eA versus the mesh size h for230

both polarization states. For this test we have used the values δ = 100 nm
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and β = 0.2 determined above. These plots show that the error eu in both

polarizations decreases for our PML model with the order O(h4) that the theory

predicts for the cubic finite elements that have been used. The convergence rate

for the absorptance error eA for both polarizations is only O(h3) due to the235

approximation of the derivatives, as explained above (see (15) and (16)). We

have also computed the absorptances Âq,h with the above mentioned Fourier-

based approach. It can be seen from Fig. 8 that the order of convergence of the

errors eÂq
:= |Aq − Âq,h| are again O(h4) for the s-polarization and close to

O(h4) for the p-polarization.240
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Figure 8: Test 1. Computed errors eu, eA and eÂ versus the mesh size h: (a)

s-polarization and (b) p-polarization.

5.2. Test 2: Periodic backreflector with rectangular corrugations

In the following section, we report the same results as in the previous

test for a corrugated surface relief, instead of a planar metallic blackreflec-

tor. Since an exact solution u cannot be found for the chosen backreflector,245

we denote by uFEMq,h a FEM solution obtained with the method proposed in

[20]. Let us remark that the two methods differ only in the way the ra-

diation conditions at infinity are modeled. While in our case this is done
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by means of a PML technique, the method in [20] uses a Fourier series ap-

proach, which makes the latter significantly more expensive. We compute250

the quantities êuq
:=

(∫
Ω
|uFEMq,h − uq,h|2

)1/2

, êAq
:= |AFEMq,h − Aq,h| and

êÂq
:= |AFEMq,h − Âq,h|.
Let us emphasize that êuq , êAq and êÂq

are not actual errors but measures

of the differences between the values obtained with the proposed PML approach

and the more expensive Fourier-FEM approach proposed in [20]. In spite of this255

fact, in what follows we will make an abuse of language and call these quantities

‘errors’.

Analogously to Test 1, first we determined the optimal parameters β and

δ. The experiments with different δ lead to the same conclusion as in the

previous test. No significant difference was observed between the results with260

δ = 100 nm and larger δ. Consequently, we have chosen again δ = 100 nm and

we have computed the error êuq
, q ∈ {s, p} for different values of β. We have

limited the search to β varying between 0 and 1.
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Figure 9: Test 2. Errors êus
(a) and êup

(b), for 0 < β < 1, δ = 100 nm,

λ0 = 450 nm and four successively refined meshes, where the number of elements

of the meshs are: N1
e=1504, N2

e=5888, N3
e=23552 and N4

e=92208.

Fig. 9 shows the errors êuq
, q ∈ {s, p}, for four successively refined meshes.265
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In this case, the curves show that β = 0.2 is the optimal parameter for both

polarizations. Finally we have computed the errors êuq
and êAq

, q ∈ {s, p}.
In Table 1 we display the values obtained with β = 0.2 and δ = 100 nm and

different values of h. The corresponding curves are shown in Fig. 10.

Table 1: Test 2. Errors êuq and absorptance errors êAq for both polarizations

(q = s and q = p) and succesively refined meshes.

Ne h êus êup êAs êAp

1504 35.36 1.7235e-04 1.2489e-02 8.4658e-05 1.9036e-03

5888 17.68 5.4400e-06 4.0230e-04 8.5001e-06 1.4661e-04

23552 8.84 2.3305e-07 1.0651e-05 9.8752e-07 2.6806e-05

92208 4.42 9.7951e-09 4.0624e-07 1.2448e-07 3.9086e-06
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Figure 10: Test 2. Computed errors êu, êA and êÂ versus the mesh size h: (a)

s-polarization and (b) p-polarization.

The reported results show that the rate of convergence of errors êuq
are270

higher than expected. Indeed, these terms areO(h4.5) (q = s) andO(h5) (q = p)

while the order of convergence of the finite element method is expected to be at

most O(h4). As a consequence, the use of the proposed PML approach will lead
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essentially to the same results as the method from [20], but with a less expensive

computational cost. In addition, as in the previous test, the absorptance errors275

êAq
were O(h3) instead of O(h4). However, for realistic meshes, these errors

are negligible compared to the errors of the finite element method. This fact

justifies the use of the proposed PML approach in order to save computer cost.

6. Conclusions

We have introduced a novel PML technique for finite element calculations280

of diffraction by metallic surface-relief gratings and tested it by simulating a

structure comprising an isotropic dielectric multilayer material and a metallic

backreflector. We have numerically shown that the results are robust with

respect to the thickness δ of the PML, the absorbing parameter β and the

wavelength λ0. Moreover, since the proposed PML is based on a non-integrable285

absorbing function, small values of δ can be considered which would considerably

reduce the computational cost compared to the Fourier-FEM approach. In

addition, we show that the entries of the finite element matrix are finite even

though they involve a non-integrable function.
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