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Abstract

We propose and analyze a fully-mixed finite element method to numerically approximate the flow
patterns of a viscous fluid within a highly permeable medium, described by Brinkman equations,
and its interaction with pure porous media flow under Darcy’s law. The system is formulated in
terms of velocity and pressure of the porous medium, together with vorticity, velocity and pressure
of the fluid. In addition, the tangential component of the vorticity is supposed to vanish on the
whole boundary of the fluid, whereas null normal components of both velocities are assumed on the
respective boundaries, except on the interface where suitable transmission conditions are considered.
In this way, the derivation of the corresponding mixed variational formulation leads to a Lagrange
multiplier enforcing the pressure continuity across the interface, whereas mass balance results from
essential boundary conditions on each domain. As a consequence, a typical saddle-point operator
equation is obtained, and hence the classical Babuška-Brezzi theory is applied to establish the well-
posedness of the continuous and discrete schemes. In particular, we remark that the continuous and
discrete inf-sup conditions of the main bilinear form are proved by using suitably chosen injective
operators to get lower bounds of the corresponding suprema, which constitutes a previously known
technique, recently denominated T -coercivity. In turn, and consistent with the above, the stability
of the Galerkin scheme requires that the curl of the finite element subspace approximating the
vorticity be contained in the space where the discrete velocity of the fluid lives, which yields
Raviart-Thomas and Nédélec finite element subspaces as feasible choices. Then we show that the
aforementioned constraint can be avoided by augmenting the mixed formulation with a residual
arising from the Brinkman momentum equation. Finally, several numerical examples illustrating
the good performance of the methods and confirming the theoretical rates of convergence are
reported.
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1 Introduction

This paper is motivated by the numerical approximation of flow patterns in an heterogeneous media
composed by a porous medium, where Darcy equations govern the flow behavior of an incompressible
fluid, and a much more permeable domain, where the viscous laminar flow regime can be described
by the linear Brinkman model. The two domains are separated by an essentially fixed interface.
Such a scenario is often encountered in e.g. the modelling of surface and subsurface flow in porous
media, petroleum reservoirs, or perfusion of physiological fluids into soft tissues, focusing typically on
filtration or other similar processes of interest. We are also interested in accurately recovering the
additional vorticity field (vectorial for three-dimensional flows and perpendicular to the plane of the
flow and therefore considered scalar in 2D), which yields better information on circulation effects of
the free fluid, sometimes observed near interfaces.

At the interface of the two domains, and depending on the specific form of the problem at hand,
one typically requires preservation of physical quantities such as normal velocities, normal stresses,
and so on. An abundant body of literature is devoted to different ways of treating the interface
conditions, from both mathematical and numerical perspectives. These basically include sequential
substructuring methods, where decoupled subproblems are solved on each subdomain, followed by
an updating of the interface field values, then using these values as boundary data to solve a local
problem on the other subdomain, and iterating in some adequate manner (see e.g. [7, 15, 28, 31]); and
monolithic, fully coupled approaches where all sought fields are computed at once, for instance by a
single operator acting on the two media or with the aid of Lagrange multipliers specifically designed
to impose continuity of fields to be conserved across the interface (see for instance [6, 13, 17, 18]).
Our method follows the latter strategy. Up to our knowledge, the coupling of Brinkman and Darcy
flows has been only addressed in terms of the primal unknowns of velocity and pressure [11, 17, 28].
Vorticity-based formulations for the Stokes-Darcy coupling were introduced in [9] and later studied
in [8, 16]. An advantage of this kind of formulations is that the vorticity can be accessed directly,
without postprocessing and it is straightforward to include non-inertial effects by simply modifying
initial and boundary data [4, 5]. For instance, for external flows it is known that boundary conditions
are better suited for vorticity than for e.g. pressure. Moreover, in many flow regimes the vorticity is
concentrated in a specific region of the domain, which suggests the use of vorticity as guide to mesh
refinement.

The contents of the paper are organized as follows. In the remainder of the present section we
recall basic terminology and some properties of functional spaces, and introduce further standard
notations. In Section 2 we describe the coupled problem of interest and derive a first version of its
mixed variational formulation. The solvability analysis of the later is carried out in Section 3. We
first identify the non-trivial solutions of the associated homogeneous problem, and then reformulate
the original continuous formulation in order to be able to guarantee unique solvability of it. The
classical Babuška-Brezzi is then applied in such a way that the continuous inf-sup conditions of the
main bilinear form are established by employing a known approach that has been recently referred as
T -coercivity. Then, in Section 4 we introduce the associated Galerkin scheme and adapt the arguments
from the continuous case to prove that, under suitable assumptions on the finite element subspaces
involved, it is well-posed. In particular, the curl of the subspace approximating the vorticity must be
contained in the space where the discrete velocity of the fluid lives, and hence Raviart-Thomas and
Nédélec finite elements for velocities and vorticity, respectively, become feasible choices. In turn, the
pressures and the Lagrange multiplier are approximated, respectively, by discontinuous and continuous
piecewise polynomials. Next, in Section 5 we modify the mixed formulation by incorporating a residual
arising from the Brinkman momentum equation, and show that the resulting augmented scheme,
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yielding a strongly elliptic main bilinear form, does not require the aforementioned constraint. Finally,
several numerical examples illustrating the good performance of the mixed finite element methods and
confirming the theoretical rates of convergence are provided in Section 6.

We end this section by specifying some notations to be employed throughout the paper. In parti-
cular, we utilize standard simplified terminology for Sobolev spaces and norms. For instance, if O ⊆ R

3

is a domain, S ⊆ R
3 is a Lipschitz surface, and r ∈ R, we define

Hr(O) := [Hr(O)]3 and Hr(S) := [Hr(S)]3 .

However, when r = 0 we usually write L2(O) and L2(S) instead of H0(O) and H0(S), respectively.
The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O) and Hr(O)) and ‖ · ‖r,S (for Hr(S) and
Hr(S)). In general, given any Hilbert space H, we use H to denote H3. In turn, in the realm of mixed
methods (see [12]) one usually needs the Hilbert spaces

H(div;O) :=
{
v ∈ L2(O) : div v ∈ L2(O)

}
, H(curl;O) :=

{
v ∈ L2(O) : curl v ∈ L2(O)

}
,

normed, respectively, with

‖v‖div;O :=
{
‖v‖20,O + ‖div v‖20,O

}1/2
, ‖v‖curl;O :=

{
‖v‖20,O + ‖ curl v‖20,O

}1/2
,

where, for any vector field v := (v1, v2, v3)
t ∈ L2(O),

div v :=

3∑

i=1

∂ivi and curlv := ∇× v =



∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1


 .

In addition, we also recall the orthogonal decomposition

L2(O) = L2
0(O) ⊕ P0(O) , (1.1)

where P0(O) is the space of constant functions on O, and

L2
0(O) = P0(O)⊥ :=

{
q ∈ L2(O) :

∫

O
q = 0

}
. (1.2)

Equivalently, each q ∈ L2(O) can be uniquely decomposed as q = q0 + c, with

q0 := q −
1

|O|

∫

O
q ∈ L2

0(O) and c :=
1

|O|

∫

O
q ∈ R . (1.3)

Certainly, L2
0(O) is endowed with the usual norm of L2(O), and it is easy to see that there holds

‖q‖20,O = ‖q0‖
2
0,O + |O| c2 . (1.4)

Finally, in what follows 0 stands for a generic null vector (including the null functional and operator),
and we use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants
independent of the discretization parameters, which may take different values in different occurrences.
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Figure 2.1: Sketch of the domains occupied by the incompressible fluid and by the porous medium
(ΩB and ΩD, respectively), interface Σ, and corresponding boundaries.

2 The coupled problem and its mixed formulation

We first let ΩB and ΩD be bounded and simply connected polyhedral Lipschitz domains in R
3 such

that ∂ΩB ∩ ∂ΩD =: Σ 6= ∅ and ΩB ∩ ΩD = ∅, and set Ω := ΩB ∪ ΩD with boundary Γ = ∂Ω split
into ΓB and ΓD (see the sketch in Figure 2.1). Note that the interface Σ between ΩB and ΩD does
not necessarily coincide with ∂ΩB (as it was assumed in e.g. [8, 16]). Then, given source terms
fD ∈ L2(ΩD) and fB ∈ L2(ΩB), we are interested in the Brinkman-Darcy coupled problem, which is
formulated in what follows in terms of the fluid velocity uB, the fluid pressure pB, the fluid vorticity
ωB, the Darcy velocity uD, and the Darcy pressure pD. More precisely, the sets of equations in the
Brinkman and Darcy domains ΩB and ΩD, are given, respectively, by

αuB + ν curl ωB + ∇pB = fB
ωB − curluB = 0

divuB = 0



 in ΩB , (2.1)

and
µuD +∇pD = fD

divuD = 0

}
in ΩD , (2.2)

where ν > 0 is the kinematic viscosity of the fluid, µ > 0 depends on this viscosity and on the
permeability of the porous medium, which is assumed to be homogeneous, and α > 0 is a parameter
related to the relaxation time (typically proportional to the inverse of the timestep after a Rothe type
time discretization). In turn, the corresponding transmission conditions become

uD · n = uB · n and pD = pB on Σ , (2.3)

where n stands for the outward normal at ΩB and ΩD, whereas the boundary conditions reduce to

ωB × n = 0 on ∂ΩB = Σ ∪ ΓB , uB · n = 0 on ΓB , and uD · n = 0 on ΓD . (2.4)

We now aim to derive the mixed variational formulation of (2.1) - (2.4). We begin by testing the
first equation in (2.1) with functions in the space

HB(div; ΩB) :=
{
vB ∈ H(div; ΩB) : vB · n = 0 on ΓB

}
.

4



To this end, we need to recall that the fact that vB ·n = 0 on ΓB guarantees that vB ·n|Σ belongs to
H−1/2(Σ) for each vB ∈ HB(div; ΩB) (see the beginning of Section 3 below for further details on this
issue). In this way, integrating by parts and using the respective boundary conditions, we find that

α

∫

ΩB

uB · vB + ν

∫

ΩB

vB · curlωB −

∫

ΩB

pB div vB + 〈vB ·n, λ〉Σ =

∫

ΩB

fB · vB ∀ vB ∈ HB(div; ΩB),

(2.5)
where, thanks to the second transmission condition in (2.3), we have introduced the auxiliary unknown

λ := pD|Σ = pB|Σ ∈ H1/2(Σ) ,

and 〈·, ·〉Σ denotes the duality pairing of H−1/2(Σ) and H1/2(Σ) with respect to the L2(Σ)-inner prod-
uct. Furthermore, it will become clear below that λ can also be seen as the Lagrange multiplier
enforcing the continuity of pressure across the interface Σ. Next, we define

H0(curl; ΩB) :=
{
zB ∈ H(curl; ΩB) : zB × n = 0 on ∂ΩB

}
,

so that testing the second equation in (2.1) with functions in this space, and integrating by parts, we
obtain ∫

ΩB

ωB · zB −

∫

ΩB

uB · curl zB = 0 ∀ zB ∈ H0(curl; ΩB) . (2.6)

In turn, the third equation in (2.1) is initially tested as
∫

ΩB

qB divuB = 0 ∀ qB ∈ L2(ΩB) . (2.7)

On the other hand, in order to deal with the equations in the Darcy domain, we now set

HD(div; ΩD) :=
{
vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
,

and test the first equation of (2.2) with functions in this space. Thus, integrating by parts, using the
corresponding boundary conditions, noting that the normal n on Σ points inward ΩD, and recalling
that λ := pD|Σ, we get

µ

∫

ΩD

uD · vD −

∫

ΩD

pD div vD − 〈vD · n, λ〉Σ =

∫

ΩD

fD · vD ∀ vD ∈ HD(div; ΩD) . (2.8)

In addition, similarly as for the incompressibility condition in ΩB, the second equation in (2.2) is
initially tested as ∫

ΩD

qD div vD = 0 ∀ qD ∈ L2(ΩD) . (2.9)

We end the present derivation with the weak imposition of the essential transmission condition given
by the first equation in (2.3), that is

〈uB · n − uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) . (2.10)

Consequently, reordering (2.5) - (2.10) in a suitable way, namely placing each set of equations
{(2.5), (2.6), (2.8)} and {(2.7), (2.9), (2.10)} into a single equation each, we arrive at the mixed
formulation of (2.1) - (2.4): Find ~u := (uB,ωB,uD) ∈ H and ~p := (pB, pD, λ) ∈ Q such that

a(~u, ~v) + b(~v, ~p) = F(~v) ∀~v := (vB,zB,vD) ∈ H ,

b(~u, ~q) = G(~q) ∀ ~q := (qB, qD, ξ) ∈ Q ,
(2.11)
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where

H := HB(div; ΩB)×H0(curl; ΩB)×HD(div; ΩD) , Q := L2(ΩB)× L2(ΩD)×H1/2(Σ) ,

a : H×H → R and b : H×Q → R are the bilinear forms defined by

a(~u, ~v) := α

∫

ΩB

uB · vB + ν

∫

ΩB

ωB · zB + ν

∫

ΩB

vB · curlωB

− ν

∫

ΩB

uB · curlzB + µ

∫

ΩD

uD · vD ∀ (~u, ~v) ∈ H×H ,
(2.12)

b(~v, ~q) := −

∫

ΩB

qB div vB −

∫

ΩD

qD div vD + 〈vB · n− vD · n, ξ〉Σ ∀ (~v, ~q) ∈ H×Q , (2.13)

and F ∈ H′ and G ∈ Q′ are the functionals defined by

F(~v) :=

∫

ΩB

fB · vB +

∫

ΩD

fD · vD ∀~v ∈ H , and G = 0 . (2.14)

3 Solvability analysis of the mixed formulation

In this section we analyze the solvability of (2.11). For this purpose, we first recall some definitions
and technical results concerning Sobolev spaces on ΓD, ΓB, and Σ. We begin by mentioning that,
given η ∈ H−1/2(∂ΩD), its restriction to ΓD, say η|ΓD

, is defined as

〈η|ΓD
, ρ〉ΓD

:= 〈η,ED,0(ρ)〉∂ΩD
∀ ρ ∈ H

1/2
00 (ΓD) ,

where ED,0 : H
1/2(ΓD) → L2(∂ΩD) is the extension by zero in Σ := ∂ΩD\ΓD, and

H
1/2
00 (ΓD) :=

{
ρ ∈ H1/2(ΓD) : ED,0(ρ) ∈ H1/2(∂ΩD)

}
,

which is endowed with the natural norm ‖ρ‖1/2,00,ΓD
:= ‖ED,0(ρ)‖1/2,∂ΩD

. It is quite clear, then, that

η|ΓD
belongs to H

−1/2
00 (ΓD), the dual of H

1/2
00 (ΓD), and that η = 0 on ΓD (equivalently η|ΓD

= 0) if and
only if

〈η,ED,0(ρ)〉∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) .

Hereafter, 〈·, ·〉ΓD
(resp. 〈·, ·〉∂ΩD

) stands for the duality pairing of H
−1/2
00 (ΓD) and H

1/2
00 (ΓD) (resp.

H−1/2(∂ΩD) and H1/2(∂ΩD)) with respect to the L2(ΓD) (resp. L
2(∂ΩD)) inner product. Furthermore,

it is not difficult to show (see, e.g. [18, Section 2]) that there holds the decomposition

H1/2(∂ΩD) = ED

(
H1/2(Σ)

)
⊕ ED,0

(
H

1/2
00 (ΓD)

)
,

where ED : H1/2(Σ) → H1/2(∂ΩD) is the bounded linear extension defined by ED(ξ) := zξ|∂ΩD
∀ ξ ∈

H1/2(Σ), with zξ ∈ H1(ΩD) being the unique weak solution of the boundary value problem with mixed
boundary conditions:

∆zξ = 0 in ΩD , zξ = ξ on Σ , ∇zξ · n = 0 on ΓD .

In this way, given ϕ ∈ H1/2(∂ΩD), there exist unique ξϕ ∈ H1/2(Σ) and ρϕ ∈ H
1/2
00 (ΓD) such that

ϕ = ED(ξϕ) + ED,0(ρϕ) , (3.1)
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and hence
〈η, ϕ〉∂ΩD

= 〈η,ED(ξϕ)〉∂ΩD
+ 〈η,ED,0(ρϕ)〉∂ΩD

, (3.2)

which can be rewritten as
〈η, ϕ〉∂ΩD

= 〈η
Σ
, ξϕ〉Σ + 〈η

D
, ρϕ〉ΓD

,

where η
Σ
∈ H−1/2(Σ) and η

D
∈ H

−1/2
00 (ΓD) are defined accordingly. In addition, it is clear from (3.1)

and the definitions of ED and ED,0 that actually ξϕ = ϕ|Σ for each ϕ ∈ H1/2(∂ΩD). In particular, when
η = 0 on ΓD, the foregoing equations yield 〈η, ϕ〉∂ΩD

= 〈η,ED(ξϕ)〉∂ΩD
=: 〈η

Σ
, ξϕ〉Σ = 〈η

Σ
, ϕ|Σ〉Σ,

and hence η can be identified with a functional η
Σ
∈ H−1/2(Σ). In other words, one simply says that

η|Σ = η
Σ

∈ H−1/2(Σ). Note that an interesting application of this result arises when we consider
vD ∈ HD(div; ΩD) and define η := vD · n ∈ H−1/2(∂ΩD). In fact, since vD · n = 0 on ΓD, we readily
deduce that vD · n|Σ ∈ H−1/2(Σ). Moreover, the analogue conclusion obtained by exchanging ΩD,
ΓD, and HD(div; ΩD) by ΩB, ΓB, and HB(div; ΩB), respectively, is precisely what we used in Section
2 for the derivation of (2.5).

We are now in position to provide the following preliminary result, which establishes a continuous
inf-sup condition on HD(div; ΩD)×

(
L2
0(ΩD)×H1/2(Σ)

)
.

Lemma 3.1 There exits βD > 0 such that

SD(qD, ξ) := sup
vD∈HD(div;ΩD)

vD 6=0

∫

ΩD

qD div vD + 〈vD · n, ξ〉Σ

‖vD‖div;ΩD

≥ βD

{
‖qD‖0,ΩD

+ ‖ξ‖1/2,Σ

}
(3.3)

for all (qD, ξ) ∈ L2
0(ΩD)×H1/2(Σ).

Proof. It proceeds almost verbatim as the 2D version provided in [24, Lemma 3.3]. However, for sake
of completeness, most details are given in what follows. Indeed, the first part of the proof reduces
to show that the operator div : HD(div; ΩD) → L2

0(ΩD) is surjective, for which, given qD ∈ L2
0(ΩD),

it suffices to define the pre-image vD := ∇z ∈ HD(div; ΩD), where z ∈ H1(ΩD) is the unique weak
solution of the Neumann boundary value problem

∆z = qD in ΩD , ∇z · n = 0 on ∂ΩD ,

∫

ΩD

z = 0 .

In this way, since

SD(qD, ξ) ≥ sup
vD∈HD(div;ΩD)

vD 6=0

∫

ΩD

qD div vD

‖vD‖div;ΩD

− ‖ξ‖1/2,Σ ,

the aforementioned surjectivity implies the existence of C > 0 such that

SD(qD, ξ) ≥ C ‖qD‖0,ΩD
− ‖ξ‖1/2,Σ . (3.4)

In turn, the main ingredient of the second part has to do with the construction of a proper extension
of an arbitrary φ ∈ H−1/2(Σ) to a functional η ∈ H−1/2(∂ΩD). More precisely, given ξ ∈ H1/2(Σ),
we consider φ ∈ H−1/2(Σ) and, following the previous analysis and notations, we simply define η ∈
H−1/2(∂ΩD) as

〈η, ϕ〉∂ΩD
:= 〈φ, ξϕ〉Σ = 〈φ,ϕ|Σ〉Σ ∀ϕ ∈ H1/2(∂ΩD) ,

7



which yields ‖η‖−1/2,∂ΩD
≤ ‖φ‖−1/2,Σ. It follows straightforwardly from (3.1) and (3.2) that

〈η,ED,0(ρ)〉∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) and 〈η,ED(ξ)〉∂ΩD

= 〈φ, ξ〉Σ ∀ ξ ∈ H1/2(Σ) ,

which says, equivalently, that η = 0 on ΓD and η = φ on Σ. Next, we let zη ∈ H1(ΩD) be the unique
weak solution of the boundary value problem

∆zη =
1

|ΩD|
〈η, 1〉∂ΩD

in ΩD , ∇zη · n = η on ∂ΩD ,

∫

ΩD

zη = 0 ,

define wD := ∇zη in ΩD, and observe that divwD = 1
|ΩD| 〈η, 1〉∂ΩD

∈ P0(ΩD) (which yields wD ∈

H(div; ΩD)), wD · n = η on ∂ΩD, and ‖wD‖div;ΩD
≤ C ‖η‖−1/2,∂ΩD

≤ C ‖φ‖−1/2,Σ. It follows that
wD ∈ HD(div; ΩD) and hence

SD(qD, ξ) ≥

∣∣∣∣
∫

ΩD

qD divwD + 〈wD · n, ξ〉Σ

∣∣∣∣
‖wD‖div;ΩD

=
|〈φ, ξ〉Σ|

‖wD‖div;ΩD

≥ c
|〈φ, ξ〉Σ|

‖φ‖−1/2,Σ
,

which, being valid for any φ ∈ H−1/2(Σ), implies that SD(qD, ξ) ≥ c ‖ξ‖1/2,Σ. This inequality and
(3.4) yield (3.3), thus completing the proof.

�

The following result is basically a “mirror reflection” through Σ of the previous lemma.

Lemma 3.2 There exits βB > 0 such that

SB(qB, ξ) := sup
vB∈HB(div;ΩB)

vB 6=0

∫

ΩB

qB div vB − 〈vB · n, ξ〉Σ

‖vB‖div;ΩB

≥ βB

{
‖qB‖0,ΩB

+ ‖ξ‖1/2,Σ

}
(3.5)

for all (qB, ξ) ∈ L2
0(ΩB)×H1/2(Σ).

Proof. It proceeds exactly as the proof of Lemma 3.1 by replacing ΩD, ΓD, and HD(div; ΩD) by ΩB,
ΓB, and HB(div; ΩB), respectively.

�

Lemma 3.1 and 3.2 imply the following continuous inf-sup condition for b.

Lemma 3.3 There exits β > 0 such that

S(~q) := sup
~v∈H

~v 6=0

b(~v, ~q)

‖~v‖H
≥ β

{
‖qB,0‖0,ΩB

+ ‖qD,0‖0,ΩD
+ ‖ξ − cB‖1/2,Σ + ‖ξ − cD‖1/2,Σ

}
(3.6)

for all ~q := (qB, qD, ξ) ∈ Q, where, according to (1.1), qB = qB,0 + cB and qD = qD,0 + cD, with
qB,0 ∈ L2

0(ΩB), qD,0 ∈ L2
0(ΩD), and cB := 1

|ΩB|

∫
ΩB
qB , cD := 1

|ΩD|

∫
ΩD

qD ∈ R.

Proof. Given ~q := (qB, qD, ξ) ∈ Q, with qB and qD decomposed as indicated above, we integrate by
parts in ΩB and ΩD, respectively, to deduce that

∫

ΩB

qB div vB − 〈vB · n, ξ〉Σ =

∫

ΩB

qB,0 div vB − 〈vB · n, ξ − cB〉Σ ∀ vB ∈ HB(div; ΩB) ,
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and
∫

ΩD

qD div vD + 〈vD · n, ξ〉Σ =

∫

ΩD

qD,0 div vD + 〈vD · n, ξ − cD〉Σ ∀ vD ∈ HD(div; ΩD) .

Hence, bearing in mind the definitions of the bilinear form b (cf. (2.13)) and the operators SD and
SB (cf. (3.3), (3.5)), and employing the foregoing equations, we easily find that

S(~q) ≥ SD(qD,0, ξ − cD) and S(~q) ≥ SB(qB,0, ξ − cB)

Consequently, these inequalities and straightforward applications of Lemmata 3.1 and 3.2 imply (3.6)
and complete the proof.

�

Having proved a first property for b, we now observe that the bilinear form a satisfies a positiveness
condition. More precisely, it follows directly from its definition (cf. (2.12)) that

a(~v, ~v) = α ‖vB‖
2
0,ΩB

+ ν ‖zB‖
2
0,ΩB

+ µ ‖vD‖
2
0,ΩD

∀~v := (vB,zB,vD) ∈ H . (3.7)

A first result concerning the solvability of our mixed formulation (2.11) is established next.

Theorem 3.1 Let (~u, ~p) :=
(
(uB,ωB,uD), (pB, pD, λ)

)
∈ H × Q be a solution of the homogeneous

problem associated to (2.11), that is with F = G = 0. Then ~u = 0 and there exists c ∈ R such that
~p = (c, c, c).

Proof. We first notice from the second equation of (2.11) with ~q = ~p that b(~u, ~p) = 0, and hence,
taking ~v = ~u in the first equation of (2.11) and using the identity (3.7), we arrive at

0 = a(~u, ~u) = α ‖uB‖
2
0,ΩB

+ ν ‖ωB‖
2
0,ΩB

+ µ ‖uD‖
2
0,ΩD

,

from which it follows that ~u = 0. In this way, the first equation of (2.11) becomes now b(~v, ~p) = 0
for all ~v ∈ Q, which, according to the continuous inf-sup condition for b given by Lemma 3.3, yields
pB,0 = 0, pD,0 = 0, and λ = 1

|ΩB|

∫
ΩB
pB = 1

|ΩD|

∫
ΩD

pD =: c ∈ R, so that pB = pB,0 + c = c and
pD = pD,0 + c = c.

�

As a straightforward consequence of Theorem 3.1 we conclude that whenever (2.11) has solution,
it is not unique. Therefore, in order to overcome this drawback, we need to remove the constant c ∈ R

from the solutions of the associated homogeneous system, for which from now on we propose to look
for the unknown ~p in the space

Q0 := L2
0(ΩB)× L2(ΩD)×H1/2(Σ) . (3.8)

Alternatively, one could also consider Q0 := L2(ΩB)×L2
0(ΩD)×H1/2(Σ) or Q0 := L2(ΩB)×L2(ΩD)×

H
1/2
0 (Σ), where H

1/2
0 (Σ) :=

{
ξ ∈ H1/2(Σ) : 〈1, ξ〉Σ = 0

}
.

Throughout the rest of the paper we stay with (3.8) and consider, instead of (2.11), the following
mixed formulation: Find ~u := (uB,ωB,uD) ∈ H and ~p := (pB, pD, λ) ∈ Q0 such that

a(~u, ~v) + b(~v, ~p) = F(~v) ∀~v := (vB,zB,vD) ∈ H ,

b(~u, ~q) = G(~q) ∀ ~q := (qB, qD, ξ) ∈ Q0 .
(3.9)
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Note that the second equation of (2.11), which is tested against ~q ∈ Q, is equivalent to the present
second equation of (3.9), which is tested against ~q ∈ Q0. In fact, one implication is obvious because
of the inclusion Q0 ⊆ Q. Conversely, assume that the second equation of (3.9) holds. Then, given
c ∈ R, we integrate by parts and, noting that (0, qD − c, ξ − c) ∈ Q0 := L2

0(ΩB)× L2(ΩD)×H1/2(Σ),
we find that

b(~u, (c, qD, ξ)) = b(~u, (0, qD − c, ξ − c)) = 0 ,

which yields b(~u, (qB, qD, ξ)) = 0 = G(~q) for all ~q := (qB, qD, ξ) ∈ Q, thus confirming that the
second equation of (2.11) holds.

We now aim to establish the well-posedness of (3.9) by applying the classical Babuška-Brezzi theory.
We begin with the inf-sup condition for b on H×Q0.

Lemma 3.4 There exists β̃ > 0 such that

S(~q) := sup
~v∈H

~v 6=0

b(~v, ~q)

‖~v‖H
≥ β̃ ‖~q‖Q ∀ ~q ∈ Q0 . (3.10)

Proof. Given ~q = (qB, qD, ξ) ∈ Q0 := L2
0(ΩB)× L2(ΩD)×H1/2(Σ), we obtain from Lemma 3.3 that

S(~q) := sup
~v∈H

~v 6=0

b(~v, ~q)

‖~v‖H
≥ β

{
‖qB‖0,ΩB

+ ‖qD,0‖0,ΩD
+ ‖ξ‖1/2,Σ + ‖ξ − cD‖1/2,Σ

}
, (3.11)

where, according to (1.1), qD = qD,0 + cD, with qD,0 ∈ L2
0(ΩD) and cD := 1

|ΩD|

∫
ΩD

qD ∈ R. In turn, a
simple application of the triangle inequality shows that

|Σ| |cD| = ‖cD‖1/2,Σ ≤ ‖ξ‖1/2,Σ + ‖ξ − cD‖1/2,Σ ,

which, combined with (3.11) and the fact that ‖qD‖
2
0,ΩD

= ‖qD,0‖
2
0,ΩD

+ |ΩD| c
2
D (cf. (1.4)), imply

(3.10) and finish the proof.

�

Next, we address the coerciveness of a on the kernel V of b. Indeed, we first deduce from the
definitions of b (cf. (2.13)) and Q0 (cf. (3.8)) that

V = VB,D ∩ VΣ , (3.12)

with

VB,D :=
{
~v := (vB,zB,vD) ∈ H : div vB ∈ P0(ΩB) and div vD = 0 in ΩD

}
, (3.13)

and
VΣ :=

{
~v := (vB,zB,vD) ∈ H : vB · n = vD · n on Σ

}
. (3.14)

Lemma 3.5 There exists ˜̺> 0 such that

sup
~w∈V

~w 6=0

a(~v, ~w)

‖~w‖H
≥ ˜̺‖~v‖H ∀~v ∈ V , (3.15)

and

sup
~v∈V

~v 6=0

a(~v, ~w)

‖~v‖H
≥ ˜̺‖~w‖H ∀ ~w ∈ V , (3.16)
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Proof. We begin by recalling from [23, Lemma 3.2] that there exists ̺0 > 0 such that

‖vB‖0,ΩB
≥ ̺0 ‖vB‖div,ΩB

∀ vB ∈ H(div; ΩB) such that div vB ∈ P0(ΩB) . (3.17)

Hence, thanks to the foregoing inequality and (3.7), we find that

a(~v, ~v) ≥ ˜̺1
{
‖vB‖

2
div;ΩB

+ ‖zB‖
2
0,ΩB

+ ‖vD‖
2
div;ΩD

}
∀~v := (vB,zB,vD) ∈ VB,D , (3.18)

with ˜̺1 := min{α̺20, ν, µ} > 0. Next, given a particular ~v := (vB,zB,vD) ∈ V, we certainly have
zB ∈ H0(curl; ΩB), and thus, due to a well-known result (see, e.g. [25, Chapter I, Section 2.3, Remark
2.5]), there holds curl zB ∈ H0(div; ΩB), where

H0(div; ΩB) :=
{
vB ∈ H(div; ΩB) : vB · n = 0 on ∂ΩB

}
.

In this way, denoting
T0(~v) := (curl zB,zB,0) ,

which clearly belongs to V, we find, according to the definition of a (cf. (2.12)), that

a(~v, T0(~v)) = (α− ν)

∫

ΩB

vB · curl zB + ν ‖ curl zB‖
2
0,ΩB

+ ν ‖zB‖
2
0,ΩB

,

which, applying Cauchy-Schwarz’s inequality and simple algebraic manipulations, yields

a(~v, T0(~v)) ≥ −
|α− ν|2

2ν
‖vB‖

2
0,ΩB

+
ν

2
‖ curl zB‖

2
0,ΩB

+ ν ‖zB‖
2
0,ΩB

. (3.19)

Therefore, introducing now T (~v) := c ~v + c0 T0(~v), with suitable chosen positive constants c and c0
(depending on ˜̺1, α, and ν), and utilizing (3.18) and (3.19), we obtain that

T (~v) ∈ V , ‖T (~v)‖H ≤ C ‖~v‖H , and a(~v, T (~v)) ≥ ˜̺2 ‖~v‖2H ,

with C and ˜̺2 positive constants depending on ˜̺1, α, and ν as well. Then, we can write

sup
~w∈V

~w 6=0

a(~v, ~w)

‖~w‖H
≥

a(~v, T (~v))

‖T (~v)‖H
,

which, due to the foregoing estimates, gives (3.15). On the other hand, introducing the operator
T̃ : H → H as T̃ (~v) := (−vB,zB,−vD) ∀~v := (vB,zB,vD) ∈ H, we realize that ‖T̃ (~v)‖H = ‖~v‖H,
a(~v, ~w) = a(T̃ (~w), T̃ (~v)) ∀~v, ~w ∈ H, T̃ (~v) ∈ V ∀~v ∈ V, and T̃ : V → V is an isomorphism.
It follows easily that

sup
~v∈V

~v 6=0

a(~v, ~w)

‖~v‖H
= sup

~v∈V

~v 6=0

a(T̃ (~w), T̃ (~v))

‖T̃ (~v)‖H
= sup

~v∈V

~v 6=0

a(T̃ (~w), ~v)

‖~v‖H
,

which, thanks to (3.15), yields (3.16) and completes the proof.

�

As a consequence of the previous analysis we can state the following main result.
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Theorem 3.2 Assume that fD ∈ L2(ΩD) and fB ∈ L2(ΩB). Then there exists a unique (~u, ~p) :=(
(uB,ωB,uD), (pB, pD, λ)

)
∈ H×Q0 solution of the modified mixed formulation (3.9). Moreover, there

exists C > 0 such that
‖~u‖H + ‖~p‖Q ≤ C

{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
. (3.20)

Proof. Thanks to Lemma 3.4 and 3.5, the proof is a straightforward application of the continuous
Babuška-Brezzi theory. In particular, it is clear from the definition of F (cf. (2.14)) that ‖F‖H′ is
bounded by the right hand side of (3.20).

�

We end this section by remarking that the way of proving the inf-sup conditions for the bilinear
form a (cf. Lemma 3.5), namely using suitable operators T and T̃ to get a lower bound of the
suprema involved, corresponds basically to what has been recently denominated in the literature as
T -coercivity (see, e.g. [10], [14]). Nevertheless, the same idea, without any particular name of it, had
been employed previously at least in the context of fluid-solid interaction problems (see, e.g. [20], [21],
and [22]).

4 The mixed finite element method

In this section we introduce and analyze a mixed finite element scheme for (3.9). More precisely, we
first define the associated Galerkin scheme and establish suitable assumptions on the finite element
subspaces ensuring that it becomes well posed. Then, we provide specific examples satisfying the
required hypotheses. In what follows, given an integer k ≥ 0 and a subset S of R3, we denote by
Pk(S) the space of polynomials in S of total degree ≤ k. In addition, according to the notation
introduced in Section 1, we let Pk(S) = [Pk(S)]

3.

4.1 Preliminaries and main results

We begin by selecting a set of arbitrary discrete spaces, namely

HB
h ⊆ HB(div; ΩB) , HB

0,h ⊆ H0(curl; ΩB) , HD
h ⊆ HD(div; ΩD) ,

QB
h ⊆ L2(ΩB) , QD

h ⊆ L2(ΩD) , and QΣ
h ⊆ H1/2(Σ) .

(4.1)

In addition, in order to deal with the mean value condition for the Brinkman pressure pB, and also to
handle the assumptions guaranteeing the discrete inf-sup condition for b, we need to define

QB
h,0 := QB

h ∩ L2
0(ΩB) and QD

h,0 := QD
h ∩ L2

0(ΩD) . (4.2)

Hence, setting the global spaces

Hh := HB
h ×HB

0,h ×HD
h and Q0,h := QB

h,0 ×QD
h ×QΣ

h , (4.3)

the Galerkin scheme for (3.9) becomes: Find ~uh := (uB
h ,ω

B
h ,u

D
h ) ∈ Hh and ~ph := (pBh , p

D
h , λh) ∈ Q0,h

such that
a(~uh, ~vh) + b(~vh, ~ph) = F(~vh) ∀~vh := (vB

h ,z
B
h ,v

D
h ) ∈ Hh ,

b(~uh, ~qh) = G(~qh) ∀ ~qh := (qBh , q
D
h , ξh) ∈ Q0,h .

(4.4)
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We now aim to derive general hypotheses on the finite element subspaces introduced in (4.1)
ensuring, by means of the discrete Babuška-Brezzi theory, that the Galerkin scheme (4.4) becomes
well-posed. Our approach consists of adapting to the present discrete case the arguments employed in
Section 3 for the analysis of the continuous problem, mainly those from the proofs of Lemmas 3.4 and
3.5. We begin by observing that in order to have meaningful spaces QB

h,0 and QD
h,0 (cf. (4.2)), we need

to be able to eliminate constants polynomials from QB
h and QD

h . This request is certainly satisfied if
we assume that:

(H.0) P0(ΩB) ⊆ QB
h and P0(ΩD) ⊆ QD

h ,

which, in turn, yields the analogue orthogonal decompositions suggested by (1.1), that is

QB
h = QB

h,0 ⊕ P0(ΩB) and QD
h = QD

h,0 ⊕ P0(ΩD) . (4.5)

Next, according to the same arguments utilized in the proof of Lemma 3.4, which actually are
determined by those employed in the proofs of Lemmata 3.1, 3.2, and 3.3, we realize that in order to
show the discrete inf-sup condition for b on Hh ×Q0,h, we need to assume the following hypothesis:

(H.1) there holds P0(Σ) ⊆ QΣ
h and there exist β̃B, β̃D > 0, independent of h, such that

SB
h (q

B
h , ξh) := sup

v
B
h
∈HB

h

v
B
h
6=0

∫

ΩB

qBh div vB
h − 〈vB

h · n, ξh〉Σ

‖vB
h‖div;ΩB

≥ β̃B

{
‖qBh ‖0,ΩB

+ ‖ξh‖1/2,Σ

}
(4.6)

for all (qBh , ξh) ∈ QB
h,0 ×QΣ

h , and

SD
h (q

D
h , ξh) := sup

v
D
h
∈HD

h

v
D
h
6=0

∫

ΩD

qDh div vD
h + 〈vD

h · n, ξh〉Σ

‖vD
h ‖div;ΩD

≥ β̃D

{
‖qDh ‖0,ΩD

+ ‖ξh‖1/2,Σ

}
(4.7)

for all (qDh , ξh) ∈ QD
h,0 ×QΣ

h .

On the other hand, we now look at the discrete kernel of b, which is defined by

Vh :=
{
~vh := (vB

h ,z
B
h ,v

D
h ) ∈ Hh : b(~vh, ~qh) = 0 ∀ ~qh := (qBh , q

D
h , ξh) ∈ Q0,h

}
. (4.8)

Actually, in order to have a more explicit definition of Vh, similarly as obtained for the continuous
kernel V (cf. (3.12)), we now introduce the following assumption

(H.2) divHB
h ⊆ QB

h and divHD
h ⊆ QD

h ,

which, together with (4.3) and (4.5), implies

Vh = Vh
B,D ∩ Vh

Σ , (4.9)

with

Vh
B,D :=

{
~vh := (vB

h ,z
B
h ,v

D
h ) ∈ Hh : div vB

h ∈ P0(ΩB) and div vD
h = 0 in ΩD

}
, (4.10)
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and

Vh
Σ :=

{
~vh := (vB

h ,z
B
h ,v

D
h ) ∈ Hh : 〈vB

h · n− vD
h · n, ξh〉Σ = 0 ∀ ξh ∈ QΣ

h

}
. (4.11)

Since Vh
B,D ⊆ VB,D (cf. (3.13)), it is clear that inequality (3.18) is also valid in Vh

B,D and hence
in the discrete kernel Vh. Consequently, in order to show the discrete coerciveness of a on Vh by
adapting the procedure utilized in the proof of Lemma 3.5, it just remains to assume the following
hypothesis

(H.3) curl HB
0,h ⊆ HB

h .

Having established hypotheses (H.0), (H.1), (H.2), and (H.3), we now reconfirm that they
suffice to show that our Galerkin scheme (4.4) is well-posed and convergent. We begin with the
discrete inf-sup condition for b.

Lemma 4.1 There exists β̂ > 0, independent of h, such that

Sh(~qh) := sup
~vh∈Hh
~vh 6=0

b(~vh, ~qh)

‖~vh‖H
≥ β̂ ‖~qh‖Q ∀ ~qh ∈ Q0,h . (4.12)

Proof. Given ~qh := (qBh , q
D
h , ξh) ∈ Q0,h, we let q

D
h,0 ∈ QD

h,0 and cD ∈ R such that qDh = qDh,0+ cD. Then,
reasoning as in the proof of Lemma 3.3, which in this case reduces to integrate by parts in ΩD only
(since qBh is already in QB

h,0), we find, using the notations from (H.1), that

Sh(~qh) ≥ SB
h (q

B
h , ξh) and Sh(~qh) ≥ SD

h (q
D
h,0, ξh − cD) .

In this way, since thanks to the first assumption in (H.1) we have that ξh − cD belongs to QΣ
h , the

foregoing inequalities and a straightforward application of the discrete inf-sup conditions (4.6) and
(4.7), imply

Sh(~qh) ≥
1

2

(
β̃B + β̃D

) {
‖qBh ‖0,ΩB

+ ‖ξh‖1/2,Σ + ‖qDh,0‖0,ΩD
+ ‖ξh − cD‖1/2,Σ

}
.

The proof is concluded by employing the triangle inequality, exactly as we did for Lemma 3.4. �

The discrete inf-sup condition for a on Vh is proved next. Since Vh is finite dimensional, it suffices
to show one of the discrete analogues of the inequalities provided in Lemma 3.5.

Lemma 4.2 There exists ̺̂> 0, independent of h, such that

sup
~wh∈Vh
~wh 6=0

a(~vh, ~wh)

‖~wh‖H
≥ ̺̂‖~vh‖H ∀~vh ∈ Vh . (4.13)

Proof. Given ~vh := (vB
h ,z

B
h ,v

D
h ) ∈ Vh, we know from (3.18) that

a(~vh, ~vh) ≥ ˜̺1
{
‖vB

h‖
2
div;ΩB

+ ‖zB
h‖

2
0,ΩB

+ ‖vD
h ‖

2
div;ΩD

}
.
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In addition, thanks to the result in [25, Chapter I, Section 2.3, Remark 2.5] and our assumption (H.3),
we find that curl zB

h ∈ H0(div; ΩB) ∩ HB
h , and hence T0(~vh) := (curl zB

h ,z
B
h ,0) clearly belongs to

Vh (cf. (4.9)). The rest of the proof proceeds as in Lemma 3.5. Moreover, it is easy to realize that
the constants c and c0 defining now T (~vh) := c ~vh + c0 T0(~vh) can be taken exactly as those chosen
in the proof of that lemma, so that the resulting constant ̺̂ of the present result coincides with ˜̺ in
(3.15) and (3.16). �

The following main result is a direct consequence of the previous analysis.

Theorem 4.1 Assume that fD ∈ L2(ΩD) and fB ∈ L2(ΩB). In addition, suppose that (H.0), (H.1),
(H.2), and (H.3) hold. Then there exists a unique (~uh, ~ph) :=

(
(uB

h ,ω
B
h ,u

D
h ), (p

B
h , p

D
h , λh)

)
∈ Hh ×

Q0,h solution of the Galerkin scheme (4.4). Moreover, there exist C1, C2 > 0, independent of h, such
that

‖~uh‖H + ‖~ph‖Q ≤ C1

{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
, (4.14)

and
‖(~u, ~p)− (~uh, ~ph)‖H×Q ≤ C2

{
dist(~u,Hh) + dist(~p,Q0,h)

}
. (4.15)

Proof. Thanks to Lemma 4.1 and 4.2, the proof results as a straightforward application of the discrete
Babuška-Brezzi theory. �

4.2 Specific finite element subspaces

We now specify concrete examples of finite element subspaces satisfying the hypotheses introduced
in the previous section. For this purpose, we now let Th be a regular family of triangulations of
Ω̄B ∪ Ω̄D by tetrahedra K of diameter hK with mesh size h := max{hK : K ∈ Th}, such that

Th(Ω⋆) :=
{
K ∈ Th : K ⊆ Ω̄⋆

}
is a triangulation of Ω⋆ for each ⋆ ∈

{
B,D

}
. Then, we denote

by Th(Σ) the triangulation on Σ induced by Th (either from ΩB or ΩD). Also, for reasons that will
become clear below, we introduce an independent triangulation Th̃(Σ) of Σ by triangles T̃ of diameter

hT̃ , and define h̃ := max
{
hT̃ : T̃ ∈ Th̃(Σ)

}
.

4.2.1 Definition of subspaces

We first introduce the finite element subspaces

H⋆
h :=

{
v⋆h ∈ H⋆(div; Ω⋆) : v⋆h|K ∈ RT0(K) ∀K ∈ Th(Ω⋆)

}
,

Q⋆
h :=

{
qh ∈ L2(Ω⋆) : qh|K ∈ P0(K) ∀K ∈ Th(Ω⋆)

}
,

Q⋆
h,0 := Q⋆

h ∩ L2
0(Ω⋆),

where ⋆ ∈ {B,D}, and for any K ∈ Th(Ω⋆)

RT0(K) := P0(K)⊕ P0(K)x

is the local Raviart-Thomas space of lowest order. In addition, we set

HB
0,h :=

{
zB
h ∈ H0(curl; ΩB) : zB

h |K ∈ ND1(K) ∀K ∈ Th(ΩB)
}
,
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where for any K ∈ Th(ΩB)
ND1(K) := P0(K)⊕P0(K)× x

is the local edge space of Nédélec, that is

ND1(K) :=
{
w : K → C

3 : w(x) = a+ b× x ∀x ∈ K, a, b ∈ C
3
}
.

Finally for the interface Σ we consider the finite element subspace

QΣ
h̃

:=
{
λh̃ ∈ C0(Σ) : λh̃|T̃ ∈ P1(T̃ ) ∀ T̃ ∈ Th̃(Σ)

}
.

It is easy to check that these subspaces satisfy the hypotheses (H.0), (H.2) and (H.3).

On the other hand, for purposes of the analysis, we also need to define

Φh(Σ) :=
{
ψh ∈ L2(Σ) : ψh|T ∈ P0(T ) ∀T ∈ Th(Σ)

}
.

4.2.2 Approximation properties

In what follows ⋆ is a mute symbol taken in {B,D}. We let Π⋆h : H1(Ω⋆) → H⋆
h be the usual Raviart-

Thomas interpolation operator, that is, given a sufficiently smooth vector field v : Ω⋆ → R
3, we define

Π⋆h(v) as the only element of H⋆
h such that

∫

F
Π⋆h(v) · n =

∫

F
v · n ∀F ∈ E⋆h, (4.16)

where E⋆h is the set of faces of the triangulation Th(Ω⋆). We now recall some properties of Π⋆h and its
local counterparts Π⋆K for each K ∈ Th(Ω⋆) (see, e.g [19]):

(a) Π⋆h is well defined in Hδ(Ω⋆) ∩H(div; Ω⋆) for any δ ∈ (0, 1).

(b) There holds divΠ⋆h(v) = P⋆
h(div v), where P⋆

h : L2(Ω⋆) → Q⋆
h is the orthogonal projector.

Equivalently ∫

Ω⋆

qh divΠ
⋆
h(v) =

∫

Ω⋆

qh div (v) ∀ qh ∈ Q⋆
h.

(c) For each face F of K there holds Π⋆K(v) · nF = PF (v · nF ), where nF is the unit outward
normal on F and PF : L2(F ) → P0(F ) is the orthogonal projector.

(d) Given δ ∈ (0, 1) and v ∈ Hδ(Ω⋆) ∩H(div; Ω⋆), there holds

‖v −Π⋆K(v)‖0,K ≤ ChδK

{
|v|δ,K + ‖div (v)‖0,K

}
∀K ∈ Th(Ω⋆). (4.17)

Next, for any ǫ > 0 we introduce the Sobolev space

Hǫ(curl; ΩB) :=
{
v ∈ Hǫ(ΩB) : curl v ∈ Hǫ(ΩB)

}
,

and endow it with its Hilbertian norm

‖v‖Hǫ(curl;ΩB) :=
{
‖v‖2ǫ,ΩB

+ ‖ curl(v)‖2ǫ,ΩB

}1/2
.
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Then for each face F of Th(ΩB) we let tF be a unit tangential vector on F . It follows from [3, Lemma
4.7] that if ǫ > 1/2 the interpolation operator Πh : Hǫ(curl; ΩB) → HB

0,h associated with the face
finite element, which is characterized by

∫

F
Πh(v) · tF =

∫

F
v · tF ∀ faces F of Th(ΩB),

is well defined and uniformly bounded. In addition, the following property of Πh holds.

Lemma 4.3 There exists C > 0, independent of h, such that

‖v −Πh(v)‖curl;ΩB
≤ Chǫ‖v‖Hǫ(curl;ΩB) (4.18)

for all v ∈ Hǫ(curl; ΩB) and for all ǫ ∈ (1/2, 1].

Proof. See, [2, Proposition 5.6]. �

The approximation properties of the finite element subspaces involved are then established as
follows (see, e.g [12], [27], [30]):

(APu⋆

h ) there exists C > 0, independent of h, such that for each δ ∈ (0, 1] and for each
v ∈ Hδ(Ω⋆), with div (v) ∈ Hδ(Ω⋆), there holds

‖v −Π⋆h(v)‖div;Ω⋆ ≤ Chδ
{
‖v‖δ,Ω⋆ + ‖div (v)‖δ,Ω⋆

}
(⋆ ∈ {B,D}).

(AP p⋆
h ) there exists C > 0, independent of h, such that for each δ ∈ (0, 1] and for each q ∈

Hδ(Ω⋆), there holds

‖q − P⋆
h(q)‖0,Ω⋆ ≤ Chδ‖q‖δ,Ω⋆ (⋆ ∈ {B,D}).

(APωB
h ) there exists C > 0, independent of h, such that for each δ ∈ (1/2, 1] and for each

zB ∈ Hδ(curl; ΩB), there holds

‖zB −Πh(zB)‖curl;ΩB
≤ C hδ ‖zB‖Hδ(curl;ΩB).

(APλ
h̃
) there exists C > 0, independent of h̃, such that for each δ ∈ (0, 1] and for each ξ ∈

H1/2+δ(Σ), there holds
‖ξ − Ph̃(ξ)‖1/2,Σ ≤ C h̃δ ‖ξ‖1/2+δ,Σ,

where Ph̃ : H1/2(Σ) → QΣ
h̃
is the orthogonal projector.

(APh
ψ) there exists C > 0, independent of h, such that for each δ ∈ (0, 1] and for each ϕ ∈

H−1/2+δ(Σ), there holds

‖ϕ− P
−1/2
h (ϕ)‖−1/2,Σ ≤ C hδΣ ‖ϕ‖−1/2+δ,Σ,

where P
−1/2
h : H−1/2(Σ) → Φh(Σ) is the orthogonal projector.
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4.2.3 Stable discrete liftings

In this section, as usual we let ⋆ be a mute symbol taken in {B,D}, and provide sufficient conditions
for the existence of a stable discrete lifting Lh : Φh(Σ) → H⋆

h. To this end, we proceed as in [19,
Theorem 4.1], and assume first that Th(Ω⋆) is quasi-uniform in a neighborhood of Σ. This means that
there exists a neighborhood of Σ, say ΩΣ, and a constant c > 0, independent of h, such that, denoting

T ⋆
h,Σ := {K ∈ Th(Ω⋆) : K ∩ΩΣ 6= ∅}, (4.19)

there holds
max
K∈T ⋆

h,Σ

hK ≤ c min
K∈T ⋆

h,Σ

hK .

Now, because of the regularity of Th(Ω⋆), the quasi-uniformity assumption around Σ implies that the
partition Th(Σ) inherited from Th(Ω⋆) is quasi-uniform as well, which implies that Φh(Σ) satisfies the
inverse inequality (see, [19, Lemma 4.6])

‖ψh‖−1/2+δ,Σ ≤ C h−δΣ ‖ψh‖−1/2,Σ ∀ψh ∈ Φh(Σ), ∀ δ ∈ [0, 1/2], (4.20)

where hΣ := max
{
hT : T ∈ Th(Σ)

}
.

Lemma 4.4 There exist a linear operator Lh : Φh(Σ) → H⋆
h and a constant CL > 0, independent of

h, such that for each ψh ∈ Φh(Σ) there hold

Lh(ψh) · n = ψh on Σ, ‖Lh(ψh)‖div,Ω⋆ ≤ CL ‖ψh‖−1/2,Σ, and divLh(ψh) ∈ P0(Ω⋆).

Proof. Let ψh ∈ Φh(Σ), and let z ∈ H1(Ω⋆) be the unique solution of the boundary value problem

∆z =
1

|Ω⋆|
〈ψh, 1〉Σ in Ω⋆, ∇z · n =

{
ψh on Σ
0 on Γ⋆

,

∫

Ω⋆

z = 0.

The corresponding continuous dependence result says that ‖z‖1,Ω⋆ ≤ c1 ‖ψh‖−1/2,Σ. In turn, the
elliptic regularity result (cf. [26]) establishes that there exists δ > 0 such that

‖z‖1+δ,Ω⋆ ≤ c2 ‖ψh‖−1/2+δ,Σ.

In addition, notice that

div (∇z) = ∆z =
1

|Ω⋆|
〈ψh, 1〉Σ ∈ R in Ω⋆.

It follows that ∇z ∈ Hδ(Ω⋆) ∩H(div; Ω⋆), and hence we can define

Lh(ψh) := Π⋆h(∇z).

Next, from properties (b) and (c) of the Raviart-Thomas interpolation operator, we find that

divLh(ψh) = divΠ⋆h(∇z) = P⋆
h(div∇z) = P⋆

h(∆z) =
1

|Ω⋆|
〈ψh, 1〉Σ in Ω⋆, (4.21)

and
Lh(ψh) · n = Π⋆h(∇z) · n = Ph,Σ(∇z · n) = Ph,Σ(ψh) = ψh on Σ , (4.22)
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where Ph,Σ : L2(Σ) → Φh(Σ) is the orthogonal projector. It remains to show that Lh is uniformly
bounded. To this end, we first observe that

‖Lh(ψh)‖
2
div,Ω⋆ = ‖Lh(ψh)‖

2
0,Ω⋆ +

∥∥∥ 1

|Ω⋆|
〈ψh, 1〉Σ

∥∥∥
2

0,Ω⋆
≤ ‖Lh(ψh)‖

2
0,Ω⋆ + c3 ‖ψh‖

2
−1/2,Σ. (4.23)

Now, we divide Ω⋆ into two regions

Ω1
⋆,h := ∪

{
K ∈ Th(Ω⋆) : K /∈ T ⋆

h,Σ

}
⊆ Ω⋆\ΩΣ, Ω2

⋆,h := Ω⋆\Ω
1
⋆,h = ∪

{
K ∈ T ⋆

h,Σ

}
,

where we recall that T ⋆
h,Σ :=

{
K ∈ Th(Ω⋆) : K ∩ ΩΣ 6= ∅

}
. Then, since Ω⋆\ΩΣ is strictly contained

in Ω⋆, the interior elliptic regularity result [29, Theorem 4.16] implies that z|Ω⋆\ΩΣ
∈ H2(Ω⋆\ΩΣ) and

‖z‖2,Ω⋆\ΩΣ
≤ c4 ‖ψh‖−1/2,Σ.

It follows that

‖Lh(ψh)‖0,Ω⋆ ≤ ‖Lh(ψh)‖0,Ω1
⋆,h

+ ‖Lh(ψh)‖0,Ω2
⋆,h

= ‖Π⋆h(∇z)‖0,Ω1
⋆,h

+ ‖Π⋆h(∇z)‖0,Ω2
⋆,h

≤ c5 ‖∇z‖1,Ω1
⋆,h

+ ‖∇z‖0,Ω2
⋆,h

+ ‖∇z −Π⋆h(∇z)‖0,Ω2
⋆,h

≤ c5 ‖z‖2,Ω1
⋆,h

+ ‖z‖1,Ω2
⋆,h

+ ‖∇z −Π⋆h(∇z)‖0,Ω2
⋆,h

≤ c5 c4 ‖ψh‖−1/2,Σ + c1 ‖ψh‖−1/2,Σ + ‖∇z −Π⋆h(∇z)‖0,Ω2
⋆,h
. (4.24)

On the other hand, applying estimate (4.17) and inverse inequality (4.20), we obtain that

‖∇z −Π⋆h(∇z)‖
2
0,Ω2

⋆,h
=

∑

K∈T ⋆h,Σ

‖∇z −Π⋆K(∇z)‖
2
0,K

≤ c6
∑

K∈T ⋆
h,Σ

h2δK

{
|∇z|2δ,K +

∥∥∥ 1

|Ω⋆|
〈ψh, 1〉Σ

∥∥∥
2

0,K

}

≤ c7 max
K∈T ⋆h,Σ

h2δK

{
‖z‖21+δ,Ω2

⋆,h
+ ‖ψh‖

2
−1/2,Σ

}

≤ c7 max
K∈T ⋆

h,Σ

h2δK

{
‖z‖21+δ,Ω⋆ + ‖ψh‖

2
−1/2,Σ

}

≤ c8 max
K∈T ⋆

h,Σ

h2δK

{
‖ψh‖

2
−1/2+δ,Σ + ‖ψh‖

2
−1/2,Σ

}

≤ c8 max
K∈T ⋆h,Σ

h2δK

{
h−2δ
Σ ‖ψh‖

2
−1/2,Σ + ‖ψh‖

2
−1/2,Σ

}

≤ c9 ‖ψh‖
2
−1/2,Σ ,

(4.25)

where the fact that hK ≤ c hΣ ∀K ∈ T ⋆
h,Σ has been used in the last inequality. In this way, from

(4.23), (4.24) and (4.25) we conclude that

‖Lh(ψh)‖div,Ω⋆ ≤ CL ‖ψh‖−1/2,Σ ∀ψh ∈ Φh(Σ),

which, together with the identities (4.21) and (4.22), complete the proof. �

We remark at this point that the quasi-uniformity assumption of Th(Ω∗) around Σ, which is needed
here for the stable discrete lifting provided by Lemma 4.4, has been removed recently in [1, Theorem
2.1] for the case of locally refined meshes, when the lifting is from the whole boundary of the given
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domain. However, it is not clear from the analysis in [1] whether that result is also valid for a discrete
lifting from part of the boundary (as it is required in the present case).

We now assume that the family of independent triangulations Th̃(Σ) is also quasi-uniform, which
implies that QΣ

h̃
satisfies the inverse inequality, that is there exists a constant C > 0, independent of

h̃, such that for each δ ∈ [0, 1) there holds (cf. [20, Lemma 7.4])

‖ξ‖1/2+δ,Σ ≤ C h̃−δ‖ξ‖1/2,Σ ∀ ξ ∈ QΣ
h̃
. (4.26)

Then, we have the following result.

Lemma 4.5 There exist C0, β > 0, independent of hΣ and h̃, such that for all hΣ ≤ C0 h̃ there holds

sup
ψh∈Φh(Σ)

ψh 6=0

〈ψh, ξh̃〉Σ
‖ψh‖−1/2,Σ

≥ β ‖ξh̃‖1/2,Σ ∀ ξh̃ ∈ QΣ
h̃
. (4.27)

Proof. We proceed similarly as in [19, Lemma 4.11]. In fact, given ξh̃ ∈ QΣ
h̃
\{0}, we let z ∈ H1(Ω⋆)

be the unique solution of the boundary value problem with mixed boundary conditions:

−∆z + z = 0 in Ω⋆, z = ξh̃ on Σ, ∇z · n = 0 on Γ⋆.

Notice that the corresponding continuous dependence result gives

‖z‖1,Ω⋆ ≤ C1 ‖ξh̃‖1/2,Σ, (4.28)

and thanks to the trace theorem and a simple integration by parts procedure, we also have that

C2 ‖ξh̃‖
2
1/2,Σ ≤ ‖z‖21,Ω⋆ = 〈∇z · n, ξh̃〉Σ. (4.29)

On the other hand, since QΣ
h̃
⊂ H1(Σ), we obtain that z ∈ H1+δ(Ω⋆) for some δ > 0 (see [26]), and

there holds
‖∇z · n‖−1/2+δ,Σ ≤ C3‖z‖1+δ,Ω⋆ ≤ C4 ‖ξh̃‖1/2+δ,Σ. (4.30)

We now let ψ∗
h := P

−1/2
h (∇z · n) ∈ Φh(Σ). Then, applying the approximation property (APψ

h ), the
regularity estimate (4.30), and the inverse inequality (4.26), we deduce that

‖∇z · n− ψ∗
h‖−1/2,Σ ≤ C5 h

δ
Σ‖∇z · n‖−1/2+δ,Σ ≤ C6 h

δ
Σ‖ξh̃‖1/2+δ,Σ ≤ C7

(hΣ
h̃

)δ
‖ξh̃‖1/2,Σ.

Next, using that ‖∇z‖div,Ω⋆ = ‖z‖1,Ω⋆ , it follows that

‖ψ∗
h‖−1/2,Σ = ‖P

−1/2
h (∇z · n)‖−1/2,Σ ≤ ‖∇z · n‖−1/2,Σ ≤ ‖∇z‖div,Ω⋆ = ‖z‖1,Ω⋆ ,

which together with the estimate (4.28), imply

‖ψ∗
h‖−1/2,Σ ≤ C8 ‖ξh̃‖1/2,Σ.

Now, using (4.29) and the foregoing estimates, we find that

〈ψ∗
h, ξh̃〉Σ = 〈∇z · n, ξh̃〉Σ − 〈∇z · n− ψ∗

h, ξh̃〉Σ

≥
{
C2 − C7

(hΣ
h̃

)δ}
‖ξh̃‖

2
1/2,Σ
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≥
{C2

C8
−
C7

C8

(hΣ
h̃

)δ}
‖ξh̃‖1/2,Σ ‖ψ∗

h‖−1/2,Σ.

Consequently, we can write

sup
ψh∈Φh(Σ)

ψh 6=0

〈ψh, ξh̃〉Σ
‖ψh‖−1/2,Σ

≥
〈ψ∗

h, ξh̃〉Σ
‖ψ∗

h‖−1/2,Σ
≥

{C2

C8
−
C7

C8

(hΣ
h̃

)δ}
‖ξh̃‖1/2,Σ,

from which, taking hΣ ≤ C0 h̃ with C0 :=
(
C2
2C7

)1/δ
, we conclude the proof. �

4.2.4 Verification of the discrete inf-sup conditions

We are now in a position to prove the discrete inf-sup conditions required by hypotheses (H.1). To
this end, we assume from now on that Th(ΩD) and Th(ΩB) are quasi-uniform in a neighborhood ΩΣ

of Σ, and that Th̃(Σ) is quasi-uniform.

Lemma 4.6 There exist C0, β̃D > 0, independent of h, hΣ and h̃, such that for all hΣ ≤ C0 h̃, there
holds

SD
h (q

D
h , ξh̃) := sup

v
D
h

∈H
D
h

v
D
h
6=0

∫

ΩD

qDh div vD
h + 〈vD

h · n, ξh̃〉Σ

‖vD
h ‖div;ΩD

≥ β̃D

{
‖qDh ‖0,ΩD

+ ‖ξh̃‖1/2,Σ

}
(4.31)

for all (qDh , ξh̃) ∈ QD
h,0 ×QΣ

h̃
.

Proof. We begin by observing that

SD
h (q

D
h , ξh̃) ≥ sup

v
D
h

∈HD
h

v
D
h 6=0

∫

ΩD

qDh div vD
h

‖vD
h ‖div;ΩD

− ‖ξh̃‖1/2,Σ.

Then according to the results in [12, Chapter IV] (see also [19, Section 4.2]), we know that there exists
CD > 0, independent of h, hΣ and h̃, such that

sup
v
D
h

∈HD
h

v
D
h
6=0

∫

ΩD

qDh div vD
h

‖vD
h ‖div;ΩD

≥ CD ‖qDh ‖0,ΩD
∀ qDh ∈ QD

0,h,

and hence
SD
h (q

D
h , ξh̃) ≥ CD ‖qDh ‖0,ΩD

− ‖ξh̃‖1/2,Σ ∀ (qDh , ξh̃) ∈ QD
h,0 ×QΣ

h̃
. (4.32)

On the other hand, we know from Lemma 4.4, that there exist a linear operator Lh : Φh(Σ) → HD
h

and a constant CL > 0, independent of h, such that for each ψh ∈ Φh(Σ) there hold

Lh(ψh) · n = ψh on Σ, ‖Lh(ψh)‖div,ΩD
≤ CL ‖ψh‖−1/2,Σ, and divLh(ψh) ∈ P0(ΩD).
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In this way, we deduce that

SD
h (q

D
h , ξh̃) ≥

∫

ΩD

qDh divLh(ψh) + 〈Lh(ψh) · n, ξh̃〉Σ

‖Lh(ψh)‖div;ΩD

∀ψh ∈ Φh(Σ),

from which, using that divLh(ψh) ∈ P0(ΩD) and that qDh ∈ QD
h,0, it follows that

SD
h (q

D
h , ξh̃) ≥

|〈Lh(ψh) · n, ξh̃〉Σ|

‖Lh(ψh)‖div,ΩD

≥
1

CL

|〈ψh, ξh̃〉Σ|

‖ψh‖−1/2,Σ
∀ψh ∈ Φh(Σ),

and hence

SD
h (q

D
h , ξh̃) ≥

1

CL
sup

ψh∈Φh(Σ)

ψh 6=0

〈ψh, ξh̃〉Σ
‖ψh‖−1/2,Σ

∀ ξh̃ ∈ QΣ
h̃
. (4.33)

Therefore, (4.33) and a straightforward application of Lemma 4.5 imply the existence of C̃D > 0,
independent of h, hΣ and h̃, such that for all hΣ ≤ C0h̃ there holds

SD
h (q

D
h , ξh̃) ≥ C̃D ‖ξh̃‖1/2,Σ ∀ ξh̃ ∈ QΣ

h̃
. (4.34)

Finally, it easy to see that estimates (4.32) and (4.34) imply the discrete inf-sup condition (4.31), thus
finishing the proof. �

Lemma 4.7 There exist C0, β̃B > 0, independent of h, hΣ and h̃, such that for all hΣ ≤ C0 h̃ there
holds

SB
h (q

B
h , ξh̃) := sup

v
B
h
∈HB

h

v
B
h
6=0

∫

ΩB

qBh div vB
h − 〈vB

h · n, ξh̃〉Σ

‖vB
h‖div;ΩB

≥ β̃B

{
‖qBh ‖0,ΩB

+ ‖ξh̃‖1/2,Σ

}
(4.35)

for all (qBh , ξh̃) ∈ QB
h,0 ×QΣ

h̃
.

Proof. It proceeds exactly as the proof of Lemma 4.6 by replacing ΩD, ΓD, Q
D
h,0 and HD

h by ΩB, ΓB,

QB
h,0 and HB

h , respectively. �

The following theorem provides the rate of convergence of our Galerkin scheme (4.4).

Theorem 4.2 Let Hh := HB
h×HB

0,h×HD
h and Qh,0 := QB

h,0×QD
h ×QΣ

h̃
be the subspaces specified above,

and let (~u, ~p) := ((uB,ωB,uD), (pB, pD, λ)) ∈ H×Q0 and (~uh, ~ph) := ((uB
h ,ω

B
h ,u

D
h ), (p

B
h , p

D
h , λh̃)) ∈

Hh×Q0,h be the unique solutions of the continuous and discrete problems (3.9) and (4.4), respectively.
Assume that u⋆ ∈ Hδ(Ω⋆),divu⋆ ∈ Hδ(Ω⋆), p⋆ ∈ Hδ(Ω⋆) where ⋆ ∈ {B,D}, ωB ∈ Hδ(curl; ΩB) and
λ ∈ H1/2+δ(Σ), for some δ ∈ (1/2, 1]. Then, there exists C > 0 and C̃ > 0 independent of h and h̃
such that

‖(~u, ~p)− (~uh, ~ph)‖H ≤ Chδ
{
‖uB‖δ,ΩB

+ ‖div (uB)‖δ,ΩB
+ ‖ωB‖Hδ(curl;ΩB) + ‖uD‖δ,ΩD

+ ‖div (uD)‖δ,ΩD
+ ‖pB‖δ,ΩB

+ ‖pD‖δ,ΩD

}
+ C̃h̃δ‖λ‖δ+1/2,Σ.

Proof. It follows from the Céa estimate (4.15) and the approximation properties (APu⋆

h ), (AP p⋆
h ),

(APωB
h ) and (APλ

h ). �

We end this section by remarking that the analysis from Section 4.2 can be extended without
difficulties, to Raviart-Thomas and Nédélec spaces of higher order.
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5 An augmented mixed formulation

In this section we propose an augmented variational formulation of problem (3.9). Indeed, though
many finite element subspaces HB

0,h ⊆ H0(curl; ΩB) and HB
h ⊆ HB(div; ΩB) do satisfy (H.3), we

would like to explore the possibility of getting rid of that assumption. To this end, we suggest to
enrich the mixed variational formulation (3.9) with a residual arising from the Brinkman momentum
equation in (2.1). More precisely, we include into the variational problem (3.9) the following Galerkin
least-squares equation in ΩB:

κ

∫

ΩB

(αuB + ν curl ωB + ∇pB − fB) · curl zB = 0 ∀ zB ∈ H0(curl; ΩB) , (5.1)

where κ is a positive parameter to be specified later. Actually, integrating by parts, and using again
that curl zB ∈ H0(div; ΩB) for each zB ∈ H0(curl; ΩB) (cf. [25, Chapter I, Section 2.3, Remark 2.5]),
we easily find that ∫

ΩB

∇pB · curl zB = 0 ∀ zB ∈ H0(curl; ΩB) ,

whence (5.1) can be recast in the form

κα

∫

ΩB

uB · curl zB + κ ν

∫

ΩB

curl ωB · curl zB = κ

∫

ΩB

fB · curl zB ∀ zB ∈ H0(curl; ΩB). (5.2)

In this way, adding (5.2) to the first equation of (3.9), we obtain the following augmented variational
formulation: Find ~u := (uB,ωB,uD) ∈ H and ~p := (pB, pD, λ) ∈ Q0 such that

A(~u, ~v) + B(~v, ~p) = F(~v) ∀~v := (vB,zB,vD) ∈ H ,

B(~u, ~q) = G(~q) ∀ ~q := (qB, qD, ξ) ∈ Q0 ,
(5.3)

where

A(~u, ~v) := α

∫

ΩB

uB · vB + ν

∫

ΩB

ωB · zB + κ ν

∫

ΩB

curl ωB · curl zB

+ ν

∫

ΩB

vB · curlωB +
(
κα − ν

) ∫

ΩB

uB · curl zB + µ

∫

ΩD

uD · vD ∀ (~u, ~v) ∈ H×H ,
(5.4)

F(~v) :=

∫

ΩB

fB · vB +

∫

ΩD

fD · vD + κ

∫

ΩB

fB · curl zB ∀~v ∈ H , (5.5)

B = b, and G = G = 0.

In what follows we address the solvability of (5.3). We first observe that the continuous inf-sup
condition for B on H × Q0 is already proved by Lemma 3.4. In turn, the continuous kernel of B is
certainly given by V (cf. (3.12) - (3.14)). Then, we have the following result establishing the ellipticity
of A on VB,D and hence on V.

Lemma 5.1 Assume that the stabilization parameter κ ∈
(
0, 2δ

)
with δ ∈

(
0,

2ν

α

)
. Then, there

exists ̺ > 0, depending on κ and δ, such that

A(~v, ~v) ≥ ̺ ‖~v‖2H ∀~v ∈ VB,D . (5.6)
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Proof. Given ~v := (vB,zB,vD) ∈ VB,D, we obtain from the definition of A (cf. (5.4)) and the
Cauchy-Schwarz inequality, that

A(~v, ~v) = α ‖vB‖
2
0,ΩB

+ ν ‖zB‖
2
0,ΩB

+ κ ν ‖ curl zB‖
2
0,ΩB

+ κα

∫

ΩB

vB · curl zB + µ ‖vD‖
2
0,ΩD

≥ α ‖vB‖
2
0,ΩB

+ ν ‖zB‖
2
0,ΩB

+ κ ν ‖ curl zB‖
2
0,ΩB

− κα‖vB‖0,ΩB
‖ curl zB‖0,ΩB

+ µ ‖vD‖
2
0,ΩD

.

Next, for each δ > 0 we find that

−κα ‖vB‖0,ΩB
‖ curl zB‖0,ΩB

≥ −
κα

2δ
‖vB‖

2
0,ΩB

−
δ κα

2
‖ curl zB‖

2
0,ΩB

,

which, replaced back into the foregoing estimate, yields

A(~v, ~v) ≥ α
(
1−

κ

2δ

)
‖vB‖

2
0,ΩB

+ ν ‖zB‖
2
0,ΩB

+ κ

(
ν −

δ α

2

)
‖ curl zB‖

2
0,ΩB

+ µ ‖vD‖
2
0,ΩD

.

Next, using (3.17) and noting that ‖vD‖
2
0,ΩB

= ‖vD‖
2
div;ΩD

, we obtain

A(~v, ~v) ≥ α
(
1 −

κ

2δ

)
̺20 ‖vB‖

2
div,ΩB

+ ν ‖zB‖
2
0,ΩB

+ κ

(
ν −

δ α

2

)
‖ curl zB‖

2
0,ΩB

+ µ ‖vD‖
2
div,ΩD

.

(5.7)
Hence, since 1 − κ

2 δ > 0 and ν − δ α
2 > 0, we conclude that

A(~v, ~v) ≥ ̺‖~v‖2H ~v ∈ VB,D,

where ̺ := min
{
α
(
1− κ

2δ

)
̺20, ν, κ

(
ν − δ α

2

)
, µ

}
. �

Note that, taking in particular κ = δ =
ν

α
, we obtain the optimal ellipticity constant

̺ :=
1

2
min

{
α̺20, 2ν, κν, 2µ

}
.

The foregoing analysis yields the following main result.

Theorem 5.1 Assume that fD ∈ L2(ΩD), fB ∈ L2(ΩB), and that κ satisfies the assumption from
Lemma 5.1. Then there exists a unique (~u, ~p) :=

(
(uB,ωB,uD), (pB, pD, λ)

)
∈ H×Q0 solution of the

augmented mixed formulation (5.3). Moreover, there exists C > 0 such that

‖~u‖H + ‖~p‖Q ≤ C
{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
. (5.8)

Proof. Thanks to Lemmata 3.4 and 5.1, the proof is a straightforward application of the continuous
Babuška-Brezzi theory. �

We now look at the Galerkin scheme of (5.3). More precisely, employing the same generic finite
elements subspaces and related notations introduced in Section 4.1, we now consider the augmented
mixed finite element scheme: Find ~uh := (uB

h ,ω
B
h ,u

D
h ) ∈ Hh and ~ph := (pBh , p

D
h , λh) ∈ Q0,h such that

A(~uh, ~vh) + B(~vh, ~ph) = F(~vh) ∀~vh := (vB
h ,z

B
h ,v

D
h ) ∈ Hh ,

B(~uh, ~qh) = G(~qh) ∀ ~qh := (qBh , q
D
h , ξh) ∈ Q0,h .

(5.9)
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Then, assuming that hypotheses (H.0), (H.1), and (H.2) from Section 4 are satisfied, we certainly
deduce that B verifies the discrete inf-sup condition on Hh×Q0,h (cf. Lemma 4.1), the discrete kernel
of B is given again by Vh = Vh

B,D ∩ Vh
Σ (cf. (4.9) - (4.11)), and hence, since Vh

B,D is contained in

VB,D, the bilinear form A is elliptic in Vh
B,D (cf. Lemma 5.1) and therefore in Vh. Consequently,

a straightforward application of the discrete Babuška-Brezzi theory allows to conclude the following
result.

Theorem 5.2 Assume that fD ∈ L2(ΩD) and fB ∈ L2(ΩB). In addition, suppose that (H.0), (H.1),
and (H.2) hold. Then there exists a unique (~uh, ~ph) :=

(
(uB

h ,ω
B
h ,u

D
h ), (p

B
h , p

D
h , λh)

)
∈ Hh × Q0,h

solution of the augmented Galerkin scheme (5.9). Moreover, there exist C1, C2 > 0, independent of
h, such that

‖~uh‖H + ‖~ph‖Q ≤ C1

{
‖fD‖0,ΩD

+ ‖fB‖0,ΩB

}
, (5.10)

and
‖(~u, ~p)− (~uh, ~ph)‖H×Q ≤ C2

{
dist(~u,Hh) + dist(~p,Q0,h)

}
. (5.11)

6 Numerical results

In this section we provide three computer experiments confirming the convergence rates anticipated
by Theorem 4.2 and illustrating the applicability of the method in surface-subsurface flow problems.

6.1 Accuracy of the mixed and augmented formulations on two embedded cubes

We start by evaluating the convergence of the fully-mixed and the augmented finite element methods
applied to (2.1)-(2.2) and defined on the two cubes ΩB = [−rB, rB ]

3 and ΩD = [−rD, rD]
3, with

rD = 1
2 , rB = 3

20 . Notice that this particular domain configuration does not fall exactly in the
theoretical framework analyzed in this paper. However, both the continuous and discrete study could
be carried out using the analogous tools as those used here. We employ the model parameters α =
µ = 1, ν = 0.01, yielding the stabilization constant κ = 2ν/α = 0.02 suggested by Lemma 5.1. The
convergence of the method is assessed by computing errors between the following manufactured smooth
exact solutions

ωB(x1, x2, x3) =



−3π sin(πx1) cos(πx2) cos(πx3)
3π cos(πx1) sin(πx2) cos(πx3)

0


,u(x1, x2, x3) =




cos(πx1) sin(πx2) sin(πx3)
sin(πx1) cos(πx2) sin(πx3)

−2 sin(πx1) sin(πx2) cos(πx3)


,

p(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3), uB = u|ΩB
, uD = u|ΩD

, pB = p|ΩB
, pD = p|ΩD

, λ = p|Σ,

and their finite element approximations using a RT0−ND1−RT0−P0−P0−P1 family on a sequence
of successively refined tetrahedral meshes ThBi and ThDi of sizes hBi = rB2

1−i and hDi = rD2
−i,

respectively, i = 0, 1, . . .. We adequately choose forcing terms fB = αuB + curlωB + ∇pB, fD =
µuD + ∇pD, and suitable nonhomogeneous slip velocity on ∂Ω and nonhomogeneous Dirichlet data
for the tangential vorticity on ∂ΩB, such that (2.1)-(2.2) holds. For sake of convenience we define a
conforming partition for Σ, that is Th̃ = Th. The approximate solutions are depicted in Figure 6.1 and
the error history, written in terms of the quantities

e(uB) :=‖uB − uBh‖div,ΩB
, e(ωB) := ‖ωB − ωBh‖curl,ΩB

, e(uD) := ‖uD − uDh‖div,ΩD
,

e(pB) := ‖pB − pBh‖0,ΩB
, e(pD) := ‖pD − pDh‖0,ΩD

, e(λ) := ‖λ− λh‖1/2,Σ, r(·) :=
log(e(·)/ê(·))

log(h/ĥ)
,
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Figure 6.1: Example 1: Two-domain geometry and mesh (top left), approximated Darcy velocity
streamlines (top middle), approximated Darcy pressure isosurfaces (top right), zoom of approximated
Brinkman vorticity vectors (bottom left), zoom of approximated Brinkman velocity streamlines (bot-
tom middle), and isosurfaces of the computed Brinkman pressure (bottom right).

are reported in Table 6.1, where e, ê denote errors computed on two consecutive meshes of sizes h =
max{hB , hD} and ĥ. We observe that both methods deliver optimal convergence rates for vorticity,
velocity and pressure in the corresponding norms.

6.2 Flow into a cracked porous medium

Our second example focuses on the simulation of flow in a porous medium with a smoothed V-shaped
crack, similar to the 2D simulations presented in the Stokes-Darcy examples of [8, Section 7.1] and
[13, Section 6.3]. The full domain is the box Ω = [0, 2] × [0, 0.2] × [0, 1], the Brinkman domain
on the top is 0.75 ≤ x1 ≤ 1.25 and goes down to x3 = 0.5. Viscosity and porosity correspond to
the case of water flowing in a mixture of calcarenite and sand: ν = 0.01, µ = 10000, and we set
α = 0.001. The external forces on both domains correspond to gravity fD = fB = (0, 0,−0.98)t ,
and a constant flowrate uD · n = (10, 0, 0)t · n, is imposed on the right wall Γin

D , at x1 = 0 (see
sketch in figure 6.2), representing a subsurface flow in the x1-direction. Normal Darcy velocities are
set to zero everywhere else on ΓD. As in [8] we impose a smooth vorticity profile on the top of ΓB

ωB ×n = (0, 1/16− (x1 − 1)2, 0)t ×n, which takes into account the wind on the surface, and we also
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h e(uB) r(uB) e(ωB) r(ωB) e(uD) r(uD) e(pB) r(pB) e(pD) r(pD) e(λ) r(λ)

Fully mixed scheme (4.4)

0.70711 1.02802 − 0.08636 − 0.65565 − 0.00404 − 0.64650 − 0.51608 −
0.38079 0.66329 0.63216 0.04547 0.86511 0.30143 0.96758 0.00167 0.86588 0.24919 1.54026 0.37415 0.94712
0.30610 0.45239 1.30206 0.03253 1.13929 0.21869 1.46952 0.00130 1.44871 0.12438 1.18266 0.22579 0.93668
0.18503 0.29153 0.93254 0.02240 0.79149 0.16048 0.61483 0.00073 1.21498 0.05130 1.15932 0.17396 0.95387
0.14412 0.18023 1.02275 0.01527 0.85417 0.10498 0.89264 0.00042 1.15692 0.02337 1.14603 0.10985 0.96014
0.05487 0.11716 0.95707 0.00833 0.95944 0.05076 0.99002 0.00027 0.96289 0.01207 0.98594 0.05139 0.96765
0.03564 0.07258 0.97681 0.00561 0.98670 0.03123 0.99197 0.00019 0.98441 0.00896 0.99455 0.02987 0.97732

Augmented mixed scheme (5.9)

0.70711 1.02681 − 0.08574 − 0.65549 − 0.00416 − 0.64537 − 0.51899 −
0.38079 0.62020 0.98418 0.04306 0.87429 0.26781 0.94902 0.00158 0.95434 0.24503 0.94234 0.38461 0.97729
0.30610 0.42963 0.99011 0.02763 0.91368 0.17061 0.96547 0.00109 0.93939 0.10942 0.96471 0.21733 1.07908
0.18503 0.27689 0.94556 0.01916 0.94842 0.12903 0.95084 0.00066 0.98741 0.04873 0.96933 0.16430 0.98544
0.14412 0.16540 0.96134 0.01344 0.96083 0.08211 0.95171 0.00039 0.98177 0.01998 0.96297 0.08127 0.97476
0.05487 0.10214 0.98608 0.00703 0.95798 0.04714 0.90989 0.00024 0.97506 0.00987 0.97250 0.04550 0.97732
0.03564 0.06071 0.96110 0.00416 0.98465 0.02595 1.01103 0.00016 0.98411 0.00593 1.00141 0.02831 0.97460

Table 6.1: Example 1: Error history associated to fully mixed (top rows) and augmented (bottom
rows) RT0 −ND1 − RT0 −P0 −P0 −P1 discretizations of (2.1)-(2.2) on a 3D domain.

assume a compatible normal velocity on that same surface uB ·n = (0, 0,−x1/16 + [(x1 − 1)3]/3)t ·n.
Everywhere else we set zero normal fluid velocity and zero tangential vorticity. A tetrahedral mesh
with conforming interface is generated having 57426 vertices and 307544 elements, which in total
correspond to 962639 degrees of freedom for RT0−ND1−RT0−P0−P0−P1 finite elements. Figure
6.2 depicts the domain configuration along with the approximate solutions, matching qualitatively the
results from [8, 13].

6.3 Perpendicular infiltration trhough a porous medium

In the last test we present a model of coupled surface and subsurface flow where the top domain is
the flow region and the bottom half of the domain represents e.g. an aquifer. On the top left octant
of ΩB, denoted by Γin

B , we consider an inflow rate of uB · n = −0.01 and on Γout
D (see the domain

sketch in Figure 6.3) we set an outflow of fluid at rate uB ·n = 0.01. Also on Γin
B , we impose a smooth

vorticity ωB×n = (0,−0.01x1x2x3, 0)
t×n. On the remainder of ∂Ω we set zero normal velocities and

tangential vorticity. As in the previous example, we take into account the gravity force acting on both
domains fD = fB = (0, 0,−0.98)t , and employ the model parameters α = 10, ν = 0.001, µ = 10000.
The mesh for Ω consists of 32768 vertices and 191452 tetrahedral elements representing 700835 degrees
of freedom. As expected, from Figure 6.3 we observe flow patterns entering the domain through Γin

B ,
percolating through Σ, and leaving the domain through Γout

D .
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