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Abstract. A spatial-temporal transmission model of 2009 A/H1N1 pandemic influenza
across Chile, a country that spans a large latitudinal gradient, is developed to characterize
the spatial variation in peak timing of the 2009 A/H1N1 influenza as a function of spatial
connectivity assumptions across Chilean regions and the location of introduction of the virus
into the country. The resulting model is a SEIR (susceptible-exposed-infected-removed)
compartmental model with local diffusion and optional non-local terms to describe the
migration of individuals of the S, E and R classes and the effect of a “hub region”. This
model is used along with epidemiological data to explore the spatial-temporal progression
of pandemic influenza in Chile by assuming a range of transmission scenarios. Numerical
results indicate that this relatively simple model is sufficient to characterize the south-north
gradient observed during the 2009 influenza pandemic in Chile, and that the “hub region”
corresponding to the capital region plays the critical role in keeping the population well
mixed in a relatively short period of time.

1. Introduction

1.1. Spatial-temporal variation of influenza. Increasing our understanding of the spa-
tial dissemination patterns of influenza is essential for public health surveillance and the
implementation of reactive social distancing measures. Factors that have been associated
with the spatial-temporal variation in seasonal influenza activity at the city or regional level
include local environmental characteristics (e.g., temperature, specific humidity [1, 2] that
enable local transmission, school cycles [3,4] whereby influenza transmission rates tend to de-
cline during school breaks, as well as regional and global population mobility patterns [5–7]).
For instance, a study based on 30 years of influenza-related mortality found a significant cor-
relation between influenza activity across US states and the rates of movement of people to
and from their workplaces (workflows) compared with geographical distance [5]. Another
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(a) (b)

Figure 1. (a) Regions of Chile, (b) pandemic onset (denoted by symbol I)
and pandemic peak (denoted by symbol N) timing across the 15 Chilean regions
sorted from north (top) to south (bottom) Chile [14].

study using influenza hospitalization records among older adult populations across US states
found a significant gradient in the peak timing of influenza at the state level whereby western
states tended to peak earlier than northeastern states [8]. Similarly, another study based
on weekly laboratory-confirmed influenza A from Canadian and US influenza surveillance
systems showed a slight gradient in peak timing from the southwest regions in the US to
northeast regions of Canada and the US. This study also found that regional influenza epi-
demics were more synchronized across the US (3–5 weeks) compared with Canada (5–13
weeks) [9].

1.2. The 2009 A/H1N1 pandemic influenza in Chile. In the context of the recent 2009
A/H1N1 influenza pandemic, population contact rates linked to school cycles or intervention
strategies [10–12], demographic factors [13], local transmissibility [10, 11, 14], and global
mobility patterns, which drives the timing of a virus’s seeding across countries [15], have been
associated with the complex spatial and temporal evolution of the 2009 A/H1N1 influenza
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i Name of Region i Population Area [km2] Length [km]
1 Arica y Parinacota 213816 16870 170
2 Tarapacá 300021 42220 265
3 Antofagasta 547463 126050 502
4 Atacama 292054 75200 399
5 Coquimbo 707654 40580 304
6 Vaparáıso 1734917 16400 113
7 Metropolitana 6685685 15400 105
8 O’Higgins 877784 16400 92
9 Maule 968336 30300 180

10 Biob́ıo 1971998 37100 186
11 Araucańıa 913065 31900 169
12 Los Ŕıos 364592 18500 131
13 Los Lagos 798141 48600 338
14 Aysén 99609 108500 602
15 Magallanes 159468 132300 644

Table 1. Official data for population and area for each region and approx-
imate longitudinal length. Note that we number regions consecutively from
north to south, and that these numbers do not correspond to the official Roman
numerals assigned to the administrative regions of Chile.

pandemic. The 2009 A/H1N1 influenza pandemic spread as a single wave of transmission
in Chile during the winter of 2009 soon after the first cases were confirmed in Mexico and
California, USA [16]. The first two cases of novel 2009A/H1N1 influenza in Chile were
confirmed in metropolitan Santiago on May 17, 2009 [16]. However, a retrospective study
based on emergency room visit and laboratory viral surveillance conducted in southern city
of Puerto Montt, capital of Los Lagos region, suggested that this city could have experienced
a faster transmission rate and earlier pandemic onset by the end of April 2009 compared
to the metropolitan area of Santiago [16]. Indeed, a recent study set in Chile showed that
this country experienced a strong latitudinal gradient in pandemic peak timing in 2009,
with southern regions experiencing earlier pandemic activity than northern regions [14], see
Figure 1. Specifically, the southernmost regions (Biob́ıo, Araucańıa, Los Ŕıos, Los Lagos,
Aysén, and Magallanes) peaked on average 16–39 days earlier relative to the northernmost
region (Arica y Parinacota). This geographical variation in pandemic peak timing in Chile
was found to be associated with differences in latitude and climatic conditions, with latitude,
maximum temperature and specific humidity accounting for 69–80% of this variability in
peak timing [14]. This south-north gradient in pandemic peak timing reported for Chile is
consistent with a decreasing trend in transmissibility in the same direction, which was found
to be statistically associated with maximum temperature and specific humidity. This is
consistent with experimental studies suggesting that influenza transmission is more efficient
under dry and cold conditions [2, 17–21].

1.3. This contribution. Here we develop a spatial-temporal transmission model of the
2009 A/H1N1 pandemic influenza across Chile, a country that spans a large latitudinal
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gradient, to characterize the spatial variation in peak timing of influenza as a function of
spatial connectivity assumptions across Chilean regions and the location of introduction of
the virus into the country. We use epidemic modeling together with epidemiological data to
explore the spatial-temporal progression of pandemic influenza in Chile by assuming a range
of transmission scenarios to investigate the robustness of the south-north gradient observed
during 2009 influenza pandemic in Chile.

The remainder of the paper is organized as follows. In Section 2, we describe the spatial-
temporal SEIR (susceptible-exposed-infected-removed) model. In particular, in Section 2.1
we define its spatial version including local diffusion and, owing to the special geography
of Chile, reduce the model to one space dimension. In Section 2.2 we perform a stability
analysis for the case of constant diffusivity, starting from the well-known non-spatial version
of the SEIR model which is given by a system of four coupled ordinary differential equations,
with the result that whether the basic reproductive ratio R0 is smaller or larger than one
decides whether the disease-free state is locally asymptotically stable or unstable. Then, in
Section 2.3 we define a generalization of the model to include a so-called “hub region”, which
is defined by a non-local convolution term. In Section 3 we outline the numerical scheme used
for simulations. Then, in Section 4, we compare simulations obtained with the continuous
model with diffusion and with/without migration via a hub region, which corresponds to the
Chilean capital (metropolitan) region. We compute the number of infected individuals and
estimate the “peak time”, when the maximum concentration of infected is observed, in each
region . These results are compared with the peak times observed in [14]. These results are
discussed in Section 5.

2. Spatial-temporal SEIR model

Classical epidemiological models describe disease transmission on single populations of
individuals by aggregating all of the members into one of four different classes. However,
these single population models rely on the strong assumption that the entire population is
mixing homogeneously and they offer no information about the spread of the disease across
regions, which is reasonable in small areas but does not well reflect reality across large
geographic regions.

2.1. Spatial domain and governing equations. We consider one country identified by a
bi-dimensional domain Ω ⊂ R2, where x = (x, y) and x and y are latitudinal and longitudinal
coordinates, respectively, measured in kilometers. We assume that Ω is simply connected
and has a continuous, piecewise smooth boundary ∂Ω with a normal n = n(x).

We consider the classical epidemical SEIR model proposed by Kermack and McKendrick
[22] with standard incidence [23] (see also [24–29]). This model keeps track of four classes of
individuals at time t and the location x ∈ Ω, the density of susceptibles S(x, t), the density
of exposed E(x, t) in which individuals are in the latent period, the density of infectives
I(x, t) in which individuals are infectious and the density of recovered R(x, t) that keeps
track of individuals removed from the infected compartment. We start from the following
assumptions.
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(1) The population is constant (without births or deaths, and the disease is assumed
non-letal), i.e. ∫

Ω

N(x, t) dx = N0 for all t ≥ 0,

where the population density is N = S + E + I +R.
(2) The transmission is described by local standard incidence. Thus, for each x ∈ Ω,

once an infected individual is introduced into the susceptible area and contacts a
sufficient number of susceptibles at time t, the fraction of new infected individuals
per unit time is β(x)S(x, t)/N(x, t), where β(x) is the local transmission coefficient.
The number of new infected individuals per unit time resulting in each point x ∈ Ω
at time t is β(x)S(x, t)I(x, t)/N(x, t).

(3) The number of individuals recovered from the infected class per unit time at x ∈ Ω
and at time t is γI(x, t), where γ is the rate constant for recovery, corresponding to
a mean infectious period of 1/γ.

(4) Individuals of each class disperse by means of Fickian diffusion throughout Ω. Pre-
cisely, and let −dP (x)∇P be the population flux, where dP (x) ≥ 0 is the space-
dependent diffusion coefficient for P ∈ {S,E,R}. Thus, individuals are assumed to
move an in undirected manner across the entire region and to contact only those
individuals in their immediate area. Infected individuals are not allowed to move.

(5) At any time the population in Ω is isolated.

Based on these assumptions, we obtain the following model:

∂S

∂t
= −β(x)

SI

N
+∇ ·

(
dS(x)∇S

)
,

∂E

∂t
= β(x)

SI

N
− κE +∇ ·

(
dE(x)∇E

)
,

∂I

∂t
= κE − γI,

∂R

∂t
= γI +∇ ·

(
dR(x)∇R

)
.

(2.1)

A sufficient condition for an isolated population is a zero-flux boundary condition for P ∈
{S,E, I, R}, which leads to the homogeneous Neumann boundary conditions

∂S

∂n
(x, t) =

∂E

∂n
(x, t) =

∂R

∂n
(x, t) = 0 for x ∈ ∂Ω and t > 0,

where n denotes the unit exterior normal vector to the boundary ∂Ω of Ω at position x and,
as usual, ∂S/∂n = ∇S · n, etc. Thus, the total number of individuals at time t,

Ntot(t) :=

∫
Ω

N(x, t) dx,

is actually constant, i.e., Ntot(t) = Ntot(t0) = N0, since

d

dt
Ntot(t) =

∫
Ω

 ∑
P∈{S,E,I,R}

∂

∂t
P (x, t)

 dx =

∫
Ω

 ∑
P∈{S,I,R}

∇ ·
(
dP (x)∇P

) dx = 0.
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For the particular geographic reality of countries that mainly extend in the direction of only
one of the coordinate axes (an assumption obviously motivated by the geography of Chile,
but which may include a few other places as well), a significant model reduction but with
an acceptable loss of realism can be achieved if we reduce the model (2.1) to one space
dimension. Thus, we obtain the following system:

∂S

∂t
= −β(x)

S(x, t)I(x, t)

N(x, t)
+

∂

∂x

(
dS(x)

∂S

∂x
(x, t)

)
,

∂E

∂t
= β(x)

S(x, t)I(x, t)

N(x, t)
− κE(x, t) +

∂

∂x

(
dE(x)

∂E

∂x
(x, t)

)
,

∂I

∂t
= κE(x, t)− γI(x, t),

∂R

∂t
= γI(x, t) +

∂

∂x

(
dR(x)

∂R

∂x
(x, t)

)
,

(2.2)

which is supplemented by initial conditions.

2.2. Stability analysis. To discuss the stability properties of (2.1), let us briefly recall
well-known results for the standard (non-spatial) SEIR model, which is recovered by setting
dP ≡ 0, P ∈ {S,E,R}, in (2.1). We select the version of the model defined at position x (as
by the choice of β(x)), and consider for a moment x as a parameter, i.e. we study the ODE
model

dS(t;x)

dt
= −β(x)

S(t;x)I(t;x)

N(t;x)
,

dE(t;x)

dt
= β(x)

S(t;x)I(t;x)

N(t;x)
− κE(t;x),

dI(t;x)

dt
= κE(t;x)− γI(t;x),

dR(t;x)

dt
= γI(t;x).

(2.3)

For the model (2.3) we define the basic reproductive ratio associated with position x by

R0(x) := β(x)/γ.

If R0(x) > 1 for x ∈ Ω, then the disease-free steady state at position x is unstable so that an
epidemic may potentially occur. If that happens then I(t;x) first increases to a maximum
attained when S(t;x) = γN(t;x)/β(x), and then decreases to zero. On the other hand, if
R0(x) < 1 for x ∈ Ω, then the disease-free steady state at x is stable so that the disease dies
out, i.e., I(t,x) decreases to zero at x ∈ Ω.

We now perform a linearized stability analysis for the one-dimensional system (2.2) with
dP (x) := d for ∈ {S,E,R} and β(x) = β. With this goal, we rewrite (2.2) in the form

ut = g(u) + dDu, (2.4)
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where u = (S,E, I, R)T, g(u) corresponds to the reactive term in the SEIR model, and

D = diag

(
∂2

∂x2 ,
∂2

∂x2 , 0,
∂2

∂x2

)
. (2.5)

The linearized equation for a small perturbation v about an equilibrium point u(0) of
the dynamical system u′ = g(u) is obtained by substituting u = u(0) + v into (2.4) and
neglecting second order terms in v. This yields the following linearized version of (2.4):

vt = g′(u(0))v + dDv. (2.6)

We consider u(0) = (s0, 0, 0, 0)T with s0 > 0.
We now seek solutions of (2.6) of the form v(x, t) = z(t; ξ) exp(iξx) for a fixed frequency

ξ. The vector function z satisfies the system of ordinary differential equations

z′ = M
(
u(0); ξ

)
z,

where we define the matrix

M
(
u(0); ξ

)
:= g′

(
u(0)

)
− ξ2dI∗,

where I∗ = diag(1, 1, 0, 1) and

g′
(
u(0)

)
=


0 0 −β 0
0 −κ β 0
0 κ −γ 0
0 0 γ 0

 .
The linearized asymptotical stability of u(0) is equivalent to limt→∞ z(t, ξ) = 0 for all ξ,

and this is equivalent to Reλ < 0 for any eigenvalue λ of M (u(0); ξ) and any ξ ∈ R. The
eigenvalues of M (u(0); ξ) are λ1,2 = −ξ2d and

λ3,4 =
1

2

(
− (γ + κ+ dξ2)±

√
(γ + κ+ dξ2)2 − 4(κ(γ − β) + γdξ2)

)
,

so that Reλ3,4 < 0 if and only if κ(γ−β)+γdξ2 > 0. Therefore we have proved the following
lemma.

Lemma 1. The equilibrium point u(0) is locally asymptotically stable for the model (2.2) if
R0 = β/γ < 1 and unstable if R0 > 1.

2.3. Continuous model with a hub region. For certain subpopulation u ∈ {S,E,R}, a
constant non-local migration can be represented by the following equation:

∂u

∂t
= g(u) +

∂

∂x

(
d(x)

∂u

∂x

)
+

∫ L

0

K(z, x)u(z, t) dz −
∫ L

0

K(x, z)u(x, t) dz, x ∈ [0, L], t > 0,

(2.7)

where [xa, xb] is certain hub region and

K(x, y) =

{
ν if x ∈ [xa, xb] or y ∈ [xa, xb],

0 otherwise,
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is the function that indicates the rate of individuals at x that move to y. The first integral in
(2.7) corresponds to migration from the hub region to a point x at rate ν, while the second
integral corresponds to migration of population from x to the hub region at rate ν. Observe
that ∫ L

0

(∫ L

0

K(z, x)u(z, t) dz −
∫ L

0

K(x, z)u(x, t) dz

)
dx = 0, u ∈ {S,E, I, R},

therefore the total population remains constant.

3. Numerical scheme

We consider the domain [0, L] of length L = 4200, which is approximately the length of
continental Chile in kilometers. For grid points xj := (j − 1

2
)∆x for j = 1, . . . ,M , where

∆x := L/M , and tn := n∆t for n ∈ N0, we calculate approximate values unj ≈ u(xj, tn) for
u ∈ {S,E, I, R}. We denote un

j = (Sn
j , E

n
j , I

n
j , R

n
j )T and un = (un

1 , . . . ,u
n
M)T.

The continuous model (2.2), supplied with suitable initial conditions, is solved numerically
by an explicit-implicit Euler method, for which the reaction is discretized explicitly, while an
implicit discretization is used for the diffusive part in the continuous model. (This method
is the simplest variant of the so-called IMEX schemes for convection-diffusion problems,
see [30].) The resulting scheme is

un+1 = un + ∆t
(
G(un,x) + dD∆xu

n+1
)
, n = 0, 1, . . . ,

where G(un,x) is a vector of 4M components given by

G(un,x) =


g(un

1 , x1)
g(un

2 , x2)
...

g(un
M , xM)

 ,

where

g
(
(S,E, I, R)T, x

)
=


−β(x)SI/N

β(x)SI/N − κE
κE − γI

γI

 , N = S + E + I +R,

and D∆x is the (4M)× (4M) matrix that discretizes (2.5):

D∆x = L∆x ⊗ I∗, I∗ = diag(1, 1, 0, 1),

where L∆x denotes the usual discretization of the 1D Laplacian with Neumann boundary
conditions on an M -grid over the spatial domain [0, L] with cell size ∆x = L/M .

The model with non-local migration (2.7) is discretized in a similar way. In this case the
non-local migration term is treated explicitly:

un+1 = un + ∆t
(
G(un,x) + dD∆xu

n+1 + Hhub(un)
)
, n = 0, 1, . . . ,
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where Hhub(un) is a vector of 4M components that approximates the integral terms in (2.7)
by the midpoint rule:

Hhub(un) =


(Hhub(un))1

(Hhub(un))2
...

(Hhub(un))M

 ,

where

(Hhub(un))i = ∆x

(
M∑
j=1

K(xj, xi)u
n
j −

M∑
j=1

K(xi, xj)u
n
i

)
.

In the simulations we use M = 1000 and ∆t = 0.1 d, since we have checked that more
resolution does not significantly change the simulation.

4. Numerical simulations

4.1. Epidemiological and population data. We relied on a large individual-level dataset
comprising all hospitalizations for severe acute respiratory infection (hereafter referred to as
SARI) reported by all public and private hospitals to the Chilean Ministry of Health during
01-May to 31-December 2009 to characterize peak timing across Chilean regions.

A total of 1809 SARI hospitalizations (29.4%) were laboratory confirmed with A/H1N1
pandemic influenza. We obtained regional estimates of population size for 2009 from the
Instituto Nacional de Estad́ısticas [31].

We consider the initial population according to official data to December 2011 (see [14])
and assume a constant distribution of population along its geographical localization for each
region based on official data that are tabulated in Table 1.

4.2. Initial values and constants. It is difficult to determine suitable values for E(x, 0)
and I(x, 0) that would allow us to obtain similar results as those reported in [14]. We there-
fore tested four different initial conditions corresponding to different scenarios. “Scenario i”
corresponds to one infected individual uniformly distributed along region i and zero infected
individuals in all other regions. The number of individuals of class P ∈ {S,E, I, R} in region
i ∈ {1, . . . , 15} at time t is computed as

Pi(t) =

∫
li

P (x, t) dx,

where li is the latitude interval corresponding to region i. The number of individuals newly
infected in the time interval [t− 1, t] (t measured in days) in region i is calculated as

Inew
i (t) =

∫ t

t−1

κEi(τ) dτ.

The constants are chosen as 1/κ = 2 d and 1/γ = 4 d, κ = 0.5 d−1 and γ = 0.25 d−1.
Moreover we choose d = 10 km2/d and ν = 10−5 d−1.
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Figure 2. Simulation of disease spread for four different initial scenarios with
d(x) = 10, ν = 1 × 10−5 and R0(x) > 1: (a) Scenario 3, (b) Scenario 7, (c)
Scenario 10, (d) Scenario 13.

4.3. Case R0(x) > 1 for x ∈ [0, L]. In this case the local transmission coefficient β(x) is set
such that R0(x) = β(x)/γ satisfies R0(0) = 1.2 (northernmost region) and increases linearly
as a function of space until R0(L) = 1.6 (southernmost region) i.e.

β(x) =
x

10L
+ 0.3, 0 ≤ x ≤ L.

According to Lemma 1 in Section 2.2 any point in the domain is a endemic point.
In Figures 2 and 3 the disease spread for different initial scenarios is shown. In Figure 4

the peak times of simulations for different scenarios are shown and compared with the peak
timing reported in [14]. Scenarios 10 and 13 give a good fit to the experimental data, thus
pointing that the epidemic might have started in southern Chile. Since the local reproductive
number increases from southern to northern regions in our model, the attack rates shown in
Figure 3 also increase in the same direction as R0.
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Figure 3. Simulation of disease spread for four different initial scenarios;
same results as in Figure 2 but normalized by the number of inhabitants in
each region: (a) Scenario 3, (b) Scenario 7, (c) Scenario 10, (d) Scenario 13.

Finally, we display in Figure 5 the computed peak timing for the model (2.2) (without a
hub region) and the diffusion coefficient d = 1000 km2d−1, which is much larger than the one
used before and has been chosen so that the time frame of the peak timing of the epidemic
resembles that of the experimental data.

4.4. Case R0(x) < 1 for x ∈ [0, L/2) and R0(x) ≥ 1 for x ∈ [L/2, L]. In this case, the
local transmission coefficient β(x) is set so that R0(0) = 0.8 (northernmost region) and that
increases linearly as a function of space until R0(L) = 1.2 (southernmost region), i.e.,

β(x) =
x

10L
+ 0.2, 0 ≤ x ≤ L.

The parameters for diffusion and local-migration are d = 1000 km2d−1 and ν = 2×10−4 d−1.
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Figure 4. Simulated region-wise peak timing for different scenarios with d =
10 km2d−1, R0(x) > 1 for x ∈ [0, L], and including a hub region (region 7)
with ν = 10−5d−1.
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Figure 5. Simulated region-wise peak timing for different scenarios with d =
1000 km2d−1, R0(x) > 1 for x ∈ [0, L], without a hub region.

In Figure 6 the newly infected individuals at each regions are shown. It is remarkable that
an epidemic in the northern regions is triggered from an epidemic from the southern regions,
even when the corresponding R0 is less than one.
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Figure 6. Simulation new infected Inew
i (t) for each region i for scenario 3

(dashed curves) and scenario 13 (solid curves) for d = 1000 km2d−1, a hub
region with ν = 2 × 10−4 d−1, R0(x) < 1 for x ∈ [0, L/2) and R0(x) ≥ 1 for
x ∈ [L/2, L].

5. Conclusions and discussion

We have used epidemic modeling to gain a better understanding of the spatial-temporal
pattern associated with the 2009 A/H1N1 influenza pandemic in Chile. Our results show that
a relatively simple spatial SEIR transmission model with a single hub representing the highly
connected metropolitan region is able to reproduce the qualitative characteristics of the
spreading pandemic wave in Chile (see Figures 2 and 3). These results further support that
the SEIR model is a suitable basis for the description of the 2009 influenza A/H1N1; see [32]
for a compartmental version of this model applied to describe the spread of this disease in
Japan. Moreover, our findings suggest that the south-north gradient in pandemic peaking
timing observed in Chile in 2009 is robust to variations in the initial conditions (e.g., location
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of initial infectious cases) as long as the local basic reproduction number follows an increasing
trend from south to north based on earlier estimations in [14]. Importantly, our results
suggest that future influenza pandemics could follow similar spatial temporal dynamics to
that of the 2009 A/H1N1 influenza pandemic. Our findings could have implications for
pandemic preparedness and control of future influenza pandemics.

Our results indicate that the hub region that corresponds to the metropolitan region of
Chile plays the critical role in keeping the entire population well mixed in a relatively short
period of time. Hence, the infection is quickly spread across the entire territory as soon
as the initial cases are seeded in any region of the country (Figure 4). Overall, the peak
timing tended to occur first in the region where the initial cases were first introduced, but it
then rapidly spread throughout the country and was locally modulated by the corresponding
transmissibility level as measured by R0 in each region, and followed a decreasing trend of
R0 from the southernmost to the northernmost regions of Chile. Our results also showed
that even when the region-specific R0 is set to values less than one, it is possible to generate
small outbreaks via frequent importation of exposed individuals, through the hub, from other
regions that support epidemic outbreaks, see Figure 6. In contrast to the transmission mode
with hub, our transmission model with spatial local diffusion alone was not able to generate
pandemic profiles that were qualitatively consistent with the 2009 A/H1N1 pandemic data
from Chile obtained in [14]. Specifically, the results obtained using the diffusion model were
quite sensitive to the initial region where the first cases were introduced as shown in Fig 5.
Perhaps not surprisingly the spatial model with diffusion generated the best fits to peak
timing data when the initial cases were introduced in the southernmost regions of Chile.
However, even in these scenarios the spreading pandemic wave took a considerable amount
of time to reach the northernmost regions (over 140 days compared with about 78 days from
actual pandemic data).

It is interesting that the south-north spreading wave of 2009 pandemic activity in Chile is
reminiscent of the spread of the 2009 pandemic in Brazil, with the southernmost regions of
this country being hit earlier and experiencing greater severity than northern regions [33]. We
hypothesize that our transmission model with a hub represented by the highly connected
areas of the south of Brazil (e.g., São Paulo, Rio do Janeiro) and a similar south-north
gradient in transmissibility could be able to generate a qualitatively similar pattern to that
observed in 2009 in that country. By contrast, seasonal influenza has been observed to
originate from low-population regions in the equatorial north of Brazil and travel to highly
populous regions in the subtropical south over a 3-month period [34], together with a weak
transmissibility gradient [35].

Although we have focused on characterizing the pandemic peak timing of the spreading
wave, the timing of pandemic onset could not be well characterized using out dataset of
severe acute respiratory infections (SARI), which tend to capture the highest levels of the
severity pyramid. As previously reported [14], the metropolitan region experienced early
introductions of the A/H1N1 influenza virus in May 2009, but local outbreaks did not im-
mediately followed, which suggest that local climatic conditions at the time did not enable
widespread transmission in the region. Instead, epidemiological investigations revealed that
the well-connected southern city of Puerto Montt experienced full-scale transmission of novel
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A/H1N1 influenza as of late April 2009 before the confirmation of the first case in the coun-
try [16]. This suggests that local climatic conditions played a significant role in facilitating
the onset of the 2009 A/H1N1 influenza pandemic by modulating the timing of a shift of the
basic reproduction number from R0 < 1 to R0 > 1.

It is worth noting that we did not attempt to quantify the exact magnitude and progression
of the spread of the 2009 A/H1N1 influenza pandemic because our SARI data only allowed
the approximate identification of the timing of evolution of the pandemic (e.g. peak timing)
rather than an accurate assessment of the onset, peak timing, and duration. Furthermore,
the quantification of the magnitude of the pandemic in terms of attack rates would require
more complex models than those employed here. For instance, we did not model the effect
of winter vacation periods although it has been reported that the school break took place
after the pandemic had reached peak levels in most parts of the country [14]. In addition,
we did not account for the high rates of antiviral use in Chile, a country where treatment
with oseltamivir was recommended for all symptomatic individuals older than 5 years that
complied with the influenza clinical case definition [16].

Our findings could have important implications for pandemic preparedness as our results
suggest that future influenza pandemics could follow similar spatial temporal dynamics to
that of the 2009 A/H1N1 influenza pandemic. Intensified surveillance strategies in southern
regions could lead to earlier detection of novel influenza viruses.
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16 BÜRGER, CHOWELL, MULET, AND VILLADA

[8] J.B. Wenger, E.N. Naumova, Seasonal synchronization of influenza in the United States older adult
population, PLoS One 5 (2010), paper e10187 (11pp).

[9] D.L. Schanzer, J.M. Langley, T. Dummer, S. Aziz, The geographic synchrony of seasonal influenza: a
waves across Canada and the United States, PLoS One 6 (2011), paper e21471 (8pp).
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