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Abstract. The sedimentation of an ideal suspension in a vessel with variable cross-sectional
area can be described by an initial-boundary value problem for a scalar nonlinear hyperbolic conser-
vation law with a nonconvex flux function and a weight function that depends on spatial position.
The sought unknown is the local solids volume fraction. For the most important cases of vessels
with downward-decreasing cross-sectional area and flux function with at most one inflection point,
entropy solutions of this problem are constructed by the method of characteristics. Solutions exhibit
discontinuities that mostly travel at variable speed, i.e., they are curved in the space-time plane.
These trajectories are given by ordinary differential equations that arise from the jump condition. It
is shown that three qualitatively different solutions may occur in dependence of the initial concen-
tration. The potential application of the findings is a new method of flux identification via settling
tests in a suitably shaped vessel. Related models also arise in flows of vehicular traffic, pedestrians,
and in pipes with varying cross-sectional area.
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1. Introduction.

1.1. Scope. The sedimentation of solid particles in a liquid in a closed vessel
can be modelled by the following initial-boundary value problem for a scalar nonlinear
hyperbolic conservation law:

∂t
(
A(x)φ

)
− ∂x

(
A(x)f(φ)

)
= 0 for 0 < x < 1, t > 0,(1a)

φ(x, 0) = φ0 for 0 < x < 1,(1b)

φ(0+, t) = φmax and φ(1−, t) = 0 for t > 0.(1c)

The local solids volume fraction φ(x, t) is the sought function, which is constant φ0

initially and φmax at the bottom x = 0, where φmax is a maximum packing volume
fraction. The cross-sectional area A = A(x) ∈ C1 is a given function of the height x,
and the nonlinear flux function f = f(φ) models hindered settling by gravity according
to the kinematic sedimentation theory by Kynch [22]. This theory is based on the
assumption that the solids batch settling velocity is a function of φ. This assumption
is valid only for solid mono-sized particles such as glass beads, but it is widely applied
to other materials, and in particular to the dilute regime of flocculated suspensions
in mineral processing and wastewater treatment [9, 10, 18].

Knowledge of f for given solid and liquid materials is fundamental for the de-
scription, simulation and control of batch and continuous sedimentation in these and
other applications. A simple test that exhibits a rich solution behaviour, and thereby
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reveals as much information on f as possible, is the settling of a suspension in a non-
cylindrical vessel (for instance, a cone), as described, under idealizing assumptions,
by (1). The solution of this problem of practical interest is, however, involved due
to the non-convexity of f in combination with the variability of A. These proper-
ties imply that characteristics are not straight lines (in the x-t-plane), and φ is not
constant along characteristics. In addition, trajectories of admissible concentration
discontinuities (shocks) are curved. It is the purpose of this work to explicitly solve
the problem (1) for the most relevant case of a function f with one inflection point
and a downward-decreasing cross-sectional area A. In particular, we determine the
unique entropy solution of (1) in dependence of φ0.

1.2. Related work. Continuous sedimentation is often modelled and simulated
in one space dimension [9, 11, 15, 16, 18] since the computational effort for multi-
dimensional models is usually excessive. Such one-dimensional models are defined
by a nonlinear PDE with spatially discontinuous coefficients because of the inlet and
outlets, and may include a strongly degenerate diffusion term describing sediment
compressibility [9] in the case of flocculated suspension. All of the cited works pre-
suppose that the function f is known for the suspension under study.

The assumption of one-dimensionality is justified by evidence that in large sedi-
mentation tanks, where the cross-sectional area is constant or decreasing with depth,
the concentration profile is essentially one-dimensional [21]. An increasing area, how-
ever, easily leads to flows in more dimensions. An example of these two effects is
provided in [4]. A downward-contracting cone (sometimes called “Imhoff cone”) is
widely used for settling tests [6, 24, 29] in wastewater treatment.

In the case of a cylindrical vessel (A ≡ const.) with the model equation ∂tφ −
∂xf(φ) = 0, the identification of f(φ) has been thoroughly investigated. Treatments
based on explicit formulas for discontinuities derived from the PDE include [5, 8, 17,
19] and references cited therein. One limitation with a batch test in a cylindrical
vessel is that for low concentrations only the point (φ0, f(φ0)) can be estimated. This
is because the constant concentrations on both sides of the liquid-suspension shock
wave imply a constant shock speed. In addition to this single point, a part of f can be
estimated by tracing the shock after the time point when it becomes curved. When a
varying cross-section is used, the concentration below the shock wave varies over an
entire interval, yielding a curved shock wave initially. Hence, the flux function can
possibly be identified more efficiently. However, an identification method relies on
knowledge of the complete solution in each of the possible qualitatively different cases
(in dependence on φ0, for given f and A). This motivates the present work.

This work has partly been inspired by the construction of solutions of (1a) with
the method of characteristics by Anestis [1] (see also [2]). Anestis treated the case of a
concave flux function f , which is a special case of our treatment, which allows f to have
one inflection point. The latter is the most common case in modelling sedimentation,
but appears also in traffic-flow modelling [31]. Furthermore, numerical solutions of
(1), under slightly different assumptions on f , are presented in [7].

As with vehicular traffic flow, pedestrian flow can be modelled with continuum
models where the flux is a unimodal function that is zero both for φ = 0 and φ = φmax

(the maximum concentration) [32]. The varying A(x) then corresponds to bottlenecks;
see [23, 28, 33] and references therein. Equations similar to (1a) model flows in pipes
with varying cross-sectional area [13, 26, 30].

1.3. Outline of the paper. In Section 2, we specify the flux functions f
and cross-sectional areas A for which we solve the problem (in Section 2.1): only
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downward-contracting vessels will be considered; however, many shapes are possible:
cones whose silhouette is a straight line, and (not necessarily axisymmetric) vessels
with concave or convex silhouettes. Then, in Section 2.2, we define an entropy so-
lution of (1). Section 3 contains preliminaries for the solution of (1): we recall in
Section 3.1 the method of characteristics for a general quasilinear first-order PDE
from [20], and apply this method in Section 3.2 to obtain an implicit representation
of the smooth solution of (1a) (away from discontinuities). In Section 3.3, some ge-
ometrical properties of f are recalled. In Section 4, which forms the core of this
paper, we construct complete entropy solutions of (1). The part of the solution de-
termined by the initial characteristics from the x-axis is common to all cases and is
constant on straight lines in the x-t-plane; see Section 4.1. The entropy solution of
(1) is then constructed in each of three qualitatively different cases: Case L, M and
H, corresponding to low, middle and high initial concentration φ0 and distinguished
by the geometrical properties of f(φ); see Sections 4.2–4.4. The construction involves
new proofs of qualitative properties of curved trajectories of discontinuities that are
determined by nonlinear ODEs. These ODEs, and those for the characteristics, are
solved numerically for illustration of Cases L, M and H. The results of Section 4 are
summarized in Theorem 1 (Section 4.5). Conclusions are collected in Section 5.

2. Problem formulation.

2.1. Assumptions on the flux and area functions. The governing equation
in dimensional form is, for time t̃ and height H̃,

∂t̃
(
Ã(x̃)φ

)
− ∂x̃

(
Ã(x̃)f̃(φ)

)
= 0 for 0 < x̃ < H and t̃ > 0,(2)

where H is the height of the suspension and Ã ∈ C1[0, H] is the cross-sectional
area. The solid-fluid relative flux function, also called drift flux or Kynch batch
flux, 0 ≤ f̃ ∈ C2(0, φmax) is assumed to be unimodal and satisfy f̃(0) = f̃(φmax) = 0.
Let φ̂ denote the maximum point of f̃ and φinfl ∈ (φ̂, φmax] an inflection point. The
flux function can be written as f̃(φ) = ṽ(φ)φ with ṽ(φ) := v∞v(φ), where v∞ is the
settling velocity of a single particle and v(φ) is a dimensionless constitutive function
that satisfies v(φmax) = 0. Hence, f(φ) := v(φ)φ is the dimensionless flux function.

A common semi-empirical flux function is f(φ) = φ(1−φ)rRZ [27], where rRZ ≈ 5
for rigid spheres. This flux function has a zero derivative at φ = φmax = 1. To
illustrate qualitatively different cases of solutions, we prefer the following flux function:

(3) f(φ) = φ(e−rVφ − e−rVφmax) with parameter rV > 0 and φmax = 1.

Defining the variables x := x̃/H, t := t̃v∞/H, and A(x) := Ã(x̃)/Ã(H), we get from
(2) the dimensionless hyperbolic PDE (1a). In regions of the x-t-plane where the
solution is smooth, (1a) can be written as

∂tφ− f ′(φ)∂xφ =
A′(x)

A(x)
f(φ).(4)

We limit ourselves to the case that A is an invertible function and A′(x) ≥ 0 for
0 < x < 1 and that for constants p, q 6= 0, the ratio A′/A in (4) can be reduced to

A′(x)

A(x)
=

1

p+ qx
⇔ A(x) =

(
p+ qx

p+ q

)1/q

for 0 6 x 6 1.(5)
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x = 0

x = 1
p = 1/18, q = 1/2 p = 1/3, q = 1/2 p = 0.05, q = 1 p = 0.05, q = 3

x = 0

x = 1
p = 0.05, q = 0.3 p = 0.4, q = 0.2 p = 0.4, q = 0 p = 0.3, q = 0

Fig. 1. Examples of rotational-symmetric vessels with radius function (7) with m = 2. The
two first conical vessels are used for the calculated solutions in Figures 2–5. Problem (1) is solved
for a homogeneous suspension of concentration φ0 filled to the top x = 1.

The motivation for this assumption can be found in Section 3.2. Then (4) becomes

∂tφ− f ′(φ)∂xφ =
f(φ)

p+ qx
.(6)

The formula (5) implies the following equivalences for q 6= 0:

A(x) > 0, A′(x) > 0, 0 ≤ x ≤ 1 ⇔ p+ q > 0, p > 0, and

A(x) > 0, A′(x) < 0, 0 ≤ x ≤ 1 ⇔ p+ q < 0, p < 0.

We consider only A′(x) > 0 here. To focus on the main ideas of the proofs below,
we avoid q < 0 and take p, q > 0 as the main case. The special case q = 0 gives,
instead of (5), the area function A(x) = e(x−1)/p. This is simply the limit case of (5)
as q → 0+, since (1 + qx/p)1/q → ex/p, a fact that will be utilized in the proofs below.

As for the vessel shape, we may have Ã(x̃) = k (r̃(x̃)/r̃(H))
m

for constants k,m >
0, and in dimensionless variables,

r(x) :=
r̃(x̃)

r̃(H)
=
r̃(xH)

r̃(H)
, A(x) =

Ã(x̃)

Ã(H)
=

(
r̃(x̃)

r̃(H)

)m
= r(x)m.

Hence, with (5) (and p > 0, q > 0) the “radius” functions we can handle are

r(x) =
(
(p+ qx)/(p+ q)

)1/(mq)
for 0 6 x 6 1.(7)

For mq = 1, r(x) is affine and in the special case m = 2 = 1/q, we get a conical vessel;
see Figure 1. This case is used for the computation and illustration of the solutions
in Section 4. For the special case q = 0, we get r(x) = A(x)1/2 = e(x−1)/(2p).

2.2. Entropy solution. It is well known that solutions of (1a) are smooth in
regions of the x-t-plane separated by discontinuities [14]. Discontinuous solutions
are not unique in general, and jumps must satisfy an additional condition, the so-
called jump entropy condition, to be admissible. These considerations are standard
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in conservation law theory (cf., e.g., [20]), and lead to the following concept of entropy
solution for (1), where we recall that entropy solutions are unique [25].

Definition 1. A piecewise smooth function φ = φ(x, t) is defined to be an en-
tropy solution of (1) if φ is continuously differentiable everywhere with the excep-
tion of a finite number of curves x = xd(t) ∈ C1 of discontinuities. At each point
(xd(t)±, t) of discontinuity, the values φ± := φ(xd(t)±, t) satisfy the jump condition

(8) − x′d(t) = S(φ+, φ−) :=

{(
f(φ+)− f(φ−)

)
/(φ+ − φ−) if φ+ 6= φ−,

f ′(φ) if φ+ = φ− =: φ,

and the jump entropy condition

S(u, φ−) ≥ S(φ+, φ−) for all u between φ+ and φ−.(9)

It is well known that entropy solutions in the sense of Definition 1 are also the
unique entropy solutions in the sense of Kružkov-type integral inequalities (cf., e.g.,
[20]). That formulation is usually employed to demonstrate convergence of finite vol-
ume schemes [9, 10, 20] to an entropy solution. Consequently, such a numerical scheme
(e.g., of monotone type) applied to (1) approximates the exact solutions constructed
herein (in dependence of φ0) (see Figure 4 (b) below). The constructed solutions here
can therefore be employed to measure the performance of numerical schemes.

3. Preliminaries.

3.1. Characteristics for a quasilinear, first-order PDE. Suppose we wish
to solve the following non-homogeneous, quasi-linear first-order PDE for u = u(x, t):

a(x, t, u)∂tu+ b(x, t, u)∂xu = c(x, t, u), (x, t) ∈ Ω ⊂ R2(10)

and assume that Γ ⊂ R3 is a curve parametrized by ν 7→ (x(ν), t(ν), z(ν)) that
represents given data, for example initial data when t is constant. In other words we
seek a surface S = {(x, t, u(x, t))|(x, t) ∈ Ω} ⊂ R3 such that Γ ⊂ S and u(x, t) is a
solution of (10). To this end, one solves the following system of first-order ODEs for
η > η0, where a, b and c are evaluated at (x(ν, η), t(ν, η), z(ν, η)):

∂ηt = a, t(ν, η0) = t(ν); ∂ηx = b, x(ν, η0) = x(ν); ∂ηz = c, z(ν, η0) = z(ν).(11)

Suppose that we may invert the relations x = x(ν, η) and t = t(ν, η) to give ν = ν(x, t)
and η = η(x, t). One can then show that u = z(ν(x, t), η(x, t)) indeed is a solution of
(10) and that Γ ⊂ S. The equations (11) are the so-called characteristic equations,
and their solutions are the characteristics of (10).

3.2. Smooth solutions away from discontinuities. Consider equation (4)
with the only restriction A′ > 0. Since the coefficient for ∂tφ is 1, the characteristic
curves (or characteristics) associated with (4) can be parametrized by time t. Assume
that the characteristics emanate from a piece of curve in x-t-φ-space with initial
data (x, t, φ) = (ξ, τ, ϕ), where ξ, τ and ϕ are scalar parameterized functions each
taking values in a closed bounded interval. This can be the initial piece of line
(x, t, φ) = (ξ, 0, φ0), where ξ ∈ (0, 1) is the parameter and φ0 is constant, or a part of
a contact discontinuity from which characteristics emanate tangentially (τ is a natural
parameter). Along each characteristic curve (in the x-t-φ-space), the variations of the
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spatial coordinate and the volume fraction are given by the solutions x = X(t) and
φ = Φ(t) of the following ODEs for t ≥ τ (the characteristic equations in this case):

X ′(t) = −f ′(Φ), Φ′(t) = A′(X)f(Φ)/A(X),(12)

along with the initial data (X(τ),Φ(τ)) = (ξ, ϕ). These equations immediately pro-
vide the following information for 0 < Φ < φmax. Since A′ > 0, the volume fraction
Φ(t) increases along each characteristic. For convenience, the projection of the char-
acteristics onto the x-t-plane are also called “characteristics”. If Φ(0) = ϕ < φ̂, then
X ′(t) = −f ′(Φ) < 0 for small t > 0, which means that the characteristics are initially
directed downwards. As Φ increases and passes Φ = φ̂ along a characteristic, the char-
acteristic turns upward; cf. Figure 2. Furthermore, characteristics are (geometrically)
convex for Φ < φinfl and concave for Φ > φinfl, since

X ′′(t) = −f ′′(Φ)Φ′(t).(13)

Equations (12) yield d log f(Φ)/dy = −d logA(X)/dt, which we can integrate
along a characteristic from t = τ to a later time point t > τ :

(14) log
f(φ)

f(ϕ)
= − log

A(x)

A(ξ)
⇔ f(φ)

f(ϕ)
=
A(ξ)

A(x)
.

Since A is an invertible function, we can solve this equality for x as a function of the
other variables: x = Ā(φ, ξ, ϕ). Then we can express the right-hand side of the second
equation of (12) as a function of Φ and the initial values:

Φ′(t) = A′
(
Ā(Φ, ξ, ϕ)

)
f(Φ)2/

(
A(ξ)f(ϕ)

)
Rearranging and integrating from t = τ to a later time point t, we get together with
(14) the following system of equations:

t− τ = A(x)f(φ)

∫ φ

ϕ

dΦ

A′(Ā(Φ, ξ, ϕ))f(Φ)2
,

f(φ)

f(ϕ)
=
A(ξ)

A(x)
.(15)

For the given one-parameter curve of initial values (ξ, τ, ϕ), system (15) defines φ as a
function of x and t. Since (ξ, τ, ϕ) depends on one parameter, this can in principle be
achieved by solving the second equation for one variable and substituting the result
into the first, so that a single equation implicitly defines φ = φ(x, t) as long as the
characteristics do not intersect each other or a discontinuity.

The presence of A′ in the integrand of (15) complicates the analysis. By a similar
derivation as above, area functions of the form (5) lead to the simpler system

t− τ = (p+ qx)f(φ)q
∫ φ

ϕ

dΦ

f(Φ)1+q
,

f(φ)

f(ϕ)
=

(
p+ qξ

p+ qx

)1/q

.(16)

The special case A(x) = e(x−1)/p is obtained as q → 0+; for example, the right
equation becomes f(φ)/f(ϕ) = e(ξ−x)/p.

3.3. Geometric properties of a flux function with one inflection point.

Lemma 2. The function v(φ) = f(φ)/φ satisfies v′(φ) < 0 for 0 < φ < φmax.
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(a) (b)
.

x

t

φ̂
φinfl

0

−

p

q

1

1

.

x

t

φ̂

φcr

0

−

p

q

1

1

Fig. 2. Illustration of Lemma 4 with characteristics, whose paths are calculated from 0 < x < 1,
t = 0. The flux function and cross-sectional are are described by rV = 4, p = 1/18, q = 1/2. (a) The
case φ0 = 0.04 results in Q′(φ) > 0 for 0 < φ < φmax, so that the characteristics do not intersect.
The dashed lines are given by (21) with the concentrations φ̂ = 0.238 and φinfl = 2/rV = 0.5. (b)
The case with φ0 = 0.001 results in conglomerating characteristics at the concentration φcr = 0.32 <
φinfl = 0.5. All characteristics approach the corresponding straight line (21) with φ = φcr.

Proof. We have v′(φ) = g(φ)/φ2 with g(φ) := f ′(φ)φ− f(φ). Now, g(0) = 0 and
g′(φ) = f ′′(φ)φ < 0 for 0 < φ < φinfl; hence g(φ) < 0 for 0 < φ ≤ φinfl. Thus, v′(φ) <
0 for 0 < φ 6 φinfl. For any fixed φ ∈ (φinfl, φmax), the mean-value theorem gives that
there exists a ξ ∈ (φ, φmax) such that f ′(φ) = f ′(φmax)+f ′′(ξ)(φ−φmax) < 0. Hence,
g(φ) < 0 and also v′(φ) < 0 for φinfl < φ < φmax.

In the construction of solutions, more precisely in the vicinity of discontinuities,
we need the following operations introduced by Ballou [3]; see also [12]. We define

φ∗ := sup
{
u > φ : S(φ, u) ≤ S(φ, v) ∀v ∈ (φ, u]

}
for φ ∈ [0, φinfl],(17)

φ∗∗ := inf
{
u < φ : u∗ = φ

}
for φ ∈ [φinfl, φmax].(18)

We collect some properties of the operation ∗ in the following lemma [3].

Lemma 3. The function φ∗ = φ∗(φ) ∈ C1 satisfies the following:
(i) For given φ < φinfl, φ∗ is the unique solution of S(φ, u) = f ′(u), u > φinfl.
(ii) f ′(φ) > S(φ, φ∗) = f ′(φ∗).
(iii) dφ∗/dφ < 0.

By property (iii), the operation ∗ is invertible and the inverse operation is ∗∗ given
by (18). If the flux function satisfies f ′(φmax) < 0, then φ∗ > φmax for φ ∈ [0, φ∗∗max).

4. Construction of the entropy solution. We construct the entropy solution
of (1) when A(x) is given by (5) and state the theorem at the end of this section.

4.1. Solution defined by characteristics from t = 0. Consider the initial
curve (x, t, φ) = (ξ, 0, φ0), where ξ ∈ (0, 1) is the parameter and φ0 is a constant.
Then solely the first equation of (16) defines the solution φ = φ(x, t) implicitly:

ψ(x, t) = Q(φ), where(19)

ψ(x, t) := t/(p+ qx) and Q(φ) := f(φ)q
∫ φ

φ0

dΦ

f(Φ)1+q
, φ ∈ [φ0, φmax).(20)

This includes the special case q = 0. For q > 0, (22) can be written as

x = t/(qQ(φ))− p/q;(21)



8 R. BÜRGER, J. CAREAGA AND S. DIEHL

hence, φ is constant on straight lines in the x-t-plane which all intersect the x-axis at
x = −p/q < 0; see Figure 2 and the following lemma.

Lemma 4. Assume that p, q > 0 and that the initial datum φ(x, 0) = φ0 for (6)
is given on the half line x > −p/q. If Q′(φ) > 0 for φ0 ≤ φ < φmax, then the solution

φ(x, t) = Q−1
(
ψ(x, t)

)
,(22)

is smooth and defined along all its characteristics (in the x-t-plane), which never

intersect. Then define φcr := φmax. Otherwise there exists a unique zero φcr ∈ (φ̂, φinfl]
of Q′ (the volume fraction of conglomerating characteristics) such that Q′(φ) > 0 for
φ ∈ [φ0, φcr) and (22) is defined, satisfies φ(x, t) < φcr and is smooth in the region

x > t/(qQ(φcr))− p/q, t > 0.(23)

In both cases, the solution satisfies ∂tφ > 0 and ∂xφ < 0.

Proof. We prove that the smooth function Q is invertible. We have Q(φ0) = 0 and

Q′(φ) = f ′(φ)qf(φ)q−1

∫ φ

φ0

dΦ

f(Φ)1+q
+

1

f(φ)
= qf(φ)q−1P (φ), where(24)

P (φ) := f ′(φ)

∫ φ

φ0

dΦ

f(Φ)1+q
+

1

qf(φ)q
, φ ∈ [φ0, φmax).(25)

We have Q′(φ) > 0 at least for φ ∈ [φ0, φ̂], since f ′(φ) > 0 in that interval. Since
f ∈ C2, the function P belongs to C1. It satisfies P (φ0) > 0 and its derivative is

P ′(φ) = f ′′(φ)

∫ φ

φ0

dΦ

f(Φ)1+q


< 0 for φ0 < φ < φinfl,

= 0 for φ = φinfl,

> 0 for φinfl < φ < φmax,

(26)

i.e., P has a unique minimum at φinfl. If P (φinfl) > 0, then Q′(φ) > 0 for all φ ∈
[φ0, φmax] andQ is invertible on its whole domain (the characteristics do not intersect).

If P (φinfl) 6 0, then there exists a (unique) zero φcr ∈ (φ̂, φinfl] of P and hence of Q′.
Since φ increases along the characteristics, (19) defines a smooth function as long as
φ(x, t) < φcr. Then ∂tφ = ∂tψ/Q

′(φ) < 0 and ∂xφ = ∂xψ/Q
′(φ) > 0 since

∂xψ = −qt/(p+ qx)2 < 0, ∂tψ = 1/(p+ qx) > 0.(27)

Lemma 5. Consider problem (6) with initial datum φ(x, 0) = φ0 for x ∈ R in the
case p > 0, q = 0, i.e. for A(x) = e(x−1)/p. Then the solution is given by

φ(x, t) = Q−1
(
t/p
)
, t > 0,(28)

and it satisfies ∂tφ > 0 and ∂xφ = 0.

Proof. When q = 0, (19) is equivalent to (28) if Q−1 exists, which is the case for
φ ∈ [φ0, φmax), since there Q′(φ) = 1/f(φ) > 0.

For completeness, we define φcr := φmax also in the case q = 0.

4.2. Case L: φ0 6 φ∗∗max. Figure 3 shows the solution, in which the bottom
discontinuity may or may not reach the upper shock wave (sediment level). The case
0 < φ0 6 φ∗∗max is shown, which implies that f ′(φmax) < 0, because f ′(φmax) = 0
implies φ∗∗max = 0. Figure 4 (a) provides an enlarged view of parts of the solution near
the origin, and Figure 4 (b) displays a numerical solution of the scenario of Figure 3 (e)
computed with an entropy-satisfying finite volume scheme (see e.g. [7, 16]).
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φmax

φ = 0
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1

.
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0
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III
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0
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0
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1
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φ
(x
,
t)

0
1
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3

0

0.5

1

0

0.5

1

x
t

φ
(x
,
t)

Fig. 3. Case L: φ0 6 φ∗∗max, where (a, c, e) φ0 = 0.04 and p = 1/18, and (b, d, f) φ0 = 0.1
and p = 1/3, implying non-intersection and intersection of the two discontinuities, respectively,
shown by thick blue curves. (a, b) Graphs of the flux function (3) in both cases with rV = 4,
φ∗∗max = 0.102, φ̂ = 0.238, φinfl = 0.5 and φmax = 1. The thick interval on the respective φ-axis shows
the concentrations appearing in the solution just below the sediment level. (c–f): Characteristics in
2D and 3D shown by thin curves (except for the vertical blue lines below the discontinuities in the
3D plot). In (c, e), the bottom contact discontinuity ends at time t2 = 0.501 since the concentration
values on both sides equal φinfl. In (d, f), the two discontinuities intersect at t2 = t2.5 = 1.931.

Case L: The upper boundary of region I. Between the clear liquid and
the suspension, there is a discontinuity (sediment level) whose location we denote by
x = h(t). This starts at the point (x, t) = (1, 0) and satisfies the jump condition (8):

−h′(t) = S
(
φh(t), 0

)
=
f(φh(t))

φh(t)
= v(φh(t)),(29)

where φh(t) := φ(h(t)−, t) is the volume fraction just below the interface. We have
φh(0) = φ0 ∈ (0, φ∗∗max] and as long as φh(t) < φmax, there holds h′(t) < 0 so the shock
is directed downward. For φh(t) = φmax, we have h′(t) = v(φmax) = 0. Thus, the
boundary condition (1c) at x = 1 is satisfied. The discontinuity satisfies (9), since by
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(a) (b)
.

III

I

b(t1) = ℓ(t1)

x

t
0 t1t0

1

0
1

2
3

0

0.5

1

0

0.5

1

x
t

φ
(x
,t
)

Fig. 4. (a) Enlarged view near the origin of Figure 3 (c). The curves x = b(t) and x = `(t)
intersect at t1 = 0.0845. The time point t0 = 0.0218 is the intersection of x = `(t) with the t-axis.
(b) Numerical solution of the scenario computed with an entropy-satisfying scheme [7, 16]. Results
agree completely with the constructed solution of Figure 3 (e).

Lemma 2

S(u, 0) =
f(u)

u
= v(u) > v

(
φh(t)

)
=
f(φh(t))

φh(t)
= S

(
φh(t), 0

)
∀u ∈ (0, φh(t)).(30)

The discontinuity is a shock wave, since characteristics on both sides enter it with
positive angles when followed in the direction of increasing t. This can be seen from
(12) and Lemma 2 in the following way. The characteristics above the shock satisfy

X ′(t) = −f ′(0) = −
(
v′(0) · 0 + v(0)

)
= −v(0) < −v(φh(t)) = h′(t).

and under the assumption that the solution below the shock satisfies φh(t) > 0 for
t ≥ 0 (which will be proved in the next lemma), we have

X ′(t) = −f ′(φh(t)) = − [v′(φh(t))φh(t) + v(φh(t))] > −v(φh(t)) = h′(t).

Lemma 6. The discontinuity x = h(t), 0 ≤ t < T , is a shock wave satisfying the
jump and entropy conditions (8) and (9), h(0) = 1, h′(t) < 0 and h′′(t) > 0. The
solution φ of (1a) is zero for x > h(t) and just below the shock the solution values are
given by the increasing function

φh(t) = Q−1
(
ψ(h(t), t)

)
,(31)

where ψ is defined in (20). The time T is the supremum of the time points when φh(t)
is defined by values along characteristics from t = 0 having values less than φcr.

Proof. Some of the statements were proved before the lemma. Differentiating
(31) and utilizing the identity (Q−1)′(Q(φ)) = 1/Q′(φ) > 0, we get

φ′h(t) =
∂xψ(h(t), t)h′(t) + ∂tψ(h(t), t)

Q′(φh(t))
> 0,(32)

since Q′ > 0 by Lemma 4, h′ < 0 by (29), and (27). (In the special case q = 0,
the same conclusion is drawn with ψ(x, t) = t/p.) Substituting (31) into (29) we
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get the ODE −h′(t) = v(Q−1(ψ(h(t), t))), h(0) = 1, for the location of the upper
discontinuity. The right-hand side of this ODE is a Lipschitz continuous function as
long as x = h(t) satisfies (23) and hence gives a unique solution. Since v′ < 0 by
Lemma 2 and φ′h(t) > 0 by (32), we get −h′′(t) = v′(φh(t))φ′h(t) < 0.

Case L: The lower boundary of region I. At (x, t) = (0, 0), a discontinuity
is created between φ0 and φmax and we denote its location by x = b(t).

Lemma 7. The bottom discontinuity x = b(t), 0 ≤ t < t2, satisfies the jump and
entropy conditions (8) and (9), b(0) = 0, b′(t) > 0 and b′′(t) > 0. The characteristics
above the discontinuity x = b(t) enter it with positive angles. The solution values just
above x = b(t) are given by the increasing function

φb(t) := φ
(
b(t)+, t)

)
= Q−1

(
ψ(b(t), t)

)
(33)

that satisfies φb(0) = φ0 < φ∗∗max. Either b(t) meets the upper discontinuity at t = t2,
i.e., b(t2) = h(t2), or it satisfies φb(t2) = φinfl = φ∗b(t2) = φb(t

+
2 ), i.e., it ceases to

exist at time t2. The solution in 0 < x < b(t) is φ(x, t) = φmax for 0 ≤ t < t1, where
t1 is defined by φb(t1) = φ∗∗max (assuming t1 ≤ t2; otherwise set t1 := t2). There exists
a constant φG such that φb(t) < φG < φcr, 0 ≤ t < t2. The discontinuity x = b(t) is
a shock wave for 0 ≤ t < t1 and a contact discontinuity for t1 < t < t2.

Proof. The jump condition (8) is

−b′(t) = S
(
φb(t), φ

−
b (t)

)
,(34)

where the volume fraction φb(t) just above the discontinuity is (33) according to
Lemma 4, and the corresponding value φ−b (t) just below is given by

φ−b (t) := φ
(
b(t)−, t)

)
=

{
φmax for 0 6 φb(t) 6 φ∗∗max,

φ∗b(t) for φ∗∗max 6 φb(t) 6 φinfl.

It can be seen from (17) and (18) that the entropy condition (9) is satisfied. Further-
more, b′(t) > 0, i.e., the discontinuity is directed upward, since

−b′(t) = S
(
φb(t), φ

−
b (t)

)
=

S
(
φb(t), φmax

)
=

f(φb(t))

φb(t)− φmax
for 0 6 φb(t) 6 φ∗∗max,

S
(
φb(t), φ

∗
b(t)

)
= f ′(φ∗b(t)) for φ∗∗max 6 φb(t) 6 φinfl.

(35)

By inserting (33) into (34) an ODE is obtained with the initial value b(0) = 0. As
long as φb(t) < C < φcr for some constant C (which by Lemma 4 is equivalent to
x = b(t) satisfying (23) with margin), Lemma 3 and (24) imply that the right-hand
side of (34) is C1 and Lipschitz continuous, so that b(t) is the unique smooth solution
satisfying b(0) = 0. Inserting this into (33) we get the values of the smooth function
φb(t). We know that φb(0) = φ0 < φ∗∗max. Thus 0 < φb(t) < φ∗∗max for small times,
hence the characteristics above enter the discontinuity under positive angles, since

X ′(t) = −f ′(φb(t)) < 0 < − f(φb(t))

φb(t)− φmax
= −S

(
φb(t), φ

−
b (t)

)
= b′(t).

For φ∗∗max 6 φb(t) 6 φinfl, Lemma 3 (i) implies X ′(t) = −f ′(φb(t)) < −f ′(φ∗b(t)). We
shall now prove that b is convex and that φb(t) < φG < φcr for some constant φG.
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The case q = 0 is simple, since then φ′b(t) = f(φb(t))/p > 0. Assume that q > 0.
Differentiating (33) and utilizing (21) and (34), we get

φ′b(t) =
ψx(b(t), t)b′(t) + ψt(b(t), t)

Q′(φb(t))
=

1

Q′(φb(t))

(
qtS(φb(t), φ

−
b (t))

(p+ qb(t))2
+

1

p+ qb(t)

)
=

qt

Q′(φb(t))(p+ qb(t))2

(
S
(
φb(t), φ

−
b (t)

)
+

1

Q(φb(t))

)
.(36)

The first factor is positive for t > 0. To see that the second factor is also positive,
we define the continuous function G(φb) := S(φb, φ

−
b ) + 1/Q(φb) for φb > φ0, where

S(φb, φ
−
b ) is given by (35). Both terms of G are decreasing continuous functions of

φb, partly by (24) and partly by dφ∗/dφ < 0 (see Lemma 3), since

d

dφb
S(φb, φ

−
b ) =


f ′(φb)(φb − φmax)− f(φb)

(φb − φmax)2
< 0 for 0 6 φb 6 φ∗∗max,

f ′′(φ∗b)dφ
∗
b/dφb < 0 for φ∗∗max 6 φb 6 φinfl.

(37)

Note that the upper row of (37) is obvious if f ′(φ∗∗max) ≥ 0. In the case f ′(φ∗∗max) < 0,
i.e. φ̂ < φ∗∗max < φinfl, then the inequality can be established by the properties of f
and the mean-value theorem (we skip the details). We also have

lim
φb→φ+

0

G(φb) = lim
φb→φ+

0

1

Q(φb)
=∞.

We recall that φcr is the zero of P (see (25)), so by the definition of Q (20) we get

Q(φcr) := f(φcr)
q

∫ φcr

φ0

dΦ

f(Φ)1+q
=
f(φcr)

q

f ′(φcr)

(
P (φcr)−

1

qf(φcr)q

)
= − 1

qf ′(φcr)
.

This can be used to conclude that

G(φcr) =


f(φcr)

φcr − φmax
− qf ′(φcr) < 0 if 0 6 φcr 6 φ∗∗max,

f ′(φ∗cr)− qf ′(φcr) < 0, if φ∗∗max 6 φcr 6 φinfl,

where the latter inequality follows from Lemma 3 (i). Hence, G has a unique zero
φG ∈ (φ0, φcr), so φb(t) ≡ φG is an orbit of the ODE (36). The solution orbit
we are interested cannot cross this (since for any constants C1, C2 satisfying φ0 <
C1 < C2 < φcr the right-hand side of (36) is a Lipschitz continuous function of φb
for φ0 < C1 6 φb 6 C2 < φcr) and satisfies therefore φ0 = φb(0) < φb(t) < φG
and φ′b(t) > 0 for t > 0 until the bottom discontinuity meets the upper one, which
occurs at some finite time point t2 since h′(t) < 0 according to Lemma 6. Next we
differentiate (34) and use (37) to see that

−b′′(t) =
d

dt
S
(
φb(t), φ

−
b (t)

)
=

dS

dφb

(
φb(t), φ

−
b (t)

)
φ′b(t) < 0.

Now that we know that φb(t) is increasing and φb(0) = φ0 < φ∗∗max, let t1 > 0 be
the time when φb(t1) = φ∗∗max. If the upper and lower discontinuities meet before t1
then set t1 := t2. In any case, φ.b(t) = φmax for t ∈ [0, t1) and the characteristics in
0 < x < b(t) all have the slope dX/dt = −f ′(φmax) > 0. Furthermore, they go into
the bottom discontinuity from below with positive angle (hence it is a shock), since

X ′(t) = −f ′(φmax) > −S
(
φb(t), φmax

)
= −S

(
φb(t), φ

−
b (t)

)
= b′(t), 0 6 t < t1.
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The characteristic and the bottom discontinuity are tangential at t = t1 since

X ′(t1) = −f ′(φmax) = −S
(
φ∗∗max, φmax

)
= −S

(
φb(t1), φ−b (t1)

)
= b′(t1).(38)

Assume that t2 > t1. The fact that we have defined φ+
b (t) = φ∗b(t) when φb(t) ≥ φ∗∗max,

which occurs for t ≥ t1, gives for the characteristics below the discontinuity:

X ′(t) = −f
(
φ∗b(t)

)
= −S

(
φb(t), φ

∗
b(t)

)
= −S

(
φb(t), φ

−
b (t)

)
= b′(t).

Hence, the characteristics emanate tangentially from the contact discontinuity x =
b(t), t1 6 t 6 t2.

Lemma 7 yields the following. Either the bottom and upper shock waves intersect
and φb(t) < φG < φcr, 0 ≤ t ≤ t2, which is equivalent to the fact that x = b(t) always
satisfies (23), i.e. the bottom discontinuity never reaches the line of conglomerating
characteristics. Otherwise the shock x = b(t) disappears at x = b(t2) < h(t2) since the
concentrations on both sides tend to φinfl. Then the rest of the boundary of region I
is defined by the characteristic that starts from t = 0 and passes (x, t) = (b(t2), t2).
Since Φ(t2) = φinfl and the concentration Φ(t) increases, the characteristic is concave
for t2 ≤ t ≤ t2.5, where t2.5 is the time point it meets the upper shock wave. In the
former case when x = b(t) and x = h(t) intersect, we defined t2.5 := t2.

Case L: The solution in regions IIa and III. The time points t1, t2 and
t2.5 are defined above. If t1 = t2, then the upper and lower discontinuities of region I
intersect before φb(t) has increased to φ∗∗max. By the construction in this subsection
the entire solution in this case has t1 = t2 = t2.5 = t3, so that region IIa is empty.

We now assume that t1 < t2 ≤ t2.5. Then φb(t1) = φ∗∗max, and the characteristic
going into the shock wave from below to the point (x, t) = (b(t1), t1) has the equation

x = `(t) := −f ′(φmax)(t− t1) + b(t1).(39)

This characteristic carries φ = φmax = (φ∗∗max)∗ and is tangential to x = b(t) at t = t1
because of (38). Since x = b(t) is convex, (39) is the valid equation for a characteristic
also for t1 < t < t3, where t3 > t2.5 is the time point when this line meets the upper
discontinuity x = h(t) (to be defined for t > t2.5). We let (39) define the boundary
between regions IIa and III for t1 ≤ t ≤ t3. Clearly, x = h(t) for t ≥ t3 is an
entropy-satisfying shock with constant speed separating 0 and φmax.

Lemma 8. For 0 ≤ t ≤ t3 and t 6= t1, (39) is a line along which the solution
is continuous. In region III, the solution is φmax. In region IIa, the solution φ =
φ(x, t) ∈ C1 satisfies ∂tφ > 0, ∂xφ < 0, φ > φ∗G > φinfl and is described by strictly
concave characteristics emanating tangentially from the bottom discontinuity x = b(t)
for t1 ≤ t ≤ t2.

Proof. For every t̄ ∈ (t1, t2) let (X(t̄), t̄) = (b(t̄), t̄) be the initial point at the
bottom discontinuity x = b(t) for a characteristic having the starting value Φ(t̄) =
φ∗b(t̄). Since (12), Lemma 3 (i) and (34) give, in turn,

X ′(t̄) = −f ′(Φ(t̄)) = −f ′(φ∗b(t̄)) = −S
(
φb(t̄), φ

∗
b(t̄)

)
= b′(t̄),

the characteristic emanates tangentially from the bottom (contact) discontinuity for
increasing t > t̄. The increase of Φ(t) implies, together with (13) and Φ(t) ≥ φ∗b(t) >
φinfl, that the characteristics are concave. Since the bottom discontinuity is convex
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and the emanating characteristics are concave, the latter go into region IIa. Assume
first that q > 0. System (16) becomes with τ = t̄, ξ = b(t̄) and ϕ = φ∗b(t̄):

f(φ)(p+ qx)1/q = g(t̄), where g(t̄) := f(φ∗b(t̄))
(
p+ qb(t̄)

)1/q
(40)

t = t̄+
(
p+ qb(t̄)

)
f(φ∗b(t̄))

q

∫ φ

φ∗
b (t̄)

dΦ

f(Φ)1+q
.(41)

Eliminating t̄, we obtain a relation between φ, x and t. We have

g′(t̄) = f ′
(
φ∗b(t̄)

)
(φ∗b)

′(t̄)
(
p+ qb(t̄)

)1/q
+ f

(
φ∗b(t̄)

)(
p+ qb(t̄)

)1/q−1
b′(t̄) > 0,(42)

since f ′(φ∗b(t̄)) < 0 and (φ∗b)
′(t̄) = (dφ∗b/dφb)φ

′
b(t̄) < 0 by Lemma 3. Hence, the

inverse of g exists, so t̄ is an implicitly defined function of (φ, x) in region IIa by (40):
t̄ = t̄(φ, x) := g−1

(
f(φ)(p+ qx)1/q

)
. This can be substituted into (41) so that

t = t̄(φ, x) + (p+ qx)f(φ)q
∫ φ

φ∗
b (t̄(φ,x))

dΦ

f(Φ)1+q
=: F (φ, x).(43)

The implicit function theorem states that (43) defines a continuously differentiable
function φ = φ(x, t) in a neighbourhood of (φ, x) where ∂φF 6= 0. For the ease of
notation, we set z := φ∗b(t̄(φ, x)) and a(x) := p+ qx, and calculate

∂F

∂φ
=
∂t̄

∂φ
+ a(x)

(
qf(φ)q−1f ′(φ)

∫ φ

z

dΦ

f(Φ)1+q
+ f(φ)q

(
1

f(φ)1+q
− (φ∗b)

′(t̄)

f(z)1+q

∂t̄

∂φ

))
=
∂t̄

∂φ

(
1− a(x)f(φ)q(φ∗b)

′(t̄)

f(z)1+q

)
+ a(x)

(
qf(φ)q−1f ′(φ)

∫ φ

z

dΦ

f(Φ)1+q
+

1

f(φ)

)
.

We shall first rewrite the term ∂t̄/∂φ. By (34) and (35) (recall φb(t) ≥ φ∗∗max), we
have b′(t) = −f ′(z), and by (40) we can rewrite (42) as follows

g′(t̄) = f ′(z)(φ∗b)
′(t̄)a(b(t̄))1/q − f(z)a(b(t̄))1/q−1f ′(z)

= f ′(z)(φ∗b)
′(t̄)

f(φ)a(x)1/q

f(z)
− f(z)

f(φ)1−qa(x)1/q−1

f(z)1−q f ′(z)

=
f ′(z)a(x)1/q−1

f(z)f(φ)q−1

(
a(x)f(φ)q(φ∗b)

′(t̄)− f(z)q+1
)
.

Differentiating g(t̄) = f(φ)a(x)1/q, we get

∂t̄

∂φ
=
f ′(φ)a(x)1/q

g′(t̄)
=

f ′(φ)a(x)f(z)f(φ)q−1

f ′(z)(a(x)f(φ)q(φ∗b)
′(t̄)− f(z)q+1)

.

Now we get

∂F

∂φ
= −a(x)f ′(φ)f(φ)q−1

f ′(z)f(z)q
+ a(x)

(
qf(φ)q−1f ′(φ)

∫ φ

z

dΦ

f(Φ)q+1 +
1

f(φ)

)
= a(x)f(φ)q−1

(
qf ′(φ)

∫ φ

z

dΦ

f(Φ)q+1 +
1

f(φ)q
− f ′(φ)

f ′(z)f(z)q

)
.

Observe that for φinfl 6 z < φ, we have f ′(Φ) < f ′(φ) for z 6 Φ < φ. Therefore,

qf ′(φ)

∫ φ

z

dΦ

f(Φ)q+1 ≥ q
∫ φ

z

f ′(Φ)dΦ

f(Φ)q+1 =
1

f(z)q
− 1

f(φ)q
.(44)
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Consequently,

∂F

∂φ
≥ a(x)f(φ)q−1

(
1

f(z)q
− f ′(φ)

f ′(z)f(z)q

)
=
a(x)f(φ)q−1

f(z)q

(
1− f ′(φ)

f ′(z)

)
> 0,(45)

since f ′(z) < f ′(φ) < 0. Finally, we compute the partial derivatives of the solution.
Differentiating g(t̄(φ, x)) = f(φ)a(x)1/q with respect to x, we get

∂t̄

∂x
=
f(φ)(p+ qx)1/q−1

g′(t̄)
> 0

and, since (φ∗b)
′(t) < 0 (by dφ∗/dφ < 0 and the fact that φb(t) is increasing), we have

∂F

∂x
=
∂t̄

∂x
+ qf(φ)q

∫ φ

z

dΦ

f(Φ)1+q
− a(x)f(φ)q(φ∗b)

′(t̄)

f(z)1+q

∂t̄

∂x
> 0,(46)

so differentiating F (φ, x) = t (43) yields ∂tφ = 1/∂φF > 0 and ∂xφ = −∂xF/∂φF < 0.
To prove the lemma in the case q = 0, it suffices to see that the key inequalities

above hold also when q → 0+. The inequality (45) is clearly true. Furthermore,

∂t̄

∂x
=
f(φ)a(x)1/q−1

g′(t̄)
=

f(φ)a(x)1/q−1f(z)f(φ)q−1

f ′(z)a(x)1/q−1(a(x)f(φ)q(φ∗b)
′(t̄)− f(z)q+1)

=
f(z)f(φ)q

f ′(z)(a(x)f(φ)q(φ∗b)
′(t̄)− f(z)q+1)

q→0+

−→ f(z)

f ′(z)(p (φ∗b)
′(t̄)− f(z))

> 0.

Hence, (46) is also true as q → 0+.

Case L: The upper boundary discontinuity of region IIa. The remaining
piece of boundary of region IIa is the upper shock wave x = h(t) for t2.5 < t < t3.

Lemma 9. The discontinuity x = h(t), t2.5 ≤ t ≤ t3, is a shock wave that satisfies
the jump condition (8), the entropy condition (9), h′(t) < 0 and h′′(t) > 0. If t2 = t2.5,
then there is a jump in the slope of the sediment level at t = t2: the downwards speed
of the sediment level decreases. If t2 < t2.5, then h(t) ∈ C1 for t > 0. The solution
φ is zero for x > h(t) and just below the shock the solution values are given by the
increasing smooth function φh(t), whose connection to h(t) is given by (29).

Proof. The function h(t) satisfies the jump condition (29), where the values φh(t)
just below the shock are those carried by the characteristics that originate tangen-
tially from the bottom discontinuity. The shock satisfies the entropy conditions; see
(30). According to Lemma 7, the solution in region I satisfies φ < φG < φinfl. In
particular, the concentration values along the upper and lower discontinuities satisfy
φh(t), φb(t) < φG < φinfl for t < t2. Lemma 3 (i) and (iii) then imply that the values
just below x = b(t) satisfy φ∗b(t) > φ∗G > φinfl for t1 ≤ t ≤ t2.5. These values are the
starting values for each tangentially emanating characteristic. Since φ increases along
every characteristic we also have φh(t) > φ∗G > φinfl for t2.5 < t < t3. If t2 = t2.5, then
φh(t−2.5) < φinfl < φh(t+2.5), wherefore the decreasing settling velocity function implies
h′(t−2 ) = −v(φh(t−2 )) < −v(φh(t+2 )) = h′(t+2 ) < 0, so there is a jump in the slope of
the sediment level at t = t2.5. If t2 < t2.5, then φh(t) is continuous at t = t2.5. As
t↗ t3, we have φh(t)↗ φmax and h′(t)↘ 0 by (29), and finally h′(t) = 0 for t > t3.

It remains to prove that h(t) is convex. Once we have obtained that φ′h(t) > 0
for t2.5 < t < t3, the convexity follows by differentiation of the jump condition (29):

h′′(t) = −v′
(
φh(t)

)
φ′h(t) > 0, t2 < t < t3.(47)
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The solution in region IIa is given implicitly by Equation (43). Inserting x = h(t) and
φ = φh(t), the equation becomes t = F (φh(t), h(t)), which we can differentiate to get

φ′h(t) =
1− ∂xF

(
φh(t), h(t)

)
h′(t)

∂φF
(
φh(t), h(t)

) =
1 + ∂xF

(
φh(t), h(t)

)
v(φh(t))

∂φF
(
φh(t), h(t)

) > 0,(48)

since ∂φF > 0 by (45) and ∂xF > 0 by (46).

The straight line of continuity x = `(t), which is the leftmost characteristic car-
rying the maximum volume fraction φmax, is x = b(t1) + f ′(φmax)(t− t1). Recall that
t1 = 0 if φ0 = φ∗∗max. Since the total mass is the same at t = 0 and t = t3, we have

φ0

∫ 1

0

A(x) dx = φmax

∫ `(t3)

0

A(x) dx.(49)

For the functionA(x) given by (5), it is straightforward to obtain an explicit expression
for `(t3). This principle can also be used for the numerical determination of h(t) for
t2.5 ≤ t < t3, which we have utilized in the figures.

Remark 1. In the well-known special case A = const. (see e.g. [10]), (12) implies
that the characteristics are straight lines along which φ is constant. Region I then has
the constant concentration φ0 and x = h(t) is a straight line for 0 ≤ t ≤ t2.5 = t3.
Region IIa is empty and in Case L there is a shock wave between regions I and III with
the velocity S(φ0, φmax) for 0 ≤ t ≤ t2.5 = t3, after which the solution is stationary.

4.3. Case H: φinfl 6 φ0 < φmax. The solution is shown in Figure 5 (left column).

Case H: The solution in regions I and III. Since φ increases along each
characteristic that starts from t = 0, the solution in region I is greater than φ0 > φinfl

and the characteristics are concave; see (13). The expressions (26) and (24) give that
Lemma 4 holds with Q′(φ) > 0 for all φ in region I (for q = 0 this is always true by
Lemma 5). The slope of each characteristic is initially −f ′(φ0) > 0 and then decreases
with the lower bound −f ′(φmax) ≥ 0. From the bottom boundary and for t > 0, there
are characteristics emanating into region III all having the constant slope −f ′(φmax).
If f ′(φmax) = 0, then region III is empty.

Case H: The solution in region IIb. Region IIb of Figure 5 is bounded by
the sediment level x = h(t) (to be determined), the concave characteristic emanating
initially from the bottom, i.e. (x, t) = (0+, 0), having the initial slope −f ′(φ0) >
−f ′(φmax), and the bottom straight-line characteristic x = `(t) = −f ′(φmax)t.

Lemma 10. In region IIb, the solution φ = φ(x, t) ∈ C1 satisfies ∂tφ > 0, ∂xφ < 0
and is described by a fan of strictly concave characteristics all emanating from the
origin (x, t) = (0, 0) with the initial values in the interval (φ0, φmax).

Proof. The fan of characteristics emanating from the origin have the initial slopes
X ′(0) = −f ′(ϕ), ϕ ∈ (φ0, φmax). For q > 0, system (16) with ξ = 0 and τ = 0 is

t = (p+ qx)f(φ)q
∫ φ

ϕ

dΦ

f(Φ)1+q
,

f(φ)

f(ϕ)
=

(
p

p+ qx

)1/q

.(50)

Since f |(ϕ,φmax) is decreasing, it is invertible. Hence, the second equation of (50) gives
ϕ = ϕ(φ, x) := f−1(Z(φ, x)), where Z(φ, x) := f(φ) (1 + qx/p)

1/q
, which we substi-

tute into the first equation:

t = (p+ qx)f(φ)q
∫ φ

ϕ(φ,x)

dΦ

f(Φ)1+q
=: F̃ (φ, x).(51)
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Fig. 5. (a, c, e) Case H: φinfl 6 φ0 < φmax with φ0 = 0.43, p = 9.5, rV = 4.7, φ∗∗max = 0.0524,
φ̂ = 0.208 and φinfl = 0.426. The only discontinuity is the upper shock wave x = h(t), t ≥ 0,
with h ∈ C1. (b, d, f) Case M: φ∗∗max 6 φ0 < φinfl with φ0 = 0.12, p = 1/6, rV = 5, rV = 4,
φ∗∗max = 0.0398, φ̂ = 0.196 and φinfl = 0.4.

This is an implicit equation for the smooth function φ = φ(x, t) in region IIb if
∂φF̃ 6= 0 holds there. Differentiating f(ϕ(φ, x)) = Z(φ, x) and using (50), we get

∂ϕ

∂φ
=
∂φZ(φ, x)

f ′(ϕ)
=
f ′(φ)(1 + qx/p)1/q

f ′(ϕ)
=
f ′(φ)f(ϕ)

f ′(ϕ)f(φ)
.

Hence, using f ′(ϕ) ≤ f ′(Φ) ≤ f ′(φ) < 0 for ϕ ≤ Φ ≤ φ and (44), we have

1

p+ qx

∂F̃

∂φ
= qf(φ)q−1f ′(φ)

∫ φ

ϕ(φ,x)

dΦ

f(Φ)1+q + f(φ)q
(

1

f(φ)1+q −
1

f(ϕ)1+q

∂ϕ

∂φ

)
≥ f(φ)q−1q

∫ φ

ϕ(φ,x)

f ′(Φ)dΦ

f(Φ)1+q + f(φ)q
(

1

f(φ)1+q −
f ′(φ)

f(ϕ)qf ′(ϕ)f(φ)

)
=
f(φ)q−1

f(ϕ)q

(
1− f ′(φ)

f ′(ϕ)

)
> 0.(52)
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Moreover, ∂xϕ = ∂xZ(φ, x)/f ′(ϕ) = (1 + qx/p)1/q−1/(pf ′(ϕ)) < 0 implies that

∂F̃

∂x
= qf(φ)q

∫ φ

ϕ(φ,x)

dΦ

f(Φ)1+q
− (p+ qx)f(φ)q

f(ϕ(φ, x))1+q

∂ϕ

∂x
> 0.(53)

Differentiating (51), we get ∂tφ > 0 and ∂xφ < 0 as in the proof of Lemma 8. The
case q = 0 can again be obtained as the limit q → 0+. It is easy to verify that the
strict inequalities of (52) and (53) still hold.

Case H: The upper boundary of region IIb. The shock wave x = h(t)
for t2.5 < t < t3 satisfies (29) where φh(t) are the solution values just below the
shock wave. The final sediment level can be obtained with (49) and hence the time
point t3. From the construction, this concentration reaches φmax at t = t3, and then
h′(t3) = −v(φmax) = 0. That h(t) is convex for t2.5 < t < t3 can be proved in the
same way as for the shock above region IIa. Inserting x = h(t) and φ = φh(t) into
(51), the equation becomes t = F̃ (φh(t), h(t)). Differentiating this we get (48) with F
replaced by F̃ , which is true since ∂φF̃ > 0 and ∂xF̃ > 0 by (52) and (53). Eventually,
h is strictly convex by (47).

Remark 2. In this special case when A is constant, region I has the constant
solution φ0 and region IIa is empty. In both Cases H and M, region IIb is filled with
an expansion wave with straight characteristics. Above region IIb, the shock x = h(t) is
convex, otherwise it has constant velocity. In Case H, there is no bottom discontinuity,
while there is one in Case M between regions I and IIb having the velocity S(φ0, φ

∗
0).

4.4. Case M: φ∗∗max < φ0 < φinfl. The solution is shown in Figure 5 (right
column) in the subcase when the bottom discontinuity x = b(t) does not reach the
upper shock wave x = h(t). As in Case L, there exists a second subcase where both
discontinuities intersect at t = t2.5. These two subcases correspond qualitatively to the
numerical solutions of [7, Figs 2 (c) and (e)]. The qualitatively different solutions in
the four regions correspond to the constructions in the previous sections. In addition,
the boundaries of the regions possess no new phenomena.

4.5. Main theorem. We summarize here the main properties of the solution.
All details are contained in the lemmas above.

Theorem 1. The entropy solution φ = φ(x, t) of (1), where A(x) is given by (5)
with p, q > 0 or p > 0 and q → 0+, is piecewise smooth, has a shock wave x = h(t),
t ≥ 0, declining from the top, and the following properties:

(i) A contact discontinuity x = b(t), 0 ≤ t ≤ t2, rises from the bottom if and only
if 0 < φ0 < φinfl (Cases L and M). The functions h and b are convex and
smooth, except if t2 = t2.5, which means that the two shock waves intersect;
then h′ has a discontinuity at t = t2.5.

(ii) The solution satisfies, in the weak sense, ∂tφ > 0 and ∂xφ < 0 with the
following exceptions: the regions with φ = 0 above x = h(t) and φ = φmax in
region III; and if q = 0, then ∂tφ > 0 and ∂xφ = 0 in region I.

(iii) The solution in region I is given by (22).
(iv) Region IIa is empty if φinfl < φ0 < φmax (Case H). Otherwise, the solution in

region IIa satisfies φ > φinfl and is described by strictly concave characteristics
emanating tangentially from the bottom discontinuity x = b(t) for t1 ≤ t ≤ t2.

(v) Region IIb is empty if φ0 ≤ φ∗∗max (Case L). Otherwise region IIb is filled
with a fan of concave characteristics emanating from the origin (x, t) = (0, 0)
with values in the interval (φ∗0, φmax) if φ∗∗max < φ0 < φinfl (Case M), and in
(φ0, φmax) if φinfl ≤ φ0 < φmax (Case H).
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5. Conclusions. We have solved the problem (1) for cross-sectional areas A of
the shape (5) with p > 0 and q ≥ 0 and for unimodal flux functions f having at
most one inflexion point to the right of its maximum point. Three main cases appear
depending on the initial concentration φ0. The well-known special case of a constant
A is commented on in each case; all characteristics are straight lines carrying values of
constant φ and the solution in region I is constant. Then the sinking sediment level,
i.e. the upper shock wave x = h(t), has a constant speed, which has for a century
been utilized for batch test measurement and thereby determination of one point of
the flux function f . The main features in the case A′ > 0 (in comparison to the case
A′ = 0) are that the characteristics are non-straight lines, the possible discontinuity
from bottom may disappear before reaching the sediment level (see Figures 3 (c, e),
and 5 (d, f)). Furthermore, we mention that for downward-contracting vessels, the
solutions constructed by Anestis [1] are limited to the convex flux f(φ) = φ(1 − φ)
and a conical vessel (m = 1/q = 2, see Section 2.1). The present work leads to the
same results as [1] for this special scenario. The decisive difference of our approach is,
however, that our implementation of the method of characteristics (see Section 4.1) is
based on integrals with respect to φ, while the treatment in [1] is based on integrations
with respect to f , which is feasible only if f is invertible (at least in a piecewise sense).

An important observation is that the concentration φh(t) below the convex sed-
iment level increases with time, implying the possibility of developing new methods
of determining the flux function for those concentrations. For example, in the case
q = 0, i.e. when A(x) = e(x−1)/p, the formula (28) with x = h(t) can be differentiated
to yield φ′h(t) = f(φh(t))/p. Hence, a part of the flux function f can be estimated if
the concentration along the sediment level can be measured as a function of time (and
differentiated). The authors will expand on the application of the present results to
the problem of flux identification in future work.
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