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Abstract. Continuously operated settling tanks are used for the gravity separation of solid-
liquid suspensions in several industries. Mathematical models of these units have been a topic for
well-posedness and numerical analysis even in one space dimension due to the spatially discontinuous
coefficients of the underlying strongly degenerate parabolic, nonlinear model PDE. Such a model is
extended to describe the sedimentation of multi-component particles that undergo reactions with
several soluble constituents of the liquid phase. The fundamental equations are reformulated as a
system of model PDEs for which a new numerical scheme is formulated. This scheme combines
a difference scheme for conservation laws with discontinuous flux with an approach of numerical
percentage propagation for multi-component flows. The main result is an invariant region property,
which implies that physically relevant numerical solutions are produced. Simulations of denitrification
in secondary settling tanks in wastewater treatment illustrate the model and its discretization.
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1. Introduction.

1.1. Scope. The separation of fine solid particles from a liquid by gravity under
continuous flows in and out of large tanks is a common unit operation in wastewater
treatment, mineral processing, hydrometallurgy, and other areas. Since gravity acts
in one dimension and computational resources for simulations, mostly within larger
systems, are limited, spatially one-dimensional models are widely used. In fact, the
continuous sedimentation of a solid-liquid suspension subject to applied feed and bulk
flows, hindered settling, and sediment compressibility (e.g., due to flocculation) can
be described by a scalar, nonlinear, strongly degenerate parabolic PDE for the solids
concentration X = X(z, t) as a function of depth z and time t [9]. This PDE is based
on the solid and liquid mass balances, and its coefficients depend discontinuously on z.

Important applications also involve chemical reactions between different compo-
nents of the solid and liquid phases. An example in wastewater treatment are bioki-
netic reactions between flocculated activated sludge (bacteria) and substrates (nutri-
ents) dissolved in the liquid. This work extends the model of continuous sedimentation
with compression to such combined processes by including the transport and reaction
of these components. The final model can be written as the system of PDEs

∂tX + ∂z
(
F(X, z, t)− γ(z)∂zD(X)

)
= AX(X,pX , p̄L, z, t),(1a)

∂t(pXX) + ∂z
(
pX

(
F(X, z, t)− γ(z)∂zD(X)

))
= AX(X,pX , p̄L, z, t),(1b)

∂t(p̄Ll1(X)) + ∂z
(
p̄Ll2

(
F(X, z, t)− γ(z)∂zD(X), z, t

))
= AL(X,pX , p̄L, z, t)(1c)
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for z ∈ R and t > 0, along with suitable initial conditions. The convective flux func-
tion F describes the bulk flow and hindered settling, while the function D accounts
for sediment compressibility. The characteristic function γ(z) = 1 if −H < z < B,
i.e. inside the settling tank, and γ(z) = 0 outside; see Figure 1 (a). Both F and D
depend nonlinearly on X and discontinuously on z, and it is assumed that D = 0
on an X-interval of positive length, so the model is strongly degenerate and its solu-
tions will, in general, be discontinuous. Moreover, pX = pX(z, t) and p̄L = p̄L(z, t)
are vectors of unknown (mass) percentages of components of the solid particles and
the fluid, l1 and l2 are certain given functions, and AX , AX and AL are algebraic
functions of their arguments and stand for given feed and reaction terms. (Precise
definitions and assumptions are provided in later parts of the paper.)

We herein derive the new model (1) from volume, mass, and chemical balances
and suitable constitutive assumptions, and focus on its numerical solution. The main
novelty is a difference scheme that combines the approach of [5, 9] for the non-reactive
case (i.e., suitable for (1a) in the absence of reactions) with the numerical percentage
transport introduced in [14] for a related multi-component, non-reactive model. The
main mathematical result is an invariant region principle for the numerical scheme
proved under a suitable CFL condition. This result ensures that numerical solutions
are physically relevant and, in particular, non-negative. Two examples illustrate the
predictions of the new model and the convergence property of the scheme.

1.2. Related work. For the non-reactive case, the first model was analyzed in
[12] for the hyperbolic case (D ≡ 0), modelling hindered settling, and was extended in
[9] with a strongly degenerate diffusion function D 6≡ 0 to model compression at high
solids concentrations. References to further extensions such as vessels with varying
cross-sectional area and polydisperse suspensions, as well as other applications leading
to an equation of type (1a), include [7, 10, 15, 21].

The discontinuous dependence of F on z and the presence of γ(z) come from the
modelling of the inlet and outlet streams of the sedimentation tank. Therefore, in the
non-reactive case, (1a) represents an application of the theory of first-order conserva-
tion laws with discontinuous flux and its extensions to degenerate parabolic equations.
It is well known that solutions of such equations are in general discontinuous and need
to be defined as weak solutions along with a selection criterion or entropy condition
to ensure uniqueness. Thus the main mathematical issues posed by (1a) were to find
suitable uniqueness conditions and establish well-posedness, given the difficulty of the
discontinuous dependence of F and γ on z (in addition to the nonlinear dependence
of F on X) [9, 11, 13, 16, 17, 21], as well as to define numerical schemes that provably
converge to the unique solution [8]. The well-posedness and numerical analysis of [9]
is strongly based on the work by Karlsen, Risebro, and Towers [26, 27, 28].

The well-posedness and numerical analysis of equations of the non-reactive version
of (1a) has led to a recent simulation model for secondary settling tanks (SSTs) in
wastewater treatment and an adhering numerical scheme [5, 6]. That model has shown
to give more realistic predictions [29, 35] than previous state-of-the-art models.

There are several motivations for extending our previous non-reactive model to the
system (1). In both mineral processing and wastewater treatment, liquid flocculant
added to the suspension sticks to the small particles so that larger flocs are formed
and thereby their settling velocity increased. The importance of modelling reactive
sedimentation in wastewater treatment has been demonstrated by different approaches
[1, 19, 20, 23, 24, 30, 31]. Similar phenomena modelled with PDEs are flocculation
in mineral processing [33], multi-component two-phase flow in porous media [2, 3]
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Fig. 1. (a) An ideal secondary settling tank (SST) with variables of the feed inlet, effluent and
underflow corresponding to the indices f, e and u, respectively. The effluent, clarification, thickening,
and underflow zones correspond to the respective intervals z < −H, −H < z < 0, 0 < z < B, and
z > B. The sludge blanket (concentration discontinuity) separates the hindered settling zone and the
compression zone. (b) Aligned illustration of the subdivision of the SST into layers (see Section 3).

and particle-size segregation in granular avalanches [22]. Another application with
potential modelling advantages is counter-current “washing” of solids, a process in
hydrometallurgy where a soluble constituent is extracted from a solid by means of a
solvent. This is achieved by coupling a series of clarifier-thickeners [32, 34].

A PDE model and numerical scheme for batch sedimentation (closed vessel) of two
particulate components including a reduced biokinetic model in wastewater treatment
were presented in [4]. The movements of the substrates were only modelled by a sim-
ple diffusion coefficient. For the numerical examples presented herein for continuous
sedimentation we use the same biokinetic denitrification reactions as in [4].

From the viewpoint of scientific computing it is a known problem that standard
fluxes for finite volume schemes do not preserve the fundamental requirements that
the mass percentages belong to the interval [0, 1] and their sum is always equal to one
[25]. This is handled by our numerical scheme.

1.3. Outline of the remainder of the paper. In Section 2, the model is
derived. To this end, we introduce in Section 2.1 the concept of an ideal secondary
settling tank (SST) (see Figure 1), the model variables and some fundamental as-
sumptions. Simplifying assumptions typical of wastewater treatment are collected in
Section 2.2. The mathematical model, based on conservation laws, are stated in Sec-
tion 2.3. To convert these equations into an equivalent model suitable for simulation,
we first replace (in Section 2.4) the abstract solid and fluid phase velocities by a mix-
ture bulk velocity, expressed by the given volumetric flows and model variables, and a
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solid-fluid relative velocity, prescribed by constitutive functions. Next, in Section 2.5
we derive explicit expressions for the total fluxes of the solid and liquid phases, and
after further reformulations arrive in Section 2.6 at the mathematical model in final,
solvable form akin to (1). To close the model we introduce in Section 2.7 constitutive
functions for hindered and compressive settling, and address in Section 2.8 the choice
of initial data and feed input functions. Next, in Section 3, a numerical scheme for
the model is developed. This is done via a method-of-lines discretization (Section 3.1)
that combines ingredients from [5] and [14]. A time discretization leading to a fully
discrete scheme is introduced in Section 3.2, and the corresponding CFL condition is
stated in Section 3.3. Section 4 is devoted to the proof, via several lemmas that ap-
peal to monotonicity arguments, of the main mathematical result, Theorem 2, which
states that the scheme satisfies an invariant region principle. In Section 5, we present
two numerical examples for a model of denitrification in wastewater treatment. Two
examples illustrate the response of the SST to variations of either the feed flow or
the feed percentages. Based on these, Section 5.4 contains estimations of error and
convergence order. Concluding remarks are offered in Section 6.

2. Model formulation.

2.1. Assumptions. In mineral processing and hyrometallurgy, continuously op-
erated sedimentation tanks are usually referred to as “clarifier-thickeners” or simply
“thickeners”, and in wastewater treatment (our main motivation) as “secondary clar-
ifiers” or “secondary settling tanks” (SSTs). The ideal SST shown in Figure 1 (a) has
a constant cross-sectional area A. The concentration of each component is assumed
to depend only on time t and depth z measured from the feed inlet located at z = 0.
The balance laws that make up the model hold for z ∈ R, have coefficients that are
spatially discontinuous at z = −H, 0 and B, and need no boundary conditions. The
suspension is constituted by the solid phase that consists of particles and the liquid
phase that consists of substrates dissolved in water.

The total concentration of particles (or the solid phase) is denoted by X(z, t).
Each (flocculated) particle is assumed to consist of a number kX of components de-
scribed by the (mass) percentage vector

pX =
(
p

(1)
X , p

(2)
X , . . . , p

(kX)
X

)T
, where p

(1)
X + · · ·+ p

(kX)
X = 1.(2)

The effluent concentration is Xe(t) := limε→0+ X(−H − ε, t). The underflow con-
centration Xu and the percentage vectors pX,e and pX,u are defined analogously.
The concentrations of all solid components are pXX =: C = (C(1), . . . , C(kL))T. For
X = 0 the values of pX are irrelevant; however, they should always satisfy (2).

The total concentration of the liquid phase is denoted by L(z, t). The percent-
age vector pL and the concentrations at the outlets are defined in the same way as
for the particulate phase. We assign the last percentage p

(kL)
L for the water com-

ponent, which is much larger than the percentages of the soluble components p
(i)
L ,

i = 1, . . . , kL − 1. If the concentrations of the soluble components are contained in
the vector S = (S(1), . . . , S(kL−1))T and W denotes the water component, then

pLL =

(
S
W

)
, where W = p

(kL)
L L =

(
1−

kL−1∑
i=1

p
(i)
L

)
L = L−

kL−1∑
i=1

S(i).(3)

The concentrations Xf , Lf , percentage vectors pX,f , pL,f , and volumetric flows
Qf ≥ Qu > 0 are given functions of time. It turns out that the effluent volumetric
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flow Qe(t;C,S) generally depends on unknown variables via the reaction terms; see
Section 2.4. We define qf := Qf/A, qe := Qe/A and qu := Qf/A.

The density of the solid phase ρX is assumed to be constant and much greater
than the maximum packing concentration of the solids Xm.

The (unknown) solid and liquid phase velocities are denoted by vX = vX(z, t) and
vL = vL(z, t), respectively. Inside the SST, the particles undergo hindered settling
and compression according to some constitutive function for the relative velocity

vX − vL =: vrel = vrel(X, ∂zX) (see Section 2.7).(4)

In the effluent and underflow zones, both phases move at the same velocity, i.e.,

vrel := 0 for z < −H and z ≥ B.(5)

The reaction terms for all particulate and soluble components are collected in the
vectors RX(C,S) of length kX and RL(C,S) of length kL. We define

R̃X(C,S) :=

kX∑
i=1

R
(i)
X (C,S), R̃L(C,S) :=

kL∑
i=1

R
(i)
L (C,S).

We assume that every volume of the suspension initially contains either of the two
phases in the SST and always for the feed input. For a small volume V = VX +VL of
suspension, where VX and VL are the respective volume of each phase, the masses of
the two phases in V can be expressed as ρXVX = XV and ρLvL = LV , respectively.

Remark 1. To allow for defining local values of density, concentration and vol-
ume fraction, the volume V should be sufficiently small but contain enough particles
to be representative. We refer to [18] for a discussion including different definitions
involving, e.g., the average or expected values of VX and the mass mX such that the
limit limV→0+ mX/Vx exists and can define the density ρX .

2.2. Specific assumptions for wastewater treatment. The assumptions
stated so far refer to continuous sedimentation with reactions in any application. The
further analysis of the model and the numerical scheme will, however, rely on some
simplifying assumptions typical of wastewater treatment and biological reactions.

We denote the densities of the liquid components by ρ
(i)
L , i = 1, . . . , kL. Since

the liquid phase from a biological reactor consists almost entirely of water, i.e.,
p

(i)
L � p

(kL)
L ≈ 1 for i 6= kL, the average density of the liquid phase ρL satisfies

ρL = p
(1)
L ρ

(1)
L + · · ·+ p

(kL)
L ρ

(kL)
L ≈ ρ(kL)

L .(6)

Thus, the density of the liquid phase ρL is assumed to be constant.
The water concentration W = p

(kL)
L L does not influence any reaction, and is not

influenced by any reaction, so thatR
(kL)
L = 0. We assume zero growth of bacteria when

there is no, i.e., RX,j(0,S) = 0, and allow that the soluble substrate concentration
may increase due to decay of bacteria, that is, RL,j(C,0) ≥ 0. Furthermore, we
assume that there are no reaction in the effluent and underflow regions. Moreover,
the following assumptions are technical but not restrictive for the application:

R̃X(pXXm,S) = 0, vrel(Xm, ∂zX) = 0.(7)

The former states that the bacteria cannot grow when they have reached the maximum
concentration Xm and the latter that the particles follow the liquid flow at Xm.

The term of Qe(t;C,S) that depends on C and S (see Section 2.4) seems to
be negligible in wastewater treatment and setting this to zero, we partly have the
standard relation Qf(t) = Qu(t) +Qe(t), and partly can prove Theorem 2.
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2.3. Mass balance equations. The fundamental equation that every volume
of the suspension contains either of the two phases can be written as

VX + VL = V ⇔ X

ρX
+

L

ρL
= 1 ⇔ L = ρL − rX, where r :=

ρL
ρX

.(8)

We assume that this is satisfied for the given feed concentrations; Xf/ρX +Lf/ρL = 1.
The assumption ρX > Xm implies that always L > 0.

The conservation of mass for each particulate and soluble/liquid component and
the requirements of the percentages imply the following system of equations for z ∈ R
and t > 0, where δ(z) is the delta function:

∂t(pXX) + ∂z(pXXvX) = δ(z)pX,fXfqf + γ(z)RX(C,S),(9a)

∂t(pLL) + ∂z(pLLvL) = δ(z)pL,fLfqf + γ(z)RL(C,S),(9b)

p
(1)
X + · · ·+ p

(kX)
X = 1,(9c)

p
(1)
L + · · ·+ p

(kL)
L = 1.(9d)

2.4. Phase, bulk, and relative velocities. The full set of kX +kL +4 balance
equations are (4), (8) and (9) and the unknowns are pX , X, pL, L, vX and vL. We
now reduce the number of equations by eliminating the variables vX and vL. This
will be achieved by first replacing them with vrel and the average bulk velocity of the
suspension q, and then expressing q in terms of the rest of the unknowns.

Lemma 1. Equations (9a) and (9c) are equivalent to (9a) and

∂tX + ∂z(XvX) = δ(z)Xfqf + γ(z)R̃X .(10)

Analogously, (9b) and (9d) are equivalent to (9b) and

∂tL+ ∂z(LvL) = δ(z)Lfqf + γ(z)R̃L.(11)

Proof. Summing all equations in (9a), using (9c) and that pX,f satisfies (2), we get
(10). Conversely, summing all equations in (9a) and subtracting (10) implies (9c).

With the volume fraction of the solid phase φ := VX/V , we have X = ρXφ and
L = ρL(1 − φ), cf. (8). Analogously, the feed inlet concentrations can be written as
Xf = ρXφf and Lf = ρL(1 − φf). Substituting these expressions into (10) and (11)
and dividing by the constant densities ρX and ρL, respectively, we get

∂tφ+ ∂z(φvX) = δ(z)φfqf + γ(z)R̃Xρ
−1
X ,

∂t(1− φ) + ∂z
(
(1− φ)vL

)
= δ(z)(1− φf)qf + γ(z)R̃Lρ

−1
L .

Adding these two equations and defining

q(z, t) := φvX(z, t) + (1− φ)vL(z, t) (average bulk velocity),(12)

R(C,S) := R̃X(C,S)ρ−1
X + R̃L(C,S)ρ−1

L ,(13)

we get an equation without any time derivative:

∂zq = δ(z)qf + γ(z)R(C,S).(14)
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We can express vX and vL in terms of q and vrel since (4) and (12) are equivalent to
vX = q + v and vL = q − φvrel with the batch settling velocity v := (1 − φ)vrel. We
now derive an explicit expression for q. In view of (5), (12) implies:

(15) q(z, t) =

{
vX(z, t) = vL(z, t) = −qe(t) for z ≤ −H,

vX(z, t) = vL(z, t) = qu(t) for z ≥ B,

where qu is known and qe is unknown. We integrate (14) from z to B to get

q(z, t;C,S) = q(B, t)−
∫ B

z

(
δ(ξ)qf(t) + γ(ξ)R

(
C(ξ, t),S(ξ, t)

))
dξ.(16)

The following function describes the additional bulk velocity due to the reactions:

qreac(z;C,S) :=

∫ B

z

γ(ξ)R(C,S) dξ.(17)

Since by (15), q(B, t) = qu(t), we may express q in terms of the unknowns as follows:

q(z, t;C,S) :=


qu(t)− qf(t)− qreac(−H;C,S) for z ≤ −H,

qu(t)− qf(t)− qreac(z;C,S) for −H < z < 0,

qu(t)− qreac(z;C,S) for 0 < z < B,

qu(t) for z ≥ B.

(18)

Moreover, (15) states that q(z, t) = −qe(t) for z ≤ −H, so (18) defines the effluent
bulk velocity in terms of the unknowns: qe(t;C,S) = qf(t)− qu(t) + qreac(−H;C,S).

2.5. Solid and liquid total fluxes. The flux functions of the PDEs (10) for X
and (11) for L can be written as

XvX = Xq +Xv,(19)

LvL = ρL(1− φ)(q − φvrel) = ρL
(
(1− φ)q − φv

)
= ρL

(
q − (Xq +Xv)ρ−1

X

)
.(20)

Thus, we define the total fluxes in terms of q and v = (1− φ)vrel as follows:

FX := Xq +Xv = Xq +X(1−Xρ−1
X )vrel,(21)

FL := ρLq − rFX ⇔ FXρ
−1
X + FLρ

−1
L = q.(22)

With q defined by (18), FX by (21) and FL by (22) we get the following governing
equations, which neither contain vX nor vL:

∂t(pXX) + ∂z(pXFX) = δ(z)pX,fXfqf + γ(z)RX(C,S),(23a)

∂t(pLL) + ∂z(pLFL) = δ(z)pL,fLfqf + γ(z)RL(C,S),(23b)

p
(1)
X + · · ·+ p

(kX)
X = 1,(23c)

p
(1)
L + · · ·+ p

(kL)
L = 1.(23d)

The proof of the following lemma is analogous to that of Lemma 1.

Lemma 2. Equations (23a) and (23c) are equivalent to (23a) and

∂tX + ∂zFX = δ(z)Xfqf + γ(z)R̃X .(24)

Analogously, (23b) and (23d) are equivalent to (23b) and

∂tL+ ∂zFL = δ(z)Lfqf + γ(z)R̃L.(25)
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Lemma 3. Equations (24) and (25) are equivalent to (24) and (8).

Proof. Dividing (24) by ρX , (25) by ρL and summing these two equations, we get
the following equation which can replace (25) (with maintained equivalence):

∂

∂t

(
X

ρX
+

L

ρL

)
+

∂

∂z

(
FX

ρX
+
FL

ρL

)
= δ(z)qf

(
Xf

ρX
+
Lf

ρL

)
+ γ(z)

(
R̃X

ρX
+
R̃L

ρL

)
All terms except the first cancel out. This is because of the equality (22), the expres-
sion (16) for q and the definition of R in (13). The remaining equation is

∂

∂t

(
X

ρX
+

L

ρL

)
= 0 ⇐⇒ ∂

∂t

(
VX
V

+
VL
V

)
= 0 ⇐⇒ VX

V
+
VL
V

= g(z),

where the function g(z) must be equal to one, since it is at time t = 0 by assumption.
Hence, the remaining equations is equivalent to (8).

Lemma 4. Equations (4) and (9) are equivalent to the governing equations (23).

Proof. Given (4)–(9d), Lemma 1 states that (9c) and (9d) can be replaced (keep-
ing the equivalence) by (10) and (11). Equations (4)–(8) imply via (19)–(22) that
Xvx = FX and LvL = FL. Hence, (10) and (11) are equivalent to (24) and (25),
which by Lemma 2 can be replaced by (23c) and (23d). For the other implication,
we should prove that (4), (8), FX = XvX and FL = LvL hold. Lemma 2 im-
plies first that (23c) and (23d) can be replaced by (24) and (25). Then Lemma 3
implies (8). Since vX = q + v and vL = q − φvrel, (4) is directly satisfied and
FX = X(q + v) = XvX . With this equality and φ = X/ρX , we obtain from (12)
FX/ρX + (1−X/ρX)vL = q. Substituting this into the definition of FL (22), we get
FL = ρL(q − rFX) = (ρL − rX)vL = LvL, where the last equality follows from (8).

2.6. Model equations in final form. Finally, we observe that the last scalar
equation of (23b) determines p

(kL)
L for the water component of the liquid. This variable

does not appear in any other equation. A simpler equation to determine p
(kL)
L is (23d).

Let the notation with a bar p̄L denote the first kL − 1 components of pL.

Theorem 1. The balance equations (4) and (9) are equivalent to the following
set of model equations defined for z ∈ R and t > 0:

∂tX + ∂zFX = δ(z)Xfqf + γ(z)R̃X ,(26a)

∂t(pXX) + ∂z(pXFX) = δ(z)pX,fXfqf + γ(z)RX ,(26b)

L = ρL − rX,(26c)

∂t(p̄LL) + ∂z(p̄LFL) = δ(z)p̄L,fLfqf + γ(z)R̄L, where FL = ρLq − rFX ,(26d)

p
(kL)
L = 1−

(
p

(1)
L + · · ·+ p

(kL−1)
L

)
.(26e)

Proof. We apply Lemmas 4, 2 and 3 (in that order) to obtain equivalently (26a)–
(26c) and (23b). It remains to prove that (23b) can be split into (26d) and (26e).
Lemma 3 states that we can replace (26c) by (25), which in turn by Lemma 2 can
be replaced by (26e). Conversely, summing the equations in (26d), recalling that
R

(kL)
L = 0 and using (26e), we get

∂t
(
(1− p(kL)

L )L
)

+ ∂z
(
(1− p(kL)

L )FL

)
= δ(z)(1− p(kL)

L,f )Lfqf + γ(z)R̃L

Now subtract (25) to obtain the last equation of (23b).
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The specific advantages of the order and form of Equations (26) are the following.
Firstly, for a numerical method, with explicit or implicit time stepping, the value of
X at the new time point is obtained by solving (26a) only. Then the vector pX

is updated by (26b), etc. Secondly, this form of the governing equations yield the
invariant-region property of the numerical scheme (see Section 4).

2.7. Constitutive functions for hindered and compressive settling. Con-
sistently with [4, 6, 9] we assume that v or equivalently, vrel = v/(1− φ), is given by

v = v(X, ∂zX, z) = γ(z)vhs(X)

(
1− ρXσ

′
e(X)

Xg(ρX − ρL)
∂zX

)
.

Here, vhs is the hindered settling velocity function and σe the effective solids stress.
Constitutive functions are needed for vhs and σe; see Section 5. We require that
σe(X) = 0 for X < Xc, where Xc is a critical concentration above which the particles
form a network, and σ′e(X) ≥ 0 for X > Xc (see [9]). It is convenient to define

(27) fb(X) := Xvhs(X), d(X) := vhs(X)
ρXσ

′
e(X)

g(ρX − ρL)
, D(X) :=

∫ X

Xc

d(s) ds.

With the batch settling flux function fb(X), the total particulate flux (21) becomes

FX(X, ∂zX, z, t) = Xq(z, t) + γ(z)
(
fb(X)− ∂zD(X)

)
.(28)

Remark 2. We verify that the final model can be expressed as (1) when the reac-
tive bulk velocity is neglected, i.e., qreac := 0. Then (18) implies that q = q(z, t), and
comparing (1a) with (26a) and (28), we get F(X, z, t) = Xq(z, t)+γ(z)fb(X). More-
over, by (8) we can express L = l1(X) := ρL−rX. Thus, all variables pX , X, pL, L,
S and C can be expressed in terms of pX , p̄L and X, so that that the right-hand sides
of (26a), (26b) and (26d) can be written as functions AX , AX and AL, respectively,
of (X,pX , p̄X , z, t). Finally, (22) gives FL = l2(FX , z, t) := ρLq(z, t)− rFX .

2.8. Initial data and feed input functions. Initial data at t = 0, namely

X(z, 0) = X0(z), pX(z, 0) = p0
X(z), pL(z, 0) = p0

L(z), L(z, 0) = L0(z), z ∈ R

are obtained either from direct information on the particulate total concentration
X0(z) and the percentage vector p0

X(z), or from given concentrations of all compo-
nents: p0

XX
0 = C0 = (C(1),0, . . . , C(kX),0)T. In the latter case, summation yields

X0 = X0
(
p

(1),0
X + · · ·+ p

(kX),0
X

)
= C(1),0 + · · ·+ C(kX),0 and p0

X = C0/X0.

If S0 = (S(1),0, S(2),0, . . . , S(kL−1),0)T denotes the concentrations of the initial soluble
components, then (8) and (3) give L0 = ρL − rX0 and

p0
L =

(
S0/L0

1−∑kL−1
i=1 S(i),0/L0

)
.

The feed input functions pX,f(t), Xf(t), pL,f(t) and Lf(t) are defined analogously.

3. Numerical scheme. As in [5], we divide the SST into N internal com-
putational cells, or layers, of depth ∆z = (B + H)/N ; see Figure 1 (b). The
midpoint of layer j is assumed to have the coordinate zj , hence the layer is the
interval [zj−1/2, zj+1/2]. Layer 1, the top layer in the clarification zone, is thus
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[z1/2, z3/2] = [−H,−H + ∆z], and the bottom location is z = zN+1/2 = B. We define
jf to be the smallest integer larger than or equal to H/∆z, i.e., jf := dH/∆ze. Then
the feed inlet (z = 0) is located in layer jf (the feed layer). Layers −1 and N + 1 have
been added to obtain the correct effluent and underflow concentrations, respectively.
The average values of the unknowns in each layer j are denoted by PX,j = PX,j(t),
Xj = Xj(t), etc. The unknown output functions at the effluent and underflow are
Xe(t) := X0(t), Xu(t) := XN+1(t), etc. To simplify formulas below, we use two mirror
cells and set X−1 := X0, XN+2 := XN+1 and analogously for other variables.

3.1. Spatial discretization. The computational domain is composed of N + 2
intervals and one needs to define numerical fluxes for N + 3 layer boundaries. Except
for the reaction term, (26a) is a model for which a working numerical scheme is
available [5]. The reaction term depends on all variables, and is strongly coupled
to the other equations via the total flux (21), which contains the bulk velocity q =
q(z, t,C,S), which, in contrast to the non-reactive case, depends on the unknown
concentrations via qreac in (17), (18). This function is well defined at zj+1/2, because
of the integration in (17). For piecewise constant functions in each layer, i.e. X(z, t) =
Xj , z ∈ (zj−1/2, zj+1/2], etc., we obtain (recall that R = 0 outside the SST)

qreac
j+1/2 := qreac(zj+1/2) :=

{∑N
i=j+1 γiRi∆z for j = −1, . . . , N − 1,

0 for j = N,N + 1,
(29)

and then define qj+1/2 := q(zj+1/2, t) in accordance with (18):

qj+1/2 =


qu(t)− qf(t)−

∑N
i=j+1Ri∆z for j = −1, . . . , jf − 1,

qu(t)−∑N
i=j+1Ri∆z for j = jf , . . . , N − 1,

qu(t) for j = N,N + 1.

(30)

The first bulk flow term qX of (28) can be handled by a standard upwind flux:

Bj+1/2 :=

{
qj+1/2Xj+1 if qj+1/2 ≤ 0,

qj+1/2Xj if qj+1/2 > 0,
j = −1, . . . , N + 1.(31)

The rest of the terms of (28) are only non-zero (strictly) inside the SST. We de-
fine γj+1/2 := γ(zj+1/2) (recall that γ(−H) = γ(B) = 0) and define the numerical
convective flux Gj+1/2 for j = −1, . . . , N + 1 by means of the Godunov flux G:

Gj+1/2 := γj+1/2G(Xj , Xj+1), where G(u, v) :=

 min
u≤X≤v

fb(X) if u ≤ v,

max
u≥X≥v

fb(X) if u > v.
(32)

Analogously, the numerical compressive flux is

Jj+1/2 := γj+1/2

(
D(Xj+1)−D(Xj)

)
/∆z, j = −1, . . . , N + 1.

Then the total flux (28) between cells j and j + 1 is approximated by

FX,j+1/2 := Bj+1/2 +Gj+1/2 − Jj+1/2, j = −1, . . . , N + 1.

The corresponding flux of (26b) is PX,j+1/2FX,j+1/2, where PX,j+1/2 needs to be
defined. If FX,j+1/2 > 0, then particles move in the direction of the z-axis over the
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boundary zj+1/2, i.e. downwards. Then the values of PX,j+1/2 at the cell boundary
are those coming from the left cell, i.e. PX,j . If FX,j+1/2 ≤ 0, then the particles move
upwards and the values are PX,j+1. Conequently, following [14] we define

PX,j+1/2 :=

{
PX,j+1 if FX,j+1/2 ≤ 0,

PX,j if FX,j+1/2 > 0,
j = −1, . . . , N + 1.(33)

For the liquid percentage vector appearing in (26d), we use the same principle. We
define FL,j+1/2 := ρLqj+1/2 − rFX,j+1/2 for j = −1, . . . , N + 1 and

PL,j+1/2 :=

{
PL,j+1 if FL,j+1/2 ≤ 0,

PL,j if FL,j+1/2 > 0,
j = −1, . . . , N + 1.

We introduce the notation [∆F ]j := Fj+1/2 − Fj−1/2 and let δj,jf denote the
Kronecker delta, which is 1 if j = jf and zero otherwise. The conservation of mass
for each layer gives the following method-of-lines equations (for j = 0, . . . , N + 1):

dXj

dt
= − [∆FX ]j

∆z
+ δj,jf

Xfqf

∆z
+ γjR̃X,j ,(34a)

d(PX,jXj)

dt
= − [∆(PXFX)]j

∆z
+ δj,jf

pX,fXfqf

∆z
+ γjRX,j ,(34b)

Lj = ρL − rXj ,

d(PL,jLj)

dt
= − [∆(PLFL)]j

∆z
+ δj,jf

pL,fLfqf

∆z
+ γjRL,j ,(34c)

P
(kL)
L = 1−

(
P

(1)
L + · · ·+ P

(kL−1)
L

)
.(34d)

If Xj = 0, i.e. there are no solids in layer j, then the value of PX,j is irrelevant.
Furthermore, note that in (34a) we have R̃X,j = R̃X(Cj ,Sj), where Cj = PX,jXj

and Sj = P̄L,jLj = P̄L,j(ρL − rXj), where P̄L,j is a vector containing the first kL−1
components of PL,j . The same holds for each component of RX,j and RL,j . In (34c)
and similar formulas below for the computation of PL we skip the notation with a bar
over all vectors. It is understood that the last equation of (34c) is replaced by (34d).

3.2. Explicit fully discrete scheme. First, we recall that the initial data for
any (one-step) time discretization method can be obtained as is shown in Section 2.8.

If the final simulation time point is T , we let tn, n = 0, 1, . . . , nT , denote the
discrete time points and ∆t = T/nT the time step that should satisfy a certain CFL
condition depending on the chosen time-integration method. Set λ := ∆t/∆z. For
explicit schemes, the right-hand sides of the equations are evaluated at time tn. The
value of a variable at time tn is denoted by an upper index, e.g., Xn

j . For explicit
Euler time integration of (34a)–(34c), we note in particular the approximation

d(PX,jXj)/dt ≈
(
P n+1

X,j X
n+1
j − P n

X,jX
n
j

)
/∆t,

which implies the following explicit scheme:

Xn+1
j = Xn

j + λ
(
− [∆Fn

X ]j + δj,jfX
n
f q

n
f

)
+ ∆t γjR̃

n
X,j ,(35a)

P n+1
X,j =


irrelevant, e.g. P n

X,j if Xn+1
j = 0,(

1/Xn+1
j

)[
P n

X,jX
n
j + λ

(
− [∆(P n

XF
n
X)]j

+δj,jfp
n
X,fX

n
f q

n
f A
)

+ ∆t γjR
n
X,j

]
if Xn+1

j > 0,

(35b)
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Ln+1
j = ρL − rXn+1

j (recall that always Ln+1
j > 0),(35c)

P n+1
L,j =

1

Ln+1
j

[
P n

L,jL
n
j + λ

(
− [∆(P n

LF
n
L )]j + δj,jfp

n
L,fL

n
f q

n
f A
)

+ ∆t γjR
n
L,j

]
,(35d)

P
(kL),n+1
L,j = 1−

(
P

(1),n+1
L,j + · · ·+ P

(kL−1),n+1
L,j

)
.(35e)

The biological reactions do not only influence the variables locally via the reaction
terms, but also globally via the additional bulk velocity term qreac,n

j+1/2. In fact, a local
volume increase or decrease at z = z0 has an immediate influence for all z < z0.
In other words, the bulk velocity change qreac(z;C,S) given by (17) depends on the
reactions in the interval [z,B]. For the numerical scheme, this means that the update
formulas for the concentrations in a layer j0 depends on the other concentrations in
all layers j > j0; see (30). We will see in Section 4 that this unfortunately means
that the scheme is not monotone. The terms Rj , j = 1, . . . , N in (29) destroy the
monotonicity. Since these are negligibly small in wastewater treatment (see Section 5),
we analyze the scheme when qreac,n

j+1/2 := 0 instead of (29).

3.3. CFL condition. We define the vector of unknowns U := (pX , X,pL, L)
and the following set (vectors in equalities should be interpreted component-wise):

(36) Ω :=
{
U ∈ RkX+kL+2 : 0 ≤ pX ,pL ≤ 1, 0 ≤ X ≤ Xm,

ρL − rXm ≤ L ≤ ρL, p(1)
X + · · ·+ p

(kX)
X = 1, p

(1)
L + · · ·+ p

(kL)
L = 1

}
.

We define the following bounds (which are assumed to be finite):

‖fb‖∞ := max
0≤X≤Xm

|fb(X)|, ‖q‖∞ := max
0≤t≤T

qf(t), MC := sup
U∈Ω,1≤i≤kX

∣∣∂R̃X/∂C
(i)
∣∣,

MS := sup
U∈Ω,1≤i≤kL−1

∣∣∂R̃X/∂S
(i)
∣∣, MX

C := sup
U∈Ω,1≤i,k≤kX

∣∣∂R(k)
X /∂C(i)

∣∣,
MX

S := sup
U∈Ω,1≤i,k≤kL−1

∣∣∂R(k)
X /S(i)

∣∣, ML
S := sup

U∈Ω,1≤i,k≤kL−1

∣∣∂R(k)
L /S(i)

∣∣
along with M := MC + rMS . The CFL condition for the scheme (35) is

∆t
(
‖q‖∞(∆z)−1 + max(βX , βPX

, βPL
)
)
≤ 1, where(CFL)

βX :=
‖f ′b‖∞

∆z
+

2‖d‖∞
∆z2

+M, βPX
:=
‖f ′b‖∞

∆z
+

2‖d‖∞
∆z2

+MC +MX
C ,(37)

βPL
:=

‖fb‖∞
∆z(ρX −Xm)

+
2D(Xm)

∆z2(ρX −Xm)
+ML

S + rMS .(38)

4. Properties of the numerical scheme. With η := λ/∆z = ∆t/∆z2 the
update formula (35a) reads for each layer:

Xn+1
0 = Xn

0 − λ[∆Bn]0,

Xn+1
1 = Xn

1 − λ
(
[∆Bn]1 + G(Xn

1 , X
n
2 )
)

+ η
(
D(Xn

2 )−D(Xn
1 )
)

+ ∆t R̃n
X,1,

Xn+1
j = Xn

j − λ
(
[∆Bn]j + G(Xn

j , X
n
j+1)− G(Xn

j−1, X
n
j )
)

+ η
(
D(Xn

j+1)− 2D(Xn
j ) +D(Xn

j−1)
)

+ λδj,jfX
n
f q

n
f + ∆t R̃n

X,j , j = 2, . . . , N − 1,

Xn+1
N = Xn

N − λ
(
[∆Bn]N − G(Xn

N−1, X
n
N )
)
− η
(
D(Xn

N )−D(Xn
N−1)

)
+ ∆t R̃n

X,N

Xn+1
N+1 = Xn

N+1 − λ[∆Bn]N+1.
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To be able to prove an invariant region property for each variable, we want every for-
mula to be a monotone function of each argument, i.e., we wish to have ∂Xn

k
Xn+1

j ≥ 0
for all j, k. For j = k, this can be achieved by invoking (CFL). The problematic terms
above are λ[∆Bn]j since they contain the bulk velocity reaction function qreac in (17).
To see this, we let the characteristic function χI be equal to 1 if the statement I
is true, otherwise 0. Then Bj+1/2 = Xj+1qj+1/2χqj+1/2≤0 +Xjqj+1/2χqj+1/2>0 and
hence, for j = 0, . . . , N − 1 and k = j + 2, . . . , N + 1, we have

∂Xk
Xn+1

j = −λ∂Xk
[∆B]j = −λ

(
(Xj+1χqj+1/2≤0 +Xjχqj+1/2>0)∂Xk

qj+1/2

+ (Xjχqj−1/2≤0 +Xj−1χqj−1/2>0)∂Xk
qj−1/2

)
.

The derivatives of qnj+1/2 can have any sign due to the reaction terms. We therefore
confine the analysis to the scheme when we set Rj := 0, j = 1, . . . , N in (29), i.e.
qreac
j+1/2 := 0. Then qj+1/2 depends only on time and (35) becomes a three-point scheme.

We write the update formulas (35a), (35b) and (35d) for j = 0, . . . , N + 1 as

Xn+1
j = HX

(
Xn

j−1, X
n
j , X

n
j+1

)
,

P
(i),n+1
X,j = Pi

(
P

(i),n
X,j−1, P

(i),n
X,j , P

(i),n
X,j+1

)
, i = 1, . . . , kX ,

P
(i),n+1
L,j = Qi

(
P

(i),n
L,j−1, P

(i),n
L,j , P

(i),n
L,j+1

)
, i = 1, . . . , kL.

The variables P n
X,j and P n

L,j are considered as constants within HX since they
were updated at the previous time point. However, because of the algebraic equation
(35c), the source term in the expression for HX should be interpreted as

Rn
X,j = Rn

X(P n
X,jX

n
j , P̄

n
L,j(ρL − rXn

j )).

Moreover, Pi contains Xn+1
j , which depends on P

(i)
X via the reaction term. A similar

property holds for Qi.

Lemma 5. Assume that 0 ≤ Xj ≤ Xm for all j. Then the Godunov flux Gj+1/2 =
G(Xj , Xj+1), see (32), applied on 0 ≤ fb ∈ C1 satisfies

− ‖f ′b‖∞ ≤ ∂Xj+1
Gj+1/2 ≤ 0 ≤ ∂Xj

Gj+1/2 ≤ ‖f ′b‖∞,∣∣∂Xj
[∆G]j

∣∣ ≤ ‖f ′b‖∞, Gj+1/2

Xj
≤ ‖f ′b‖∞,

Gj+1/2

Xj+1
≤ ‖f ′b‖∞.

Proof. If Xj ≤ Xj+1, then Gj+1/2 = min{fb(Xj), fb(ξ), fb(Xj+1)}, where ξ ∈
(Xj , Xj+1) is a (possible) stationary point of fb. If Gj+1/2 = fb(Xj), then Xj is the
minimum point and the left endpoint of the interval, hence ∂Xj

Gj+1/2 = f ′b(Xj) ≥ 0.
Otherwise, ∂Xj

Gj+1/2 = 0 holds. Similarly, if Xj > Xj+1, then ∂Xj
Gj+1/2 = 0 or =

f ′b(Xj) ≥ 0 (the right endpoint Xj is a maximum point). Analogously, ∂Xj+1
Gj+1/2 =

0 or = f ′b(Xj+1) ≤ 0. Combining these results, we get (for Xn
j 6= Xn

j+1)

∂Xj
[∆G]j ∈ {f ′b(Xj), 0,−f ′b(Xj)}.

Assume again Xj ≤ Xj+1, so that Gj+1/2 = min{fb(Xj), fb(ξ), fb(Xj+1)}. Then both
Gj+1/2/Xj ≤ fb(Xj)/Xj and Gj+1/2/Xj+1 ≤ fb(Xj+1)/Xj+1 hold. If Xj > Xj+1,
then Gj+1/2 = max{fb(Xn

j ), fb(ξ), fb(Xn
j+1)} where ξ ∈ (Xj+1, Xj) is a possible

stationary point. Then we have

Gj+1/2

Xj+1
≤ Gj+1/2

Xj
=


either fb(Xj)/Xj ,

or fb(ξ)/Xj ≤ fb(ξ)/ξ,

or fb(Xj+1)/Xj ≤ fb(Xj+1)/Xj+1.
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For any X ∈ (0, Xm), take ξ̄ ∈ (0, X) according to the mean-value theorem so that

fb(X)/X =
(
fb(X)− fb(0)

)
/X = f ′b(ξ̄) ≤ ‖f ′b‖∞.

We define the vector of unknown discrete variables Un
j := (P n

X,j , X
n
j ,P

n
L,j , L

n
j ).

Lemma 6. Assume that Un
j ∈ Ω for all j. Then the following holds:∣∣∣∣∣∂R̃X,j

∂Xk

∣∣∣∣∣
{
≤M if k = j,

= 0 if k 6= j,

∣∣∣∣∣∂R̃X,j

∂P
(i)
X,k

∣∣∣∣∣ = Xk

∣∣∣∣∣∂R̃X,j

∂C
(i)
k

∣∣∣∣∣
{
≤ XjMC if k = j,

= 0 if k 6= j.

Proof. The cases k 6= j are trivial. Assume that k = j and differentiate

∂Xj
R̃X,j = ∂Xj

R̃X

(
PX,jXj , P̄L,j(ρL − rXj)

)
= PT

X,j∇CR̃X − rP̄T
L,j∇SR̃X ,

where the first term is estimated by

|PT
X,j∇CR̃X | ≤

kX∑
i=1

|P (i)
X,j |

∣∣∣∂C(i)R̃X

∣∣∣ ≤MC

kX∑
i=1

|P (i)
X,j | = MC ,

and the second term similarly. The derivative |∂
P

(i)
X,k

R̃X,j | is handled similarly.

Lemma 7. If Un
j ∈ Ω, qreac,n

j+1/2 := 0 for all j and (CFL) holds, then HX is a non-
decreasing function in each variable, i.e., the update formula (35a) is monotone.

Proof. We define a+ := max{a, 0} and a− := min{a, 0}. Then

Bnj+1/2 = Xn
j+1q

n
j+1/2χqn

j+1/2
≤0 +Xn

j q
n
j+1/2χqn

j+1/2
>0 = Xj+1

(
qnj+1/2)−+Xj

(
qnj+1/2

)+
.

Furthermore, with qn,+j+1/2 := (qnj+1/2)+ etc., we have

∂Xn
j

[∆Bn]j = ∂Xn
j

(
Xn

j+1q
n,−
j+1/2 +Xn

j q
n,+
j+1/2 −Xn

j q
n,−
j−1/2 −Xn

j−1q
n,+
j−1/2

)
= qn,+j+1/2 − q

n,−
j−1/2 ≤ q

n,+
jf+1/2 − q

n,−
jf−1/2 = qnu + qne = qnf ≤ ‖q‖∞.

Differentiation of (35a) and utilization of (CFL) and Lemmas 5 and 6 imply

∂Xn
0
Xn+1

0 = 1− λ∂Xn
0

[∆Bn]0 ≥ 1− λ‖q‖∞ ≥ 0,

∂Xn
1
Xn+1

0 = −λqn,−1/2 ≥ 0, ∂Xn
0
Xn+1

1 = λqn,+1/2 ≥ 0,

∂Xn
1
Xn+1

1 = 1− λ
(
∂Xn

1
[∆Bn]1 + ∂Xn

1
G(Xn

1 , X
n
2 )
)
− ηd(Xn

1 ) + ∆t ∂Xn
1
R̃n

X,1

≥ 1−
(
λ
(
‖q‖∞ + ‖f ′b‖∞

)
+ η‖d‖∞ + ∆tM

)
≥ 0,

∂Xn
2
Xn+1

1 = λ
(
−qn,−3/2 − ∂Xn

2
G(Xn

1 , X
n
2 )
)

+ ηd(Xn
2 ) ≥ 0,

∂Xn
j−1

Xn+1
j = λ

(
qn,+j−1/2 + ∂Xn

j−1
G(Xn

j−1, X
n
j )
)

+ ηd(Xn
j−1) ≥ 0, j = 2, . . . , N − 1,

∂Xn
j
Xn+1

j = 1− λ
(
∂Xn

j
[∆Bn]j + ∂Xn

j
[∆Gn]j

)
− 2ηd(Xn

j ) + ∆t ∂Xn
j
R̃n

X,j

≥ 1−
(
λ(‖q‖∞ + ‖f ′b‖∞) + 2η‖d‖∞ + ∆tM

)
≥ 0, j = 2, . . . , N − 1,

∂Xn
j+1
Xn+1

j = −λ
(
qn,−j+1/2 + ∂Xn

j+1
G(Xn

j , X
n
j+1)

)
+ ηd(Xn

j+1) ≥ 0, j = 2, . . . , N − 1.

The remaining derivatives at the boundary z = B are symmetric to those at z = −H.
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Lemma 8. If Un
j ∈ Ω, qreac,n

j+1/2 := 0 for all j, and (CFL) holds, then Pi is a non-
decreasing function in each variable, i.e., the update formula for P n

X,j (35b) (in which
Xn+1

j is a function of P n
X,j by (35a)) is monotone.

Proof. If Xn+1
j = 0, then the value of P n+1

X,j is irrelevant, since only the product
Xn+1

j P n+1
X,j = 0 appears in the next iteration so we assume that Xn+1

j > 0. Before
differentiating (35b), we write out:

[∆(P n
XF

n
X)]j =P n

X,j+1/2F
n
X,j+1/2 − P n

X,j−1/2F
n
X,j−1/2

=P n
X,j+1F

n,−
X,j+1/2 + P n

X,jF
n,+
X,j+1/2 − P n

X,jF
n,−
X,j−1/2 − P n

X,j−1F
n,+
X,j−1/2.

We write (35b) as P n+1
X,j = ΨX(P n

X,j−1,P
n
X,j ,P

n
X,j+1)/Xn+1

j (P n
X,j). The nonzero

derivatives are the following for k = 0, . . . , N + 1:

∂P
(k),n+1
X,j

∂P
(i),n
X,j−1

=
λ

Xn+1
j

Fn,+
X,j−1/2 ≥ 0,

∂P
(k),n+1
X,j

∂P
(i),n
X,j−1

=
λ

Xn+1
j

(
− Fn,−

X,j−1/2

)
≥ 0,

∂P
(k),n+1
X,j

∂P
(i),n
X,j

= − Ψ
(k),n
X

(Xn+1
j )2

∂Xn+1
j

∂P
(i),n
X,j

+
1

Xn+1
j

∂Ψ
(k),n
X

∂P
(i),n
X,j

.(39)

The first term of (39) is estimated with Lemma 6 and the fact that Ψ
(k),n
X ≤ Xn+1

j :

− Ψ
(k),n
X

(Xn+1
j )2

∂Xn+1
j

∂P
(i),n
X,j

= − Ψ
(k),n
X

(Xn+1
j )2

∆tXn
j

∂R̃n
X,j

∂C
(i),n
j

≥ −
Xn

j

Xn+1
j

∆tMC .

The second term of (39) is

1

Xn+1
j

∂Ψ
(k),n
X

∂P
(i),n
X,j

=
1

Xn+1
j

(
Xn

j − λ
{
Fn,+
X,j+1/2 − F

n,−
X,j−1/2

}
+ ∆t γj

∂R
(k),n
X,j

∂P
(i),n
X,j

)
.

The last term is estimated as

1

Xn+1
j

∆t γj
∂R

(k),n
X,j

∂P
(i),n
X,j

=
Xn

j

Xn+1
j

∆t γj
∂R

(k),n
X,j

∂C
(i),n
j

≥ −
Xn

j

Xn+1
j

∆tMX
C .

To estimate the expression within curled brackets, we note that −a− = (−a)+, (a +
b)+ ≤ a++b+ and start with the first of three terms corresponding to FX = B+G−J :

Bn,+j+1/2 + (−Bnj−1/2)+ =
(
Xn

j+1q
n,−
j+1/2 +Xn

j q
n,+
j+1/2

)+
+
(
−Xn

j q
n,−
j−1/2 −Xn

j−1q
n,+
j−1/2

)+
≤ Xn

j (qn,+j+1/2 − q
n,−
j−1/2) ≤ Xn

j (qn,+jf+1/2 − q
n,−
jf+1/2)

= Xn
j (qnu + qne ) = Xn

j q
n
f ≤ Xn

j ‖q‖∞.
Since G(u, v) > 0 whenever fb > 0 and using Lemma 5, we obtain

Gn,+
j+1/2 + (−Gn

j−1/2)+ = Gn,+
j+1/2 = Gn

j+1/2 ≤ Xn
j ‖f ′b‖∞.

The term corresponding to −J is estimated by utilizing that D(X) is a non-decreasing
function, which is zero for X ≤ Xc:

(−Jn,+
j+1/2)+ + Jn,+

j−1/2 =
1

∆z

((
D(Xn

j )−D(Xn
j+1)

)+
+
(
D(Xn

j )−D(Xn
j−1)

)+)
≤ 1

∆z
2D(Xn

j ) =
2

∆z

∫ Xn
j

Xc

d(s) ds ≤ Xn
j

2‖d‖∞
∆z

.

(40)
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The CFL condition (CFL) now implies that

∂P
(k),n+1
X,j

∂P
(i),n
X,j

≥
Xn

j

Xn+1
j

[
1−

(
λ
(
‖q‖∞ + ‖f ′b‖∞

)
+ 2η‖d‖∞ + ∆t (MC +MX

C )
)]
≥ 0.

Lemma 9. If Un
j ∈ Ω, qreac,n

j+1/2 := 0 for all j and (CFL) holds, then Qi is a non-
decreasing function in each variable, i.e., the update formula for P n

L,j (35d) (in which
Ln+1
j is a function of P n

L,j via (35c) and (35a)) is monotone.

Proof. We follow the proof of Lemma 8 and skip some details. We write (35d) as

P n+1
L,j =

ΨL(P n
L,j−1,P

n
L,j ,P

n
L,j+1)

Ln+1
j (P n

L,j)
=

ΨL(P n
L,j−1,P

n
L,j ,P

n
L,j−1)

ρL − rXn+1
j (P n

L,j)

and differentiate with respect to layer j:

∂P
(k),n+1
L,j

∂P
(i),n
L,j

= −Ψ
(k),n
L (P n

L,j)

(Ln+1
j )2

∂Ln+1
j

∂P
(i),n
L,j

+
1

Ln+1
j

∂Ψ
(k),n
L

∂P
(i),n
L,j

.(41)

The first term of (41) is estimated by means of Lemma 6:

− Ψ
(k),n
L

(Ln+1
j )2

∂Ln+1
j

∂P
(i),n
L,j

=
Ψ

(k),n
L r

(Ln+1
j )2

∂Xn+1
j

∂P
(i),n
L,j

=
Ψ

(k),n
L r∆t Ln

j

(Ln+1
j )2

∂R̃
(k),n
X,j

∂S
(i),n
j

≥ −
r∆t Ln

j

Ln+1
j

MS .

For the second term of (41), we note that

Fn,+
L,j+1/2 = (qnj+1/2ρL − rFn

X,j+1/2)+

= (qnj+1/2ρL − rBnj+1/2 − rGn
j+1/2 + rJn

j+1/2)+ ≤ T1 + rJn,+
j+1/2,

where T1 := (qnj+1/2ρL − rBnj+1/2)+. Similarly, we obtain

(−Fn,+
L,j−1/2)+ ≤ T2 + rGn,+

j−1/2 + r(−Jn
j−1/2)+, T2 := (−qnj−1/2ρL + rBnj−1/2)+.

Utilizing qnj+1/2 = qn,+j+1/2 + qn,−j+1/2 and Bnj+1/2 = Xj+1q
n,−
j+1/2 +Xjq

n,+
j+1/2, we have

T1 + T2 =
(
qn,+j+1/2(ρL − rXn

j ) + qn,−j+1/2(ρL − rXn
j+1)

)+
+
(
− qn,+j−1/2(ρL − rXn

j−1)− qn,−j−1/2(ρL − rXn
j )
)+

=
(
qn,+j+1/2L

n
j + qn,−j+1/2L

n+1
j

)+
+
(
−qn,+j−1/2L

n
j−1 − qn,−j−1/2L

n
j

)+
≤ (qn,+j+1/2 − q

n,−
j−1/2)Ln

j ≤ Ln
j ‖q‖∞.

For the rest of the terms, we have from Lemma 6 and (40):

rGn,+
j−1/2 ≤ r‖fb‖∞ =

Ln
j

ρL − rXn
j

r‖fb‖∞ ≤
Ln
j

ρX −Xm
‖fb‖∞,

r(−Jn,+
j+1/2)+ + rJn,+

j−1/2 ≤
r2D(Xn

j )

∆z
≤

Ln
j

ρX −Xm

2D(Xm)

∆z
.
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Table 1
Coefficients for the calculation of the CFL condition (CFL).

N ∆z [m] βX [s−1] βPX
[s−1] βPL

[s−1] ∆t [s]

10 4.000e-01 3.17614e+00 5.40438e-03 8.14990 0.121486
30 1.333e-01 3.19219e+00 2.14497e-02 8.14991 0.121486
90 4.444e-02 3.28380e+00 1.13058e-01 8.14993 0.121486

270 1.481e-02 3.94987e+00 7.79132e-01 8.15001 0.121484
405 9.877e-03 4.83456e+00 1.66382e+00 8.15007 0.121484
810 4.938e-03 9.46933e+00 6.29859e+00 8.15024 0.104558

2430 1.646e-03 5.77189e+01 5.45482e+01 8.15094 0.017154

The reaction term is handled as

∆t γj
∂R

(k),n
L,j

∂P
(i),n
L,j

= ∆t γjL
n
j

∂R
(k),n
L,j

∂S
(i),n
j

≥ −∆t Ln
jM

L
S .

The CFL condition implies

∂P
(k),n+1
L,j

∂P
(i),n
L,j

≥
Ln
j

Ln+1
j

[
1− λ‖q‖∞ −

λ‖fb‖∞ + 2ηD(Xm)

ρX −Xm
−∆t(rMS +ML

S )

]
≥ 0.

Theorem 2. If (7) and (CFL) hold, then Ω is invariant under the scheme (35)
with qreac,n

j+1/2 := 0 for all j, i.e., Un
j ∈ Ω⇒ Un+1

j ∈ Ω for all j and n.

Proof. The monotonicity of HX and the assumptions (7) imply that, for j 6= jf ,

0 = HX(0, 0, 0) ≤ Xn+1
j = HX(Xn

j−1, X
n
j , X

n
j+1) ≤ HX(Xm, Xm, Xm) = Xm

and for j = jf we have

0 ≤ ∆tXfqf = HX(0, 0, 0) ≤ Xn+1
j = HX(Xn

j−1, X
n
j , X

n
j+1) ≤ HX(Xm, Xm, Xm)

= Xm − λ
(
quXm − (qu − qf)Xm

)
+ λXfqf = Xm − λqf(Xm −Xf) ≤ Xm.

Then we get ρL − rXm ≤ Ln+1
j = ρL − rXn+1

j ≤ ρL. Similarly, the monotonicity
properties of both Pi and Qi imply the positivity preservation of P n

X,j and P n
L,j .

Furthermore, following the beginning of the proof of Lemma 8 we easily see that

kX∑
i=1

∆[P
(i),n
X Fn

X ]j = Fn
X,j+1/2 − Fn

X,j−1/2 = [∆Fn
X ]j .

Summing all equations in (35b) and using (35a), we get
∑kX

i=1 P
(i),n+1
X,j = 1. In view

of P n+1
X,j ≥ 0 we obtain P n+1

X,j ≤ 1. Since
∑kL

i=1 P
(i),n+1
L,j = 1 by (35e), we get in the

same way 0 ≤ P n+1
L,j ≤ 1.

5. Numerical examples.

5.1. Preliminaries. For the simulations, we choose the constitutive functions

vhs(X) =
v0

1 + (X/X̄)r̄
Z(X), σe(X) =

{
0 for X < Xc,

α(X −Xc) for X > Xc,
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≈ ≈

(a)

t [h]

Qf [m
3/h]

Qu [m
3/h]

0 15 2530 60

155.6
146.0

100.0

800.0

1020.0

(b)

Xf [kg/m
3]

t [h]0 1115 2530 60
4.00

5.30
5.65
5.90

7.00

(c)

t [h]

p
(1)
X,f(t)

p
(2)
X,f(t)

0 1115 30 60
0.1

0.9

0.2

0.8

0.3

0.7

2/7

5/7

Fig. 2. Examples 1 (a, b) and 2 (c): (a) volumetric flows, (b) solids feed concentration, (c)
substrate feed percentages. The piecewise constant values and time points of changes are indicated.

where v0 = 1.76× 10−3 m/s, X̄ = 3.87 kg/m3, r̄ = 3.58, α = 0.2 m2/s2 and Xc =
5 kg/m3. The continuous function Z(X) should be equal to one for low concentra-
tions and decrease to zero at some large concentration so that the second technical
assumption in (7) is satisfied. The function Z(X) should not influence the condition
(CFL). We have used Z(X) ≡ 1 for all simulations and still obtained bounded so-
lutions. Hence, after some trial simulations, the maximum concentration Xm can be
defined and used in (CFL). We have used Xm = 30 kg/m3. Other constants used are
A = 400 m2, ρX = 1050 kg/m3, ρL = 998 kg/m3 and g = 9.81 m/s2.

The biological reactions are those of a model of denitrification, which is conver-
sion of bound nitrogen to free nitrogen (N2) that occurs in SSTs in wastewater treat-
ment [4]. The kX = 2 particulate concentrations are XOHO (ordinary heterotrophic
organisms) and XU (undegradable organics), and the kL − 1 = 3 soluble concentra-
tions SNO3

(nitrite), SS (readily biodegradable substrate) and SN2
(nitrogen), so that

pXX = C = (XOHO, XU)T and S = (SNO3 , SS, SN2)T. The reaction terms are

RX = XOHO

(
µ(S)− b
fPb

)
Z(X), RL = XOHO


− 1−Y

2.86Y µ(S)

− 1
Y µ(S) + (1− fP)b

1−Y
2.86Y µ(S)

0

 ,

where Y = 0.67 is a yield factor, b = 6.94× 10−6 s−1 is the decay rate of heterotrophic
organisms and fP = 0.2 is the portion of these that decays to undegradable organics.
The specific growth rate function is

µ(S) := µmax
SNO3

KNO3
+ SNO3

SS

KS + SS
,

where µmax = 5.56× 10−5 s−1, KNO3 = 5× 10−4 kg/m3, KS = 0.02 kg/m3. We get

R̃X =
(
µ(S)− (1− fP)b

)
XOHOZ(X), R̃L = R

(2)
L = −

(
µ(S)

Y
− (1− fP)b

)
XOHO.

In light of (13), this implies

|R(C,S)| ≤
(
µmax

∣∣∣∣ 1

ρX
− 1

ρLY

∣∣∣∣+ (1− fP)b

∣∣∣∣ 1

ρX
− 1

ρL

∣∣∣∣)Xm = 7.0792× 10−7 m/s,

so that qreac is negligibly small in comparison to the bulk velocities qe and qu in
continuous sedimentation. It is also negligible in batch sedimentation (although qe =
qu = 0), where the interval of settling velocities is [0, v0] with v0 = 1.76× 10−3 m/s.
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Fig. 3. Example 1: simulation of reactive settling in an SST starting from a stationary state
followed by variations of the volumetric flows Qu and Qf and of the solids feed concentration Xf .
Here and in Figure 5, the solution displayed is the reference solution obtained with N = Nref = 2430
projected onto a coarser visual grid, and plots (d) and (g) have been rotated.

The simulations in both examples start from a steady state obtained by a long sim-
ulation with Qf = 800 m3/h, Qf = 155.6 m3/h, and the feed inputs Xf = 5.65 kg/m3,
pX,f = (5/7, 2/7)T, SS,f = 9.00× 10−4 kg/m3, SNO3,f = 6.00× 10−3 kg/m3, and
SN2,f = 0 kg/m3. For both examples the simulation time is T = 60 h, and the values
of N and corresponding time steps ∆t determined from (CFL) are given in Table 1.

5.2. Example 1: variations of feed flow and particle concentration. We
choose the volume flows Qf(t), Qu(t) and the feed concentration Xf(t) as piecewise
constant functions of time specified in Figures 2 (a) and (b), respectively, and we let
pX,f and pL,f be constant in time. We have chosen these extreme variations to test
the scheme. The initial steady state is kept during the first 11 h of the simulation; see
Figure 3. There is a sludge blanket, i.e., a discontinuity from a low concentration up
to the critical concentration Xc = 5 kg/m3 separating the hyperbolic and parabolic
regions; see also Figure 4 (a). The movement of this discontinuity is of particular in-
terest to model in wastewater treatment. Below the sludge blanket level, the solution
is continuous; however, with steep increases just below the sludge blanket and near
the bottom. The simulation results show that around t = 60 h the SST becomes over-
loaded with particles leaving also through the effluent. The low volumetric underflow
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Fig. 4. Example 1: numerical solutions for coarse discretizations (N = 10, 30, 90) at (a, d)
t = 18 h, (b, e) t = 36 h, (c, f) t = 56 h. The reference solution (N = Nref = 2430) is included.

Qu(t) for t > 30 h implies that the soluble nitrate (NO3) is quickly converted to N2;
see the peak near z = 0 in Figure 3 (d) and the corresponding dip in Figure 3 (f) and
Figure 4 (e) and (f).

5.3. Example 2: variations of the feed percentages. In this case Qf , Qu,
Xf and pL,f are kept the same constants as for the initial steady-state solution. Only
pX,f(t) is chosen as a piecewise constant function of time as shown in Figure 2 (c). The
resulting transportations through the SST of the discontinuities of the solid compo-
nents are shown in Figure 5 (b) and (c). A part of the incoming nitrate is transported
upwards to the effluent without undergoing any reaction since there is no solids in the
clarification zone. The lower concentration XOHO,f(t) for t ∈ (15, 20) h implies that
some nitrate can be seen below the feed level before it disappears; see plot (d).

5.4. Approximate errors. For a given spatial discretization ∆z = (B+H)/N ,
we denote by XOHO,N the piecewiese constant function with XOHO,N (z, t) = P

(1),n
X,j Xn

j

if z ∈ (zj−1/2, zj+1/2] and t ∈ (tn−1, tn], and define the approximate relative L1 error

erel
N,XOHO

(t) :=
∥∥(XOHO,N −XOHO,Nref

)(·, t)
∥∥
L1(−H,B)

/
∥∥XOHO,Nref

(·, t)
∥∥
L1(−H,B)

,

where Nref = 2430. The corresponding quantities for XU, SNO3
, SN2

and SS are
defined in the same way. We define the total approximate relative error

erel
N (t) := erel

N,XOHO
(t) + erel

N,XU
(t) + erel

N,SNO3
(t) + erel

N,SN2
(t) + erel

N,SS
(t)

and the observed convergence rate between two discretizations N = N1 and N = N2,

θ(t) := − log
(
erel
N1

(t)/erel
N2

(t)
)
/ log(N1/N2).

Table 2 shows values of erel
N (t) and θ(t), along with corresponding CPU times, for Ex-

amples 1 and 2 at the times used in Figures 4 and 6. We observe that all approximate
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Fig. 5. Example 2: simulation of reactive settling in an SST starting from a stationary state
followed by variations of the feed percentages of the substrates.

total relative errors tend to zero as N is increased. The rates θ assume values between
zero and one for N ≤ 405 (among the selected values of N), as should be expected for
a first-order discretization in time and for the convective flux (see [8, 9] for comparable
results). The values θ > 1 observed for N1 = 405 and N2 = 810 do, however, alert to
the limitations of error analysis via a reference solution with Nref = 2430.

6. Concluding remarks. The one-dimensional model equations (1) for contin-
uous sedimentation of multi-component solid particles in a liquid, containing several
soluble constituents, with possible biochemical reactions have been derived. Previous
model ingredients such as hindered settling and compression at high concentrations
have been complemented with the transport and reactions of components. Focus has
been laid on the application to wastewater treatment, for which special simplifying
model assumptions facilitate the (partial) mathematical analysis. One assumption is
that the solid and liquid phases each has a constant density. This is not restrictive in
wastewater treatment, where the concentrations of the soluble substrates are negligi-
ble in comparison to the water component. The technical assumptions (7) were made
to guarantee a bounded solution. We believe, however, that the solution is bounded
for realistic reaction terms in each application without (7).

Although there are only two densities, their difference and the reactions cause
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Fig. 6. Example 2: numerical solutions for coarse discretizations (N = 10, 30, 90) at (a, c)
t = 18 h, (b, d) t = 36 h an (e, f) t = 46 h. The reference solution (N = Nref = 2430) is included.

Table 2
Total approximate relative L1 errors erelN (t), convergence rates θ(t) and CPU times cpu for

Examples 1 (top) and 2 (bottom) measured for the indicated simulated time.

Example 1, t = 18 h Example 1, t = 36 h Example 1, t = 56 h
N erelN (t) θ(t) cpu [s] erelN (t) θ(t) cpu [s] erelN (t) θ(t) cpu [s]
10 0.555 — 1.20 0.840 — 2.16 0.384 — 3.83
30 0.251 0.721 2.68 0.543 0.396 5.41 0.191 0.634 8.82
90 0.103 0.815 7.57 0.315 0.497 15.85 0.103 0.567 31.70

270 0.037 0.932 22.15 0.122 0.859 44.99 0.048 0.698 81.66
405 0.025 0.999 44.20 0.087 0.847 69.21 0.033 0.928 127.95
810 0.010 1.288 108.52 0.032 1.443 162.57 0.013 1.316 269.23

Example 2, t = 18 h Example 2, t = 36 h Example 2, t = 46 h
N erelN (t) θ(t) cpu [s] erelN (t) θ(t) cpu [s] erelN (t) θ(t) cpu [s]
10 0.766 — 1.19 1.70 — 2.15 1.555 — 2.90
30 0.363 0.679 2.71 0.668 0.852 5.41 0.717 0.704 6.83
90 0.184 0.620 7.63 0.259 0.862 15.24 0.286 0.836 19.34

270 0.081 0.751 22.21 0.096 0.905 44.45 0.115 0.831 56.68
405 0.056 0.893 34.14 0.065 0.969 95.57 0.079 0.922 86.62
810 0.027 1.046 80.29 0.029 1.180 186.21 0.036 1.119 203.92

a volume change of the suspension; see the bulk velocity component due to reac-
tions qreac of the total bulk velocity q in (18). In wastewater treatment, qreac seems
to be negligible. Hence, our numerical scheme will produce very similar solutions
when setting qreac = 0. The latter was, however, done to obtain a three-point explicit
scheme with the monotonicity properties that lead to the invariant region property;
see Theorem 2. For other applications with larger qreac, our scheme can still be used.
This case will be studied in the future.

While this paper is focused on the model formulation, the development of a nu-
merical scheme and its applications, the well-posedness analysis is still open. The basic
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difficulties associated with the model (1) are discussed in Section 1.2. The numerical
results confirm that solutions are discontinuous due to changes in the definitions of
fluxes across the inlet z = 0 and outlets z = −H,B (visible, for instance, in Figure 3
(a) at z = 0), the nonlinearity of the flux as a function of X, and the strongly degen-
erating behaviour of D. The combined effect of both becomes visible, for instance, in
the sharpness of the solution at the typical sludge blanket in Figure 3 (a), which moves
up into the clarification zone and eventually overloads the SST. Moreover, the invari-
ant region principle (Theorem 2) is not only an asset in itself for practical purposes
(concentrations are nonnegative and percentages satisfy their natural requirements,
properties that are not automatically built into finite volume schemes [25]), but along
with the underlying monotonicity could also form an important step towards proving
existence of a weak solution of the problem via convergence of a scheme, as was done
in [8, 9, 27] and many other works for related problems.

Finally, a more thorough study of the relative influence of the convective, diffusive
(compressive), and reactive terms is required. For instance, in our examples ∆t (in
Table 1) is almost constant for N ≤ 405, which comes from the dominance of βPL

, and
as a consequence, for fixed t the CPU time depends almost linearly on N for N ≤ 405
(cf. Table 2). In a more diffusion (compression)-dominant scenario, with substantially
larger values of ‖d‖∞ and thus of βX , the O(N3) increase of CPU time with N (for
fixed t) stipulated by (CFL) and (37) would become noticeable at much smaller values
of N . One should therefore develop more efficient solvers for the model, for example
a semi-implicit variant of the scheme that would limit this growth to O(N2).
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