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Abstract

We propose and analyse an augmented mixed finite element method for the coupling of fluid flow
with porous media flow. The flows are governed by a class of nonlinear Navier–Stokes and the lin-
ear Darcy equations, respectively, and the transmission conditions are given by mass conservation,
balance of normal forces, and the Beavers–Joseph–Saffman law. We apply dual-mixed formulations
in both domains, and the nonlinearity involved in the Navier–Stokes region is handled by setting
the strain and vorticity tensors as auxiliary unknowns. In turn, since the transmission conditions
become essential, they are imposed weakly, which yields the introduction of the traces of the porous
media pressure and the fluid velocity as the associated Lagrange multipliers. Furthermore, since the
convective term in the fluid forces the velocity to live in a smaller space than usual, we augment the
variational formulation with suitable Galerkin type terms arising from the constitutive and equi-
librium equations of the Navier–Stokes equations, and the relation defining the strain and vorticity
tensors. The resulting augmented scheme is then written equivalently as a fixed point equation, so
that the well-known Schauder and Banach theorems, combined with classical results on bijective
monotone operators, are applied to prove the unique solvability of the continuous and discrete sys-
tems. In particular, given an integer k ≥ 0, piecewise polynomials of degree ≤ k, Raviart–Thomas
spaces of order k, continuous piecewise polynomials of degree ≤ k+1, and piecewise polynomials of
degree ≤ k are employed in the fluid for approximating the strain tensor, stress, velocity, and vor-
ticity, respectively, whereas Raviart–Thomas spaces of order k and piecewise polynomials of degree
≤ k for the velocity and pressure, together with continuous piecewise polynomials of degree ≤ k+1
for the traces, constitute feasible choices in the porous medium. Finally, several numerical results
illustrating the good performance of the augmented mixed finite element method and confirming
the theoretical rates of convergence are reported.
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§GIMNAP-Departamento de Matemática, Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, Chile, and CI2MA,

Universidad de Concepción, Casilla 160-C, Concepción, Chile, email: royarzua@ubiobio.cl
¶CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile, email: isebestova@udec.cl.

1



1 Introduction

The coupling of fluid flow, governed by the Navier–Stokes equations, and porous media flow, governed
by the Darcy equations, has been intensively studied in recent decades (see, e.g., [3, 6, 9, 14, 17, 23,
24, 41, 47]) for the steady-state case and [15, 16] for the time dependent case. Applications include the
interaction between surface and subsurface flows, modelling of blood flow, and others. In particular, in
[41] it has been introduced and analyzed a DG discretization for the coupled problem considering the
usual nonsymmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG),
and incomplete interior penalty Galerkin (IIPG) bilinear forms for the discretization of the Laplacian
in both media and the upwind Lesaint-Raviart discretization of the convective term in the free fluid
domain. In turn, in [3] the authors extend previous results on the Stokes–Darcy coupling (see [21] and
[22]) and introduce an iterative subdomain method employing the velocity-pressure formulation for
the Navier–Stokes equation and the primal one for the Darcy equation. More recently, a conforming
mixed method for the coupled system has been introduced and analyzed in [23]. This work, which
extends the previous results from [36], utilize the velocity-pressure formulation for the Navier–Stokes
equation and the dual-mixed approach in the Darcy region, which yields the introduction of the trace
of the porous medium pressure as a suitable Lagrange multiplier.

Now, in the context of incompressible Newtonian flows, the velocity-pressure formulation has been
long time used in computations. However, when passing to non-Newtonian flows, the introduction of
the stress as an additional unknown is very desirable, and thus the stress-velocity-pressure formula-
tion has become frequently employed. A minor disadvantage, however, of such a formulation is the
symmetry requirement for the stress tensor, for which several approaches have been derived. One is
based on imposing the symmetry of the stress in a weak sense by introducing a Lagrange multiplier
(see, e.g., [2]). Other one, and nowadays more popular approach, is based on the use of the so-called
pseudostress instead of the stress in the Navier–Stokes equations. Indeed, in the context of mixed
finite element methods, the Stokes and Navier–Stokes equations based on the pseudostress–velocity
formulation are studied in [7] and [8], respectively, and the pseudostress-pressure-velocity formulation
for the Stokes and Navier–Stokes equations has been introduced and analysed in [9]. While the latter
formulation leads to a larger algebraic system, a hybridization technique can be used, however, to
eliminate the pseudostress unknowns and, hence, to reduce its size. Furthermore, a new dual-mixed
method for the Navier–Stokes equations, which introduces a nonlinear stress-like quantity that con-
nects the stress and the convective term as a primary unknown together with the velocity and its
gradient, has been proposed and analysed in [44]. The main advantage of this idea is that it allows
for a unified analysis of Newtonian and non-Newtonian fluids. Moreover, the skew symmetry of the
nonlinear terms is preserved, and therefore the classical theory for the mixed methods extends easily
to that setting. On the other hand, it turns out that natural finite element candidates do not fulfill
Babuška–Brezzi conditions for the associated discrete scheme and consequently construction of special
finite elements is necessary.

The idea of a stress augmentation by the convective term has been later modified by connecting the
pseudostress with the convective term in [12], where a new augmented mixed finite element method for
the Navier–Stokes problem is proposed and analysed. The main unknowns are only comprised of the
velocity and the aforementioned nonlinear pseudostress in this case. In order to guarantee the well-
posedness of the resulting variational formulation, certain Galerkin least-square terms arising from
the constitutive and equilibrium equations, and the Dirichlet boundary condition are introduced. The
idea of the augmented variational formulations goes back to [27] and later has been used for different
kind of problems (see, e.g., [25, 28, 4, 26]). In order to prove well-posedness of both the continuous
and discrete problems in [12], it suffices to apply the Lax–Milgram and Banach fixed point Theorems,
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which means, in particular, that no discrete inf-sup conditions are required there. As a consequence,
arbitrary finite element subspaces of corresponding continuous spaces can be used. The results of [12]
have been further extended in [10] to the Navier–Stokes equations with constant density and variable
viscosity. In particular, the analysis in [10] focuses in developing a mixed finite element approach for
those quasi-Newtonian fluids whose viscosity is a nonlinear function of the magnitude of the gradient
of velocity. Another application of the idea of introducing the aforementioned nonlinear pseudostress
has been done in [19] for the Boussinesq problem. In turn, in the context of stabilized methods, we can
refer to [13], where two three-field (deviatoric stress-velocity-pressure) subgrid-scale type formulations
of the Navier–Stokes problem with nonlinear viscosity has been studied. This approach allows to
employ the same interpolation for all unknowns even in the convection-dominant case.

The purpose of this paper is to extend the results obtained in [10] and [32] to the coupled nonlinear
Navier–Stokes and linear Darcy problem with constant density and variable viscosity in the fluid region.
Unlike [10], in our model the viscosity depends nonlinearly only on the strain tensor, not on the whole
gradient of the velocity. We define the pseudostress tensor as in [12] and subsequently eliminate
the pressure unknown using the incompressibility condition. The transmission conditions consisting
of mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law are imposed
weakly, which results in additional Lagrange multipliers: the traces of the porous media pressure and
the fluid velocity on the interface. We consider dual-mixed formulations in both domains. Similarly
to [34, 32], in order to handle the nonlinearity in the fluid, the strain tensor and the vorticity are
introduced as additional unknowns. Furthermore, the difficulty that the fluid velocity lives in H1

instead of L2 as usual, is resolved as in [10] by augmenting the variational formulation with residuals
arising from the constitutive and equilibrium equations for the fluid flow, and the formulas for the
strain and vorticity tensors. The resulting augmented variational system of equations is then ordered
so that it shows a twofold saddle point structure. The well-posedness and uniqueness of both the
continuous and discrete formulation is proved employing a generalized Babuška–Brezzi theory (see
[30, 32]) and a fixed point argument. The rest of the paper is organized as follows. In Section 2 we
introduce the continuous problem and identify the twofold saddle point structure of the corresponding
variational system. The augmented fully-mixed variational formulation is then derived in Section 3,
and, under the assumption that the data are sufficiently small, its well-posedness is proved there by
combining fixed point theorems with the generalized Babuška–Brezzi theory. Next, hypotheses on the
finite element spaces aiming to ensure the well-posedness of the corresponding Galerkin scheme are
established in Section 4, and the discrete analogue of the theory applied to the continuous case is
employed here for the respective proof. In turn, the associated a priori error estimate is derived in
Section 5, whereas particular choices of discrete subspaces satisfying the hypotheses from Section 4
together with the rates of convergence of the Galerkin schemes, are specified in Section 6. Finally, we
illustrate the accuracy of the augmented mixed finite element method with some numerical examples
in Section 7.

We end this section by introducing some definitions and fixing some notations. Given the vector
fields v = (vi)i=1,n and w = (wi)i=1,n, with n ∈ {2, 3}, we set the gradient, divergence, and tensor
product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div v :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n.

Furthermore, for any tensor field τ := (τij)i,j=1,n and ζ := (ζij)i,j=1,n, we define the transpose, the
trace, the tensor inner product, and the deviatoric tensor, respectively, as
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τ t := (τji)i,j=1,n, tr (τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr (τ )I,

where I is the identity matrix in Rn×n. In addition, in what follows we utilize standard simplified
terminology for Sobolev spaces and norms. In particular, if O is a domain, Γ is an open or closed
Lipschitz curve (respectively surface in R3), and s ∈ R, we define

Hs(O) := [Hs(O)]n, Hs(O) := [Hs(O)]n×n, and Hs(Γ) := [Hs(Γ)]n.

However, when s = 0 we usually write L2(O),L2(O), and L2(Γ) instead of H0(O),H0(O), and H0(Γ),
respectively. The corresponding norms are denoted by ‖ · ‖s,O for Hs(O), Hs(O) and Hs(O), and
‖ · ‖s,Γ for Hs(Γ) and Hs(Γ). For s ≥ 0, we write | · |s,O for the Hs-seminorm. In addition, we recall
that

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is a standard Hilbert space in the realm of mixed problems (see, e.g. [5, 40]). The space of matrix val-
ued functions whose rows belong to H(div ;O) will be denoted by H(div;O). The norms of H(div ;O)
and H(div;O) are denoted by ‖ · ‖div ;O and ‖ · ‖div;O, respectively. On the other hand, the following
symbol for the L2(Γ) and L2(Γ) inner products

〈ξ, λ〉Γ :=

∫
Γ
ξλ ∀ξ, λ ∈ L2(Γ), 〈ξ,λ〉Γ :=

∫
Γ
ξ · λ ∀ξ,λ ∈ L2(Γ)

will also be employed for their respective extensions as the duality products H−1/2(Γ) × H1/2(Γ)
and H−1/2(Γ) × H1/2(Γ). Furthermore, given an integer k ≥ 0 and a set S ⊆ Rn, Pk(S) denotes
the space of polynomial functions on S of degree ≤ k. In addition, we set Pk(S) := [Pk(S)]n and
Pk(S) := [Pk(S)]n×n. Finally, throughout the rest of the paper, we employ 0 to denote a generic null
vector (including the null functional and operator), and use C and c, with or without subscripts, bars,
tildes or hats, to denote generic constants independent of the discretization parameters, which may
take different values at different places.

2 The continuos formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

2.1 The model problem

In order to describe the geometry under consideration we let ΩS and ΩD be bounded and simply
connected polyhedral domains in Rn, such that ΩS ∩ ΩD = ∅ and ∂ΩS ∩ ∂ΩD = Σ 6= ∅. Then, we let
ΓS := ∂ΩS \ Σ, ΓD := ∂ΩD \ Σ, and denote by n the unit normal vector on the boundaries, which
is chosen pointing outward from ΩS ∪ Σ ∪ ΩD and ΩS (and hence inward to ΩD when seen on Σ).
On Σ we also consider unit tangent vectors, which are given by t = t1 when n = 2 (see Fig. 2.1
below) and by {t1, t2} when n = 3. The problem we are interested in consists of the movement of an
incompressible quasi-Newtonian viscous fluid that occupies ΩS and that flows towards and from ΩD

through Σ, where ΩD is saturated with the same fluid. The mathematical model is defined by two
separate groups of equations and by a set of coupling terms. In ΩS, the governing equations are those
of the Navier–Stokes problem with constant density and variable viscosity, which are written in the
following nonstandard stress–velocity–pressure formulation:
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σS = µ(|e(uS)|)e(uS)− (uS ⊗ uS)− pSI in ΩS, div uS = 0 in ΩS,

−divσS = fS in ΩS, uS = 0 on ΓS,
(2.1)

where σS is the nonlinear stress tensor, uS is the velocity, pS is the pressure, µ : R+ → R+ is the
nonlinear kinematic viscosity, e(uS) := 1

2{∇uS + (∇uS)t} is the strain tensor (or symmetric part of
the velocity gradient), | · | denotes the Euclidean norm in Rn×n, and fS ∈ L2(ΩS) is a known volume
force.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 2.1: Sketch of a 2D geometry of our Navier–Stokes/Darcy model

Furthermore, we assume that µ is of class C1, and that there exist constants µ1, µ2 > 0, such that

µ1 ≤ µ(s) ≤ µ2 and µ1 ≤ µ(s) + sµ′(s) ≤ µ2 ∀s ≥ 0, (2.2)

which, according to the result provided in [39, Theorem 3.8], implies Lipschitz continuity and strong
monotonicity of the nonlinear operator induced by µ. This fact will be used later on in Section 3. In
addition, it is easy to see that the forthcoming analysis also applies to the slightly more general case
of a viscosity function acting on Ω× R+, that is µ : Ω× R+ → R. Some examples of nonlinear µ are
the following:

µ(s) := 2 +
1

1 + s
and µ(s) := α0 + α1(1 + s2)(β−2)/2, (2.3)

where α0, α1 > 0 and β ∈ [1, 2]. The first example is basically academic but the second one corresponds
to a particular case of the well-known Carreau law in fluid mechanics. It is easy to see that they both
satisfy (2.2) with (µ1, µ2) = (2, 3) and (µ1, µ2) = (α0, α0 + α1), respectively.

Now, in order to derive our fully-mixed formulation, we first observe, owing to the fact that
tr e(uS) = div uS, that the first two equations in (2.1) are equivalent to

σS = µ(|e(uS)|)e(uS)− (uS ⊗ uS)− pSI and pS = − 1

n
tr (σS + (uS ⊗ uS)) in ΩS, (2.4)

and hence, eliminating the pressure pS (which anyway can be approximated later on by the postpro-
cessed formula suggested by the second equation of (2.4)), the Navier–Stokes problem (2.1) can be
rewritten as

σd
S = µ(|e(uS)|)e(uS)− (uS ⊗ uS)d in ΩS, −divσS = fS in ΩS, uS = 0 on ΓS. (2.5)

Next, in order to handle the nonlinearity in σS given by the term µ(|e(uS)|)e(uS), and employ
the corresponding integration by parts formula, we adopt the approach from [34] (see also [35]) and
introduce the additional unknowns

tS := e(uS) and ρS :=
1

2

{
∇uS − (∇uS)t

}
in ΩS, (2.6)
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where ρS is the vorticity (or skew-symmetric part of the velocity gradient). In this way, instead of
(2.5), in the sequel we consider the set of equations with unknowns tS, uS, σS and ρS, given by

tS = ∇uS − ρS in ΩS, σd
S = µ(|tS|)tS − (uS ⊗ uS)d in ΩS,

−divσS = fS in ΩS, uS = 0 on ΓS,
(2.7)

where both tS and σS are symmetric tensors, and tr (tS) = 0 holds in ΩS.

On the other hand, in ΩD we consider the linearized Darcy model with homogeneous Neumann
boundary condition on ΓD:

uD = −K∇pD in ΩD, div uD = fD in ΩD, uD·n = 0 on ΓD, (2.8)

where uD and pD denote the velocity and pressure, respectively, fD ∈ L2(ΩD) is a source term satisfying∫
ΩD

fD = 0, and K ∈ [L∞(ΩD)]n×n is a symmetric tensor describing the permeability of ΩD divided
by a constant approximation of the viscosity, satisfying with CK > 0

w·K(x)w ≥ CK‖w‖2, (2.9)

for almost all x ∈ ΩD, and for all w ∈ Rn. Finally, the transmission conditions on Σ are given by

uS·n = uD·n on Σ,

σSn +
n−1∑
l=1

ω−1
l (uS·tl)tl = −pDn on Σ,

(2.10)

where {ω1, . . . , ωn−1} is a set of positive frictional constants that can be determined experimentally.
The first equation in (2.10) corresponds to mass conservation on Σ, whereas the second one establishes
the balance of normal forces and a Beavers–Joseph–Saffman law.

2.2 The augmented fully-mixed variational formulation

In this section we proceed analogously to [32] (see also [37]) and derive a weak formulation of the
coupled problem given by (2.7), (2.8), and (2.10). To this end, let us first introduce further notations
and definitions. In what follows, given ? ∈ {S,D}, u, v ∈ L2(Ω?), u,v ∈ L2(Ω?), and σ, τ ∈ L2(Ω?),
we set

(u, v)? :=

∫
Ω?

uv, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ .

In addition, we let L2
sym(ΩS) and L2

skew(ΩS) be the subspaces of symmetric and skew-symmetric tensors
of L2(ΩS), respectively, that is

L2
sym(ΩS) := {rS ∈ L2(ΩS) : rt

S = rS}

and
L2

skew(ΩS) := {ηS ∈ L2(ΩS) : ηt
S = −ηS}.

Furthermore, we need to define the spaces

H0(div ; ΩD) := {vD ∈ H(div ; ΩD) : vD·n = 0 on ΓD},

L2
tr (ΩS) := {rS ∈ L2

sym(ΩS) : tr rS = 0},
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and the space of traces H
1/2
00 (Σ) := [H

1/2
00 (Σ)]n, where

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1(ΩS), v = 0 on ΓS

}
.

Observe that, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ
0 on ΓS

∀ψ ∈ H1/2(Σ),

we have that
H

1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

endowed with the norm ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. The dual space of H

1/2
00 (Σ) is denoted by

H
−1/2
00 (Σ).

Now, we proceed with the derivation of our weak formulation. We begin by introducing two addi-
tional unknowns on the coupling boundary

ϕ := −uS ∈ H
1/2
00 (Σ) and λ := pD ∈ H1/2(Σ).

Then, to derive the weak formulation of the coupled system (2.7)–(2.8)–(2.10) we proceed similarly
to [32] (see also [11, 37]), that is, we test the first equations of (2.7) and (2.8) with arbitrary τ S ∈
H(div; ΩS) and vD ∈ H(div ; ΩD), respectively, integrate by parts, utilize the identity (tS, τ S)S =
(tS, τ

d
S)S (which follows from the fact that tS : I = tr tS = 0), and impose the remaining equations

weakly, as well as the symmetry of σS, to obtain the variational problem: Find tS ∈ L2
tr (ΩS), σS ∈

H(div; ΩS), ρS ∈ L2
skew(ΩS), uD ∈ H0(div ; ΩD), ϕ ∈ H

1/2
00 (Σ), λ ∈ H1/2(Σ), pD ∈ L2(ΩD) and uS in

a suitable space (to be specified below), such that

(tS, τ
d
S)S + (divτ S,uS)S + 〈τ Sn,ϕ〉Σ + (τ S,ρS)S = 0,(
K−1uD,vD

)
D
− (div vD, pD)D − 〈vD·n, λ〉Σ = 0,

(µ(|tS|)tS, rS)S − (rS,σ
d
S)S − ((uS ⊗ uS)d, rS)S = 0,

−(divσS,vS)S = (fS,vS)S,

(div uD, qD)D = (fD, qD)D,

(σS,ηS)S = 0,

−〈ϕ·n, ξ〉Σ − 〈uD·n, ξ〉Σ = 0,

〈σSn,ψ〉Σ − 〈ϕ,ψ〉t,Σ + 〈ψ·n, λ〉Σ = 0,

(2.11)

for all rS ∈ L2
tr (ΩS), τ S ∈ H(div; ΩS), ηS ∈ L2

skew(ΩS), vD ∈ H0(div ; ΩD), ψ ∈ H
1/2
00 (Σ), ξ ∈ H1/2(Σ),

qD ∈ L2(ΩD) and vS ∈ L2(ΩS), where

〈ϕ,ψ〉t,Σ :=

n−1∑
l=1

ω−1
l 〈ϕ·tl,ψ·tl〉Σ .

Notice that the third term in the third equation of the foregoing system requires uS to live in a smaller
space than L2(ΩS). In fact, by applying the Cauchy–Schwarz and Hölder inequalities and then the
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continuous injection ic of H1(ΩS) into L4(ΩS) (see e.g. [1, Theorem 6.3] or [46, Theorem 1.3.5]), we
find that there holds∣∣∣((uS ⊗wS)d, rS)S

∣∣∣ ≤ ‖u‖L4(ΩS)‖wS‖L4(ΩS)‖rS‖0,ΩS
≤ ‖ic‖2‖uS‖1,ΩS

‖wS‖1,ΩS
‖rS‖0,ΩS

, (2.12)

for all uS,wS ∈ H1(ΩS) and rS ∈ L2(ΩS). According to this, we propose to look for the unknown uS

in H1
ΓS

(ΩS) and to restrict the set of corresponding test functions vS to the same space, where

H1
ΓS

(ΩS) := {vS ∈ H1(ΩS) : vS|ΓS
= 0}.

Next, analogously to [32], it is not difficult to see that the system (2.11) is not uniquely solvable
since, given any solution (tS,σS,ρS,uD,ϕ, λ, pD,uS) in the indicated spaces, and given any constant
c ∈ R, the vector defined by (tS,σS − cI,ρS,uD,ϕ, λ + c, pD + c,uS) also becomes a solution. As a
consequence of the above, from now on we require the Darcy pressure pD to be in L2

0(ΩD), where

L2
0(ΩD) :=

{
q ∈ L2(ΩD) : (q, 1)D = 0

}
.

In turn, due to the decomposition L2(ΩD) = L2
0(ΩD) ⊕ R, the boundary conditions uD·n = 0 on ΓD

and uS = 0 on ΓS, the first transmission condition in (2.10), and the fact that
∫

ΩD
fD = 0, guarantee

that the fifth equation of (2.11) is equivalent to requiring it for all qD ∈ L2
0(ΩD).

On the other hand, for convenience of the subsequent analysis, we consider the decomposition (see,
for instance, [5],[29])

H(div; ΩS) = H0(div; ΩS)⊕ RI, (2.13)

where
H0(div; ΩS) := {τ ∈ H(div; ΩS) : (tr τ , 1)S = 0} ,

and redefine the stress tensor as σS := σS + lI, with the new unknowns σ ∈ H0(div; ΩS) and l ∈ R.
In this way the first and last equations of (2.11) are rewritten, equivalently, as

(tS, τ
d
S)S + (divτ S,uS)S + 〈τ Sn,ϕ〉Σ + (τ S,ρS)S = 0 ∀τ S ∈ H0(div; ΩS),

j 〈ϕ · n, 1〉Σ = 0 ∀j ∈ R,

〈σSn,ψ〉Σ − 〈ϕ,ψ〉t,Σ + 〈ψ·n, λ〉Σ + l 〈ψ·n, 1〉Σ = 0 ∀ψ ∈ H
1/2
00 (Σ).

(2.14)

Finally, consequently with the choice of the corresponding space for uS, and in order to be able to
analyze the present variational formulation of (2.7), (2.8), and (2.10), we augment the resulting system
through the incorporation of the following redundant Galerkin terms:

κ1

(
σd

S − µ(|tS|)tS + (uS ⊗ uS)d, τ d
S

)
S

= 0 ∀τ S ∈ H0(div; ΩS),

κ2 (divσS,divτ S)S = −κ2 (fS,divτ S)S ∀τ S ∈ H0(div; ΩS),

κ3 (e(uS)− tS, e(vS))S = 0 ∀vS ∈ H1
ΓS

(ΩS),

κ4

(
ρS −

1

2

(
∇uS − (∇uS)t

)
,ηS

)
S

= 0 ∀ηS ∈ L2
skew(ΩS),

(2.15)

where κ1, κ2, κ3, and κ4 are positive parameters to be specified later.

Now, it is clear that there are many different ways of ordering the augmented mixed variational
formulation described above, but for the sake of the subsequent analysis we proceed as in [32] (see
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also [37, 11]), and adopt one leading to a doubly-mixed structure. To that end, we group the spaces,
unknowns, and test functions as follows:

X := L2
tr (ΩS)×H0(div; ΩS)×H1

ΓS
(ΩS)× L2

skew(ΩS)×H0(div ; ΩD), M := H
1/2
00 (Σ)×H1/2(Σ),

X := X×M, and M := L2
0(ΩD)× R,

t := (tS,σS,uS,ρS,uD) ∈ X, ϕ := (ϕ, λ) ∈M, p := (pD, l) ∈M,

r := (rS, τ S,vS,ηS,vD) ∈ X, ψ := (ψ, ξ) ∈M, q := (qD, j) ∈M,

where X, M, X, and M are respectively endowed with the norms

‖r‖X := ‖rS‖0,ΩS
+ ‖τ S‖div,ΩS

+ ‖vS‖1,ΩS
+ ‖ηS‖0,ΩS

+ ‖vD‖div ,ΩD
,

‖ψ‖M := ‖ψ‖1/2,00,Σ + ‖ξ‖1/2,Σ, ‖(r,ψ)‖X := ‖r‖X + ‖ψ‖M and ‖q‖M := ‖qD‖0,ΩD
+ |j|.

Hence, the augmented fully-mixed variational formulation for the system (2.11) with the new equations
(2.14) and (2.15) reads: Find ((t,ϕ),p) ∈ X×M such that

[A(uS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ),q] = [G,q] ∀q ∈M,
(2.16)

where
[F, (r,ψ)] := [F, r] and [G,q] := [G, qD], (2.17)

with
[F, r] := −κ2(fS,divτ S)S + (fS,vS)S and [G, qD] := −(fD, qD)D .

In addition, given zS ∈ H1
ΓS

(ΩS), the operator A(zS) : X→ X′ is defined by

[A(zS)(t,ϕ), (r,ψ)] := [a(z)(t), r] + [b(t),ψ] + [b(r),ϕ]− [c(ϕ),ψ], (2.18)

with

[a(zS)(t), r] := [a1(t), r] + [a2(zS)(t), r],

[a1(t), r] := (µ(|tS|)tS, rS)S − (rS,σ
d
S)S + (tS, τ

d
S)S + κ1(σd

S − µ(|tS|)tS, τ
d
S)S

+κ2(divσS,divτ S)S + (divτ S,uS)S − (divσS,vS)S + (τ S,ρS)S

−(σS,ηS)S + κ3(e(uS)− tS, e(vS))S + κ4

(
ρS −

1

2
(∇uS − (∇uS)t),ηS

)
S

+(K−1uD,vD)D,

[a2(zS)(t), r] := ((zS ⊗ uS)d, κ1τ
d − rS)S,

[b(r),ψ] := 〈τ Sn,ψ〉Σ − 〈vD·n, ξ〉Σ ,

[c(ϕ),ψ] := 〈ϕ·n, ξ〉Σ − 〈ψ·n, λ〉Σ + 〈ϕ,ψ〉t,Σ ,
(2.19)

whereas B : X→M′ is given by

[B(r,ψ),q] := [B1(r), qD] + [B2(ψ), j], (2.20)

with
[B1(r), qD] := −(div vD, qD)D and [B2(ψ), j] := j 〈ψ·n, 1〉Σ .

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators.
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3 Analysis of the continuous formulation

In this section we analyse the well-posedness of problem (2.16) by means of a fixed point argument
and a result on the solvability of twofold saddle point problems. To that end we first collect some
previous results and notations that will serve for the forthcoming analysis.

3.1 Preliminaries

We begin by recalling the following theorem to be employed next.

Theorem 3.1 Let X1,M1, and M be Hilbert spaces, set X := X1 ×M1, and let X ′1,M
′
1,M

′, and
X ′ := X ′1×M ′1, be their respective duals. Let A1 : X1 → X ′1 be a nonlinear operator, and S : M1 →M ′1,
B1 : X1 → M ′1, and B : X → M ′ be linear bounded operators. We also let B′1 : M1 → X ′1 and
B′ : M → X ′ be the corresponding adjoints and define the nonlinear operator A : X → X ′, as:

[A(s,φ), (r,ψ)] := [A1(s), r] + [B′1(φ), r] + [B1(s),ψ]− [S(φ),ψ] ∀ (s,φ), (r,ψ) ∈ X. (3.1)

Finally, we let V be the kernel of B, that is

V := {(r,ψ) ∈ X : [B(r,ψ), q] = 0 ∀q ∈M},

and let X̃1 and M̃1 be subspaces of X1 and M1, respectively, such that V = X̃1 × M̃1.

Assume that

(i) A1|X̃1
: X̃1 → X̃ ′1 is Lipschitz continuous and strongly monotone, that is, there exist constants

γ, α > 0 such that
‖A1(s)−A1(r)‖X̃′1 ≤ γ‖s− r‖X1 ∀ s, r ∈ X̃1

and
[A1(s)−A1(r), s− r] ≥ α‖s− r‖2X1

∀s, r ∈ X̃1.

(ii) For each pair (r, r⊥) ∈ X̃1 × X̃⊥1 there holds the pseudolinear property

A1(r + r⊥) = A1(r) +A1(r⊥).

(iii) S is positive semi-definite on M̃1, that is,

[S(ψ),ψ] ≥ 0 ∀ψ ∈ M̃1.

(iv) B1 satisfies an inf-sup condition on X̃1 × M̃1, that is, there exists β1 > 0 such that

sup
r∈X̃1
r6=0

[B1(r),ψ]

‖r‖X1

≥ β1‖ψ‖M1 ∀ψ ∈ M̃1.

(v) B satisfies an inf-sup condition on X ×M , that is, there exists β > 0 such that

sup
(r,ψ)∈X

(r,ψ)6=0

[B(r,ψ), q]

‖(r,ψ)‖X
≥ β‖q‖M ∀q ∈M.
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Then, there exists a unique ((t,ϕ), p) ∈ X ×M , such that

[A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ), q] = [G, q] ∀q ∈M.
(3.2)

Moreover, there exists C > 0, depending only on α, γ, β1, β, ‖S‖, and ‖B1‖ such that

‖((t,ϕ), p)‖X×M ≤ C {‖F‖X′ + ‖G‖M ′} .

Proof. See [32, Theorem 3.1]. �

Next, we recall that for each r, s ∈ L2(Ω) (see [39, Theorem 3.8] for details) there holds

‖µ(|r|)r− µ(|s|)s‖0,Ω ≤ Lµ‖r− s‖0,Ω, (3.3)∫
Ω
{µ(|r|)r− µ(|s|)s} : (r− s) ≥ µ1‖r− s‖20,Ω. (3.4)

where Lµ := max{µ2, 2µ2 − µ1}, with µ1 and µ2 being the bounds of µ given in (2.2).

3.2 A fixed point approach

We begin the solvability analysis of (2.16) by defining the operator T : H1
ΓS

(ΩS)→ H1
ΓS

(ΩS) by

T(zS) := uS ∀ zS ∈ H1
ΓS

(ΩS), (3.5)

where uS is the third component of t ∈ X, which in turn is the first component of the unique solution
(to be confirmed below) of the nonlinear problem: Find ((t,ϕ),p) ∈ X×M, such that

[A(zS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ),q] = [G,q] ∀q ∈M,
(3.6)

It follows that ((t,ϕ),p) ∈ X×M is a solution of (2.16) if and only if uS ∈ H1
ΓS

(ΩS) satisfies

T(uS) = uS. (3.7)

However, we remark in advance that the definition of T will make sense only in a closed ball of
H1

ΓS
(ΩS). Now, it is clear that problem (3.6) has the same structure as the one in Theorem 3.1.

Therefore, in what follows we apply this result to establish the well-posedness of (3.6), equivalently
the well-definiteness of T. To that end, we first observe that the kernel of the operator B (cf. (2.20))
can be written, equivalently, as

V :=
{

(r,ψ) ∈ X : [B(r,ψ),q] = 0 ∀q ∈M
}

= X̃× M̃ ,

where
X̃ = L2

tr (ΩS)×H0(div; ΩS)×H1
ΓS

(ΩS)× L2
skew(ΩS)× H̃0(div ; ΩD)

and
M̃ = H̃

1/2
00 (Σ)×H1/2(Σ) ,

with
H̃0(div ; ΩD) := {vD ∈ H0(div ; ΩD) : div (vD) ∈ P0(ΩD)}
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and
H̃

1/2
00 (Σ) :=

{
ψ ∈ H

1/2
00 (Σ) : 〈ψ·n, 1〉Σ = 0

}
.

At this point we recall, for later use, that the following inequalities hold (see, [5, Proposition 3.1,
Chapter IV], [37, Lemma 3.2], and [5, 40], respectively, for details)

c1(ΩS)‖τ S‖20,ΩS
≤ ‖τ d

S‖20,ΩS
+ ‖divτ S‖20,ΩS

∀ τ S ∈ H0(div; ΩS), (3.8)

‖vD‖20,ΩD
≥ Cdiv ‖vD‖2div,ΩD

∀vD ∈ H̃0(div; ΩD), (3.9)

‖e(vS)‖20,ΩS
≥ CKo‖vS‖21,ΩS

∀vS ∈ H1
ΓS

(ΩS). (3.10)

In what follows, and through the verification of the hypotheses of Theorem 3.1, we provide sufficient
conditions under which the operator T is well-defined. We begin with the Lipschitz-continuity and
strong-monotonicity of a(zS)(·) for a given zS ∈ H1

ΓS
(Ω).

Lemma 3.2 Assume that

κ1 ∈
(

0,
2δ1µ1

Lµ

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1Lµ
2δ1

))
and κ4 ∈

(
0, 2δ3CKoκ3

(
1− δ2

2

))
,

with δ1 ∈
(

0,
2

Lµ

)
, δ2 ∈ (0, 2), δ3 ∈ (0, 2), and that κ2 > 0. Then, there exists r0 > 0 such that for

each r ∈ (0, r0), the nonlinear operator a(zS)(·) is strongly-monotone on X̃ and Lipschitz-continuous
on X, for each zS ∈ H1

ΓS
(ΩS) such that ‖zS‖ ≤ r, with respective constants α(Ω) > 0 and γ(Ω) > 0,

independent of zS.

Proof. Let zS ∈ H1
ΓS

(ΩS) such that ‖zS‖1,Ω ≤ r, with r ∈ (0, r0) and r0 to be defined below. We
first observe that a1 and a2(zS), and consequently a(zS), are Lipschitz-continuous. In fact, using the
Cauchy–Schwarz inequality, and the Lipschitz-continuity of the operator induced by µ (cf. (3.3)), we
deduce from (2.19) that a1 is Lipschitz continuous with a positive constant La1 , depending on Lµ, and
the parameters κi, i ∈ {1, . . . , 4}, that is

‖a1(t)− a1(r)‖X′ ≤ La1‖t− r‖X ∀ t, r ∈ X. (3.11)

In addition, from (2.12) and (2.19) we easily obtain that

|[a2(zS)(t), r]| ≤ (κ2
1 + 1)1/2‖zS‖L4(ΩS)‖uS‖L4(ΩS)‖r‖X

≤ c2(ΩS)(κ2
1 + 1)1/2‖zS‖1,ΩS

‖t‖X‖r‖X ∀ t, r ∈ X,
(3.12)

which, together with the linearity of a2(zS), and the Lipschitz-continuity of a1, implies that

‖a(zS)(t)− a(zS)(r)‖X′ ≤ (La1 + c2(ΩS)(κ2
1 + 1)1/2‖zS‖1,ΩS

)‖t− r‖X

≤ γ(Ω)‖t− r‖X ∀ t, r ∈ X,
(3.13)

with γ(Ω) := La1 + c2(ΩS)(κ2
1 + 1)1/2r. Now, for the strong monotonicity of a(zS), we observe from

the definition of a1 (cf. (2.18)) that it readily follows that
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[a1(t)− a1(r), t− r] = (µ(|tS|)tS − µ(|rS|)rS, tS − rS)S + κ1‖(σS − τ S)d‖20,ΩS

−κ1(µ(|tS|)tS − µ(|rS|)rS, (σS − τ S)d)S + κ2‖div(σS − τ S)‖20,ΩS

+κ3||e(uS − vS)||20,ΩS
− κ3(tS − rS, e(uS − vS))S + κ4‖ρS − ηS‖20,ΩS

−1

2
κ4(∇(uS − vS)− (∇(uS − vS))t,ρS − ηS)S

+(K−1(uD − vD),uD − vD)D.

Hence, we proceed similarly to the proof of [10, Lemma 3.4], utilize the Cauchy–Schwarz and Young
inequalities, and apply (2.9), (3.3) and (3.4) to obtain that for any δ1, δ2, δ3 > 0, and for all t, r ∈ X̃,
there holds

[a1(t)− a1(r), t− r] ≥ µ1‖tS − rS‖20,ΩS
+ κ1‖(σS − τ S)d‖20,ΩS

− κ1Lµ
2

{
1

δ1
‖tS − rS‖20,ΩS

+ δ1‖(σS − τ S)d‖20,ΩS

}
+κ2‖div(σS − τ S)‖20,ΩS

+ κ3‖e(uS − vS)‖20,ΩS

− κ3

2

{
1

δ2
‖tS − rS‖20,ΩS

+ δ2‖e
(
uS − vS

)
‖20,ΩS

}
+κ4‖ρS − ηS‖20,ΩS

− κ4

2

{
1

δ3
‖uS − vS‖21,ΩS

+ δ3‖ρS − ηS‖20,ΩS

}
+CK‖uD − vD‖20,ΩD

,

which, together with (3.9) and the Korn’s inequality (3.10), implies

[a1(t)− a1(r), t− r] ≥
{(

µ1 −
κ1Lµ
2δ1

)
− κ3

2δ2

}
‖tS − rS‖20,ΩS

+κ1

(
1− δ1Lµ

2

)
‖(σS − τ S)d‖20,ΩS

+ κ2‖div(σS − τ S)‖20,ΩS

+

{
CKoκ3

(
1− δ2

2

)
− κ4

2δ3

}
‖uS − vS‖21,ΩS

+κ4

(
1− δ3

2

)
‖ρS − ηS‖20,ΩS

+ CKCdiv ‖uD − vD‖2div ,ΩD
.

(3.14)

Then, assuming the stipulated hypotheses on δ1, κ1, κ3, δ2, δ3, κ4, and κ2, and applying the inequality
(3.8), we can define the positive constants

α1(ΩS) :=

(
µ1 −

κ1Lµ
2δ1

)
− κ3

2δ2
, α2(ΩS) := min

{
κ1

(
1− δ1Lµ

2

)
,
κ2

2

}
,

α3(ΩS) := min
{
α1(ΩS)c1(ΩS),

κ2

2

}
, α4(ΩS) := CKoκ3

(
1− δ2

2

)
− κ4

2δ3
,

α5(ΩS) := κ4

(
1− δ3

2

)
, α6(ΩD) := CKCdiv ,

which allow us to deduce from (3.14) that

[a1(t)− a1(r), t− r] ≥ α0(Ω)‖t− r‖2X ∀ t, r ∈ X̃ , (3.15)
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where
α0(Ω) := min

i∈{1,...,5}
{αi(ΩS), α6(ΩD)} (3.16)

is the strong monotonicity constant of a1. Moreover, according to the definition of a(zS) (cf. (2.19)),
and combining (3.12) and (3.15), we obtain

[a(zS)(t)− a(zS)(r), t− r] ≥
{
α0(Ω)− c2(ΩS)(κ2

1 + 1)1/2‖zS‖1,ΩS

}
‖t− r‖2X ,

for all t, r ∈ X̃. Consequently, by requiring ‖zS‖1,ΩS
≤ r0, with

r0 :=
α0(Ω)

2c2(ΩS)(κ2
1 + 1)1/2

, (3.17)

the strong monotonicity of a(zS) is ensured with a constant α(Ω) :=
α0(Ω)

2
independent of zS, that is

[a(zS)(t)− a(zS)(r), t− r] ≥ α0(Ω)

2
‖t− r‖2X ∀ t, r ∈ X̃. (3.18)

�

We continue with the pseudolinearity of a(zS)(·).

Lemma 3.3 Given zS ∈ H1
ΓS

(ΩS), for each pair (t, t⊥) ∈ X̃× X̃⊥ there holds

a(zS)(t + t⊥) = a(zS)(t) + a(zS)(t⊥). (3.19)

Proof. Let zS ∈ H1
ΓS

(ΩS). We first decompose X as X = Xl ×Xr, with Xl := L2
tr (ΩS) and Xr :=

H0(div; ΩS)×H1
ΓS

(ΩS)×L2
skew(ΩS)×H0(div ; ΩD). In addition, since B (cf. (2.20)) does not depend

on the variable from Xl, we easily obtain that X̃ = Xl × X̃r, with

X̃r := H0(div; ΩS)×H1ΓS(ΩS)× L2
skew(ΩS)× H̃0(div ; ΩD) ⊆ Xr ,

which yields X̃⊥ = {0} × (X̃r)⊥. In turn, given s = (0, sr), with sr = (σS,uS,ρS,uD) ∈ Xr and
r = (rS, τ S,vS,ηS,vD) ∈ X, there holds

[a(zS)(s), r] = − (rS,σ
d
S)S + κ1(σd

S, τ
d
S)S + κ2(divσS,divτ S)S + (divτ S,uS)S − (divσS,vS)S

+ (τ S,ρS)S − (σS,ηS)S + κ3(e(uS), e(vS))S + κ4

(
ρS −

1

2
(∇uS − (∇uS)t),ηS

)
S

+ (K−1uD,vD)D + ((z⊗ uS)d, κ1τ
d − rS)S,

which shows that a(zS) is linear in {0}×Xr. Similarly, from the definition of a(zS), we also find that
for each t := (tl, tr) ∈ X = Xl ×Xr and for each r ∈ X, there holds

[a(zS)(0, tr) + a(zS)(tl,0), r] = [a(zS)(t), r].

According to the previous analysis, it readily follows that a(zS) satisfies (3.19). �

Now, we establish the positive semi-definiteness of c.

Lemma 3.4 There holds
[c(ψ),ψ] ≥ 0 ∀ψ ∈M. (3.20)
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Proof. From the definition of operator c, it readily follows that

[c(ψ),ψ] :=

n−1∑
l=1

ω−1
l ‖ψ·tl‖

2
0,Σ ≥ 0 ∀ψ ∈M, (3.21)

which clearly confirms that c is positive semi-definite. �

We end the verification of the hypotheses of Theorem 3.1 with the corresponding inf-sup conditions
for the bilinear forms b and B.

Lemma 3.5 There exist positive constants β1 and β, such that

sup
r∈X̃
r6=0

[b(r),ψ]

‖r‖X
≥ β1‖ψ‖M ∀ψ ∈ M̃ (3.22)

and

sup
(r,ψ)∈X

(r,ψ)6=0

[B(r,ψ),q]

‖(r,ψ)‖X
≥ β‖q‖M ∀q ∈M. (3.23)

Proof. For the proof of (3.22) we refer the reader to [32, Lemma 4.3] whereas a slight modification of
[33, Lemma 4.3] implies (3.23). We omit further details. �

We are now in position of establishing the well-posedness of (3.6) (equivalently the well-definiteness
of T).

Lemma 3.6 Let r ∈ (0, r0), with r0 given by (3.17). Assume that

κ1 ∈
(

0,
2δ1µ1

Lµ

)
, κ3 ∈

(
0, 2δ2

(
µ1 −

κ1Lµ
2δ1

))
and κ4 ∈

(
0, 2δ3CKoκ3

(
1− δ2

2

))
,

with δ1 ∈
(

0,
2

Lµ

)
, δ2 ∈ (0, 2), δ3 ∈ (0, 2), and that κ2 > 0. Then, the problem (3.6) has a unique

solution for each zS ∈ H1
ΓS

(ΩS), such that ‖zS‖1,ΩS
≤ r. Moreover, there exists a constant cT > 0,

independent of zS and the data fS and fD, such that there holds

‖T(zS)‖1,ΩS
= ‖uS‖1,ΩS

≤ ‖((t,ϕ),p)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (3.24)

Proof. Given zS ∈ H1
ΓS

(ΩS), such that ‖zS‖1,ΩS
≤ r, the well-posedness of (3.6) follows from Lemmas

3.2 – 3.5, and a straightforward application of Theorem 3.1. Now, concerning the estimate (3.24), we
first deduce from the definitions of F and G (cf. (2.17)), and from the Cauchy–Schwarz and Young
inequalities, that there exist constants cF > 0 and cG > 0, such that

‖F‖X′ ≤ cF‖fS‖0,ΩS
and ‖G‖M′ ≤ cG‖fD‖0,ΩD

. (3.25)

This fact and Theorem 3.1 imply the estimate

‖((t,ϕ),p)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
,

with cT independent of zS, which implies (3.24) and concludes the proof. �
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We end this section by remarking that the constant α0(Ω) yielding the strong monotonicity of both
a1 and a(zS) can be maximized by taking the parameters δ1, κ1, δ2, κ3, δ3, and κ4 as the middle points
of their feasible ranges, and by choosing κ2 so that it maximizes the minimum defining α2(ΩS). More
precisely, we simply take

δ1 =
1

Lµ
, κ1 =

δ1µ1

Lµ
=
µ1

L2
µ

, δ2 = 1, κ3 = δ2

(
µ1 −

κ1Lµ
2δ1

)
=
µ1

2
, δ3 = 1,

κ4 = δ3CKoκ3

(
1− δ2

2

)
= CKo

µ1

4
, and κ2 = 2κ1

(
1− δ1Lµ

2

)
=
µ1

L2
µ

,

(3.26)

which yields

α1(ΩS) =
µ1

4
, α2(ΩS) =

µ1

2L2
µ

, α3(ΩS) = min{c1(ΩS), 1} µ1

2L2
µ

,

α4(ΩS) = CKo
µ1

8
, α5(ΩS) = CKo

µ1

8
, α6(ΩD) = CKCdiv ,

and hence

α0(Ω) = min

{
min

{
CKo, 1

}µ1

8
,min

{
c1(ΩS), 1

} µ1

2L2
µ

, CKCdiv

}
.

The explicit values of the stabilization parameters κi, i ∈ {1, . . . , 4}, given in (3.26), will be employed
in Section 7 for the corresponding numerical experiments.

3.3 Solvability analysis of the fixed point equation

In this section we proceed analogously to [10, Section 3.3] and establish existence of a fixed point of
the operator T (cf. (3.5)) by means of the well known Schauder fixed point Theorem. The uniqueness
can then be established by means of the Banach fixed point Theorem by utilizing the same estimates
derived for the existence.

We begin by recalling the first of the aforementioned results (see, e.g. [18, Theorem 9.12-1(b)]).

Theorem 3.7 Let W be a closed and convex subset of a Banach space X, and let T : W → W be a
continuous mapping such that T (W ) is compact. Then T has at least one fixed point.

The verification of the hypotheses of Theorem 3.7 is provided next.

Lemma 3.8 Let r ∈ (0, r0), with r0 given by (3.17), let Wr be the closed ball defined by Wr :={
zS ∈ H1

ΓS
(ΩS) : ‖zS‖1,ΩS

≤ r
}

, and assume that the data satisfy

cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r , (3.27)

with cT the positive constant satisfying (3.31). Then there holds T(Wr) ⊆Wr.

Proof. It is a straightforward consequence of Lemma 3.6. �

We continue with the following result providing an estimate needed to derive next the required
continuity and compactness properties of the operator T.

Lemma 3.9 Let r ∈ (0, r0), with r0 given by (3.17), and let Wr :=
{

zS ∈ H1
ΓS

(ΩS) : ‖zS‖1,ΩS
≤ r
}

.

Then there exists a positive constant CT, depending on κ1, ‖ic‖, and α0(Ω), such that

‖T(zS)−T(z̃S)‖1,ΩS
≤ CT‖T(z̃S)‖1,ΩS

‖zS − z̃S‖L4(ΩS) ∀ zS, z̃S ∈Wr. (3.28)

16



Proof. Given r as indicated and zS, z̃S ∈ Wr, we let uS = T(zS) and ũS = T(z̃S). According to the
definition of T, it follows that

[A(zS)(t,ϕ), (r,ψ)] + [B(r,ψ),p] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t,ϕ),q] = [G,q] ∀q ∈M,

and
[A(z̃S)(t̃, ϕ̃), (r,ψ)] + [B(r,ψ), p̃] = [F, (r,ψ)] ∀(r,ψ) ∈ X,

[B(t̃, ϕ̃),q] = [G,q] ∀q ∈M.

Then, recalling the definition of A, B, F and G, in (2.18), (2.20) and (2.17), respectively, we subtract
both problems to obtain

[(a1 + a2(zS))(t)− (a1 + a2(z̃S))(t̃), r] + [b(r),ϕ− ϕ̃] + [B1(r), pD − p̃D] = 0,

[b(t− t̃),ψ]− [c(ϕ− ϕ̃),ψ] + [B2(ψ), l − l̃] = 0,

[B1(t− t̃), qD] = 0,

[B2(ϕ− ϕ̃), j] = 0,

for all (r,ψ, qD, j) ∈ X×M×L2
0(ΩD)×R. In particular, taking r = t− t̃, ψ = ϕ− ϕ̃, qD = pD − p̃D

and j = l − l̃ in the latter system, we get

[(a1 + a2(zS))(t)− (a1 + a2(z̃))(t̃), t− t̃] = −[c(ϕ− ϕ̃),ϕ− ϕ̃]. (3.29)

Hence, adding and substracting a2(zS)(t̃) in the second term on the left hand side of (3.29), and using
the strong monotonicity of a(zS) = a1 +a2(zS) (cf. (3.18)), and the fact that c is positive semi-definite,
it follows that

α0(Ω)

2
‖t− t̃‖2X ≤ [a2(z̃S − zS)(t̃), t− t̃].

In this way, by applying the first inequality in (3.12) and then bounding ‖ũS‖L4(ΩS) by ‖ic‖‖ũS‖1,ΩS
,

we deduce that

‖t− t̃‖X ≤
2(κ2

1 + 1)1/2‖ic‖
α0(Ω)

‖ũS‖1,ΩS
‖zS − z̃S‖L4(ΩS),

which implies (3.28) with

CT :=
2(κ2

1 + 1)1/2‖ic‖
α0(Ω)

, (3.30)

thus completing the proof. �

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 3.10 Given r ∈ (0, r0), with r0 defined by (3.17), we let Wr := {zS ∈ H1
ΓS

(ΩS) : ‖zS‖1,ΩS
≤

r}, and assume that the data fS and fD satisfy (3.27). Then, T : Wr →Wr is continuous and T(Wr)
is compact.

Proof. The required result follows straightforwardly from estimate (3.28) and the compactness of
ic : H1(ΩS)→ L4(ΩS). We omit further details and refer to [10, Lemma 3.8]. �

We are now in position of establishing the main result of this section.
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Theorem 3.11 Suppose that the parameters κi, i ∈ {1, . . . , 4}, satisfy the conditions required by
Lemma 3.6. In addition, given r ∈ (0, r0), with r0 defined by (3.17), we let Wr := {zS ∈ H1

ΓS
(ΩS) :

‖zS‖1,ΩS
≤ r}, and assume that the data fS and fD satisfy (3.27). Then, the augmented fully-mixed

formulation (2.16) has a unique solution ((t,ϕ),p) ∈ X×M with uS ∈Wr, and there holds

‖((t,ϕ),p)‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (3.31)

Proof. The equivalence between (2.16) and the fixed point equation (3.7), together with Lemmas 3.8
and 3.10, confirm the existence of solution of (2.16) as a direct application of the Schauder fixed point
Theorem 3.7. In addition, it is clear that the estimate (3.31) follows straightforwardly from (3.24).
On the other hand, using the estimate (3.28), the continuity of the compact injection ic, and the
definitions of CT (cf. (3.30)) and r0 (cf. (3.17)), we easily obtain

‖T(zS)−T(z̃S)‖1,ΩS
≤ r

r0
‖zS − z̃S‖1,ΩS

,

which, thanks to the Banach fixed point Theorem, implies that the solution is actually unique. �

4 The Galerkin scheme

In this section we introduce the Galerkin scheme of problem (2.16) and analyse its well-posedness by
establishing suitable assumptions on the finite element subspaces involved.

4.1 Discrete setting

We first introduce a set of arbitrary discrete subspaces, namely

L2
h(Ω?) ⊂ L2(Ω?), Hh(Ω?) ⊂ H(div; Ω?), ? ∈ {S,D},

H1
h(ΩS) ⊂ H1(ΩS), L2

skew,h(ΩS) ⊂ L2
skew(ΩS), ΛS

h(Σ) ⊂ H1/2
00 (Σ), ΛD

h (Σ) ⊂ H1/2(Σ) ,
(4.1)

and set
Hh(ΩS) := {τ S ∈ H(div; ΩS) : ctτ ∈ Hh(ΩS) ∀ c ∈ Rn},

Hh,0(ΩS) := Hh(ΩS) ∩H0(div; ΩS),

H1
h,ΓS

(ΩS) := H1
h(ΩS) ∩H1

ΓS
(ΩS),

Hh,0(ΩD) := Hh(ΩD) ∩H0(div ; ΩD),

L2
tr ,h(ΩS) := [L2

h(ΩS)]n×n ∩ L2
tr (ΩS),

L2
h,0(ΩD) := L2

h(ΩD) ∩ L2
0(ΩD),

ΛS
h(Σ) := [ΛS

h(Σ)]n.

(4.2)

Then, defining the global spaces, unknowns, and test functions as follows
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Xh := L2
tr ,h(ΩS)×Hh,0(ΩS)×H1

h,ΓS
(ΩS)× L2

skew,h(ΩS)×Hh,0(ΩD) ,

Mh := ΛS
h(Σ)× ΛD

h (Σ) , Xh := Xh ×Mh, Mh := L2
h,0(ΩD)× R ,

th := (tS,h,σS,h,uS,h,ρS,h,uD,h) ∈ Xh, ϕ
h

:= (ϕh, λh) ∈Mh ,

rh := (rS,h, τ S,h,vS,h,ηS,h,vD,h) ∈ Xh, ψ
h

:= (ψh, ξh) ∈Mh ,

p
h

:= (pD,h, lh) ∈Mh , and q
h

:= (qD,h, jh) ∈Mh ,

(4.3)

the Galerkin scheme associated with problem (2.16) reads: Find ((th,ϕh),p
h
) ∈ Xh ×Mh such that

[A(uS,h)(th,ϕh), (rh,ψh)] + [B(rh,ψh),p
h
] = [F, (rh,ψh)] ∀(rh,ψh) ∈ Xh,

[B(th,ϕh),q
h
] = [G,q

h
] ∀q

h
∈Mh.

(4.4)

Now, we proceed similarly to [37] and [32] (see also [11]), an derive suitable hypotheses on the
spaces (4.1) ensuring the well-posedness of problem (4.4). We begin by noticing that, in order to have
meaningful spaces Hh,0(ΩS) and L2

h,0(ΩD), we need to be able to eliminate multiples of the identity

matrix and constant polynomials from Hh(ΩS) and L2
h(ΩD), respectively. This requirement is certainly

satisfied if we assume:

(H.0) [P0(ΩS)]n ⊆ Hh(ΩS) and P0(ΩD) ⊆ L2
h(ΩD), where P0(ΩS) and P0(ΩD) are the spaces of

constant polynomials on ΩS and ΩD, respectively. In particular, it follows that I ∈ Hh(ΩS) for all h,
and hence there holds the decomposition

Hh(ΩS) = Hh,0(ΩS)⊕ P0(ΩS)I. (4.5)

Next, we look at the discrete kernel of B, which is given by

Vh :=
{

(rh,ψh) ∈ Xh : [B(rh,ψh),q
h
] = 0 ∀q

h
∈Mh

}
.

In order to have a more explicit definition of Vh, we introduce the following assumption:

(H.1) div Hh(ΩD) ⊆ L2
h(ΩD).

Then, owing to (H.1) and recalling the definition of B (cf. (2.20)), it follows that Vh = X̃h × M̃h,
where

X̃h = L2
tr ,h(ΩS)×Hh,0(ΩS)×H1

h,ΓS
(ΩS)× L2

skew,h(ΩS)× H̃h,0(ΩD)

and
M̃h = Λ̃

S
h(Σ)× ΛD

h (Σ) ,

with
H̃h,0(ΩD) :=

{
vD,h ∈ Hh,0(ΩD) : div (vD,h) ∈ P0(ΩD)

}
,

and
Λ̃

S
h(Σ) :=

{
ψh ∈ ΛS

h(Σ) : 〈ψh·n, 1〉Σ = 0
}
. (4.6)

In particular, it readily follows that Vh ⊆ V.
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On the other hand, for the subsequent analysis we need to ensure the discrete version of the inf-sup
conditions (3.22) and (3.23) of b and B, respectively, namely the existence of constants β̃1, β̃ > 0,
independent of h, such that

sup
rh∈X̃h
rh 6=0

[b(rh),ψ
h
]

‖rh‖X
≥ β̃1‖ψh‖M ∀ψ

h
∈ M̃h , (4.7)

and

sup
(rh,ψ

h
)∈Xh

(rh,ψh
)6=0

[B(rh,ψh),q
h
]

‖(rh,ψh)‖X
≥ β̃‖q

h
‖M ∀q

h
∈Mh . (4.8)

For (4.7) we apply the same diagonal argument utilized in [32, Section 5.2] (see also [37, Lemma
3.8]) to deduce that b satisfies the discrete inf-sup condition (4.7) if and only if the following hypothesis
holds:

(H.2) There exist β̂S, β̂D > 0, independent of h, such that

sup
τS,h∈Hh(ΩS)

τS,h 6=0

〈τ S,hn,ψh〉Σ
‖τ S,h‖div,ΩS

≥ β̂S‖ψh‖1/2,00,Σ ∀ψh ∈ Λ̃
S
h(Σ), (4.9)

sup
vD,h∈H̃h,0(ΩD)

vD,h 6=0

〈vD,h·n, ξh〉Σ
‖vD,h‖div ,ΩD

≥ β̂D‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ). (4.10)

Similarly, employing the same arguments in [32, Section 5.2] we obtain that B satisfies the discrete
inf-sup condition (4.8) provided that the following hypothesis holds

(H.3) There exist β̃D > 0, independent of h, and ψ0 ∈ H
1/2
00 (Σ), such that

ψ0 ∈ ΛS
h(Σ) ∀h and 〈ψ0·n, 1〉Σ 6= 0, (4.11)

sup
vD,h∈Hh,0(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖div ,ΩD

≥ β̃D‖qD,h‖0,ΩD
∀qD,h ∈ L2

h,0(ΩD). (4.12)

4.2 Well-posedness of the discrete problem

In what follows, we assume that hypotheses (H.0), (H.1), (H.2), and (H.3) hold, and, analogously
to the analysis of the continuous problem, apply a fixed point argument to prove the well-posedness of
the Galerkin scheme (4.4). To that end, we let Th : H1

h,ΓS
(ΩS)→ H1

h,ΓS
(ΩS) be the discrete operator

defined by
Th(zS,h) := uS,h ∀ zS,h ∈ H1

h,ΓS
(ΩS), (4.13)

where uS,h is the third component of th, which in turn is the first component of the unique solution
(to be confirmed below) of the discrete nonlinear problem: Find ((th,ϕh),p

h
) ∈ Xh ×Mh such that

[A(zh)(th,ϕh), (rh,ψh)] + [B(rh,ψh),p
h
] = [F, (rh,ψh)] ∀(rh,ψh) ∈ Xh,

[B(th,ϕh),q
h
] = [G,q

h
] ∀q

h
∈Mh.

(4.14)
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Then, similarly as for the continuous case, the Galerkin scheme (4.4) can be rewritten, equivalently,
as the fixed point problem: Find uS,h ∈ H1

h,ΓS
(ΩS) such that

Th(uS,h) = uS,h. (4.15)

Now, in order to prove the well-posedness of problem (4.4), or equivalently the well-definiteness
of operator Th (cf. (4.13)), we will require the following discrete version of Theorem 3.1 (cf. [32,
Theorem 3.3]).

Theorem 4.1 In addition to the spaces and operators defined in Theorem 3.1, let X1,h,M1,h, and Mh

be finite dimensional subspaces of X1,M1, and M , respectively, and let Xh := X1,h ×M1,h ⊆ X :=
X1 ×M1. In turn, let Vh be the discrete kernel of B, that is,

Vh :=
{

(rh,ψh) ∈ Xh : [B(rh,ψh), qh] = 0 ∀qh ∈Mh

}
,

and let X̃1,h and M̃1,h be subspaces of X1,h and M1,h respectively, such that Vh = X̃1,h×M̃1,h. Assume
that

(i) A1|X̃1,h
: X̃1,h → X̃ ′1,h is Lipschitz continuous and strongly monotone, that is, there exist con-

stants γh, αh > 0 such that

‖A1(sh)−A1(rh)‖X̃′1,h ≤ γh‖sh − rh‖X1 ∀ sh, rh ∈ X̃1,h

and
[A1(sh)−A1(rh), sh − rh] ≥ αh‖sh − rh‖2X1

∀ sh, rh ∈ X̃1,h .

(ii) For each pair (rh, r
⊥
h ) ∈ X̃1,h × X̃⊥1,h there holds the pseudolinear property

A1(rh + r⊥h ) = A1(rh) +A1(r⊥h ).

(iii) S is positive semi-definite on M̃1,h, that is,

[S(ψh),ψh] ≥ 0 ∀ψh ∈ M̃1,h .

(iv) B1 satisfies an inf-sup condition on X̃1,h × M̃1,h, that is, there exists β1,h > 0 such that

sup
rh∈X̃1,h

rh 6=0

[B1(rh),ψh]

‖rh‖X1

≥ β1,h‖ψh‖M1,h
∀ψh ∈ M̃1,h .

(v) B satisfies an inf-sup condition on Xh ×Mh, that is, there exists βh > 0 such that

sup
(rh,ψh)∈Xh

(rh,ψh)6=0

[B(rh,ψh), qh]

‖(rh,ψh)‖X
≥ βh‖qh‖M ∀ qh ∈Mh .

Then, there exists a unique ((th,ϕh), ph) ∈ Xh ×Mh, such that

[A(th,ϕh), (rh,ψh)] + [B′(ph), (rh,ψh)] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Xh,

[B(th,ϕh), qh] = [G, qh] ∀ qh ∈Mh .
(4.16)

Moreover, there exists Ch > 0, depending only on αh, γh, β1,h, βh, ‖S‖, and ‖B1‖ such that

‖((th,ϕh), ph)‖X×M ≤ Ch
{
‖F |Xh

‖X′h + ‖G|Mh
‖M ′h

}
.
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The following lemma establishes the well-definiteness of operator Th.

Lemma 4.2 Assume that hypotheses (H.0), (H.1), (H.2), and (H.3) hold. Assume further that κi,
i ∈ {1, . . . , 4} satisfy the conditions required by Lemma 3.6. Then, for each r ∈ (0, r0), with r0 given
by (3.17), the problem (4.14) has a unique solution ((th,ϕh),p

h
) ∈ X×M for each zS,h ∈ H1

h,ΓS
(ΩS)

such that ‖zS,h‖1,ΩS
≤ r. Moreover, there exists a constant c̃T > 0, independent of zS,h and the data

fS and fD, such that there holds

‖Th(zS,h)‖1,ΩS
≤ ‖((th,ϕh),p

h
)‖X×M ≤ c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (4.17)

Proof. Let zS,h ∈ H1
h,ΓS

(ΩS) such that ‖zS,h‖1,ΩS
≤ r. Recalling that Xh ⊆ X, Mh ⊆ M and Vh ⊆ V,

a straightforward application of Lemmas 3.2, 3.3 and 3.4, implies, respectively, that hypotheses (i),
(ii) and (iii) in Theorem 4.1, hold. In turn, as already discussed in Section 4.1, the inf-sup conditions
(iv) and (v) follow from hypotheses (H.2) and (H.3), respectively. Therefore, according to the above,
a direct application of Theorem 4.1 allows us to conclude that there exists a unique ((th,ϕh),p

h
) ∈

Xh ×Mh solution to (4.14), which satisfies

‖((th,ϕh),p
h
)‖X×M ≤ c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
,

with c̃T independent of zS,h and h. �

We are now in position of establishing the well-posedness of (4.4).

Theorem 4.3 Assume that hypotheses (H.0), (H.1), (H.2), and (H.3) hold. Assume further that
κi, i ∈ {1, . . . , 4} satisfy the conditions required by Lemma 3.6. In addition, given r ∈ (0, r0), with r0

defined by (3.17), let W h
r :=

{
zS,h ∈ H1

h,ΓS
(ΩS) : ‖zS,h‖1,ΩS

≤ r
}

, and assume that the data fS and

fD satisfy

c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r , (4.18)

with c̃T > 0 the constant in (4.17). Then, there exists a unique ((th,ϕh),p
h
) ∈ Xh ×Mh solution to

(4.4), which satisfies uS,h ∈W h
r and

‖((th,ϕh),p
h
)‖X×M ≤ c̃T

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
. (4.19)

Proof. We first observe, owing to (4.17), that the assumption (4.18) guarantees that Th(W h
r ) ⊆ W h

r .
Next, proceeding analogously to the proof of Lemma 3.9, that is, applying the strong monotonicity of
a(zS,h) : Xh → X′h for each zS,h ∈ W h

r , and using again the boundedness of the compact injection ic,
we find that

‖Th(zS,h)−Th(z̃S,h)‖1,ΩS
≤ CT‖ic‖‖Th(z̃h)‖1,ΩS

‖zh − z̃h‖1,ΩS
∀ zS,h, z̃S,h ∈W h

r ,

which, together with (3.30), (4.17), (4.18), and the definition of r0 (cf. (3.17)), implies

‖Th(zS,h)−Th(z̃S,h)‖1,ΩS
≤ r

r0
‖zS,h − z̃S,h‖1,ΩS

∀ zS,h, z̃S,h ∈W h
r ,

thus confirming that Th : W h
r →W h

r is a contraction mapping. Then, the Banach fixed point Theorem
and the equivalence between (4.4) and (4.15) imply the well-posedness of (4.4). In turn, the a priori
estimate (4.19) follows directly from (4.17). �
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5 A priori error estimate

In this section, we derive an a priori error estimate for the Galerkin scheme (4.4). To that end, we
first establish some preliminary results that will be utilized in our subsequent analysis.

5.1 Preliminaries

We begin with the following Strang-type lemma,

Lemma 5.1 Let X and M be Hilbert spaces, F ∈ (X ×M)′ := X ′ ×M ′, and P : X ×M → X ′ ×M ′
a nonlinear operator. In addition, let {Xn}n∈N and {Mn}n∈N be sequences of finite dimensional
subspaces of X and M , respectively, and for each n ∈ N consider a nonlinear operator Pn : Xn×Mn →
(Xn ×Mn)′ := X ′n ×M ′n and a functional Fn ∈ X ′n ×M ′n. Assume that the family {P} ∪ {Pn}n∈N
is uniformly Lipschitz continuous with constant CLC > 0. Moreover, assume that Pn has a hemi-
continuous first-order Gâteaux derivative DPn(~s)(·, ·), for all ~s ∈ X ×M , which satisfies the global
inf-sup condition

CG ‖~sn‖ ≤ sup
~rn∈Xn×Mn
~rn 6=0

DPn(~s)(~sn,~rn)

‖~rn‖
∀~sn ∈ Xn ×Mn , (5.1)

with a constant CG > 0 independent of ~s. Furthermore, let ~t := ((t,ϕ),p) ∈ X × M and ~tn :=
((tn,ϕn), pn) ∈ Xn ×Mn be such that

[P (~t),~r] = [F,~r] ∀~r := ((r,ψ),q) ∈ X ×M (5.2)

and
[Pn(~tn),~rn] = [Fn,~rn] ∀~rn := ((rn,ψn),qn) ∈ Xn ×Mn . (5.3)

Then for each n ∈ N , there holds

‖~t−~tn‖ ≤ CST

 sup
~rn∈Xn×Mn
~rn 6=0

|[F,~rn]− [Fn,~rn]|
‖~rn‖

+ inf
~sn∈Xn×Mn
~sn 6=0

‖~t−~sn‖+ sup
~rn∈Xn×Mn
~rn 6=0

|[P (~sn),~rn]− [Pn(~sn),~rn]|
‖~rn‖


 ,

(5.4)

with CST := C−1
G max {1, CG + CLC}.

Proof. We proceed as in the proof of [30, Theorem 3.3] (see also [32, Theorem 3.5]). In fact, given
~tn, ~sn ∈ Xn×Mn, we first observe that the hemi-continuity of DPn implies that there exists µ0 ∈ (0, 1),
such that

[Pn(~tn),~rn]− [Pn(~sn),~rn] =

∫ 1

0
DPn(µ~tn + (1− µ)~sn)(~tn −~sn,~rn)dµ

= DPn(µ0~tn + (1− µ0)~sn)(~tn −~sn,~rn) ,

and hence, by taking ~s = µ0~tn + (1− µ0)~sn in (5.1), we find that

‖~tn −~sn‖ ≤ C−1
G sup

~rn∈Xn×Mn
~rn 6=0

[Pn(~tn),~rn]− [Pn(~sn),~rn]

‖~rn‖
. (5.5)
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In turn, using (5.2) and (5.3), and adding and subtracting appropriate terms, we easily obtain

[Pn(~tn),~rn]− [Pn(~sn),~rn] = [Fn,~rn]− [F,~rn] + [P (~t),~rn]− [P (~sn),~rn] + [P (~sn),~rn]− [Pn(~sn),~rn],

which, together with the Lipschitz continuity of P , implies∣∣∣[Pn(~tn),~rn]− [Pn(~sn),~rn]
∣∣∣ ≤ ∣∣∣[F,~rn]− [Fn,~rn]

∣∣∣+CLC‖~t−~sn‖‖~rn‖+
∣∣∣[P (~sn),~rn]− [Pn(~sn),~rn]

∣∣∣, (5.6)

for all ~sn ∈ Xn×Mn. In this way, from (5.5), (5.6) and the triangle inequality we readily obtain (5.4),
which concludes the proof. �

In addition, we will require the following linear version of Theorem 4.1.

Theorem 5.2 Consider the notations and definitions given in Theorem 4.1. Assume that

(i) A1|X1,h
: X1,h → X ′1,h is linear, bounded and X̃1,h–elliptic, that is, there exist γh, αh > 0, such

that
‖A1(rh)‖X′1,h ≤ γh‖rh‖X1 ∀ rh ∈ X̃1,h,

and
[A1(rh), rh] ≥ αh‖rh‖2X1

∀ rh ∈ X̃1,h.

(ii) The conditions (iii)-(v) from Theorem (4.1) are satisfied.

Then, there exists a unique (th,ϕh), ph) ∈ X ×M solution of (4.16). Moreover, there exists Ch > 0,
depending only on αh, γh, β1,h, βh, ‖S‖ and ‖B1‖, such that

‖((th,ϕh), ph)‖X×M ≤ Ch{‖F |Xh
‖X′h + ‖G|Mh

‖M ′h}. (5.7)

Proof. It reduces to verify the hypotheses of Theorem 4.1. We omit further details �

We observe here that (5.7) is equivalent to the global inf-sup condition

‖((sh,ψh), ρh)‖X×M ≤ Ch sup(
(r,ψ),q

)
∈Xh×Mh\0

[A(sh, φh), (r, ψ)] + [B′(ρh), (r, ψ)] + [B(s, φ), q]

‖((r,ψ), q)‖X×M
.

(5.8)
for all ((sh,ψh), ρh) ∈ Xh ×Mh.

5.2 The main result

In what follows, we establish the corresponding a priori error estimate of our Galerkin scheme (4.4).
To that end, and for the sake of simplicity, hereafter we denote by ~t := ((t,ϕ),p) ∈ X × M and
~th := ((th,ϕh),p

h
) ∈ Xh ×Mh the solutions of problems (2.16) and (4.4), respectively. In turn, we

let P : X×M→ (X×M)′ := X′ ×M′ and Ph : Xh ×Mh → (Xh ×Mh)′ := X′h ×M′h, be the nonlinear
operators obtained after adding on the left hand side of (2.16) and (4.4), respectively, that is

[P(~s),~r] := [(a1 + a2(uS))(s), r] + [b(s),ψ] + [b(r),φ]− [c(φ),ψ]

+ [B(r,ψ),m] + [B(s,φ),q] ,
(5.9)

and

[Ph(~sh),~rh] := [(a1 + a2(uS,h))(sh), rh] + [b(sh),ψ
h
] + [b(rh),φ

h
]− [c(φ

h
),ψ

h
]

+ [B(rh,ψh),mh] + [B(sh,φh),q
h
] ,

(5.10)
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for all ~s = ((s,φ),m), ~r = ((r,ψ),q) ∈ X×M and ~th = ((sh,φh),mh), ~rh = ((rh,ψh),q
h
) ∈ Xh×Mh,

respectively, where uS ∈Wr and uS,h ∈W h
r are the velocity solutions of (2.16) and (4.4), respectively.

According to the above, and denoting by F := (F,G) ∈ X′ ×M′, it follows that

[P(~t),~r] = [F ,~r] ∀~r := ((r,ψ),q) ∈ X×M (5.11)

and
[Ph(~th),~rh] = [F ,~rh] ∀~rh := ((rh,ψh),q

h
) ∈ Xh ×Mh. (5.12)

Next, since the Lipschitz-continuity of a1 (cf. (3.11)) holds at the continuous and discrete levels with
the same constant, as well as the continuity of a2, b, c and B, we observe that the family {P}∪{Ph}h>0

is uniformly Lipschitz-continuous with constant denoted from now on by CLC > 0.

On the other hand, owing to the fact that µ is assumed to be of class C1 (cf. (2.2)), it is not difficult
to see that a1 : X → X′ has hemi-continuous first order Gâteaux derivative Da1 : X → L(X,X′),
which in particular implies that for any s, r ∈ X, the mapping R 3 µ → Da1(s + µr)(r)(·) ∈ X′ is
continuous. Moreover, we have the following lemma.

Lemma 5.3 For any s ∈ X, the Gâteaux derivative Da1(s) constitutes a bounded bilinear form on
X×X that becomes elliptic on X̃× X̃, with boundedness and ellipticity constants La1 (cf. (3.11)) and
α0(Ω) (cf. (3.16)), respectively.

Proof. Given s ∈ X, the Gâteaux derivative Da1(s) is the operator in L(X,X′) (equivalently, the
bilinear form on X×X) defined by

Da1(s)(r, r̂) := lim
ε→0

[a1(s + εr), r̂]− [a1(s), r̂]

ε
∀ r, r̂ ∈ X .

The rest of the proof follows as in [30, Lemma 3.1] by employing the properties (3.11), (3.15) and the
continuity of the mapping R 3 µ→ Da1(s + µr)(r)(·) ∈ X′. We omit further details. �

Now, due to the hemi-continuity of the first order Gâteaux derivative Da1, and since the operators
defining Ph (besides a1) are linear, we easily obtain that, given ~s = ((s,φ),m) ∈ X×M, the Gâteaux
derivative of Ph at ~s is obtained by replacing [a1(th), rh] in (5.10) by Da1(s)(th, rh), that is

DPh(~s)(~th,~rh) := Da1(s)(th, rh) + [a2(uS,h)(th), rh] + [b(th),ψ
h
] + [b(rh),ϕ

h
]

− [c(ϕ
h
),ψ

h
] + [B(rh,ψh),p

h
] + [B(th,ϕh),q

h
] ,

(5.13)

for all ~th := ((th,ϕh),p
h
),~rh := ((rh,ψh),q

h
) ∈ Xh ×Mh, which, according to Lemma 5.3, becomes

a bounded bilinear form on (Xh ×Mh) × (Xh ×Mh). Moreover, since c is positive-semidefinite, and
assuming for a moment that (H.0), (H.1), (H.2) and (H.3) hold, we obtain that the conditions (iii)–
(v) in Theorem 4.1 are verified, and as result, having in mind Lemma 5.3, the bilinear form DPh(~s)(·, ·)
satisfies the hypotheses of Theorem 5.2. Moreover, in virtue of (5.8), there holds the global inf-sup
condition

CG ‖~sh‖ ≤ sup
~rh∈Xn×Mh
~rh 6=0

DPh(~s)(~sh,~rh)

‖~rh‖
∀~sh ∈ Xh ×Mh . (5.14)

According to the foregoing analysis, it follows that the family of operators {P} ∪ {Ph}h>0 satisfy
the hypotheses of Lemma 5.1, and consequently we can establish now the main result of this section.
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Theorem 5.4 Assume that the hypotheses (H.0), (H.1), (H.2) and (H.3), as well as the conditions
on κi, i ∈ {1, . . . , 4} required by Lemma 3.6, hold. Let r ∈ (0, r0), with r0 defined by (3.17) and assume
further that the data fS and fD satisfy

cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
≤ r

α0(Ω)CST
, (5.15)

with cT and α0(Ω) being the positive constants satisfying (3.31) and (3.16), respectively. In addition,
let ~t := ((t,ϕ),p) ∈ X ×M with uS ∈ Wr, and ~th := ((th,ϕh),p

h
) ∈ Xh ×Mh with uS,h ∈ W h

r be
the unique solutions of problems (2.16) and (4.4), respectively. Then there exists a positive constant
C > 0, depending only on α0(Ω) and CST, such that

‖~t−~th‖X×M ≤ Cdist (~t,Xh ×Mh). (5.16)

Proof. From the strang-type estimate (5.4) and from (5.11) and (5.12), we first obtain

‖~t−~th‖X×M ≤ CST inf
~sh∈Xh×Mh

‖~t−~sh‖X×M + sup
~rh∈Xh×Mh
~rh 6=0

∣∣∣[P(~sh),~rh]− [Ph(~sh),~rh]
∣∣∣

‖~rh‖X×M

 . (5.17)

In turn, utilizing the definition of P and Ph (resp. (5.9) and (5.10)), applying the estimate (3.12),

adding and subtracting ~t, and bounding both ‖uS‖1,ΩS
and ‖uS,h‖1,ΩS

by r0 = α0(Ω)

2c2(ΩS)(κ2
1+1)1/2 , we find

that∣∣∣[P(~sh),~rh]− [Ph(~sh),~rh]
∣∣∣ =

∣∣∣[a2(uS − uS,h)(~sh),~rh]
∣∣∣

≤ c2(ΩS)(κ2
1 + 1)1/2‖uS − uS,h‖1,ΩS

{
‖~t−~sh‖X×M + ‖~t‖X×M

}
‖~rh‖X×M

≤
{

2c2(ΩS)(κ2
1 + 1)1/2r0‖~t−~sh‖X×M + c2(ΩS)(κ2

1 + 1)1/2‖~t‖X×M‖uS − uS,h‖1,ΩS

}
‖~rh‖X×M

=
{
α0(Ω)‖~t−~sh‖X×M + c2(ΩS)(κ2

1 + 1)1/2‖~t‖X×M‖uS − uS,h‖1,ΩS

}
‖~rh‖X×M,

which, replaced back into (5.17), taking infimun, and using that ‖uS−uS,h‖1,ΩS
≤ ‖~t−~th‖X×M, yields

‖~t−~th‖X×M ≤ CST{1 + α0(Ω)}dist (~t,Xh ×Mh) +CSTc2(ΩS)(κ2
1 + 1)1/2‖~t‖X×M‖~t−~th‖X×M. (5.18)

Finally, recalling from (3.31) that ‖~t‖X×M ≤ cT

{
‖fS‖0,ΩS

+ ‖fD‖0,ΩD

}
, and employing assumption

(5.15), we obtain that

CSTc2(ΩS)(κ2
1 + 1)1/2‖~t‖X×M ≤

1

2
, (5.19)

which, together with (5.18), implies (5.16) with C = 2CST{1 + α0(Ω)}, thus ending the proof. �

6 Particular choices of discrete spaces

We now introduce specific discrete spaces satisfying hypotheses (H.0), (H.1), (H.2), and (H.3) in 2D
and 3D. To this end, we let T S

h and T D
h be respective triangulations of the domains ΩS and ΩD, which

are formed by shape-regular triangles (in R2) or tetrahedra (in R3) of diameter hT , and assume that
they match in Σ so that T S

h ∪ T D
h is a triangulation of ΩS ∪ Σ ∪ ΩD. We also let Σh be the partition

of Σ inherited from T S
h (or T D

h ). Then, for each T ∈ T S
h ∪ T D

h we set the local Raviart–Thomas space
of order k as

RTk(T ) := Pk(T )⊕ Pk(T )x,

where x := (x1, . . . , xn)t is a generic vector of Rn.
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6.1 Raviart–Thomas elements in 2D

We define the discrete subspaces in (4.1) as follows:

L2
h(Ω?) :=

{
qh ∈ L2(Ω?) : qh|T ∈ Pk(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D},

Hh(Ω?) := {τh ∈ H(div ; Ω?) : τh|T ∈ RTk(T ) ∀T ∈ T ?h } , ? ∈ {S,D},

H1
h(ΩS) :=

{
vh ∈ [C(ΩS)]2 : vh|T ∈ Pk+1(T ) ∀T ∈ T S

h

}
,

L2
tr ,h(ΩS) :=

{
rh|T ∈ L2

tr (ΩS) : rh|T ∈ Pk(T ) ∀T ∈ T S
h

}
,

L2
skew,h(ΩS) :=

{
ηh ∈ L2

skew(ΩS) : ηh|T ∈ Pk(T ) ∀T ∈ T S
h

}
.

(6.1)

In addition, in order to introduce the particular subspaces ΛS
h(Σ) and ΛD

h (Σ), we follow the simplest
approach suggested in [37] and [45]. To this end, we first assume, without loss of generality, that the
number of edges of Σh is even. Then, we let Σ2h be the partition of Σ arising by joining pairs of adjacent
edges of Σh. Note that, since Σh is inherited from the interior triangulations, it is automatically of
bounded variation (that is, the ratio of lengths of adjacent edges is bounded) and, therefore, so is Σ2h.
Now, if the number of edges of Σh is odd, we simply reduce it to the even case by joining any pair of
two adjacent elements, and then construct Σ2h from this reduced partition. In this way, denoting by
x0 and xN the extreme points of Σ, we set

ΛS
h(Σ) := {ψh ∈ C(Σ) : ψh|e ∈ Pk+1(e) ∀ edge e ∈ Σ2h, ψh(x0) = ψh(xN ) = 0} ,

ΛD
h (Σ) := {ξh ∈ C(Σ) : ξh|e ∈ Pk+1(e) ∀ edge e ∈ Σ2h} .

(6.2)

Then, we define the global spaces Xh and Mh by combining (4.2), (4.3), (6.1) and (6.2). Now,
concerning hypotheses (H.0)–(H.3), we start mentioning that (H.0) and (H.1) are straightforward
from the definitions in (6.1). In turn, it is well known that the discrete inf-sup condition (4.12) in
(H.3) holds (see for instance [5, Chapter IV] or [29, Section 4.2]). In addition, the existence of

ψ0 ∈ H
1/2
00 (Σ) satisfying (4.11) follows as explained in [37, Section 2.5] or [38, Section 3.2]. Finally,

the inf-sup conditions (4.9) and (4.10) in (H.2) can be derived by combining the results in [37, Section
2.5] and [45, Theorem A.1]. We omit further details and refer the reader to [32, Section 5.3.1] for the
verification of these inf-sup conditions.

According to the above, we conclude that the Galerkin scheme (4.4) defined with the spaces in (6.1)
is well posed. Moreover, by employing the approximations properties of the finite element subspaces
involved (see, e.g. [5, 29, 40, 43]), and the a priori estimate (5.16), we can easily obtain the following
result.

Theorem 6.1 Assume that the hypotheses of Theorem 5.4 hold. Let ~t := ((t,ϕ),p) ∈ X ×M with

uS ∈ Wr and ~th := ((th,ϕh),p
h
) ∈ Xh ×Mh with uS,h ∈ W h

r be the unique solutions of the problems

(2.16) and (4.4), respectively. Assume further that there exists δ > 0, such that tS ∈ Hδ(ΩS), σS ∈
Hδ(ΩS), divσS ∈ Hδ(ΩS), uS ∈ H1+δ(ΩS), ϕ ∈ H1/2+δ(Σ), ρS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and
div uD ∈ Hδ(ΩD). Then, pD ∈ H1+δ(ΩD), λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h,
such that

‖~t−~th‖X×M ≤ C hmin{δ,k+1}
{
‖t‖δ,ΩS

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖uS‖1+δ,ΩS

+ ‖ρS‖δ,ΩS
+ ‖uD‖δ,ΩD

+ ‖div uD‖δ,ΩD
+ ‖pD‖1+δ,ΩD

}
.
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Proof. From the second equation of (2.11), we readily obtain that ∇pD = −K−1uD, which implies
that pD ∈ H1+δ(ΩD), whence λ = pD|Σ ∈ H1/2+δ(Σ). The rest of the proof follows from the a priori
estimate (5.16), the approximation properties of the discrete spaces involved and the fact that, owing
to the trace theorems in ΩS and ΩD, respectively, there holds

‖ϕ‖1/2+δ,Σ ≤ c ‖uS‖1+δ,ΩS
and ‖λ‖1/2+δ,Σ ≤ c ‖pD‖1+δ,ΩD

.

�

6.2 Raviart–Thomas elements in 3D

Let us now consider the discrete spaces:

L2
h(Ω?) :=

{
qh ∈ L2(Ω?) : qh|T ∈ Pk(T ) ∀T ∈ T ?h

}
, ? ∈ {S,D},

Hh(Ω?) := {τh ∈ H(div ; Ω?) : τh|T ∈ RTk(T ) ∀T ∈ T ?h } , ? ∈ {S,D},

H1
h(ΩS) :=

{
vh ∈ [C(ΩS)]3 : vh|T ∈ Pk+1(T ) ∀T ∈ T S

h

}
,

L2
tr ,h(ΩS) :=

{
rh|T ∈ L2

tr (ΩS) : rh|T ∈ Pk(T ) ∀T ∈ T S
h

}
,

L2
skew,h(ΩS) :=

{
ηh ∈ L2

skew(ΩS) : ηh|T ∈ Pk(T ) ∀T ∈ T S
h

}
.

(6.3)

Now, in order to define the discrete spaces for the unknowns on the interface Σ, we introduce an
independent triangulation Σ

ĥ
of Σ, by triangles K of diameter ĥ, and define ĥΣ := max{ĥK : K ∈ Σ

ĥ
}.

Then, denoting by ∂Σ the polygonal boundary of Σ, we define

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|K ∈ Pk+1(K) ∀K ∈ Σ

ĥ
, ψh = 0 on ∂K

}
,

ΛD
h (Σ) :=

{
ξh ∈ C(Σ) : ξh|K ∈ Pk+1(K) ∀K ∈ Σ

ĥ

}
.

(6.4)

In this way, we define the global spaces Xh and Mh by combining (4.2), (4.3), (6.3), and (6.4).

Now, for the verification of hypotheses (H.0)–(H.3) we first observe that applying the same ar-
guments as for the 2D case, it follows that (H.0), (H.1) and (H.3) hold. However, for the inf-sup
conditions in (H.2) we need to proceed differently and apply [31, Lemma 7.5]. More precisely, utilizing
[31, Lemma 7.5] we conclude that there exists C0 ∈ (0, 1) such that for each pair (hΣ, ĥΣ) verifying
hΣ ≤ C0ĥΣ, the inf-sup conditions (4.9) and (4.10) hold.

Having verified hypotheses (H.0)–(H.3) we conclude that the Galerkin scheme (4.4) defined with
the spaces in (6.3) is well posed. In addition, owing again to the approximations properties of the finite
element subspaces involved (see, e.g. [5, 29, 40, 43]), and the a priori estimate (5.16), the following
result holds.

Theorem 6.2 Assume that the hypotheses of Theorem 5.4 hold. Let ~t := ((t,ϕ),p) ∈ X ×M with

uS ∈ Wr and ~th := ((th,ϕh),p
h
) ∈ Xh ×Mh with uS,h ∈ W h

r be the unique solutions of the problems

(2.16) and (4.4), respectively. Assume further that there exists δ > 0, such that tS ∈ Hδ(ΩS), σS ∈
Hδ(ΩS), divσS ∈ Hδ(ΩS), uS ∈ H1+δ(ΩS), ϕ ∈ H1/2+δ(Σ), ρS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and
div uD ∈ Hδ(ΩD). Then, pD ∈ H1+δ(ΩD), λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h,
such that

‖~t−~th‖X×M ≤ C hmin{δ,k+1}
{
‖t‖δ,ΩS

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖uS‖1+δ,ΩS

+ ‖ρS‖δ,ΩS
+ ‖uD‖δ,ΩD

+ ‖div uD‖δ,ΩD
+ ‖pD‖1+δ,ΩD

}
.
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7 Numerical results

In this section we present three examples illustrating the performance of our augmented mixed finite
element scheme (4.4), and confirming the rates of convergence provided by Theorem 6.1. Our im-
plementation is based on a FreeFem++ code (see [42]), in conjunction with the direct linear solver
UMFPACK (see [20]). Regarding the implementation of the Newton iterative method, the iterations
are terminated once the relative error of the entire coefficient vectors between two consecutive iterates
is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖l2
‖coeffm+1‖l2

≤ tol,

where ‖ · ‖l2 is the standard l2-norm in RN , with N denoting the total number of degrees of freedom
defining the finite element subspaces L2

tr ,h(ΩS),Hh,0(ΩS),H1
h,ΓS

(ΩS),L2
skew,h(ΩS),Hh,0(ΩD),ΛS

h(Σ),

ΛD
h (Σ), and L2

h,0(ΩD), and tol is a fixed tolerance to be specified for each example. As usual, the
individual errors are denoted by:

e(tS) := ‖tS − tS,h‖0,ΩS
, e(σS) := ‖σS − σS,h‖div,ΩS

, e(uS) := ‖uS − uS,h‖1,ΩS
,

e(ρS) := ‖ρS − ρS,h‖0,ΩS
, e(pS) := ‖pS − pS,h‖0,ΩS

, e(uD) := ‖uD − uD,h‖div ,ΩD
,

e(pD) := ‖pD − pD,h‖0,ΩD
, e(ϕ) := ‖ϕ−ϕh‖1/2,00,Σ, e(λ) := ‖λ− λh‖1/2,Σ.

where pS,h is the postprocessed pressure given by

pS,h := − 1

n
tr (σS,h + (uS,h ⊗ uS,h))− lh in ΩS.

In addition, we define the experimental rates of convergence

r(%) :=
log(e(%)/ê(%))

log(h/ĥ)
for each % ∈ {tS,σS,uS,ρS, pS,uD, pD,ϕ, λ},

where e and ê denote errors computed on two consecutive meshes of sizes h and ĥ, respectively.

The examples to be considered in this section are described next. In all of them we choose K = I,
ω = 1, and according to (3.26), the stabilization parameters are taken as κ1 = µ1/L

2
µ, with Lµ :=

max{µ2, 2µ2 − µ1}, κ2 = κ1, κ3 = µ1/2, and κ4 = CKoµ1/4, with CKo = 0.5. In addition, the null
mean value of trσS,h and pD,h over ΩS and ΩD, respectively, are fixed via a penalization strategy.

In our first example we consider a porous unit square, coupled with a semi-disk-shaped fluid domain,
i.e., ΩD := (−0.5, 0.5)2 and ΩS := {(x1, x2) : x2

1 + (x2 − 0.5)2 < 0.25, x2 > 0.5} (see bottom left panel
of Figure 7.2). In this case, we set the nonlinear viscosity to

µ(s) := 2 +
1

1 + s
for s ≥ 0.

The data fS and fD are chosen so that the exact solution in the tombstone-shaped domain Ω is given
by the smooth functions

pS(x) = sin(πx1) sin(πx2), uS(x) = −curl (cos(πx1) cos(πx2)),

for all x := (x1, x2) ∈ ΩS, and

pD(x) = sin(πx1) sin(πx2) ∀x := (x1, x2) ∈ ΩD,
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where curl (v) :=
(
∂v
∂x2

,− ∂v
∂x1

)t
for any sufficiently smooth function v. Notice that this solution

satisfies uS·n = uD·n on Σ and the boundary condition uD·n = 0 on ΓD. However, the Dirichlet
boundary condition for the Navier–Stokes velocity on ΓS is non-homogeneous. Then, we need to
modify accordingly the functional F (cf. (2.17)), as follows

[F, (r,ψ)] := −κ2(fS,divτ S)S + (fS,vS)S + 〈τ Sn,g〉ΓS
∀ (r,ψ) ∈ X,

where g := uS|ΓS
∈ H1/2(ΓS).

In our second example we consider the regions ΩS := (0, 1)2 and ΩD := (0, 1)×(−1, 0). The viscosity
follows a Carreau law (cf. (2.3)) with α0 = 0.5, α1 = 0.5, and β = 1, that is

µ(s) := 0.5 + 0.5(1 + s2)−1/2 for s ≥ 0,

and the data fS and fD are chosen so that the exact solution is given by

pS(x) = x2
1 − x2

2, uS(x) = curl (x1(x1 − 1)(x2 − 1) sin(πx1) sin(πx2))

for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD.

Finally, in Example 3 we consider ΩS := (0, 1)2 and let ΩD be the L-shaped domain given by
(−1, 1)2 \ ΩS. The viscosity follows a Carreau law with α0 = 0.5, α1 = 0.5, and β = 1.5, that is

µ(s) := 0.5 + 0.5(1 + s2)−1/4 for s ≥ 0.

The data fS and fD are chosen so that the exact solution is given by

pS(x) = cos(πx1) cos(πx2), uS(x) = curl (sin(πx1) sin(πx2))

for all x := (x1, x2) ∈ ΩS, and

pD(x) = cos(πx1) cos(πx2) ∀x := (x1, x2) ∈ ΩD.

In Tables 7.1, 7.2 and 7.3 we summarize the convergence history for a sequence of quasi-uniform
triangulations, considering the finite element spaces introduced in Section 6.1 with k = 0, and solving
the nonlinear problem with a tolerance tol = 1E−6, which required around five Newton iterations. We
observe that the rate of convergence O(hk+1) predicted by Theorem 6.1 (when δ = k + 1) is attained
in all the variables (with k = 0). In addition, some components of the approximate solutions for the
three examples are displayed in Figures 7.1, 7.2 and 7.3. All the figures were obtained with 785349,
1470527 and 2190236 degrees of freedom for the Examples 1, 2, and 3, respectively.
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Figure 7.1: Example 1: Approximated spectral norm of the stress tensor components and the strain
tensor (top panels), skew-symmetric part of the Navier–Stokes velocity gradient, Navier–Stokes pres-
sure field, and Darcy pressure field (centre panels), and geometry configuration and velocity compo-
nents on the whole domain (bottom row).

34



-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-0.8 -0.4 0 0.4 0.8

.

-1 1

-2 0 2

. X

-3.14 3.14

-2 0 2

. Y

-3.14 3.14

-0.8 -0.4 0 0.4 0.8

.

-1 1
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spectral norm of one of the components of the stress tensor and the strain tensor (top panels), Navier–
Stokes velocity components and Navier–Stokes pressure field (centre panels), and Darcy velocity com-
ponents and Darcy pressure field (bottom row).
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nents on the whole domain (bottom row).
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