
ADVANCED METHODS OF FLUX IDENTIFICATION FOR
CLARIFIER-THICKENER SIMULATION MODELS†
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Abstract. Mathematical models for the simulation of batch settling and continuous clarifier-
thickeners can usually be expressed as a convection-diffusion partial differential equation
(PDE). Reliable numerical methods require that the nonlinear flux function of this PDE
has been identified for a given material. This contribution summarizes, and applies to ex-
perimental data, a recent approach [R. Bürger and S. Diehl, Inverse Problems 29 (2013)
045008] for the flux identification in the case of a suspension that shows no compressive
behaviour.

The experimental Kynch test and the Diehl test, which are based on an initially ho-
mogenous suspension either filling the whole settling column or being initially located above
clear liquid, respectively, provide data points that represent a convex and concave, respec-
tively, suspension-supernate interface. A provably convex (concave) smooth approximation
of this interface is obtained by solving a constrained least-squares minimization problem.
The interface-approximating function can be converted uniquely into an explicit formula for
a convex (concave) part of the flux function.

1. Introduction

1.1. Scope. This contribution is concerned with mathematical models for the batch and
continuous sedimentation of finely divided solid particles dispersed in a viscous fluid. This
process is of great importance for the recovery of water utilized in comminution and flotation
processes. Since water is a scarce resource in the major part of the Chilean mining zone, one
wishes to recover the largest quantity of water possible after the sedimentation process, which
generates great interest in mathematical models for the simulation, the design and the control
of the unit operation of continuous sedimentation in clarifier-thickener units (cf. Chapter 15
of Wills and Napier-Munn, 2006). Under minor modifications, the same model also describes
the operation of so-called secondary settling tanks (SSTs) in wastewater treatment.
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Reliable spatially one-dimensional simulators are mostly based on the numerical solution
of a particular partial differential equation (PDE) of strongly degenerate convection-diffusion
type. The solution of this PDE is the local solids volume fraction φ as a function of depth and
time. The coefficients of the governing PDE rely on two material specific model functions,
the so-called Kynch batch flux density function fb = fb(φ) (Kynch, 1952) and the effective
solid stress function σe = σe(φ). (The latter is necessary only if the material under study
is flocculated.) It is the purpose of this contribution to summarize a new method (recently
published in a research paper; Bürger and Diehl, 2013) for the identification of portions of fb

from properly designed batch settling tests, and to present new applications of this method
to synthetic and measured experimental data.

1.2. The governing model. To put the treatment into the proper context, we briefly
recall the governing model, focusing here on the simpler case of batch settling in a column
of height H. For a derivation of the model and a discussion of its assumptions we refer to
Bustos et al. (1999) and Berres et al. (2003). The governing PDE is given by

∂φ

∂t
− ∂fb(φ)

∂x
=
∂2A(φ)

∂x2 , (1)

where φ is the sought volumetric solids concentration as a function of time t and height x
and fb is the Kynch batch flux density function. The function fb is assumed to be continuous
and piecewise differentiable with

fb(0) = fb(φmax) = 0, fb(φ) > 0 for 0 < φ < φmax, (2)

where φmax is a maximum solids concentration corresponding to a dense-packed sediment.
Moreover, the function A = A(φ) models sediment compressibility in the case that the
supension under study is flocculated. This function is also material specific and is given by

A(φ) =

∫ φ

0

a(s) ds (3)

with the integrand

a(φ) := −fb(φ)σ′e(φ)

∆%gφ
.

Here, ∆% is the solid density minus the fluid density, g is the acceleration of gravity, and σ′e
denotes the derivative of the so-called effective solid stress function σe = σe(φ). This function
usually satisfies σe(φ) > 0 for all φ and

σ′e(φ) :=
dσe(φ)

dφ

{
= 0 for φ 6 φc,

> 0 for φ > φc,
(4)

where φc > 0 is a critical concentration or gel point, that is a volume fraction at which the
solid particles have physical contact. The assumptions (2) and (4) imply that

a(φ)

{
= 0 for φ 6 φc and φ = φmax,

> 0 otherwise,
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so (1) is a first-order hyperbolic equation for φ 6 φc and a second-order parabolic equation
for φ > φc. Since (1) degenerates to hyperbolic type on a φ-interval of positive length, this
equation is called strongly degenerate parabolic. The location of the suspension-sediment
interface where φ = φc, that is the sediment level, is unknown a priori and is part of the
solution.

If sediment compressibility is absent, then the right-hand side of (1) is zero and we are
reduced to the first-order scalar conservation law of Kynch’s theory,

∂φ

∂t
− ∂fb(φ)

∂x
= 0. (5)

Following common usage in literature (Bustos et al., 1999), we address suspensions with
A 6≡ 0 (i.e., which form compressible sediments) and A ≡ 0 (i.e., which obey Kynch’s
theory) as flocculated and ideal, respectively.

For the simple case of batch settling of a flocculated or ideal suspension in a column, (1)
is supplied with the initial condition

φ(x, 0) = φ̃0(x), x ∈ [0, H], (6)

and the zero-flux boundary condition

fb(φ) +
∂A(φ)

∂x

∣∣∣∣
x=xb

= 0 for xb = 0 and xb = H. (7)

1.3. Related work. The authors have extensively studied a model of continuous sedimenta-
tion in clarifier-thickener units that can be expressed by the strongly degenerate convection-
diffusion equation

∂φ

∂t
+

∂

∂z
g(z, φ) =

∂

∂z

(
γ1(z)

∂A(φ)

∂z

)
. (8)

Here z denotes a downwards-increasing depth variable varying between an overflow level
zL < 0 and an underflow level zR > 0, and at z = 0 a feed source is located through
which suspension at a feed concentration φF is fed into the unit. The model involves two
discontinuous parameters, γ1 and γ2, which are defined by

γ1(z) :=

{
1 for z ∈ (zL, zR),

0 for z 6 zL and z > zR,
γ2(z) :=

{
qL for z < 0,

qR for z > 0,
(9)

where qL 6 0 and qR > 0 are bulk flow velocities that can be controlled externally. The
convective flux density function appearing in (8) is given by

g(z, φ) := γ1(z)fb(φ) + γ2(z)(φ− φF). (10)

We refer to Betancourt et al. (2013), Bürger and Narváez (2007), Bürger et al. (2004, 2005a,
2005b, 2010, 2011, 2012, 2013) and Garrido et al. (2000, 2003) for a mathematical and nu-
merical analysis of the model (8)–(10) and numerous examples that illustrate that this model
provides the basis for realistic thickener simulators. Moreover, the underlying sedimentation-
consolidation model of Section 1.2 is equivalent to the suspension dewatering theory employed
by Aziz et al. (2000), de Krester et al. (2001), Lester (2002) and Usher et al. (2001), while
clarifier-thickener models similar to (8)–(10), and which also rely on the material specific
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functions fb and σe or their equivalents, have been studied by several groups of authors in-
cluding Lev et al. (1986), Barton et al. (1992), Chancelier et al. (1994), Diehl (1996), Bürger
et al. (2005a), and Nocoń (2006).

In most of the above-cited works it is assumed that the functions fb and σe for a given
suspension under study are known. These model functions are usually determined from
batch settling tests. The problem of determining fb from batch settling tests has been
approached in several ways. One approach consists in selecting a global parametric form
for fb, for example the common Richardson and Zaki (1954) formula fb(φ) = v0φ(1− φ)nRZ

with parameters v0 > 0 and nRZ > 1. One then compares an observed temporal or spatial
solution profile with a numerically simulated one, and seeks to minimize the distance between
both by varying the parameters by employing a descent method (Bürger et al., 2009) or
solving an adjoint problem (Coronel et al., 2003), and calculating anew the simulated profile
after each variation of the parameters. These techniques are most common for flocculated
suspensions (i.e., A 6≡ 0), since in that case, the model (1), (6), (7) usually has no closed-form
exact solution.

Kynch’s (1952) graphical estimation method does not require the numerical solution of
a PDE, nor does the approach of identifying certain observed trajectories with portions
of an exact solution and determining the flux parameters by a constrained least-squares
technique. For the Kynch test, available treatments include Bueno et al. (1990), Diplas and
Papanicolaou (1997), Font and Laveda (2000), Lester et al. (2005) and Grassia et al. (2008,
2011). The graphical method by Kynch utilizes the PDE theory connection between the
flux function and the curved discontinuity of the Kynch test. An explicit formula for the
estimated flux function in terms of measurable variables was presented by Lester et al. (2005).
However, their formula contains an integral over the measured settling velocities. Diehl
(2007) presented a simpler formula, which was adopted by Grassia et al. (2008) and is utilized
by Bürger and Diehl (2013) and in the present paper to obtain closed-form estimations for fb.

1.4. Outline of the paper. The remainder of this paper is organized as follows. In Section 2
we introduce the batch sedimentation model and tests for the case of an ideal suspension
(described by (5), (6)). To this end we recall in Section 2 basic properties of solutions of (5),
which are discontinuous in general. In Section 2.2 we discuss the solution of (5), (6) for the
Kynch test, that is, for the batch settling of an initially homogeneous suspension in a column.
The key issue is that under determined conditions on the initial concentration φ0, this test
will produce a suspension-supernate discontinuity that travels with a decreasing speed so that
the trajectory is convex in an x versus t plot. The new flux identification method consists
in converting an observation of this trajectory into a convex portion of fb. To improve the
possibilities of obtaining information on fb for φ < φinfl, Diehl (2007) proposed to study
a configuration in which the suspension is initially located above a column of clear liquid,
from which it is separated by a membrane which is removed at t = 0 so that the system is
allowed to evolve. This test, the so-called “Diehl test”, is described in Section 2.3. Under
determined conditions, the suspension-supernate interface produced by this test is concave,
and an observation of this interface may be converted into a concave portion of fb.

Section 3 provides a more detailed description of the flux identification method for the
Kynch and Diehl tests. In Section 3.1 an explicit formula for the identified convex portion f̌b
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of fb is derived, provided that a convex approximation ȟ = ȟ(t) of the suspension-supernate
interface is given. The treatment for the concave portion f̂b arising in the Diehl test is
analogous. It is based on a concave approximation ĥ = ĥ(t) of the suspension-supernate
interface, and is outlined in Section 3.2. In Section 3.3 we explain how to generate ȟ. The
key issue is the solution of a constrained least-squares optimization problem that provides
the coefficients of the piecewise definition of ȟ as a piecewise cubic, piecewise quadratic or
a special piecewise rational function in such a way that ȟ is once or twice differentiable and
convex. The resulting approximation methods are addressed as “spline-fit”, “quadratic-fit”
and “special-fit”, respectively. The generation of ĥ in the Diehl test is analogous. Applica-
tions of the method are presented in Section 4, considering synthetic data (Section 4.1), one
case of experimental data from literature (Section 4.2), and data obtained from a settling
experiment of glass beads in glycerine (Section 4.3). Conclusions are collected in Section 5.

2. Batch sedimentation models and tests

2.1. Properties of solutions of (5). Solutions of (5), (6) are, in general, discontinuous.
If (t, x(t)) denotes a trajectory of a discontinuity in the x versus t plane, and at time t = t0
it separates the concentration values φ+ and φ−, then its velocity of propagation is given by
the jump condition

x′(t)
∣∣
t=t0

=
dx(t)

dt

∣∣∣∣
t=t0

= −fb(φ+)− fb(φ−)

φ+ − φ−
. (11)

Since the function fb is nonlinear, discontinuous solutions may arise even from smooth
initial data. In the present treatment we assume for simplicity that the function fb has
exactly one inflection point, denoted by φinfl. Solutions of the problems (5), (6) (and also
of (1)–(7)) must be defined as entropy solutions, that is as weak (in general, discontinuous)
solutions along with a selection principle, the so-called entropy condition. Roughly speaking,
the entropy condition ensures that the solution is physically relevant. In particular it provides
a condition of admissibility for discontinuities that separate different solution values. If these
conditions are satisfied, then the discontinuity is called a shock wave or simply shock. If this
condition is not satisfied, then a discontinuity posed, for example, in the initial datum must
be resolved by a rarefaction wave, that is, by a continuous variation of solution values (cf.,
e.g., Bustos et al., 1999).

2.2. The Kynch test. The traditional method of identifying the flux density function fb,
the Kynch test, is based on the initial datum

φ̃0(x) =


0 for x > H,

φ0 for 0 6 x 6 H,

φmax for x < 0,

(12)

where φmax is a maximal concentration and 0 < φ0 < φmax is the homogeneous concentration
of the initial suspension. We refer to the solution of the governing equation (1) along with
the initial datum (12) as the “Kynch test”. If we assume, for simplicity, that the suspension
under study is not flocculated, i.e., the governing equation is actually the conservation law
(5), then the solution exhibits a descending interface that separates first the suspension
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φinfl φmaxφ∗∗maxφ0 φ∗0

fb(φ)

φmax

φ0 φ∗0

t

x

H

φ = 0

x = h(t)

tstart tend

x = x1(t)
x = x2(t)

0

Figure 1. Kynch test. Left: plot of the function fb. The tangent through the
point (φmax, 0) has the slope f ′b(φmax). This tanget intersects the graphs of fb

at a point φ∗∗max < φinfl. Right: settling plot showing the solution of (5), (6)
with the initial datum given by (12), where φ0 ∈ (φ∗∗max, φmax]. The thin lines
are characteristics and the thick lines mark discontinuities, with the exception
of x2, which is a line of continuity.

and then the sediment from the supernatant liquid. On one hand, the height versus time
trajectory of this interface can be calculated in closed algebraic form from the curve of fb

versus φ, and on the other hand, this interface can easily be observed experimentally. Thus,
the trajectory observed for a given material can be converted into a portion of fb suitable
for that material. This property generalizes some well-known methods of thickener design
from batch settling tests (Coe and Clevenger, 1916; Kynch, 1952; Talmage and Fitch, 1955;
Wilhelm and Naide, 1981).

Roughly speaking, if the initial concentration φ0 is chosen sufficiently large, namely
φ0 ∈ (φ∗∗max, φmax], where the definition of the value φ∗∗max is illustrated in Figure 1, then
the Kynch tests permits to reconstruct the portion of fb for φ∗0 6 φ 6 φmax. This informa-
tion related to the range of high concentrations is usually complemented by the fact that
fb(0) = 0, and that for t 6 tstart, the velocity of the descending suspension-supernate in-
terface x(t) = h(t) that separates the values φ = 0 and φ = φ0 is according to (11) given
by h′(t) = −fb(φ0)/φ0, which from an observed value of h′(t) allows us to reconstruct the
value of fb(φ0). Thus, the Kynch test will provide the functional form of fb for a certain
sub-interval of [φinfl, φmax], which is complemented by a small number of pointwise values
of fb for φ < φinfl.
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φinfl

φmax

φ∗∗max

φ0

fb(φ)

φ0∗φa φ∗a
φ∗∗max

φmax

φ∗∗max

φ0

t

x

H

φ = 0

φ = 0

x = h(t)x1

x2

x3

x4

⌢tend⌢tstart

H0 φ = 0

φ = 0

φ0∗

φa

φ∗∗max

0

Figure 2. Diehl test. Left: the function fb, showing some of the φ-values aris-
ing in the solution construction. Right: solution of (5), (6), with initial datum
given by (13), for φ0 ∈ (φinfl, φmax]. The thin lines are characteristics, and the
thick lines are discontinuities, with the exception of the line of continuity x4.
The concave trajectory x = h(t), which can be measured in experiments, is a
transform of fb for φ ∈ [φa, φ0∗] (Bürger and Diehl, 2013).

2.3. The Diehl test. The initial configuration of the Diehl test is represented by

φ̃0(x) =


0 for x > H,

φ0 for H0 6 x 6 H,

0 for 0 6 x < H0,

φmax for x < 0.

(13)

Under determined circumstances, the solution of (5), (6), (13) has the following behaviour.
The initial supernate-suspension interface located at x = H0, which separates the suspension
initially located above the clear liquid, evolves into a rarefaction wave enclosed between
an upward-propagating discontinuity (denoted by x1) and a downward-propagating line of
continuity (denoted by x2; see Figure 2). On the other hand, the interface between the
suspension and the supernatant liquid at the top of the suspension, initially located at x = H,
moves downwards (in the special case φ0 = φmax, it is standing still). At some moment,
denoted by t̂start, this interface and x1 will meet. At that time, the initial concentration φ0

disappears, and the interface separating the suspension from the supernatant clear liquid
becomes a shock x = h(t), which is curved since the characteristics emerging at x = H0

form a rarefaction wave. It is precisely this concave interface x = h(t) that will be used for
the identification of a segment of fb. This segment ranges from φ = φ0∗ to φ = φa, where
φ0∗ < φinfl is the φ-value such that the tangent to the graph of fb through (φ0∗, fb(φ0∗))
intersects the graph of fb in (φ0, fb(φ0)), and φa is a limiting value that depends on the
accumulation of sediment on the bottom of the unit (see Figure 2). For details we refer to
Diehl (2007).
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3. The problem of flux identification

3.1. Rarefaction waves and curved trajectories in the Kynch test. As is stated
above, the key motivation of the present approach is the fact that a function fb, which for
the moment we assume to possess one inflection point only, and for an appropriately chosen
value of φ0, the trajectory (t, h(t)) is the transform of a segment of the curve (φ, fb(φ)) for
certain values of φ with φ > φinfl (in the case of the Kynch test, see Figure 1) or φ < φinfl

(in the case of the Diehl test (13), see Figure 2), and that in an x versus t diagram, the
mentioned trajectory is either convex (in the case of (12)) or concave (for (13)).

To be explicit, let us concentrate for the moment on the Kynch test, and define the function

η(t) := h(t)− th′(t), (14)

where h(t) denotes the time-dependent position of the suspension-supernate interface, which
eventually becomes the sediment-supernate interface. (Note that if we draw this interface in
an x versus t settling plot, then η(t) is the intercept between the tangent to h going through
the point (t, h(t)) with the x-axis.) One can then prove that the interface trajectory h(t),
the values φ asssumed within the rarefaction fan originating in (x = 0, t = 0), and the
corresponding values fb(φ) are related by the pair of equations

φ =
Hφ0

η(t)
, fb(φ) = −Hφ0

η(t)
h′(t) for tstart 6 t 6 tend. (15)

If h(t) is convex, that is h′′(t) > 0 for tstart 6 t 6 tend, then η is an invertible function of t
and we may eliminate t from (15) to obtain the explicit formula

fb(φ) = −φh′
(
η−1

(
Hφ0

φ

))
for φ∗0 6 φ 6 φmax, (16)

where φ∗0 = Hφ0/η(tstart). This property forms the basis of the flux identification method in
the present work, which is based on the mathematically rigorous exposition by Bürger and
Diehl (2013). The basic idea is the following: suppose that measurements of the interface
h(t) are available, which may be affected by noise. Moreover, assume that we have at hand
a smooth curve ȟ(t), which is convex and which may be defined as a spline curve (that
is, as a twice differentiable curve defined in a piecewise sense by cubic polynomials), as a
differentiable, piecewise parabolic or as a twice differentiable, piecewise rational function.
(In what follows, these three alternatives will be addressed as “spline-fit”, “quadratic-fit”
and “special-fit” methods, respectively.) Then we may reconstruct a segment of fb, denoted
here by f̌b, by using the function ȟ′ instead of h′ in (14) and (16). That is, if ȟ′′(t) > 0 for
tstart 6 t 6 tend, then we define

η̌(t) = ȟ(t)− tȟ′(t) for tstart 6 t 6 tend, (17)

and by inverting η̌ (which is possible in closed algebraic form for the spline-fit, quadratic-fit
and special-fit methods), we may recover the desired segment of fb via

f̌b(φ) = −φȟ′
(
η̌−1

(
Hφ0

φ

))
for φ∗0 6 φ 6 φmax. (18)

In the case fb has several inflection points, the parametric and explicit representations of
the flux function, (15) and (16), still hold. The set of φ is always a subset of the convex parts
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of fb. In case fb has three inflection points, this set may consist of two disjoint intervals
corresponding to the “convex hull” construction for rarefaction waves for this type of PDE.

3.2. Rarefaction waves and curved trajectories in the Diehl test. Although the so-
lution of a Diehl test (see Figure 2) is substantially different from that of the Kynch test,
it also has (during the time interval between tstart and tend) an expansion wave below the
supernate-suspension interface x = h(t); however, this interface is concave. The concentra-
tions in this expansion wave lie in an interval the left of the inflection point φinfl where the
flux function is concave. The derivation of the following formulas is similar to the case of
the Kynch test (Diehl, 2007):

φ =
(H −H0)φ0

η(t)−H0

, fb(φ) = −(H −H0)φ0

η(t)−H0

h′(t) for tstart 6 t 6 tend, (19)

where η is defined by (14). If h(t) is concave, that is h′′(t) < 0 for tstart 6 t 6 tend, then η is
an invertible function of t and we may eliminate t from (19) to obtain the explicit formula

fb(φ) = −φh′
(
η−1

(
H0 +

(H −H0)φ0

φ

))
for φa 6 φ 6 φ0∗,

where φa = (H −H0)φ0/(η(tend)−H0).

3.3. Convex and concave approximations of measured interfaces. We now pro-
vide more technical detail on the determination of the convex approximation ȟ(t) of the
suspension-supernate interface for the Kynch test. The procedure is analogous for the Diehl
test and we omit the details here. Assume that the raw data is a collection of N points

(tj, xj), j ∈ {j1 := 1, . . . , j2, . . . , j3, . . . , jn, . . . , jn+1 := N}, (20)

which represent measurements of the sediment-supernate interface x = h(t) (see Figure 1)
for the time interval t ∈ [tstart, tend]. We assume that each interval (tji , tji+1

] contains Ni :=
ji+1 − ji points, such that N = 1 + N1 + · · · + Nn. One then determines smooth functions
ȟi, i = 1, . . . , n, which approximate these data in such a way that the function

ȟ(t) :=
n∑
i=1

ȟi(t)χi(t), t1 < t 6 tN , (21)

which is defined in a piecewise manner through the indicator functions

χi(t) :=

{
1 if tji < t 6 tji+1

,

0 otherwise,

is smooth and convex. It is ensured that the function ȟ is smooth (for instance, once or
twice differentiable) if we employ one of the following methods:

(1) the spline-fit method, for which we employ on each interval the approach

ȟi(t) = ait
3 + bit

2 + cit+ di, i = 1, . . . , n (22)

with coefficients ai, bi, ci and di which are determined in such a way that the resulting
curve ȟ(t) is twice differentiable,
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(2) the quadratic-fit method, for which we employ on each interval the approach

ȟi(t) = ait
2 + bit+ ci, i = 1, . . . , n (23)

with coefficients ai, bi and ci which are determined in such a way that the resulting
curve ȟ(t) is differentiable,

(3) or the special-fit method, for which we employ on each interval the approach

ȟi(t) =
ai
t2

+
bi
t

+ ci + dit, i = 1, . . . , n (24)

with coefficients ai, bi, ci and di which are determined in such a way that the resulting
curve ȟ(t) is twice differentiable.

The determination of the coefficients for each of the functional forms (22), (23) and (24)
so that the resulting curve ȟ is the best approximation of the data (20) and at the same time
the smoothness requirements are met is a standard least-squares approximation (quadratic
programming) problem. However, we here require that in addition the function ȟ be convex
(for the case of the Kynch test), i.e., we request that ȟ′′ > 0. This requirement further
restricts the possible values of the coefficients ai, . . . , di.

To formalize the description of the resulting constrained quadratic programming problem,
we first note that ȟi(t) = q(t)Tpi for i = 1, . . . , n, where we define pi := (ai, bi, ci, di)

T and
the vector function

q(t)T :=


(t3, t2, 1, 1) for the spline-fit method (22),

(t2, t, 1, 0) for the quadratic-fit method (23),

(1/t2, 1/t, 1, t) for the special-fit method (24).

Furthermore, we define the vectors

p :=


p1

p2
...
pn

 , xi :=


xji
xji+1

...
xji+1−1

 , x :=


x1

x2
...
xn
xN

 ,

where p is the vector of unkwowns, that is, of the coefficients in (22), (23) or (24) that
determine the shape of (21). The vector p is determined as the solution of the following
constrained quadratic programming problem:

minimize J(p) = (Qp− x)T(Qp− x)

subject to the regularity condition Rmethodp = 0

and the convexity condition Imethodp 6 bmethod,

(25)
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where Q denotes the matrix

Q :=


Q1 0 · · · 0

0 Q2
. . .

...
...

. . . . . . 0
0 · · · 0 Qn

0
. . . 0 q(tN)T

 ,

where in turn we define

Qi :=


q(tji)

T

q(tji+1)T

...
q(tji+1−1)T

 , i = 1, . . . , n,

and Rmethod and Imethod are certain given matrices and bmethod is a given vector, where
the superscript “method” indicates that the respective quantity depends on the choice of
the method (spline-fit, quadratic-fit or special-fit). The inequality in Imethodp 6 bmethod is
understood in the component-wise sense. The precise expressions are all given by Bürger
and Diehl (2013), where it is also proven that the problem (25) always has a unique solution.
To illustrate the main idea, we provide in the Appendix further detail for the particularly
transparent case of the quadratic-fit (23).

4. Application to synthetic and experimental data

In this section, we analyze data from three different suspensions partly to demonstrate
the methods and partly to investigate which of the methods of identification (spline-fit,
quadratic-fit or special-fit) is preferable in each case. To this end, we note first that the
number n of subintervals of ȟ(t), η̌(y) and f̌b(φ) can be chosen arbitrarily provided that
n < N/4. While for a chosen method the accuracy of the identification method, measured
by the smallness of J defined in (25), usually increases when n is increased, for the application
of available solvers for the constrained quadratic programming problem (25) and the ease of
implementation of simulators of continuous sedimentation it is desirable that n is chosen as
small as possible.

4.1. Application to synthetic data. Here, we analyze data obtained by numerical sim-
ulation of the governing PDE (1) with and without the presence of the compressive term
A(φ)xx on the right-hand side. The following constitutive functions have been obtained from
experimental measurements on Chilean copper ore tailings by Becker (1982), and have been
used in a number of previous works (see, e.g., Bustos et al., 1999 and Bürger and Narváez,
2007):

fb(φ) =

{
v0φ(1− φ)12.59 for 0 6 φ 6 1,

0 otherwise,
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Figure 3. Numerical simulations of the Kynch and Diehl tests (a, b) with
compression present, (c, d) without compression.

σe(φ) =

{
0 for φ 6 φc := 0.23,

σ0 exp(17.9φ) for φ > φc,

where v0 = 0.000605 m/s and σ0 = 5.35 Pa. For the compression function (3) we also have
∆%s = 1650 kg/m3 and g = 9.81 m/s2. A graph of the flux function fb is drawn as the black
dashed curve in Figure 6 (b). The inflection point of fb is φinfl = 2/(1 + 12.59) ≈ 0.1472.
Since the theoretically maximal intervals of φ for the identification with the Kynch and Diehl
tests are obtained with φ0 = φinfl, we choose this initial value for the numerical simulations
here; see Figures 3 (a) and (b). In Figures 3 (c) and (d), the same tests are simulated without
the compression function present, i.e., σ0 has been set to zero.

Since compression is only present in the solution wherever φ exceeds the critical concen-
tration φc = 0.23, the Diehl test yields the same solution with and without compression for
the major part of the concave interface; see Figures 3 (b) and (d). This means that the
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Figure 4. Contours (iso-concentration curves) of the simulations (a, b) shown
in Figures 3 (a) and (b) (with compression) and (c, d) shown in Figure 3 (c)
and (d) (without compression). The contours correspond to φ-values that are
multiples of 0.01. The thin red line in plots (a) and (b) refers to the critical
concentration φc = 0.23.

accurate identification method can be used for a Diehl test also for flocculated suspensions
as long as φ0 < φc. In Figure 4 the contours of the simulations are shown during a longer
time interval.

We now apply the identification method to the curved interfaces in Figure 4. From these
synthetically produced interfaces, several points are obtained by clicking with the mouse on
the computer screen. This introduces some noise to the data. To assess which fitting method
and what number of subintervals will give good fits, we display the results of several runs in
Figure 5.
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Figure 5. Values of J in the minima of the optimization problem (25) for
the Kynch test for different numbers of n for the synthetic data of Figure 4 (c).

Based on Figure 5, we perform the special-fit method for one interval, see Figures 6 (a)
and (b), and the spline-fit method with four subintervals, see Figures 6 (c) and (d). The
subintervals are marked by the vertical dashed blue lines.

For the Diehl test, Figure 7 shows the quality of the different fits with different numbers
of subintervals. In Figures 8 (a) and (b), we show the result of a special-fit with one interval
and in Figures 8 (c) and (d) a fit with five segments.

Note that the special-fit method, see Figure 8 (b), results in an estimated concave part of
the flux function, which goes above the inflection point φinfl ≈ 0.1472, whereas the spline-fit
method is more accurate; see Figure 8 (d).

4.2. Application to experimental data from literature. There are many published
experiments of the Kynch test. Here we choose those reported by Karamisheva and Is-
lam (2005) in their Figure 2; see Figure 9 (a) and (c). Four Kynch tests were performed
with activated sludge from a municipal wastewater treatment plant and with the initial
concentrations φ0 = 1.6, 2.4, 3.7 and 7.2 g/l.

By inspection of the data points in Figure 9 (a) or (c), we first choose the time point tstart,
to the left of which we fit a straight line. The (magnitude of the) slope of this line gives an
estimation of the settling velocity of the corresponding initial concentration; see the coloured
circles in Figure 9 (b) and (d).

The limited number of data points to the right of tstart representing the convex part of
h(t) seen in Figure 9 (a) and (c), and the requirement to have a unique solution to the
optimization problem imply that we use only one or two subintervals for the different fits.
Since there are different numbers of data points in each of the four tests, we normalize the
errors as follows. Let J denote the value of the functional corresponding to the solution of
(25) for a fixed n. For the test with φ0 = 1.6 g/l with the number of data points N1.6 = 11
we set J1.6 := J/N1.6 and do the corresponding for the other three tests. Then we define the
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Figure 6. (a, b) Special-fit method, (c, d) spline-fit method, both applied to
the synthetic data of Figure 4 (c).

average Jtotal := (J1.6 + J2.4 + J3.7 + J7.2)/4 as a measure of how good the fit is. The values
of Jtotal for the three methods are Jtotal = 0.49378, 0.22054 and 0.03515 for the quadratic-fit,
spline-fit, and special-fit methods, respectively, for n = 1 subinterval, and Jtotal = 0.03854,
0.01502, and 0.035082 for each of these methods, respectively, for n = 2 subintervals. The
best fit for n = 1 is obtained with the special method; cf. Figure 9 (a)–(b), and the best fit
for n = 2 is obtained with spline segments; cf. Figure 9 (c)–(d).

4.3. Application to experimental data. To further provide experimental support for
the flux identification method, settling experiments of a suspension of glass beads were
conducted by using the SediRack equipment. SediRack is an equipment that permits one
to conduct five settling experiments at different initial concentrations simultaneously, see
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Figure 7. Values of J in the minima of the optimization problem (25) for
the Diehl test for different numbers of n for the synthetic data of Figure 4 (d).

Figure 10 (a). The settling columns are mounted into a frame that can be rotated to create
an initially homogeneous suspension in each of the columns. A videocamera observes the
settling process. By using a special image processing software installed in a notebook one
can eventually record the suspension-supernate interface of in each of the columns as a
function of time (see Figure 10). This is precisely the kind of information the present flux
identification method can be applied to. Some results are shown in Figures 11–13.

For the experiments we used technical quality glass beads (manufactured by Potters In-
dustries, Inc., Carlstadt, New Jersey), U.S. screen number 20–30 of density %s = 4210 kg/m3.
The liquid utilized was a solution of industrial glycerine and distilled water of volumetric
concentration 0.95 in glycerine, density %f = 1247 kg/m3 and viscosity 0.3469 Pa s. The solu-
tion viscosity was measured with a viscometer Rotovisco RV-20 (Haake). The experimental
procedure consisted in (i) preparing the solid particles to obtain the required concentration
in each tube, (ii) introducing the particle charges into each tube, (iii) filling each tube with
the solution up to the height of H = 287 mm, (iv) closing the cover, (v) rotating the tubes
as many times as necessary to obtain a homogeneous suspension, (vi) fastening the frame
and (vii) starting the data acquisition in the notebook. The software gives the possibility
of selecting the sample time interval. For all experiments the sample time interval 1 s was
chosen. Temperature was recorded in each run and ranged from 21 ◦C to 23 ◦C.

To assess which of the methods would provide the best flux approximation for the available
experimental data and a given number of subintervals n, we now define the functional J for
each fixed number n of subintervals as the average of the four tests that have rarefaction waves
normalized with the number of data points N , i.e., we define for the run with φ0 = 0.268

J268 :=
(Qp− x)T(Qp− x)

N268

.
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Figure 8. (a, b) Special-fit method and (c, d) spline-fit method, both applied
to the synthetic data of Figure 4 (d).

Define in analogous manner J298, J318 and J338, and calculate Jtotal = (J268 + J298 + J318 +
J338)/4. The minima of the quantities Jtotal obtained in this way are plotted for the three
methods proposed (spline-fit, quadratic-fit and special-fit) in Figure 14. This plot informs
that for n = 1, the spline-fit method gives the smallest minimum of Jtotal, while for n =
2, . . . , 30 the smallest value is attained for the quadratic-fit method.

5. Conclusions

The three identification methods (spline-fit, quadratic-fit or special-fit) have been applied
on three sets of suspensions and data:
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Figure 9. The black markers in (a) and (c) show the data of four Kynch tests
from Karamisheva and Islam (2005). The coloured lines show the results of:
(a)–(b) the special-fit method with one interval; (c)–(d) the spline-fit method
with two subintervals.

(1) Synthetically produced data with a flux function measured from experimental data
of copper ore tailings (Section 4.1). For the identification of the convex part of the
flux function from a Kynch test, the special-fit method is then sufficiently accurate
already with only one subinterval; see Figures 6 (a) and (b). A concave part of the
flux can be identified from the Diehl test, but then several spline segments should be
used for a sufficiently accurate result; see Figures 8 (c) and (d).

(2) Published data by Karamisheva and Islam (2005): Four Kynch tests of activated
sludge from a wastewater treatment plant have resulted in similar flux estimations
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(a) (b)

Figure 10. (a) SediRack equipment, (b) snapshot of suspension-supernate
interfaces measured by SediRack.

by either the special-fit method with one interval, or the spline-fit method with two
intervals: see Figure 9.

(3) Newly conducted Kynch tests of glass beads in 95% glycerine. For this suspension, it
is interesting to note that the quadratic-fit method gives the best fit for two or more
subintervals; see Figure 14.

In agreement with the results of the analysis of the synthetically produced data in Bürger
and Diehl (2013), the two first suspensions here show that the minimum values of J for the
spline-fit are consistently smaller than those for the quadratic-fit method. These findings
sharply contrast with our experiments with glass beads; see Figure 14. For this suspension
and the Kynch test, the special-fit produces non-small minimal values of J that are nearly
constant for all n. More interestingly, only for n = 1 does the spline-fit produce the best
approximation, while for n ≥ 2 the quadratic-fit yields significantly smaller minimal values
of J . The reason for this is that there are no constraints on the second derivative in the
optimization with the quadratic-fit as there are with the spline-fit and special-fit methods.
According to Theorem 2.1 of Bürger and Diehl (2013), this means that the resulting estimated
portion of the flux is only once continuously differentiable. Generally, the quadratic-fit
method can only give once continuously differentiable functions h and fb, whereas the spline-
fit and special-fit yield twice continuously differentiable functions h and fb.

The comparison between the results above shows that glass beads produce a completely
different behaviour than the other suspensions. Thus, one cannot generically single out one
of the methods (spline-fit, quadratic-fit or special-fit) in favor of the two others. Rather, all
three methods should be investigated for each material. For instance, for the quadratic-fit
method with n = 1 (sub-)interval for the case φ0 = 0.338, the coefficients of (23) are

a1 = 6.9318× 10−4, b1 = −0.6225, c1 = 286.9567.
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Figure 11. Flux identification from six Kynch tests of a suspension of glass
beads in glycerine with the quadratic-fit method with (a, b) n = 1 and (c,
d) n = 10. In (a, c), the experimental data for the suspension-supernate
interfaces are shown as black curves and the coloured straight lines and curves
the reconstructed interfaces. In (b, d), the identified portions f̌b are shown
plus isolated approximate values of fb coming from the observation of initial
settling velocities.

The same coefficients also arise in the formula for identified segment f̌b of fb,

f̌b(φ) = −
(
b1φ+ 2

(
a1φ(c1φ−Hφ0)

)1/2
)

for
Hφ0

η̌(t1)
< φ 6

Hφ0

η̌(tN)
,

which follows from formula (A.5) in the Appendix by setting n = 1.
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Figure 12. Flux identification from Kynch tests of a suspension of glass
beads in glycerine with the spline-fit method with n = 3, showing (a) the
reconstructed suspension-supernate interfaces and (b) the identified portions
f̌b, plus isolated approximate values of fb coming from the observation of initial
settling velocities.
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Figure 13. Estimation of the settling velocity vhs(φ) based on the data of
Figure 11 (b).

The coefficients for the spline-fit method (22) for the same value φ0 = 0.338 with one
interval are

a1 = −1.0000× 10−10, b1 = 6.9327× 10−4, c1 = −0.6225, d1 = 286.9583.
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Figure 14. Average minimum values of the functional Jtotal for each fixed
number of subintervals n.

In the case of the spline-fit, the convexity constraint is ai < 0 for i = 1, . . . , n (Bürger and
Diehl, 2013). Since this parameter is almost zero (−a1 = ε = 10−10, see the Appendix), the
best fit is in fact a quadratic function. The reason that the quadratic function gives a better
fit, i.e. gives a lower value of J , is that there are no constraints on the second derivative in
the optimization. According to Theorem 2.1 of Bürger and Diehl (2013), this means that
the resulting estimated portion of the flux is only once continuously differentiable.
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Appendix

For the quadratic-fit, the regularity constraint implies that the curve (21) must be differ-
entiable, which means that at the points tji , i = 2, . . . , n, the neighboring segments ȟi−1 and
ȟi must have the same value and derivative, i.e., we impose

ȟi−1(tji) = ȟi(tji), i = 2, . . . , n, (A.1)

ȟ′i−1(tji) = ȟ′i(tji), i = 2, . . . , n. (A.2)
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Inserting the functional form (23) into (A.1) and (A.2) we obtain the equality constraint
Rquadp = 0, where

Rquad =


R2 −R2 0 · · · 0

0 R3 −R3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 Rn −Rn

 , where Ri =

[
q(tji)

T

q′(tji)
T

]
, i = 2, . . . , n.

Furthermore, the convexity constraints, namely

ȟ′′i (t) > 0 for tji 6 t < tji+1
, i = 1, . . . , n, and ȟ′′n(tn) > 0,

applied to the functional form (23) imply ai > 0 for i = 1, . . . , n − 1 and an > 0. However,
we impose the constraint ai > 0 for i = 1, . . . , n. These conditions are expressed as Iquadp 6
bquad, where the (n+ 1)× (4n) matrix Iquad is defined by

Iquad =


−eT

1 0 . . . 0

0 −eT
1

. . .
...

...
. . . . . . 0

0 · · · 0 −eT
1

0 · · · 0 q′(tN)T

 , where e1 =


1
0
0
0

 ,

and we set b := −ε(1, . . . , 1, 0)T, where ε > 0 is a small parameter.
With the ingredients specified above for the quadratic-fit method, we can solve the con-

strained quadratic programming problem (25) (for this task, standard software packages are
available) to obtain the coefficients of the functions ȟi(t), i = 1, . . . , n.

We then get that the function η̌ defined in (17) is defined analogously to (21), namely by

η̌(t) =
n∑
i=1

η̌i(t)χi(t) for t1 < t 6 tN ,

where η̌i(t) := ȟi(t)− tȟ′i(t) = −ait2 + ci for i = 1, . . . , n. The desired portion of f̌b is calcu-
lated from (18), which requires that we calculate the inverse η̌−1 of η̌. To this end, we first
define the characteristic functions

ψi(φ) :=

{
1 if η̌(tji+1

) 6 Hφ0/φ < η̌(tji),

0 otherwise,
i = 1, . . . , n. (A.3)

For the quadratic-fit, we obtain that each of the functions η̌i(t) has the inverse

η̌−1
i (y) =

(
ci − y
ai

)1/2

for η̌(tji+1
) 6 y < η̌(tji), (A.4)

so that inserting y = Hφ0/φ into (A.4) and taking into account (A.3), we obtain from (18)
the explicit formula

f̌b(φ) = −
n∑
i=1

(
biφ+ 2

(
aiφ(ciφ−Hφ0)

)1/2
)
ψi(φ) for

Hφ0

η̌(t1)
< φ 6

Hφ0

η̌(tN)
. (A.5)
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