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STEFAN BERRES†, ANÍBAL CORONEL‡, RICHARD LAGOS§, AND MAURICIO SEPÚLVEDA¶

Abstract. This article deals with the flux identification problem in scalar conservation laws.
The problem is formulated as an optimization problem, where the objective function compares
the solution of the direct problem with the observed profiles at a fixed time. A finite volume
scheme solves the direct problem and a continuous genetic algorithm solves the inverse problem.
The numerical method is tested with synthetic experimental data. The simulation parameters
can be recovered approximately. The error depends on the parameters of the numerical scheme.

1. Introduction

The problem of flux identification in conservation laws is highly relevant in many fields of science
and engineering, see for instance [1, 2, 3, 4, 5, 6] for sedimentation model, [7, 8] for chromatog-
raphy model, [9] for centrifugation model, [10, 11] for flow through porous media model, [12] for
highway tra�c flow model and [13, 14] for analytical results. In a broad sense, the common start-
ing point in all of these models, is that they are deducted in the context of continuum mechanics
approach together with some appropriate assumptions and simplifications of the particular phys-
ical system. The result of this processes is a governing equations (often a system of conservation
laws) closed under state laws or constitutive equations (algebraic relations for the flux function)
and initial-boundary conditions. Typically, the initial and boundary conditions are estimated
by measurements. Whereas that, the constitutive functions are determined qualitatively by phe-
nomenological assumptions and quantitatively by the available information on experimental data.
Often, the constitutive equations depend of unknown parameters which are not accessible by ex-
perimental determination or needs a very expensive (or complicated) laboratory tests. Therefore,
in the framework of flux calibration, the following inverse problem is considered: given an obser-
vation of the model unknowns at a fixed time find the flux function such that the entropy solution
for an initial-boundary value problem of a system of conservation laws is as close as possible to the
observed data. Usually, the solution of this problem can be performed by optimization techniques,
where the considered cost function quantifies the di↵erence between the simulated and observed
solutions.

In general, the solution of nonlinear conservation laws depends nonlinearly on the parameters
and also develops discontinuities in finite time, independent of the regularity of the coe�cients
and the initial and boundary conditions [15]. This kind of behavior of the direct problem implies
that, in most of the cases, the cost function turns out to be a non-convex and a nondi↵erentiable
function (see for instance Figures 2 and 5). Thus, the inverse problem analysis can be developed
following the nonconvex and nondi↵erentiable optimization theory. At this point, the application
of numerical optimization tools fall into the two big kind of optimization methods: deterministic
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and stochastic, depending on the knowledge of the parameters. First, when there is some history
about the parameter values a local minimum of the cost function can be find by deterministic
methods. This kind of strategy has been considered by several authors, see [3, 4, 7, 16]. There,
the central and common points are: they assume local convexity of the cost function close to a
historical parameter value and introduce a formal calculus for the discrete gradient. Second, when
there is not a history of the parameters to be estimated or, in the worst of the cases, there is not
an intuitive estimation of the inverse problem solution, the use of stochastic optimization methods
is suggested [17, 18, 19, 20, 21, 22, 23, 24].

Recently, an exhaustive and complete review of stochastic optimization methods applied to the
inverse scattering problem was done by Rocca and coauthors in [22]. They reported a unified
view of the evolutionary algorithms constructed under competitive or cooperative paradigms. For
example, genetic algorithms are belongs to the former class, and swarm and ant colony algorithms
are belongs the seconde ones. In particular, Rocca and collaborators make a clear description of
the main features, disadvantages and the several important historical milestones of the nature-
inspired evolutionary algorithms. For instance, in the case of genetic algorithms the properties
are: (a) They imitate the principles of biological evolution for the construction of an iterative
algorithm, (b) They are belong to the class of global methods which have the main advantage
to depend neither explicitly nor implicitly on gradients, (c) They require only the evaluation of
the cost function and promise a robust optimization. Hence, genetic algorithms usually work
well in situations when gradient methods or gradient-like methods are found to fail in the sense
of local convergence or nondi↵erentiability of the objective function. Furthermore, they conclude
that, although the existing evolutionary algorithms are reliable and e�cient in the tested inversion
problems is of paramount importance for the theoretical development the implementation of this
methodologies in new situations. Therefore, following this suggestion, we study a genetic algorithm
for the flux identification problem in nonlinear scalar conservation laws.

On the other hand, concerning to the specific application of genetic algorithms to inverse prob-
lems in conservation laws, there are a few results available on the literature (see [24, 25, 26, 27]).
First, in [24] the authors present a review of the algorithms used for the inverse problem arising
in porous media and well-known as the history matching problem. In [25], the authors recover
the coe�cients of a linear one-dimensional model for the flow through porous media and include
an extensive discussion about the benefits of genetic algorithms in contrast to more traditional
gradient-based techniques. Now, in [26] a genetic algorithm is applied to identify the flux of a
system of conservation laws of Saint-Venant type and modelling the flow on a river network. Mean-
while, in [27] the relative permeabilities defining the fractional in the BuckleyLeverett equation
are reconstructed. We note that [25, 26, 27] is used a binary coded genetic algorithms. In addi-
tion, we mention also, that a new strategies of evolutionary was used in [28] to identify the flux
in the Chromatography system. Thus, this paper is the first application of a real coded genetic
algorithm.

In order to investigate the feasibility and applicability of the continuous genetic algorithm,
we show three numerical examples. Although, the results of this paper are preliminary, and
as far to solve the general inverse problem, we have some observed some good properties which
delimits and makes the guidance of further development in more complex situations. First, we note
that the agreement of observed and the identified parameters by the algorithm has high quality.
Furthermore, it was observed that the extremum of the numerical cost function depends on the
order of the finite volume method used for the discretization of the direct problem. In this sense, we
believe that the application of the algorithm with a high resolution numerical method for the direct
problem solution contributes naturally to several improvements to the numerical flux identification
in conservation laws. Thus, the numerical examples given in this article clearly suggest that the
use of genetic algorithms is a powerful numerical tool for parameter identification in conservation
laws. However, before of the application of more complex scenarios of theoretical or engineering
interest, some items must be improved. For instance, it will be useful the development of the
hybrid algorithms with combination of the continuous genetic algorithm with other evolutionary
strategies and even with the deterministic algorithms. Moreover, in the case of explicit finite
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volume schemes for the forward simulations is highly needed the parallelization of the genetic
algorithm.

The paper is organized as follows. In Section 2, we introduce the continuous direct and inverse
problems and their discretization. In Section 3, we present the continuous genetic algorithm.
Finally, in Section 4, we document the numerical results.

2. Continuous direct-inverse problem and Discretization

In this section we precise the definitions of the direct and inverse problems, the parameter
identification problem, the discretization of the direct problem and the definition of the discrete
cost function.

2.1. Direct an inverse problem. The direct problem is given by the following initial boundary
value problem

u

t

+ (f(u))
x

= 0, (x, t) 2 Q

T

:= I ⇥T , (2.1)
u(x, 0) = u0(x), x 2 I := (0, 1), (2.2)
u(`, t) = g

`

(t), ` 2 {0, 1}, t 2 T := [0, T ], (2.3)

where t denotes time, x the spatial variable, u the state variable, f the flux function, u0 is the initial
condition, and g

`

, ` 2 {0, 1} are the boundary conditions. Typically, we assume that u0, f, g0 and
g1 are given functions and we want to find u(·, T ) in a finite time T > 0. However, often f in
unknown and should be determined by the solution of an inverse problem. This inverse problem is
the well-known calibration problem, where a set of experimental is considered in order to have an
overspecified problem. For instance, assuming that û(x) is a given experimental solution profile
in a fixed time t = T . Thus, the inverse problem of flux identification can be formulated as the
following optimization problem

8

<

:

minimize J(u) :=
1
2

Z

I

�

�(u� û)(x)
�

�

2
dx,

subject to E(u, p; f) = 0, f 2 Uad,

(2.4)

where the the constraint E(u, p; f) is the weak integral formulation of the direct problem (2.1)-(2.3)

E(u, p; f) =�
Z Z

QT

n

up

t

+ f(u)p
x

o

dx dt

+
Z

T

n

f(g1(t))p(1, t)� f(g0(t))p(0, t)
o

dt�
Z

I
u0(x)p(x, 0) dx,

for all p 2 C

1
0 (Q

T

) and Uad is the flux admissible set defined

U
ad

=
n

f : R ! R
�

�

�

f 2 C

2(R), f(0) = f

0(0) = 0, f

00(u) > 0 8 u 2 Imax

o

,

on the maximum interval Imax =
h

min(A),max(A)
i

with A =
n

ku0k
L

1(I), kg1k
L

1(T ), kg2k
L

1(T )

o

.
Here, note that the optimization problem (2.4) allows to determine the flux function belongs to
U

ad

that matches best to the observation data. The definition of U
ad

is fundamental for the genetic
algorithm, since it determines the trial region of the parameter space where the initial population
is sampled. Furthermore, note that the set U

ad

denotes all convex flux functions and should be
redefined in the case of more general flux functions, for instance in the case of sedimentation where
f is a nonconvex flux function with a single or with two inflection points.

2.2. Parameter identification problem. For the parameter identification problem we assume
that the flux function depends on a finite number of parameters, denoted by e = (e1, . . . , ed

) 2 Rd,
i.e. f(·) = f(·; e). Typically, the analytical parametric dependence of the flux function f on the
parameter set e comes from a constitutive relation between the velocity and the density. For
instance, in the case of tra�c flow modeling, it is assumed that the flux function is defined by
f(u) = uv(u), where v is the velocity. For example, in the Lighthill-Whitham model for tra�c
flow the velocity is given by v(u) = v⇤ (1� u/⇢

⇤), such that v⇤ and ⇢

⇤ are the parameters for the
calibration by (2.5), see [29, 30] and Example 4.2 below. Thus, the general formulation of the
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optimization problem (2.4) is reduced to an optimization problem with respect to d-parameters
as follows

8

>

>

<

>

>

:

minimize J (e) := J

⇣

u(e)
⌘

,

subject to E

⇣

u(e), p; f(u(e); e)
⌘

= 0,

e 2 D := {x 2 Rd : f(u;x) 2 Uad for all u 2 Imax}.

(2.5)

The set D ⇢ Rd represents the largest set such that the flux is belongs to Uad and is the natural
set for the global search of the optimization algorithm.

2.3. Numerical solution of direct problem. Let us first recall the standard notation of finite
volume methods for conservation laws (see [29, 31, 32] for more details). We subdivide the spatial
domain I into M subintervals K

i

of length �x = 1/M centered at x

j

= j�x, for j = 0, . . . ,M ,
and defined by K

j

:= (x
j�1/2, xj+1/2). Here x

j+1/2 = (x
j

+x

j+1)/2 for j = 0, . . . ,M � 1, x�1/2 =
x0 � �x/2 and x

M+1/2 = x

M

+ �x/2. The sets K

j

are called the cells or control volumes
and its boundaries are called interfaces. Similarly, the temporal domain T is partitioned into N

subintervals of length �t = T/N and defined by R

n

= [t
n

, t

n+1), where t

n

= n�t, for n = 0, . . . , N .
For notational simplicity we set Q

n

j

:= K

j

⇥R

n

and the numerical solution of (2.1)-(2.3) over Q

n

j

is denoted by u

n

j

. With this notation at hand, we discretize the equations (2.1)–(2.3). Indeed, we
start with the discretization of the initial condition (2.2)

u

0
j

=
1

�x

Z

Kj

u0(x) dx, j = 0, . . . ,M. (2.6)

Then, following the ideas of finite volume technique, we integrate over Q

n

j

the equations (2.1)-(2.3)
and deduce the following numerical scheme

u

n+1
j

= u

n

j

� �

n

f

n

j+1/2 � f

n

j�1/2

o

, � =
�t

�x

, f

n

j+1/2 ⇡
1

�t

Z

Rn

f(u(x
j+1/2, t))dt, (2.7)

for all n = 0, . . . , N and j = 0, . . . ,M , where f

n

j+1/2, in the case of 2p + 1 points scheme, may
be written as follows: f

n

j+1/2 = g(un

j�p+1, . . . , u
n

j+p

) with g 2 Lip(R2p

, R) and g(u, . . . , u) = f(u).
The function g is called the numerical flux function and the last property of g is known as the
consistence for the finite volume scheme (2.7). A particular and interesting case are the well-known
monotone flux schemes, where g : R2 ! R satisfies the following assumptions [31]:

(G1) Lipschitz-regularity. g is locally Lipschitz with respect to each of its variables on [u
m

, u

M

]2,
(G2) Consistence. g(u, u) = f(u), for all u 2 [u

m

, u

M

],
(G3) Monotonicity. g is non-decreasing with respect to its first variable and non-increasing with

respect to its second variable on [u
m

, u

M

]2.
The explicit monotone flux schemes have played a very important role in the development of
numerical analysis for conservation laws due to their good properties: consistence in the finite
volume sense, L

1-stability, BV -stability and convergence of the numerical solution to the entropy
solution under a CFL condition, see [31, 29] for further details. To be precise, in the numerical
simulations given in this paper, we consider the numerical flux of Godunov, which is defined for
f 2 Uad by the following explicit relation

g

God(u, v) :=

8

>

>

>

>

<

>

>

>

>

:

f(u), u � 0 and v � 0,

f(v), u  0 and v  0,

min
n

f(u), f(v)
o

, u  0  v,

max
n

f(u), f(v)
o

, v  0  u.

(2.8)

and naturally (2.7) is written as follows

u

n+1
0 = u

n

0 � �

n

g

God(un

0 , u

n

1 )� f(un

0 )
o

, (2.9)

u

n+1
j

= u

n

j

� �

n

g

God(un

j

, u

n

j+1)� g

God(un

j�1, u
n

j

)
o

, (2.10)
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u

n+1
M

= u

n

M

� �

n

f(un

M

)� g

God(un

M�1, u
n

M

)
o

. (2.11)

Furthermore, for stability and convergence of the the Godunov scheme (2.9)-(2.11), we consider
that the CFL condition: � · max

n

�

�

f

0(u)
�

� : u 2 Imax

o

 1/2 has to be satisfied.

2.4. Discrete parameter identification problem. The continuous observation data û are dis-
cretized by

û

j

=
1

�x

Z

Kj

û(x)dx, j = 0, . . . ,M. (2.12)

The natural discretization of the parameter identification problem (2.5) is given by
8

>

<

>

:

minimize J�(e), J�(e) :=
1
2

M

X

j=0

|uN

j

(e)� û

j

|2�x,

subject to u

N

j

(e) is obtained by (2.9)-(2.11) for e 2 D.

(2.13)

Here, we note that the continous restriction E

⇣

u(e), p; f(u(e); e)
⌘

= 0 is replaced by the discrete
restriction u

N

j

(e) is the numerical solution of (2.1)-(2.3) obtained by the finite volume scheme (2.9)-
(2.11). The consistence between the discrete and continuous restrictions is given by the convergence
of the monotone finite volume methods.

3. Continuous genetic algorithm for flux estimation

The evolutionary computation techniques imitate the principles of natural selection and evolu-
tion. The basis of evolutionary computation are the following four paradigms: genetic algorithms
[33], genetic programming [34], evolutionary strategies [35] and evolutionary programming [36].
Of these techniques the genetic algorithms are most popular because of their simplicity of imple-
mentation, global convergence property and several other advantages, see [37]. The first genetic
algorithm was proposed by Holland in his pioneer work [33]. After this work, several researchers
have been developing various improvements. Here, we highlight two important historical points.
First, the development of several versions of the original binary genetic algorithms, given by [38].
It was the responsible of wide and rapid di↵usion of genetic algorithms. Second, the contributions
of Michalewicz and collaborators, mainly the point concerning to real coded genetic algoritms [39].
In contrast, with the classical binary representation of chromosomes, the coding of chromosomes
with floating point representation was introduced and proven to have an highly improvements on
the implementation, computation speed and precision. A complete review of the state of art of
genetic algorithms before 2008 is given by Rocca, Donelli and Massa in [22].

In the sequel, we use the standard terminology of genetic algorithms. For completeness of
the presentation we recall the main concepts: chromosomes, gens, population and generation, for
further details see [37, 33, 40]. A chromosome is an array of parameters to be identified or where
the cost function is evaluated. A gen is a Cartesian coordinate of the parameter set that represents
a chromosome (vector). A population is the set of chromosomes. A generation is the population at
the end of the one iteration of the genetic algorithm. Furthermore, we recall that genetic algorithms
uses several kinds of representation for the chromosomes, being the most wide used the binary
representation and the floating-point (real and continuos) representation. In this paper we select a
floating-point representation, since the continuous genetic algorithm is inherently faster than the
binary genetic algorithm when the cost function is continuous, because the chromosomes do not
have to be decoded prior to the evaluation of the cost function. See the books of Haupt-Haupt [40]
and Michalewicz [39] for further details on advantages and disadvantages of both representations.

The continuous genetic algorithm implemented in this paper basically consists of two big steps,
the selection of the initial population and the natural selection. More specifically we have the
following description:
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(a) Initial population. We define a full matrix that represents a random initial population

E =
h

e1|e2| · · · |en

i

T

, where each row eT

j

2 ⌦ :=
Q

d

i=1[li, ui

] ⇢ D ⇢ Rd with l

i

< u

i

for
i = 1, . . . , d is a hypercube.

(b) Natural selection. Let G be the maximum number of iterations or the maximum number
of generations and q 2 Z+

0 . Initialize the counter q by q = 0 and make the following:
(b1) Cost of the population. Define the vector cost 2 Rn by evaluation of the cost func-

tion on each chromosome of the population E, i.e. J := (J�(e1), . . . ,J�(e
n

))T 2
Rn

, and define the matrix Ê = [E|J]. If there is an ` 2 {1, . . . , n} such that J
`

 Jmin,
then the solution of (2.13) is e

`

and the iteration is stopped. Here Jmin is an estab-
lished tolerance for the cost evaluation.

(b2) Select mates. We select the parents in three stages. First, we update Ê by row
permutation until the following property Êq

1,d+1  Êq

2,d+1  . . .  Êq

n,d+1 is satisfied.
Second, if s 2 (0, 1] denotes the selection rate, we select the first JnsK rows of Ê and
store the sub-matrix in the so called mating pool matrix F. Here J·K is the notation
of nearest integer. In the third place, by applying the roulette wheel weighting, we
choose the parents from the chromosomes on F.

(b3) Mating. We define the algebraic law for the crossover of the parents. In this paper
we obtain a o↵spring by applying a random convex combination of parents gens at
the random crossover point. The mating process stops when n � JnsK o↵springs are
generated. Here, in this step, the population matrix E is updated by considering the
parents in the first JnsK rows and the o↵springs in next ones.

(b4) Mutation. If µ 2 [0, 1] denotes the mutation rate, we define the total number of
mutations: m := Jµ(n� 1)dK. In this step we repeat m times the following mutation
process: the random gen E

ij

is replaced by a random number which belongs to the
interval [l

j

, u

j

]. We note that after the stop of the mutation the population matrix
E is naturally updated. Set q = q + 1 and if q  G go to item (b1) else calculate the
vector J and the solution is the chromosome e

`

such that J
`

 J
j

for j 2 {1, . . . , n}.
The hypercube ⌦ considered in (a) can be replaced by a convex set such that ⌦ ⇢ D. The
hypothesis of convexity is needed by the convex combination used in (b3).

4. Numerical results

In this section we consider three example applications of the genetic algorithm used for the flux
identification in conservation laws. In all examples the genetic algorithm is run with a population
size n = 20, selection rate s = 0.5 and tolerance Jmin = 1.0 ⇥ 10�6 for the cost evaluation. The
mutation rate for example 1 is set to µ = 0.2 and for examples 2 and 3 to µ = 0.37. The maximum
number of iterations for examples 1 and 2 is iter = 100 and for examples 3 is iter = 20. This
selection of genetic parameter values is following the suggestions of Haupt and Haupt [40].

On the other hand, the maximum number of time steps in the finite volume method for the
three examples are selected via the following relation N =

r
T (0.98�x)�1 max

u2I

max

|f 0(u)|
z
, where

the interval Imax is detailed in the description of each example.

4.1. Example 1: Identification of a single parameter (d=1). In this example the flux
function in Equation (2.1) is specified to be of Burgers type: f(u) = u

↵

/↵, and the initial-
boundary conditions are given by

u0(x) =
⇢

0 for (4x� 1)(4x� 3) > 0,

1 elsewhere, and g0(t) = g1(t) = 0 8 t > 0.

We note that f

00(u) = (↵� 1)u↵�2, which implies that f belongs to the admissible set Uad when
↵� 1 > 0, since Imax = [0, 1]. Thus, the restriction set in (2.5) is defined as D = (1,1).

We take two analytical observations obtained with ↵ = 2 at T1 = 1/4 and T2 = 1/2, denoted by
û1 and û2, respectively. By the method of characteristics (see Figure 1) we deduce that û

i

: I ! R,
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for i = 1, 2, are defined as follows

û1(x) := u(x, 1/4) =

8

<

:

0, (4x� 1)(8x� 7) > 0,

4x� 1, (4x� 1)(2x� 1)  0,

1, elsewhere,
and

û2(x) := u(x, 1/2) =

8

<

:

0, 4x� 1 < 0,

2x� 1/2, (4x� 1)(4x� 3)  0,

1, elsewhere.

Then, the analytical cost functions are given by

J1(↵) =
1
8

✓

↵� 1
↵ + 1

� 2(↵� 1)
2↵� 1

◆

+ sgn(↵� 2)
✓

↵� 2
16↵

◆

and (4.1)

J2(↵) =
1
4

✓

↵� 1
↵ + 1

� 2(↵� 1)
2↵� 1

+
1
3

◆

+ (1 + sgn(↵� 2))
✓

↵� 2
16↵

◆

, (4.2)

where sgn is the sign function.
For the genetic algorithm we choose ⌦ = [1.1, 4] ⇢ D. The graph of the cost function over ⌦ is

given in Figure 2. In both plots, Figure 2(a) and Figure 2(b), we note that the optimum of the
numerical and analytical costs functions does not coincide. This behavior is a natural consequence
of the numerical method used for the simulation of the direct problem, since a first order finite
volume method comes with a large numerical di↵usion, see [29, 31, 32].

1

1/4

1/2

3/4

t [
−]

x [−]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1. Example 1: Configuration of characteristics with ↵ = 2.

For the simulation of the direct problem we use M = 100 space intervals and choose a variable
number of time steps satisfying the CFL condition.

The results of the identification of ↵ are given in Table 1. The best chromosomes of each
iteration are given in Table 2. The observed and identified profiles are compared in Figure 3(b)
and Figure 3(c). The observed and identified flux functions are compared in Figure 3(d).

From Table 2, we note a fast convergence of the genetic algorithm. The maximum number of
generations and the cost tolerance are fixed to 1.0 ⇥ 102 and 1.0 ⇥ 10�6, respectively. However,
the algorithm found an acceptable extremum within four generations and stops prematurely at 10
generations, when the stopping criteria of cost tolerance is reached.

4.2. Example 2: Identification of a flux modeling tra�c flow (d=2). We recall that the
basic flux function used for tra�c flow models is of the following type: f̂(u) = v⇤u (1� u/⇢

⇤) ,

which is a concave function for v⇤ and ⇢

⇤ belongs to R+, i.e. f̂ 62 Uad. It is well known that the
analysis of concave flux functions is completely analogous to the case of convex flux functions,
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O
bservation

û

1
O

bservation
û

2

Initialpopulation
F
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Figure 2. Example 1: (a) The analytical cost function (4.1) (solid line) and the
numerical cost function (dotted line), (b) The analytical cost function (4.2) (solid
line) and the numerical cost function (dotted line).

q Observation û1 Observation û2

↵ cost ↵ cost
0 1.9375 0.00046090 1.7865 0.00106196
1 1.9375 0.00046090 1.9605 0.00026737
2 1.9375 0.00046090 1.9110 0.00025926
3 1.9675 0.00037939 1.9383 0.00020224
4 1.9575 0.00036810 1.9415 0.00020118
5 1.9575 0.00036810 1.9415 0.00020118
6 1.9612 0.00036794 1.9415 0.00020118
7 1.9594 0.00036738 1.9415 0.00020118
8 1.9594 0.00036738 1.9415 0.00020118
9 1.9594 0.00036738 1.9415 0.00020118

10 1.9594 0.00036738 1.9415 0.00020118

Table 2. Example 1: The bests chromosomes of the first 11 generations and
their corresponding cost function value.

see [15, 29] for details. In this specific case, if we redefine the flux function as follows f̂1(u) =
�f̂(u) + f̂

0(0)u + f̂(0), we have that f̂1(u) = �v⇤u
2
/⇢

⇤ 2 Uad, see [41]. Thus, the analysis of the
tra�c flow model can be done by following the theory for convex flux functions.

In this example, we consider a slightly more general flux than f̂1(u) = �v⇤u
2
/⇢

⇤, namely

f(u) = ↵u

�

, u0(x) =

8

<

:

2, x 2 [0, 1/3),
3, x 2 [1/3, 2/3),
1, x 2 [2/3, 1],

g0(t) = 0, and g1(t) = 1.

We note that f 2 Uad if ↵�(� � 1) > 0 since Imax = [0, 3]. Thus, the restriction set defined in
(2.5) is given by

D =
n

e = (↵,�) 2 R2 : ↵�(� � 1) > 0, f(·; e) 2 Uad

o

.
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Figure 3. Example 1: (a) The initial condition u0 for Example 4.1. (b) The
random best initial profile at the initial evolution, the identified profile and the
analytical profile û1 at T = 1/4 for Example 4.1. (c) The random best initial
profile at the initial evolution, the identified profile and the analytical profile û2

at T = 1/2 for Example 4.1. (d) Comparison of the flux used for the observation
profile and the identified flux. For (b)-(d), see Table 1 for numerical values of
best initial and identified parameter.

We consider an analytical observation obtained with ↵ = 0.25 and � = 2 at T = 1/4. By the
method of characteristics (see Figure 4) we deduce that û : I ! R is defined as

û(x) := u(x, 1/4) =

8

>

>

>

>

<

>

>

>

>

:

8x, x(4x� 1)  0,

2, (4x� 1)(12x� 7) < 0,

8x� 8/3, (12x� 7)(24x� 17)  0,

3, (24x� 17)(11x� 12) < 0,

1, (11x� 12)(x� 1)  0.

For the genetic algorithm we choose ⌦ = [0.1, 3]⇥ [1.1, 4] ⇢ D. The graph of the cost function
over ⌦ is shown in Figure 5. The shape of the numerical cost functions for M = 100 and M = 200
are similar. However, as in the case of Example 1 the numerical di↵usion of the Godunov method
implies that the extremum for the numerical cost function is slightly di↵erent from the extremum
of the analytical cost function.

The results of the identification with M = 100 and M = 200 space steps are given in Table 3.
Furthermore, the plot of the profiles is shown in Figure 6.

4.3. Example 3: Identification of a flux in chromatography (d=3). Chromatography is a
laboratory technique for the separation of mixtures. It can be reasonably modeled by a hyperbolic
system governed by nonlinear functions of the mixture concentrations, called isotherm functions,
which appears as the flux of the mass-balance equations [42]. In this example, we consider a scalar
conservation law with the nonlinear flux modeled by a modified Redlich-Peterson isotherm [43]

f(u) =
↵u

2

1 + �u

�

,
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Figure 4. Example 2: Characteristics configuration for Example 4.2 with ↵ =
0.25 and � = 2.

where ↵, � and � are constant parameters. The identification of the isotherm either of these three
parameters ↵, � and � from our Redlich-Paterson model, is crucial, from the theoretical point
of view, as well as the more practical consideration of accurately governing the experiment to
improve separation. In this regard there are several articles in literature on the identification of
other isotherms such as Langmuir or Bilangmuir models [7, 8, 16]. We suppose that the initial-
boundary conditions are given by

u0(x) =
⇢

0, (4x� 1)(4x� 3) > 0,

�x

2 + x� 3/16, elsewhere,

and g0(t) = g1(t) = 0, respectively. We note that

f

0(u) =
↵u[2 + �(2� �)u�)]

(1 + �u

�)2
,

f

00(u) =
↵[2 + �(1� �)(4 + �)u� + �

2(2� �)(1� �)u2� ]
(1 + �u

�)3
,

and Imax = [0, 1/16]. Consequently, the parameter identification restriction set (2.5) is defined as
follows

D =
n

e = (↵,�, �) 2 R3 : ↵ > 0, � 2 [1, 2] , � > 0 and f(·; e) 2 Uad

o

.

The observation data are set as a piecewise linear fit to a simulation of the direct problem with
parameters ↵ = � = 1, � = 1.5, M = 500 and T = 3. More precisely, the observation û : I ! R
considered for this example is defined as follows

û(x) =

8

>

>

<

>

>

:

0, x 2 [0, 0.25[[]0.85, 1],
0.1178x� 0.0288, x 2 [0.25, 0.598],
0.0984x� 0.0174, x 2]0.598, 0.75],
0.0534x + 0.0168, x 2]0.75, 0.85].

For the genetic algorithm we choose ⌦ = [0.1, 2] ⇥ [1, 2] ⇥ [0.1, 2] ⇢ D. The results of the
identification with M = 200 space steps are given in Table 4 and the plots of results is shown in
Figure 7. The convergence history is given in Table 5 and in Figure 8. We note that the genetic
algorithm converged during four generations.
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Figure 5. Example 2: Plots and level curves of discrete cost function J� : ⌦ !
R with M = 100 (above) and M = 200 (below) space intervals.
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[1] R. Bürger, A. Coronel and M. Sepúlveda. A numerical descent method for an inverse problem of a scalar con-
servation law modelling sedimentation. In Numerical Mathematics and Advanced Applications: Numerical Math-
ematics and Advanced Applications: Proceedings ENUMATH 2007, pages 225–232. Springer Verlag, Providence,
RI, 2008.
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(b) Results with M = 100.
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(c) Results with M = 200.
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Figure 6. Example 2: (a) The initial condition u0 for Example 4.2. (b) The
random best initial profile at the initial evolution, the identified profile and the
analytical profile û at T = 1/4 with M = 100 for Example 4.2. (c) The random
best initial profile at the initial evolution, the identified profile and the analytical
profile û1 at T = 1/4 for with M = 100 for Example 4.2. (d) Comparison of
the flux used for the observation profile and the identified flux. For (b)-(d), see
Table 2 for numerical values of best initial and identified parameter.
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(b) Results with M = 100.

Figure 7. Example 3: (a) The initial condition u0, the random best initial profile
at the initial evolution, the identified profile and the analytical profile û at T = 3
for Example 4.3. (b) Comparison of the flux used for the observation profile and
the identified flux. See Table 4 for numerical values of best initial and identified
parameters.

[5] J. De Clerq, I. Nopens, J. Defrancq and Pa. Vanrolleghem. Extending and calibrating a mechanistic hindered and
compression settling model for activated sludge using in-depth batch experiments. Water Research, 42(3):781–791,
2008.

[6] R. Bürger and S. Diehl. Convexity-preserving flux identification for scalar conservation laws modelling sedimen-
tation. Inverse Problems, 29(4):045008, 2013.
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↵ � � cost ↵ � � cost
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Table 4. Example 3: The initial population columns shows the 20 random chro-
mosomes and their corresponding cost before of the first generation and the final
population columns shows the 20 chromosomes and their corresponding cost at
20th. generation. The underline chromosome is the best individual of its genera-
tion.
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uation of cost function, see Table 5 for the numerical value of the chromosomes.
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