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Abstract. A quasi–one-dimensional model of the process of continuous sedimentation
in vessels with variable cross-sectional area is presented. The partial differential equation
(PDE) model extends the settler model advanced in [R. Bürger, S. Diehl, S. Far̊as, I.
Nopens, E. Torfs, Water Sci. Tech. 68 (2013) 192–208], which assumes a constant cross
section. A reliable numerical method that handles the special features of the nonlinar
PDE is presented along with an advantageous time step condition for continuous and
batch sedimentation under the condition of a variable cross-sectional area. Simulations
of continuous sedimentation show the effect of the change of cross-sectional area in the
concentration inside the vessel and in the underflow. Simulations of batch settling in
cones illustrate the versatility of the numerical scheme to include a vertex, where the
area shrinks to zero.

Keywords: continuous sedimentation, secondary clarifier, simulation model, wastewa-
ter treatment, water resource recovery facilities

Nomenclature

A cross-sectional area [m2]
B depth of thickening zone [m]
C concentration inside SST [kg/m3]
Ĉ maximum point of fbk [kg/m3]
Cc critical concentration [kg/m3]
Cj concentration in layer j (7) [kg/m3]
Cmax maximum concentration [kg/m3]
D primitive of dcomp (11) [kg/(ms)]
F (convective) flux function [kg/s]
Gj Godunov numerical flux (8) and (9) [kg/(m2s)]
H height of clarification zone [m]
Jcomp compressive flux (12) [kg/(m2s)]
Jdisp dispersive flux (13) [kg/(m2s)]
N number of layers inside SST [−]
Q volumetric flow rate [m3/s]
T total simulation time [s]
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dcomp compression function (5) [m2/s]
ddisp dispersion function (6) [m2/s]
fbk Kynch batch flux density function [kg/(m2s)]
g acceleration of gravity [m/s2]
j layer index [−]
q parameter in settling velocity function (20) [−]
t time [s]
v0 settling velocity of a single particle in unbounded fluid [m/s] (20)
vhs hindered settling velocity [m/s]
z depth from feed level in SST [m]

Greek letters

∆t time step of numerical method [s]
∆z layer width of numerical method [m]
Ψ (total) flux (2) [kg/s]
α parameter in effective solid stress function (21) [m2/s2]
α1 parameter in dispersion coefficient (22) [m−1]
α2 parameter in dispersion coefficient (22) [s/m2]
γ characteristic function (4), equals 1 inside and 0 outside SST
δ Dirac delta distribution [m−1]
ρf density of fluid [kg/m3]
ρs density of solids [kg/m3]
σe effective solid stress (21) [Pa]

Introduction

Benchmark simulations of water resource recovery facilities (wastewater treatment plants)
are often made with one-dimensional (1D) simulation models of the secondary settling tank
(SST) to avoid the computational complexity of higher-dimensional models. It is usually
assumed that the cross-sectional area is the same at all depths. The bottom of an SST
is, however, often sloped and the space occupied by the feed inlet in circular SSTs clearly
shows that the cross-sectional area varies with depth. Furthermore, batch settling exper-
iments are sometimes made in conical vessels. Instead of taking the larger step to model
settling in 2D or 3D (Samstag et al., 2016), we include a varying cross-sectional area
into a 1D model. A reliable numerical method is obtained by the consistent modelling
methodology (Bürger et al., 2011), starting from the integral form of the conservation law.

The aim of this work is to extend the 1D simulation model of SSTs, presented in (Bürger
et al., 2011, 2013) and evaluated in (Bürger et al., 2012a; Torfs et al., 2015), to include
the case of a varying cross-sectional area A(z); see Figure 1. The model can be written as
the following partial differential equation (PDE):

∂ (A(z)C)

∂t
+

∂

∂z
F(C, z, t)

=
∂

∂z

(
A(z)

{
γ(z)dcomp(C) + ddisp(z,Qf(t))

}∂C
∂z

)
+Qf(t)Cf(t)δ(z),
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Figure 1. Schematic illustration of an SST. The suspension of activated
sludge of concentration Cf(t) streams into the SST at the feed level z = 0
at the volumetric flow Qf(t) ≥ 0. The volumetric flows out of the SST are
Qu(t) ≥ 0 at the underflow level z = B and Qe(t) := Qf(t) − Qu(t) ≥ 0
at the effluent level z = −H. It is assumed that Cf , Qf and Qu are given
functions of t.

where C := C(z, t) is the unknown solids concentration function of depth z and time t,
F is a flux function that models the volumetric bulk flows and hindered settling and con-
tains A(z), dcomp models compression of the particles at high concentrations, and ddisp de-
scribes dispersion near the feed inlet. The feed mechanism is modelled by the last term.

Continuous sedimentation in vessels with variable area are used for activated sludge (De
Clercq et al., 2003; Stepova and Kalugin, 2011; Watts et al., 1996) and other materials (Jiao
et al., 2013; Silva et al., 2003; White and Verdone, 2000). In comparison to the few previous
works on 1D models with both varying area and compression; e.g. (Bürger et al., 2004,
2005), the novelties are (i) a new and improved CFL condition (time step size stability
condition), which implies faster simulations, (ii) a numerical method described explicitly
for implementation, and (iii) the possibility of simulating also sedimentation in a cone, for
which the cross-sectional area tends to zero at the bottom.

The study of settling in cones is partially motivated by the widespread use of so-called
Imhoff cones in wastewater treatment (Folens et al., 2016; van der Steen et al., 2015;
Park and Craggs, 2014). Moreover, the advantage of using a cone instead of a cylinder
for identifying the hindered settling flux function based on solutions of the model PDE
was recently elaborated in (Bürger et al., 2017). We therefore include a section on the
implementation of the method for batch sedimentation, which can be used for vessels
having constant or varying cross section.

Mathematical model

Figure 1 shows a schematic view of an axisymmetric SST. The vessel corresponds to
the depth interval −H ≤ z ≤ B and the regions z < −H and z > B are included for
mathematical reasons; however, parts of them can be seen as the outlet pipes. In this way,
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the problem can be formulated on the entire vertical axis, which means that no boundary
conditions need to be imposed.

Let us consider an arbitrary interval (z1, z2) of the depth axis. The conservation law of
mass states that the rate of increase of mass in (z1, z2) equals the signed flux in Ψ|z=z1

minus the flux out Ψ|z=z2 plus the source contribution inside the interval:

d

dt

∫ z2

z1

A(z)C(z, t) dz = Ψ|z=z1 −Ψ|z=z2 +

∫ z2

z1

Qf(t)Cf(t)δ(z) dz, (1)

where Ψ denotes the total flux given by

Ψ

(
C,
∂C

∂z
, z, t

)
= F(C, z, t)− A(z)

{
γ(z)dcomp(C) + ddisp(z,Qf(t))

}∂C
∂z

. (2)

The conservation law (1) can be also formally written as the PDE

∂ (A(z)C)

∂t
+

∂

∂z
(F(C, z, t)) =

∂

∂z

(
A(z)

{
γ(z)dcomp(C) + ddisp(z,Qf(t))

}∂C
∂z

)
+Qf(t)Cf(t)δ(z).

(3)

A numerical method is derived, however, from the integral form (1). The convective
flux function F (mass per time unit) involves the hindered settling flux function fbk(C) =
Cvhs(C), where vhs is the hindered settling velocity function, which satisfies vhs(Cmax) = 0.
We need to define a maximum concentration Cmax for the numerical method (for the CFL
condition). The flux F also includes the volumetric flows Qe(t), Qu(t) and the area A(z):

F(C, z, t) :=


−Qe(t)C if z < −H,
−Qe(t)C + A(z)fbk(C) if −H ≤ z < 0,

Qu(t)C + A(z)fbk(C) if 0 < z ≤ B,

Qu(t)C if z > B.

This means that in the effluent (z < −H) and underflow (z > B) regions, the sludge
is assumed to follow the bulk streams. Consequently, compression and dispersion are
assumed to occur only inside the vessel and γ = γ(z) indicates whether z is a depth in
the interior or the exterior of the SST, i.e.,

γ(z) :=

{
1 for −H ≤ z ≤ B,

0 for z < −H or z > B.
(4)

The compression function

dcomp(C) =
ρs

ρs − ρf
vhs(C)σ′e(C) (5)

contains the densities of the solids (ρs) and the fluid (ρf), the hindered settling velocity
vhs and the derivative of the effective solid stress function σ′e(C), which satisfies

σ′e(C)

{
= 0 for C < Cc,

> 0 for C ≥ Cc,
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where Cc is the critical concentration above which compression occurs. With the dispersion
function ddisp(z,Qf) one can model mixing phenomena caused by the inlet stream at z = 0.
Naturally, such are assumed to occur only inside the SST; hence, we assume that

ddisp
(
z,Qf(t)

){= 0 for z ≤ −H and z ≥ B,

≥ 0 for −H < z < B.
(6)

The last term of (1) or (3), which contains the delta Dirac distribution δ(z), models the
mass per time unit fed into the SST from the biological reactors.

The model is closed when the two constitutive functions, hindered settling velocity vhs(C)
and effective solid stress σe(C), and the empirical dispersion function ddisp(z,Qf) have been
specified.

As mentioned, no boundary condition is needed in this problem. Initial data inside the
SST,

C(z, 0) = C0(z), −H ≤ z ≤ B,

is sufficient for a well-defined problem, since the effluent and underflow concentrations
are naturally defined for t > 0 because of the direction of the outlet flows (assuming
these are nonzero). In the outlet pipes, the area function can for simplicity be defined as
A(z) = A(−H) for z ≤ −H and A(z) = A(B) for z > B. The actual size of an outlet
pipe will only influence dynamic transients of the underflow concentration Cu(t) but not
stationary solutions (this is explained in connection to (15)).

Numerical scheme

The numerical method is derived from the integral version of the conservation law (1)
as was done by Bürger et al. (2013); however, now with care taken for the z-dependence
of the cross-sectional area A(z).

Spatial discretization. The spatial domain [−H,B] is divided into N computational
cells, or layers, each of the width ∆z = (H +B) /N , separated by zj := j∆z − H for
j = 0, . . . , N where z0 = −H and zN = B are the top and bottom of the vessel; cf. Bürger
et al. (2013, Figure 2). The j-th layer corresponds to the interval [zj−1, zj] with centre
zj−1/2 := (j − 1/2)∆z − H. We suppose that the feed mechanism is located inside the
feed layer (zjf−1, zjf ], where j = jf := dH/∆ze is the nearest integer larger than or equal
to H/∆z. For the correct approximation of the second-order derivatives it is necessary to
introduce one extra layer in the effluent and underflow zone, respectively. As in (Bürger
et al., 2013), we add still another one in each zone in order to show how the update
formulas look like in case one wishes to model a certain outlet pipe length.

We define Cj = Cj(t) as the average of the exact solution C over layer j at time t:

Cj(t) :=
1

∆z

∫ zj

zj−1

C(z, t) dz. (7)

Then the left-hand side of (1), with the integral taken over layer j, can be approximated
as follows, where Aj−1/2 := A(zj−1/2):

d

dt

∫ zj

zj−1

A(z)C(z, t) dz ≈ A(zj−1/2)
d

dt

∫ zj

zj−1

C(z, t) dz = Aj−1/2∆z
dCj

dt
.
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The fluxes between layers are approximated consistently with the right-hand side of (1).
For the flux F , we use an upwind scheme for the bulk velocities and the Godunov flux for
the settling flux in the following way. At z = zj between layers j and j + 1, we define

Fnum
j :=


−Qe(t)Cj+1 if j = −1,

−Qe(t)Cj+1 + A(zj)Gj if j = 0, . . . , jf − 1,

Qu(t)Cj + A(zj)Gj if j = jf , . . . , N,

Qu(t)Cj if j = N + 1,

(8)

where the Godunov numerical flux is

Gj :=

 min
Cj≤C≤Cj+1

fbk(C) if Cj ≤ Cj+1,

max
Cj≥C≥Cj+1

fbk(C) if Cj > Cj+1.
(9)

For a unimodal function fbk with maximum point Ĉ, the flux Gj can be computed by
Algorithm 1 of (Bürger et al., 2013) or the following compact formula (Adimurthi et al.,
2004):

Gj = min
{
fbk(min{Cj, Ĉ}), fbk(max{Cj+1, Ĉ})

}
. (10)

To obtain a stable numerical method, we define the primitive of the compression function
dcomp(C), which is zero for C < Cc,

D(C) :=

∫ C

Cc

dcomp(s) ds, (11)

and the compressive and dispersive fluxes as

Jcomp(z, t) := γ(z)dcomp(C)
∂C

∂z
= γ(z)

∂D(C)

∂z
, (12)

Jdisp(z, t) := ddisp(z,Qf(t))
∂C

∂z
. (13)

These two fluxes are approximated by

Jnum
comp,j := γ(zj)

Dnum
j+1 −Dnum

j

∆z
and Jnum

disp,j := ddisp,j
Cj+1 − Cj

∆z
,

where ddisp,j := ddisp(zj, Qf(t)), and Dnum
j := D(Cj). If the primitive D(C) is not available

in closed algebraic form, then Dnum
j has to be computed numerically; see (Bürger et al.,

2013, Algorithms 3.2–3.3).
The conservation law for layer j (cf. (1)) can be written in the method-of-lines (MOL)

form

dCj

dt
=− F

num
j −Fnum

j−1

Aj−1/2∆z
+
AjJ

num
comp,j − Aj−1J

num
comp,j−1

Aj−1/2∆z

+
AjJ

num
disp,j − Aj−1J

num
disp,j−1

Aj−1/2∆z
+
Qf(t)Cf(t)

Aj−1/2∆z
δj,jf , j = −1, . . . , N + 2,

(14)

where δj,jf = 1 if j = jf and δj,jf = 0 otherwise. For example, we get for the first layer
below the underflow level (in the underflow pipe)

dCN+1

dt
= − Qu

AN+1/2∆z
(CN+1 − CN) +

ANGN

AN+1/2∆z
− AN

(
Dnum

N+1 −Dnum
N

)
AN+1/2(∆z)2

, (15)
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In steady state when time derivatives are zero, (15) implies that CN+1 is independent of
AN+1/2, i.e., the area of the outlet pipe does not influence the underflow concentration.

Time discretization. The MOL equations (14) can in principle be solved by any stan-
dard ODE solver. This is convenient when these SST equations are solved together with
ODEs modelling biological reactions in the activated sludge process. Implicit-type ODE
solvers have the advantage that no upper limit of the time-step size needs to be substituted
by the user, but other disadvantages: they may be slow or even fail when the right-hand
sides contain functions that are not continuously differentiable, like the Godunov flux (8).
Explicit ODE solvers are easiest to implement, but require an upper limit for the time
step (CFL condition). Considering the errors created by the spatial discretization, there
is no point in using any more advanced solver than the simple finite difference step (Diehl
et al., 2015):

dCj

dt
≈
Cn+1

j − Cn
j

∆t
, (16)

where Cn
j := Cj(tn) ≈ C(zj, tn) is the approximate concentration at the discrete time

points tn = n∆t, n = 0, 1, 2, . . . . With (16) inserted into (14), and the right-hand side
evaluated at time tn, the explicit numerical method can be written as follows, where the
index n means evaluation of a time-dependent function at t = tn,

Cn+1
j = Cn

j −
∆t

Aj−1/2∆z

(
Fnum,n

j −Fnum,n
j−1 − AjJ

num,n
comp,j + Aj−1J

num,n
comp,j−1

− AjJ
num,n
disp,j + Aj−1J

num,n
disp,j−1 −Qn

f C
n
f δj,jf

)
,

j = −1, . . . , N + 2, n = 0, 1, 2, . . . .

(17)

CFL condition. The nonlinearities of the flux function fbk (or Gj) and the spatial deriva-
tives in the PDE (3) imply that instabilities and non-physical solutions can occur if the
time step ∆t is too large in comparison to the chosen spatial resolution ∆z. Fortunately,
an upper bound for ∆t can be computed beforehand and such is called a CFL condition.
More information and examples on the importance of the CFL condition and variants of it
for different time-stepping methods are provided by Bürger et al. (2005, 2013); Diehl et al.
(2015). In the case of a varying cross-sectional area A(z), the CFL condition becomes
even more restrictive. Previous published numerical methods for continuous sedimenta-
tion in a vessel with varying cross-sectional area (Bürger et al., 2004, 2005) have focussed
on proving convergence of the numerical solution to the exact one of the PDE as ∆t and
∆z tend to zero, and a straightforward CFL condition has been chosen. Here, we present
a less restrictive CFL condition that allows a greater ∆t, thus making simulations faster.
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For a given spatial discretization, i.e., a given ∆z, the following can be computed before
the simulation, where T is the simulation time:

M1 := max
j=0,...,N+1

{
Aj−1

Aj−1/2
,

Aj

Aj−1/2

}
, (18)

M2 := max
j=0,...,N+1

{
Aj + Aj−1

Aj−1/2

}
,

Amin := min
j=0,...,N+1

Aj−1/2,

Qmax := max
0≤t≤T

Qf(t),

φmax := max
0≤C≤Cmax

|f ′bk(C)|,

dmax
comp := max

0≤C≤Cmax

dcomp(C), (19)

dmax
disp := max

−H≤z≤B
0≤t≤T

ddisp(z,Q(t)).

Stable solutions are obtained with (17) if the time step is chosen according to the following
CFL condition:

∆t ≤
(

Qmin

Amin∆z
+
M1φmax

∆z
+
M2(d

max
disp + dmax

comp)

(∆z)2

)−1
. (CFL)

The proof of this is sketched in the Appendix.

A numerical method for batch sedimentation

In batch sedimentation, we assume that there is no dispersion (ddisp = 0) and the
boundary condition at both top and bottom is zero flux.

1. Let B denote the distance from the suspension surface to the bottom inside the
vessel. Choose the number of layers N , the simulation time T and a large maximum
concentration Cmax.

2. Set ∆z := B/N , compute the concentration Ĉ at which fbk(C) has its maximum,
the constants M1, M2, φmax and dmax

comp by (18)–(19). The special case of a constant
cross-sectional area gives M1 = 1 and M2 = 2; and a cone implies M1 = M2 = 4.
Choose a time step that satisfies the CFL condition

∆t ≤
(
M1φmax

∆z
+
M2 d

max
comp

(∆z)2

)−1
.



9

3. The MOL equations are the following:

dC1

dt
= − A1G1

A1/2∆z
+
A1 (Dnum

2 −Dnum
1 )

A1/2(∆z)2
,

dCj

dt
= −AjGj − Aj−1Gj−1

Aj−1/2∆z

+
Aj

(
Dnum

j+1 −Dnum
j

)
− Aj−1

(
Dnum

j −Dnum
j−1
)

Aj−1/2(∆z)2
, j = 2, . . . , N − 1,

dCN

dt
=
AN−1GN−1

AN−1/2∆z
− AN−1

(
Dnum

N −Dnum
N−1
)

AN−1/2(∆z)2
.

Simulations

Constitutive functions. For numerical examples we use the following constitutive func-
tions (Diehl, 2015; Torfs et al., 2017). The hindered settling function is

vhs(C) =
v0

1 + (C/C̄)q
, (20)

with v0 = 0.003 m/s, C̄ = 3.87 kg/m3 and q = 3.58. The effective solids stress function is

σe(C) =

{
0 for 0 ≤ C < Cc,

α(C − Cc) for C ≥ Cc,
(21)

with the critical concentration Cc = 8 kg/m3 and α = 0.5 m2/s2. For simulation of an
SST, we use the dispersion function by Bürger et al. (2013):

ddisp (z,Qf) =

α1Qf exp

( −z2/(α2Qf)
2

1− |z|/(α2Qf)

)
for |z| < α2Qf ,

0 for |z| ≥ α2Qf ,
(22)

where α1 = 0.001 m−1 and the choice α2 = 7.2 s/m2 implies that ddisp(z,Qf) = 0 outside
the SST for the scenarios below.

Simulation of continuous sedimentation. We assume that the volumetric flows vary
with time according to

Qf(t) =


265 m3/h if t ≤ 55 h,

250 m3/h if 55 h < t ≤ 170 h,

270 m3/h if t > 170 h,

Qu(t) =


65 m3/h if t ≤ 55 h,

50 m3/h if 55 h < t ≤ 170 h,

70 m3/h if t > 170 h,

Qe(t) = 200 m3/h,
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V-1

feed level

V-2

V-3

V-4

V-5

V-6

V-7

11.5 m

4 m

0.5 m

4 m
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Figure 2. Radial profile of half of a rotationally symmetric SST V-1 (black)
where the axis of symmetry is the dashed vertical line to the left. The total
height is 5 m, H = 1 m, B = 4 m, the inlet pipe radius is 1.5 m and the
outlet radius 0.5 m. The dashed red lines show different slopes of the bottom
representing vessels V-2 to V-7.

that the feed concentration is given by

Cf(t) =


5.2 kg/m3 if t ≤ 80 h,

4.0 kg/m3 if 80 h < t ≤ 150 h,

5.5 kg/m3 if t > 150 h,

and that the initial concentration profile is an approximate stationary solution, which is
less than the critical concentration down to z = 1 m and below increasing towards the
bottom:

C0(z) =


0 kg/m3 if z < 0 m,

0.7 kg/m3 if 0 m ≤ z ≤ 1 m,{
3
2

(
z

1m
− 1
)

+ 8
}

kg/m3 if z ≥ 1 m.

For the CFL condition, we set Cmax = 30 kg/m3 (and check that all simulations stay below
this value).

To compare different solutions of the model, we consider the SST studied by Bürger
et al. (2012b, Examples 3 and 4), which is vessel V-1 in Figure 2 that has the bottom
slope 1.0 m/12.5 m = 0.08. The figure also indicates the profiles of further vessels, V-2
to V-7, having the bottom slopes (0.04, 0.08, 0.12, . . . , 0.24). All vessels have the same
cross-sectional area at the top A(−1 m) ≈ 523.86 m2 and bottom A(4 m) ≈ 0.78 m2, and
height 5 m but different volumes, from 2300.693 m3 for V-1 to 1260.405 m3 for V-7. Due
to the inlet pipe, A(z) has a discontinuity at z = 0 m.

Simulations were performed during T = 240 h (10 days) and the results are shown in
Figure 3. Plot (a) for V-1 shows a varying sludge blanket around the depth z = 1 m, below
which the concentration increases from Cc = 8 kg/m3 to above 20 kg/m3 at the bottom
z = 4 m. After 170 h the solution approaches a steady state with the concentration
below the blanket increasing almost along a straight line towards the bottom. Plots (b)
and (c) show that with higher bottom slopes of the vessel, the concentration profiles
differ considerably from the case V-1. The higher levels of the sludge blanket shown in
Figure 3 (b) and (c) are a natural phenomenon due to the smaller total volumes. The
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Figure 3. (a-c) Simulations results for vessels V-1, V-4 and V-7 and (d)
the underflow concentrations Cu(t) of V-1 to V-7.

blanket rises into the clarification zone in V-4 to V-7 due to the decrease in Qu at t = 55 h.
At t = 80 h there is a reduction in the feed concentration, causing a decrease in the blanket
level. After t = 150 h the blanket rises again and reaches the effluent level for some of the
vessels. The underflow concentrations Cu(t) in plot (d) shows that for times after t = 50 h
the curves of V-1 to V-3 are close and lie between Cu = 20.9 kg/m3 and 23.3 kg/m3.
The maximum value of 23.28 kg/m3 can be found in V-1. These curves also indicate
partly that steady states have almost occurred in the vessels at T = 240 h and partly
that overflow occurs in V-5 to V-7 in these steady state. This is because the fed mass
and the volumetric flows are the same in all vessels and hence a difference in underflow
concentrations corresponds to the difference in effluent concentration:

QuC
V-1
u +QeC

V-1
e = QfCf = QuC

V-2
u +QeC

V-2
e

⇒ Qu(CV-2
u − CV-1

u ) = −Qe(C
V-2
e − CV-1

e ).

Simulations of batch settling. We consider a cone with upper radius 0.3 m and depth
B = 1 m (the height of the clarification zone H = 0 m); see Figure 4 (a). We simulate
three scenarios (tests) with different initial concentration profiles C0(z) during T = 1 h.
The results are shown in Figure 4 (b)–(d). In simulation (b), the initial concentration is
constant C0(z) = 4.0 kg/m3 for 0 m ≤ z ≤ 1 m, which means that the total mass of solids
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is 0.377 kg. The approximate solution C shows that particles settle downwards quickly
during the first 13 minutes without concentration discontinuities. After that, the height
of sludge blanket varies only slightly, about 1 cm, and the maximum concentration at the
bottom increases to 16.24 kg/m3.

In the next simulation, shown in plot (c), a high concentration is placed on top of pure
water. This tests that the numerical method can handle discontinuities decreasing with
depth equally well as increasing. We apply the same mass of solids particles as in (b) with
initial concentration

C0(z) =

{
8.197 kg/m3 if 0 ≤ z ≤ 0.2 m,

0 kg/m3 if 0.3 m < z ≤ 1 m.

Plot (c) shows that particles settle quickly downwards and start to accumulate at bottom
of the vessel from 3 minutes. After a while, the behaviour is similar to test (b).

The last example shown in plot (d) starts with an over-compressed suspension at the
bottom:

C0(z) =

{
0 kg/m3 if 0 ≤ z ≤ 0.45 m,

24.042 kg/m3 if 0.45 m < z ≤ 1 m,

and with the mass of particles is the same as before. Plot (d) shows that particles directly
start to rise. The bottom concentration increases during 33 minutes to its maximum
28.392 kg/m3 and then decreases so that the same steady state is reached as in the other
cases.

Conclusions

An explicit numerical method for 1D simulation of settling in vessels with varying cross-
sectional area has been presented in detail, including the common special case of batch
sedimentation in cones, where the vessel area is zero at the bottom. This means that
our numerical method can handle the case when there is a singular cross-sectional area,
A(B) = 0, in the model equation. Previous studies on this problem by Bürger et al.
(2004, 2005) have included proof of convergence of the numerical solutions to the exact
one of the model PDE. This means that the numerical method is reliable. A novelty in
the present work is a new CFL condition, which allows larger time steps and therefore
faster simulations. The mathematical proof that the new CFL condition yields reliable
simulations is provided in the Appendix.

Simulations of SSTs with the same measurements except for different bottom slopes,
hence different total volumes, show how the transient behaviours and concentration profiles
differ; however, the underflow concentration is the same in steady state unless an overflow
occurs (in agreement with the mass balance). With the simulated scenario, overflow occurs
for vessels V-5 to V-7 (see Figure 3 (d)). The benefits of having a steep slope (V-7) for
practical reasons should be balanced with drawback of having a higher located sludge
blanket with the risk of overflow.

The versatility of the simulation model means that different geometries including the
inlet and outlet pipes can be studied to some extent in a 1D model without going to the
far more computationally heavy 2D simulation models.
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Figure 4. (a) Vertical cross-section of cone. (b–d) Simulations of batch
tests with different initial concentration distributions.

Appendix

CFL estimates. The mathematical purpose of the CFL condition is to ensure that the
numerical method is monotone, a property which guarantees that the numerical solution is
stable. We refer to Bürger et al. (2005) for definitions and details of standard calculations.
Here, we only give the new ingredient. Monotonicity of the update formula (17) means
that if Cn

k (for any fixed k) on the right-hand side is perturbed by an increase, then all
values Cn+1

j , j = −1, . . . , N + 2, either remain unchanged or increase. Thus, each new
concentration Cn+1

j should be an increasing function of all Cn
k at the previous time step;

hence, one should check that the following holds for (17):

∂Cn+1
j

∂Cn
k

≥ 0 for all j, k = −1, . . . , N + 2. (A.1)

The CFL condition is a means to prove these inequalities. In fact, the CFL is only needed
for the cases when j = k in (A.1). The new ingredient here is the numbers Aj and Aj−1/2
appearing in the numerators and denominators, respectively, of the numerical method; see
the right-hand sides of (17). We carry out the proof for a layer in the effluent zone (other
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layers are similar or simpler), where the update formula is

Cn+1
j = Cn

j + ∆t

[
Qn

e

Aj−1/2∆z
(Cn

j+1 − Cn
j )− AjG

n
j − Aj−1G

n
j−1

Aj−1/2∆z

+
1

Aj−1/2(∆z)2

(
Ajddisp,j(C

n
j+1 − Cn

j )− Aj−1ddisp,j−1(C
n
j − Cn

j−1)

+ Aj

(
D(Cn

j+1)−D(Cn
j )
)
− Aj−1

(
D(Cn

j )−D(Cn
j−1)

))]
.

We compute

∂Cn+1
j

∂Cn
j

= 1−∆t

[
Qn

e

Aj−1/2∆z
+

∂

∂Cn
j

{
AjG

n
j − Aj−1G

n
j−1

Aj−1/2∆z

}
+
Ajddisp,j + Aj−1ddisp,j−1

Aj−1/2(∆z)2
+

(Aj + Aj−1) dcomp(Cn
j )

Aj−1/2(∆z)2

] (A.2)

and estimate the terms in the squared brackets. Clearly, we have

Qn
e

Aj−1/2∆z
≤ Qmax

Amin∆z
,

and

Ajddisp,j + Aj−1ddisp,j−1
Aj−1/2(∆z)2

+
(Aj + Aj−1) dcomp(Cn

j )

Aj−1/2(∆z)2
≤
M2(d

max
disp + dmax

comp)

(∆z)2
.

For the remaining term, we write out the numerator of the expression within the curled
brackets and use the formula (10) to get

∂

∂Cj

(
AjG

n
j − Aj−1G

n
j−1
)

= Aj
∂

∂Cj

min
{
fbk(min{Cj, Ĉ}), fbk(max{Cj+1, Ĉ})

}
− Aj−1

∂

∂Cj

min
{
fbk(min{Cj−1, Ĉ}), fbk(max{Cj, Ĉ})

}
= Aj

{
∂

∂Cj

fbk(min{Cj, Ĉ}) or 0

}
− Aj−1

{
0 or

∂

∂Cj

fbk(max{Cj, Ĉ})
}

= {Ajf
′
bk(Cj) or − Aj−1f

′
bk(Cj) or 0} .

Hence,

∂

∂Cn
j

{
AjG

n
j − Aj−1G

n
j−1

Aj−1/2∆z

}
≤ M1|f ′bk(Cj)|

∆z
≤ M1φmax

∆z

and we conclude that (A.2) can be estimated by

∂Cn+1
j

∂Cn
j

≥ 1−∆t

(
Qmin

Amin∆z
+
M1φmax

∆z
+
M2(d

max
disp + dmax

comp)

(∆z)2

)
≥ 0,

where the last inequality follows from condition (CFL).
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