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Abstract

In this paper we consider the transmission problem of a material composed by three
components, one of them is a Kelvin-Voigt viscoelastic material, the second is an
elastic material (no dissipation) and the third is an elastic material inserted with a
frictional damping mechanism. The main result of this paper is that the rate of decay
will depend of the position of each component. When the viscoelastic component
is not in the middle of the material, then there exists exponential stability of the
solution. Instead, when the viscoelastic part is in the middle of the material, then
there is not exponential stability. In this case we show that the decay is polynomial
as 1/t2. Moreover we show that the rate of decay is optimal over the domain of
the infinitesimal generator. Finally using a second order scheme that ensures the
decay of energy (Newmark-β method), we give some numerical examples which
demonstrate these asymptotic behavior.

1 Introduction

The wave equation with localized frictional damping was studied by several authors and

by now it is very well known that the semigroup defined by this equation is exponentially

stable no matter the size nor the location of the subinterval where the damping mechanism

is effective. See for example [6, 7, 8, 11, 14, 15, 16, 20] to quote such a few.

K. Liu and Z. Liu in [10] proved a similar result to the Euler Bernoulli beam equation

with localized Kelvin-Voigt damping. That is to say, no matter the size nor the position of

the damping mechanism is effective, the semigroup defined by the solution of the model is
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always exponentially stable. Under the light of this result one can arrive to the conclusion

that the semigroup defined by the solution of the wave equations with localized Kelvin-

Voigt damping is also exponentially stable. This is clearly not true as proved in [10].

That is localized Kelvin-Voigt damping does not produce exponential stability.

In this paper we consider the transmission problem with localized viscoelasticity of Kelvin-

Voigt type. Here we consider a beam composed by three different components, one of them

is of viscoelastic type, the other is only an elastic part and finally the third component of

elastic type with a frictional damping mechanism. The main result of this paper is that

the position of this component (optimal design) plays an important role in the study of

the stabilization. For example if we consider a beam of the forms given below

���
���
���
���
���
���
��

���
���
���
���
���
���
��Viscolastic Part Elastic Part

VEF Model

Frictional Part

✛ ✲✛ ✲✛ ✲
0 l0 l1 l

u(x) v(x) w(x)

���
���
���
���
���
���
��

���
���
���
���
���
���
��Elastic Part

EVF Model

Viscoelastic Part Frictional Part

✛ ✲✛ ✲✛ ✲
0 l0 l1 l

u(x) v(x) w(x)

���
���
���
���
���
���
��

���
���
���
���
���
���
��Elastic Part

EFV Model

Frictional Part Viscoelastic Part

✛ ✲✛ ✲✛ ✲
0 l0 l1 l

u(x) v(x) w(x)

2



The longitudinal displacement ν is divided into two parts

ν =






u(x) if x ∈]0, l0[
v(x) if x ∈]l0, l1[
w(x) if x ∈]l1, l[

where each component u, v and w, represents the displacement of the first, second and

third component of the beam, respectively. There exist six possible combinations of the

material. Two possibilities occur when the elastic part is at the center of the material.

Other two possibilities when the viscous part is in the middle of the beam, and finally

when the elastic part with frictional mechanics is at the center of the beam. Performing

the change of varible s = l − x this six posibilitites can be reduced to three. We refer to

each model as VEF, EVF and EFV. The VEF model is given by

ρ1 utt − κ1 uxx − κ0 uxxt = 0 in ]0, l0[×]0, ∞[, (1.1)

ρ2 vtt − κ2 vxx = 0 in ]l0, l1[×]0, ∞[, (1.2)

ρ3wtt − κ3wxx + γ wt = 0 in ]l1, l[×]0, ∞[. (1.3)

where κ0, κ1, κ2 and κ3 are elastic positive constants, and ρ1, ρ2 stands for the mass

density functions. The transmission conditions are given by

u(l0, t) = v(l0, t), κ1 ux(l0, t) + κ0 uxt(l0, t) = κ2 vx(l0, t), t > 0, (1.4)

v(l1, t) = w(l1, t), κ2 vx(l0, t) = κ3wx(l0, t), t > 0. (1.5)

The boundary conditions

u(0, t) = 0, w(l, t) = 0, t > 0, (1.6)

and the initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x) in ]0, l0[,

v(x, 0) = v0(x), vt(x, 0) = v1(x) in ]l0, l1[,

w(x, 0) = w0(x), wt(x, 0) = w1(x) in ]l1, l[.

(1.7)

Instead, the EVF model is given by

ρ1 utt − κ1 uxx = 0 in ]0, l0[×]0, ∞[, (1.8)

ρ2 vtt − κ2 vxx − κ0 vxxt = 0 in ]l0, l1[×]0, ∞[, (1.9)

ρ3wtt − κ3wxx + γ wt = 0 in ]l1, l[×]0, ∞[. (1.10)
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The transmission conditions are given by

u(l0, t) = v(l0, t), κ1 ux(l0, t) = κ2 vx(l0, t) + κ0 vxt(l0, t), t > 0, (1.11)

v(l1, t) = w(l1, t), κ2 vx(l1, t) + κ0 vxt(l1, t) = κ3 wx(l1, t), t > 0, (1.12)

with the same boundary condition and initial data (1.6)-(1.7). Finally, we consider the

EFV model

ρ1 utt − κ1 uxx = 0 in ]0, l0[×]0, ∞[, (1.13)

ρ2 vtt − κ2 vxx + γ vt = 0 in ]l0, l1[×]0, ∞[, (1.14)

ρ3 vtt − κ3wxx − κ0wxxt = 0 in ]l1, l[×]0, ∞[. (1.15)

The transmission conditions are given by

u(l0, t) = v(l0, t), κ1 ux(l0, t) = κ2 vx(l0, t), t > 0, (1.16)

v(l1, t) = w(l1, t), κ2 vx(l1, t) = κ3 wx(l1, t) + κ0 wxt(l1, t) t > 0, (1.17)

with the same boundary condition and initial data (1.6)-(1.7).

The main result of this paper is to show that the solutions of the above models are expo-

nentially stable if and only if the viscous part is not at the center of the beam. Otherwise,

the model is not exponentially stable. In this later case we will show that the solution

decays to zero polynomially as t−2. Moreover we prove that the rate of decay is optimal.

Our main tool to prove the exponential stability and the lack of exponential stability

is a result due to Prüss [19]

Theorem 1.1 Let (S(t))t>0 be a C0-semigroup on a Hilbert space H generated by A.
Then the semigroup is exponentially stable is and only if

iR ⊂ ̺(A), and ‖(i λ I −A)−1‖L(H) 6 C, ∀λ ∈ R.

To show the polynomial decay and the optimality we use a result due to Borichev and

Tomilov [5].

Theorem 1.2 Let (S(t))t>0 be a bounded C0-semigroup on a Hilbert space H with gen-

erator A such that iR ⊂ ̺(A). Then

1

|λ|α ‖(i λ I −A)−1‖L(H) 6 C, ∀λ ∈ R ⇔ ‖S(t)A−1‖D(A) 6
C

t1/α
.
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The remaining part of this paper is organized as follows. In Section 2 we show that

the corresponding models are well possed. In Section 3 we show that the corresponding

semigroup is exponentially stable provided that the viscous component is not in the middle

of the beam. In Section 4 we consider the case when the viscous component is in the middle

of the beam and we prove that there is a lack of exponential stability. Finally, in Section

5 we prove that when the system is not exponentially stable then the semigroup decays

polynomially to zero as t−2. Moreover we show that the rate of decay is optimal for any

initial data belonging to D(A).

2 The Semigroup approach

The aim of this section is to prove the existence and uniqueness of solutions of the VEF

problem. Let us denote by

H
m = Hm(0, l0)×Hm(l0, l1)×Hm(l1, l), L

2 = L2(0, l0)× L2(l0, l1)× L2(l1, l)

H
1
l =

{
(u, v, w) ∈ H

1 : u(0) = w(l) = 0, u(l0) = v(l0), v(l1) = w(l1)
}
.

Under the above conditions we have that the phase space is given by

H = H
1
l × L

2.

Denoting by

Zi = (ui, vi, wi, Ui, Vi, Wi)

where i = 1, 2. Note that this space equipped with the inner product

〈Z1, Z2〉H =

∫ l0

0

(
ρ1 U1 U 2 + κ1 u1, x u2, x

)
dx+

∫ l1

l0

(
ρ2 V1 V 2 + κ2 v1, x v2, x

)
dx

+

∫ l

l1

(
ρ3W1W 2 + κ3w1, x w2, x

)
dx

is a Hilbert space. We also consider the linear operator Ai : D(Ai) ⊂ H → H for

i = 1, 2, 3. Denoting by Φ = (u, v, w, U, V, W )t, we define

A1Φ =




U
V
W

1
ρ1
(κ1 uxx + κ0 Uxx)

κ2

ρ2
vxx

κ3

ρ3
wxx − γ

ρ3
W



, A2Φ =




U
V
W

κ1

ρ1
uxx

1
ρ2
(κ2 vxx + κ0 Vxx)
κ3

ρ3
wxx − γ

ρ3
W



,
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A3Φ =




U
V
W

κ1

ρ1
uxx

κ2

ρ2
vxx − γ

ρ2
V

1
ρ3
(κ3wxx + κ0Wxx)



,

whose domain D(Ai) is given by

D(A1) =
{
Φ ∈ H : (U, V, W ) ∈ H

1
l , (κ1 u+ κ0 η, v, w) ∈ H

2, (2.1)

κ1 ux(l0) + κ0 ηx(l0) = κ2 vx(l0), κ2 vx(l1) = κ3wx(l1)} (2.2)

D(A2) =
{
Φ ∈ H : (U, V, W ) ∈ H

1
l , (u, κ2 v + κ0 V, w) ∈ H

2, (2.3)

κ1 ux(l0) = κ2 vx(l0) + κ0 Vx(l0), κ2 vx(l1) + κ0 V (l1) = κ3wx(l1)} . (2.4)

D(A3) =
{
Φ ∈ H : (U, V, W ) ∈ H

1
l , (u, v, κ3w + κ0W ) ∈ H

2, (2.5)

κ1 ux(l0) = κ2 vx(l0), κ2 vx(l1) = κ3wx(l1) + κ0Wx(l1)} . (2.6)

Using ut = U, vt = V, and wt =W, the system (1.1)-(1.7), (1.8)-(1.12) and (1.13)-(1.16),

can be reduced to the following abstract initial value problem for a first-order evolution

equation

d

dt
Φ(t) = AΦ(t), Φ(0) = Φ0, ∀ t > 0,

with Φ(t) = (u, v, w, ut, vt, wt)
T and Φ0 = (u0, v0, w0, u1, v1, w1)

T . Next, we show

that the operator A generates a C0-semigroup of contractions over H.

Proposition 2.1 The operator A generates a C0-semigroup (SA(t))t>0 of contractions

on the space H.

Proof. We will show that A is a dissipative operator and that 0 ∈ ̺(A), the resolvent

set of A. Then our conclusion will follow using the well known Lumer-Phillips theorem

(see [18]). We observe that if Φ ∈ D(A1), then

〈A1Φ, Φ〉H = κ1

∫ l0

0

Ux ux dx+ κ2

∫ l1

l0

Vx vx dx+ κ3

∫ l

l1

Wxwx dx

+

∫ l0

0

(κ1 u+ κ0 U)xx U dx+ κ2

∫ l1

l0

vxx V dx+

∫ l

l1

(κ3wxx − γ W )W dx.
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Integrating by parts and performing straightforward calculations we obtain

Re 〈A1Φ, Φ〉H = − κ0

∫ l0

0

|Ux|2 dx− γ

∫ l

l1

|W |2 dx. (2.7)

Similarly we have that

Re 〈A2Φ, Φ〉H = − κ0

∫ l1

l0

|Vx|2 dx− γ

∫ l

l1

|W |2 dx. (2.8)

Re 〈A3Φ, Φ〉H = − γ

∫ l1

l0

|V |2 dx− κ0

∫ l

l1

|Wx|2 dx. (2.9)

Hence, Ai is a dissipative operator. To show that 0 ∈ ̺(Ai) let us take F ∈ H. We will

show that there exists a unique Φ in D(Ai) such that Ai Φ = F, that is,

− U = f1 (2.10)

− κ1 uxx − κ2 Uxx = ρ1 f2 (2.11)

− V = f3 (2.12)

− κ2 vxx = ρ2 f4 (2.13)

−W = f5 (2.14)

− κ3wxx + γ W = ρ3 f6. (2.15)

Substituting (2.10) into (2.11) and (2.14) into (2.15) yields

− κ1 uxx = ρ1 f2 + κ2 f1, xx (2.16)

− κ3 vxx = ρ2 f4 (2.17)

− κ4wxx = ρ3 f6 + γ f5, (2.18)

verifying

u(l0) = v(l0), κ1 ux(l0)− κ0 f1, x(l0) = κ2 vx(l0). (2.19)

v(l1) = w(l1), κ3 vx(l1) = κ4wx(l1), (2.20)

with the following boundary conditions.

u(0) = 0, w(l) = 0, t > 0. (2.21)

A standard procedure shows that the transmission problem (2.10)-(2.21) is well posed.

Therefore, we conclude that 0 ∈ ̺(Ai).

From Proposition 2.1 we can state the following result ([18])
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Theorem 2.2 For any Φ0 ∈ H there exists a unique solution Φ(t) = (u, v, w, ut, vt, wt)

of the VEF, EVF and EFV models satisfying

(u, v, w, ut, vt, wt) ∈ C([0, ∞[: H1
l × L

2).

If Φ0 ∈ D(Ai), then

(u, v, w, ut, vt, wt) ∈ C1([0, ∞[: H1
l × L

2) ∩ C([0, ∞[: D(Ai)).

3 The exponential stability

In this section we prove that the exponential stability of the semigroup associated to the

transmission problem provided that the viscous part is not in the middle of the beam.

This means that the VEF, EFV, VFE, FEV models, are exponentially stable. Since

the proofs are similar we only consider in this section the VEF case. The corresponding

resolvent equations are given by

i λΦ−A1Φ = F. (3.1)

and in terms of its components are given by

i λ u− U = f1 in ]0, l0[, (3.2)

i λ ρ1 U − κ1 uxx − κ0 Uxx = ρ1 f2 in ]0, l0[, (3.3)

i λ v − V = f3 in ]l0, l1[, (3.4)

i λ ρ2 V − κ2 vxx = ρ2 f4 in ]l0, l1[, (3.5)

i λw −W = f5 in ]l1, l[, (3.6)

i λ ρ3W − κ3 wxx + γ W = ρ3 f6 in ]l1, l[, (3.7)

with the following, transmission condition,

u(l0) = v(l0), κ1 ux(l0) + κ0 Ux(l0) = κ2 vx(l0). (3.8)

v(l1) = w(l1), κ2 vx(l1) = κ3wx(l1), (3.9)

and boundary condition

u(0) = 0, w(l) = 0. (3.10)
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Note that the model is dissipative, multiplying equation (3.1) by Φ and using (2.7) we

have that

κ0

∫ l0

0

|Ux|2 dx+ γ

∫ l

l1

|W |2 dx 6 ‖Φ‖ ‖F‖. (3.11)

The following Lemma will play an important role in what follows.

Lemma 3.1 Any strong solution of the system

i λ ψ −Ψ = f1 in ]a, b[, (3.12)

i λ ρΨ− κψxx + γΨ = f2 in ]a, b[, (3.13)

verifies

|ψx(a)|2 + |Ψ(a)|2 + |ψx(b)|2 + |Ψ(b)|2 6 C

∫ l1

l0

(
|Ψ|2 + |ψx|2

)
dx+ C ‖Z‖ ‖F‖. (3.14)

∫ l1

l0

(
|Ψ|2 + |ψx|2

)
dx 6 C

(
|ψx(a)|2 + |Ψ(a)|2

)
+ C ‖Z‖ ‖F‖. (3.15)

∫ l1

l0

(
|Ψ|2 + |ψx|2

)
dx 6 C

(
|ψx(b)|2 + |Ψ(b)|2

)
+ C ‖Z‖ ‖F‖, (3.16)

where Z = (ψ, Ψ) and F = (f1, f2).

Proof. Multiplying equation (3.13) by
(
x− a+b

2

)
ψx, taking real part, using integration

by parts and using equation (3.12) our conclusion follows. To get inequalities (3.15) and

(3.16) we multiply the equation (3.13) by (x− b)ψx and (x− a)ψx respectively.

Theorem 3.2 The semigroup associated to the transmission problem decays exponentially

as time goes to infinity provided that the viscous component is not in the middle of the

beam.

Proof. Note that A is a closed operator, such that D(A) has compact embedding over

the phase space H. Therefore the spectrum set of A denoted as σ(A), consist only of

eigenvalues. Thus, to prove that the imaginary axes is contained in the resovent set of A
it is enough to prove that there is not imaginary eigenvalues. To see that let us reasoning

by contradiction. Let us suppose that there exists an imaginary eigen value iλ, with

λ ∈ R such that iλΦ−AΦ = 0. Using relation (3.11) for F = 0 we get W = U = 0 which

implies that u = w = 0. From (3.4)–(3.5) we have that

−λ2 ρ2 v − κ2 vxx = 0

9



Satisfying

v(l0) = v(l1) = 0, vx(l0) = vx(l1) = 0

Bacause u = w = 0. Considering the above problem as an initial value problem (at x = l0

or x = l1) we conclude that v = 0. Therefore we get that Φ = 0. This is contradictory,

therefore is not possible that there exists imaginary eigenvalues. Thus, iR ⊂ ̺(A).

Finally, let us prove that the resolvent operator is uniformly bounded over the imagi-

nary axes. Multiplying equation (3.7) by w we get

i λ ρ3

∫ l

l1

W w dx− κ3

∫ l

l1

wxxw dx+ γ

∫ l

l1

W w dx = ρ3

∫ l

l1

f6w dx.

It follows that

κ3

∫ l

l1

|wx|2 dx 6 Reκ3 wx(l1)w(l1) + ρ3

∫ l

l1

|W |2 dx+ γ Re

∫ l

l1

W w dx+ ρ3 Re

∫ l

l1

f6w dx

6 κ3Rewx(l1)w(l1) + C

∫ l

l1

|W |2 dx+ C ‖Φ‖ ‖F‖. (3.17)

Note that

wx(l1)w(l1) = − 1

i λ
wx(l1) i λw(l1) = − 1

i λ
wx(l1) [W (l1) + f1(l1)].

Using Lemma 3.1 we get

|wx(l1)w(l1)| 6
1

|λ| |wx(l1)| |W (l1)|+
1

|λ| |wx(l1) f1(l1)|

6
C

|λ|

∫ l

l1

(
|wx|2 + |W |2

)
dx+

C

|λ| ‖Φ‖ ‖F‖.

Substitution of this inequality into (3.17) yields

κ3

∫ l

l1

|wx|2 dx 6 C

∫ l

l1

|W |2 dx+ C ‖Φ‖ ‖F‖,

provided λ is large enough. From inequality (3.11) we get

κ3

∫ l

l1

|wx|2 dx 6 C ‖Φ‖ ‖F‖,

which implies
∫ l

l1

(
|W |2 + |wx|2

)
dx 6 C ‖Φ‖ ‖F‖.
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Using inequality (3.16) from Lemma 3.1 to v we get

∫ l1

l0

(
|V |2 + |vx|2

)
dx 6 C

(
|V (l1)|2 + |vx(l1)|2

)
+ C ‖Φ‖ ‖F‖.

From the transmission conditions we get

∫ l1

l0

(
|V |2 + |vx|2

)
dx 6 C

(
|W (l1)|2 + |wx(l1)|2

)
+ C ‖Φ‖ ‖F‖.

Using Lemma 3.1 once more we get

∫ l1

l0

(
|V |2 + |vx|2

)
dx 6 C ‖Φ‖ ‖F‖.

Multiplying equations (3.3), (3.5), (3.7) by u, v, w and summing up the product result

and using the transmission conditions we get

κ1

∫ l0

0

|ux|2 dx+ κ2

∫ l1

l0

|vx|2 dx+ κ3

∫ l

l1

|wx|2 dx

6 C

∫ l0

0

|Ux|2 dx+ C

∫ l1

l0

|V |2 dx+ C

∫ l

l1

|W |2 dx+ C ‖Φ‖ ‖F‖

6 C ‖Φ‖ ‖F‖.

From the above inequalities we get

‖Φ‖2 6 C ‖Φ‖ ‖F‖,

which implies the exponential decay.

4 The lack of exponential stability EVF, FVE

In this section we show that the semigroup associated to the EVF, FVE models are not

exponentially stable. Since the FVE model, can be obtained from EVF by making the

change of variable σ = l− x, it is enough to show the result to the EVF model. In fact,

the resolvent system associated to model EVF is given by

i λΦ−A2Φ = F, (4.1)
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which in terms of its components is given by

i λ u− U = f1 (4.2)

i λ ρ1 U − κ1 uxx = ρ1 f2 (4.3)

i λ v − V = f3 (4.4)

i λ ρ2 V − κ2 vxx − κ0 Vxx = ρ2 f4 (4.5)

i λw −W = f5 (4.6)

i λ ρ3W − κ3wxx + γ W = ρ3 f6, (4.7)

with transmission condition

u(l0) = v(l0), κ1 ux(l0) = κ2 vx(l0) + κ0 Vx(l0), (4.8)

v(l1) = w(l1), κ2 vx(l1) + κ0 Vx(l1) = κ3wx(l1), (4.9)

and boundary condition.

u(0) = 0, w(l) = 0. (4.10)

Here we will show that the EVF partial viscoelastic model is not exponentially stable.

To do this we will consider the functions

f1 = f3 = f4 = f5 = f6 = 0, ρ2 f2 = q.

Therefore, the system (4.2)-(4.7) can be written as

−λ2 ρ1 u− κ1 uxx = q

− λ2 ρ2 v − κ2 vxx − i κ0 λ vxx = 0

− λ2 ρ3w − κ3 wxx + i γ λw = 0.

Rewriting the system

uxx + α2 u = − q

vxx + β2 v = 0

wxx + σ2w = 0,

where

α2 =
ρ1
κ1

λ2, β2 =
ρ2

κ2 + i λ κ0
λ2, σ2 =

ρ3 λ
2 − i λ γ

κ3
.
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Note that

u(x) = u(l0)
sin(α x)

sin(α l0)
+

sin(αx)

α sin(α l0)

∫ l0

0

q(s) sin(α (l0 − s)) ds− 1

α

∫ x

0

q(s) sin(α (x− s)) ds.

v(x) = u(l0)
sinh(β x)

sinh(β l0)
−
(
u(l0)

sinh(β l1)

sinh(β l0)
− v(l1)

)
sinh(β (x− l0))

sinh(β (l1 − l0))
.

w(x) = v(l1)
sinh(σ (x− l))

sinh(σ (l1 − l))
.

Using the transmission condition (κ2 + i λ κ0) vx(l1) = κ3wx(l1) we get

β u(l0)
cosh(β l1)

sinh(β l0)
− β

(
u(l0)

sinh(β l1)

sinh(β l0)
− v(l1)

)
coth(β (l1 − l0))

= v(l1)
κ3 σ

κ2 + i λ κ0
coth(σ (l1 − l0)).

It follows that

β u(l0)
cosh(β l1)− sinh(β l1) coth(β (l1 − l0))

sinh(β l0)

= v(l1)

[
κ3 σ coth(σ (l1 − l0))

κ2 + i λ κ0
− β coth(β (l1 − l0))

]
.

From where it follows that

− β u(l0)

sinh(β (l1 − l0))
= v(l1)

[
κ3 σ coth(σ (l1 − l0))

κ2 + i λ κ0
− β coth(β (l1 − l0))

]
.

u(l0) = h(λ) v(l1),

where

h(λ) = −
[
κ3 σ coth(σ (l1 − l0))

β (κ2 + i λ κ0)
− coth(β (l1 − l0))

]
sinh(β (l1 − l0)).

Note that

1

|h(λ)| ≈
c0

| sinh(β (l1 − l0))|
→ ∞

as |β| → ∞, and c0 > 0. Using κ1 ux(l0) = κ2 vx(l0) + i κ0 λ vx(l0) we get

κ1 α u(l0)
cos(α l0)

sin(α l0)
+ κ1

cos(α l0)

sin(α l0)

∫ l0

0

q(s) sin(α (l0 − s)) ds

− κ1

∫ l0

0

q(s) cos(α (l0 − s)) ds = β (κ2 + i κ0 λ) u(l0)
cosh(β l0)

sinh(β l0)

−
(
u(l0)

sinh(β l1)

sinh(β l0)
− v(l1)

)
β (κ2 + i κ0 λ)

sinh(β (l1 − l0))
.
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It follows that

u(l0) [β (κ2 + i κ0 λ) sin(α l0) coth(β l0)− κ1 α cos(α l0) + j (β)]

= κ1 cos(α l0)

∫ l0

0

q(s) sin(α (l0 − s)) ds− sin(α l0) κ1

∫ l0

0

q(s) cos(α (l0 − s)) ds

= − κ1

∫ l0

0

q(s) sin(α s) ds.

Let us take

α l0 = 2nπ +
1√
n
, q(s) = sin(α s).

So we have that

α l0 ≈
2

l π
n, sin(α l0) ≈

1√
n
, α sin(α l0) ≈ c0, tanh(α l) ≈ 1

as n→ ∞ and 0 6= c0 ∈ C. This implies that

κ1
β (κ2 + i κ0 λ) sin(α l0) coth(β l0)− κ1 α cos(α l0) + j (β)

≈ c1
λ
.

This implies that

u(l0) =
c2
λ
.

For 0 6= c2 ∈ C. Note that the expression

β v(x) = β u(0)
sin(α (l0 − x))

sin(α l0)
− sin(αx)

sin(α l0)

∫ l

0

q(s) sin(α (l0 − s)) ds

+

∫ x

0

q(s) sin(α (x− s)) ds

can be written as

β v(x) =

(
c2

sin(α (l0 − x))

sin(α l0)
− sin(αx)

sin(α l0)

)∫ l

0

q(s) sin(α (l0 − s)) ds

+

∫ x

0

q(s) sin(α (x− s)) ds

︸ ︷︷ ︸
:=Q(x)

.

Then

β v(x) =

[
c2 cos(αx)− (c2 cos(α l0) + 1)

sin(αx)

sin(α l)

]
Q(l) +Q(x).
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Taking q(s) = sin(β s) and squaring and integrating we have

Q(x) =

∫ x

0

(
sin(α s) sin(α x) cos(α s)− sin2(α s) cos(αx)

)
ds

= sin(αx)

∫ x

0

sin(α s) cos(α s) ds− cos(α x)

∫ x

0

sin2(α s) ds

= − sin3(αx)

2α l0
− cos(αx)

∫ x

0

sin2(αx) ds

= − sin3(αx)

2α l0
− x cos(αx)

2
+

cos(αx) sin(2αx)

2α
. (4.11)

Therefore

Q(l) = − π

n5/2
− l cosα

2
+

cos(α l0)

n3/2
≈ − l

2
.

Note that ∫ l

0

|Q(s)|2 ds >
∫ l

0

x2 cos2(α x)

8
dx− c

α2
>

l3

48
− c

|α| . (4.12)

Finally,

∫ l

0

∣∣∣∣c2 cos(αx)− (c2 cos(α l0) + 1)
sin(α x)

sin(α l)

∣∣∣∣
2

ds

>
|c2 cos(α l0) + 1|

2 sin2(α l0)

∫ l

0

sin2(α x) dx− c0

≈ c1 n− c0. (4.13)

Inserting inequalities (4.12) and (4.13) into (4.11) we get that there exists a positive

constant C such that
∫ l

0

|α v(x)|2 dx > − C + C n,

for large n, that is

1

n

∫ l

0

|α v(x)|2 dx > C0.

In particular, we have that

‖Φ‖2 >
∫ l

0

|α v(x)|2.

If the rate of decay can be improved then we have that 1
n1−ǫ ‖U‖2 must be bounded. But

1

n1−ǫ
‖Φ‖2 >

∫ l

0

|β v(x)|2 > C0 n
ǫ (4.14)

from where our conclusion follows
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5 Polynomial decay and Optimality

Here we prove that the solutions of the EVF model decays polynomially as t−2. Moreover

we will show that the rate of decay is optimal.

Theorem 5.1 The solution of the EVF model decays polynomially as t−2. Moreover the

rate of decay is optimal over D(A) and

‖Φ(t)‖ 6
ck
t2 k

‖Φ0‖D(Ak). (5.1)

Proof. Using the same arguments as in the prove of Theorem 3.2 we can show that

iR ⊂ ̺(A).

Let us prove that the resolvent operator is uniformly bounded by C|λ|1/2 over the

imaginary axes. Multiplying equation (4.1) by Φ and using (2.8) we get

κ0

∫ l1

l0

|Vx|2 dx+ γ

∫ l

l1

|W |2 dx = Re(F, Φ)H. (5.2)

From (4.2) we have

|λ| ‖V ‖−1 6 C ‖vx‖+ C ‖Vx‖+ C ‖F‖H 6 C ‖Φ‖1/2
H

‖F‖1/2
H

+ C ‖F‖H.

Using interpolation and inequality (5.2) we get

‖V ‖2L2 6 C ‖V ‖−1 ‖V ‖1 6
C

|λ|
[
‖Φ‖1/2

H
‖F‖1/2

H
+ ‖F‖H

]
‖V ‖1

6
C

|λ|
[
‖Φ‖H ‖F‖H + ‖Φ‖1/2

H
‖F‖3/2

H

]
. (5.3)

Multiplying equation (4.5) by (x− l0)
(
κ2 vx + κ3 Vx

)
and taking real part we have

Re i λ

∫ l1

l0

η (x− l0)
(
κ2 vx + κ3 Vx

)
dx− 1

2

∫ l1

l0

(x− l0)
d

dx
|κ2 vx + κ3 Vx|2 dx

= ρ1Re

∫ l1

l0

f3 (x− l0)
(
κ2 vx + κ3 Vx

)
.

Using (4.4), we note that

κ1Re i λ

∫ l1

l0

V (x− l0) vx dx = − (l1 − l0)

2
κ2 |V (0)|2 +

1

2
κ2

∫ l1

l0

|V |2 dx

− κ2

∫ l1

l0

(x− l0) V f dx.
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We denote the functional

Iu =
1

2

[
ρ2 |V (0)|2 + |κ2 vx(0) + κ3 Vx(0)|2

]
.

It follows that

Iu = ρ2Re i λ

∫ l1

l0

(x− l0) V V x dx+
1

2
ρ1

∫ l1

l0

|V |2 dx+ 1

2

∫ l1

l0

|κ2 vx + κ3 Vx|2 dx

− ρ2Re

∫ l1

l0

f3 (x− l0)
(
κ2 vx + κ2 Vx

)
dx− ρ2

∫ l1

l0

(x− l0) V f dx

6 C

∫ l1

l0

(
|λ| |Vx| |V |+ V 2

x + v2x
)
dx+ C ‖Φ‖H ‖F‖H

6 C |λ|1/2
∫ l1

l0

|Vx|
(
|λ|1/2 |V |

)
dx+ C ‖Φ‖H ‖F‖H.

Using (5.3) we get

Iu 6 C |λ|1/2
(
‖Φ‖H ‖F‖H + ‖Φ‖3/4

H
‖F‖5/4

H

)
, (5.4)

for λ large enough. On the other hand, multiplying equation (4.3) by (x− l0) ux we get

i λ ρ1

∫ l0

0

U (x− l0) ux dx− κ3

∫ l0

0

uxx (x− l0) ux dx = ρ2

∫ l0

0

(x− l0) f2 ux dx.

Taking real part and using (4.2) we obtain

1

2

∫ l0

0

(
ρ1 |U |2 + κ1 |ux|2

)
dx =

1

2
ρ1 l0

(
|U(l0)|2 +

κ1
ρ1

|ux(l0)|2
)
+ ρ1Re

∫ l0

0

(x− l0) f2 ux dx

+ ρ1Re

∫ l0

0

(x− l0)U f1x dx

Using (1.3), and performing straightforward estimates it follows that

1

2

∫ l0

0

(
ρ1 |U |2 + κ1 |ux|2

)
dx 6

1

2
ρ2 L

(
|U(l0)|2 +

κ1
ρ2

|ux(l0)|2
)
+ C ‖Φ‖H ‖F‖H

6 C
[
V (l0)|2 + |κ1 ux(l0) + κ2 Vx(l0)|2

]
+ C ‖Φ‖H ‖F‖H.

Using inequality (5.4) we get
∫ l0

0

(|U |2 + |ux|2) dx 6 C |λ|1/2
(
‖Φ‖H ‖F‖H + ‖Φ‖3/4

H
‖F‖5/4

H

)
.

Multiplying (4.3), (4.5) and (4.7) by u, v and w respectively, using (4.2), (4.4) and (4.6)

we get that

κ1

∫ l0

0

|ux|2 dx+ κ2

∫ l1

l0

|vx|2 dx+ κ4

∫ l

l1

|wx|2 dx

6 C

∫ l0

0

|U |2 dx+ C

∫ l1

l0

|V |2 dx+ C

∫ l

l1

|W |2 dx+ C ‖Φ‖ ‖F‖
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From (5.3)-(5.4) we conclude that

‖Φ‖2H 6 C |λ|1/2
(
‖Φ‖H ‖F‖H + ‖Φ‖3/4

H
‖F‖5/4

H

)
.

Thus

‖Φ‖H 6 C |λ|1/2 ‖F‖H

for λ large enough. Therefore, from Theorem 1.2 we get

‖Φ(t)‖ 6
ck
t2 k

‖Φ0‖D(Ak).

Inequality (5.1) follows by using a standard semigroup procedure. Finally, to prove the

optimality we will use inequality (4.14). In fact, if the rate of decay can be improved for

example as

‖Φ(t)‖ 6
ck

t2/(1−2 ǫ)
‖Φ0‖D(A)

for ǫ > 0 small enough, then we have that the expression

1

|λ|1−ǫ
‖Φ‖2,

must be bounded, but from (4.14) and from the fact that |λ| ≈ c1 n we get

1

|λ|1−ǫ
‖Φ‖2 >

∫ l1

l0

|α v(x)|2 dx > C0 n
ǫ → ∞

Bust this is a contradiction, so we have that the rate of decay can not be improved.

6 Numerical approximations

Here we will verify numerically the polynomial and exponential rate of decay obtained

in the previous sections. It is important to note that any numerical approximation is

a finite-dimensional simplification of the original problem. Thus, any numerical method

used, decay exponentially for large enough times, and this because of its restrictive nature

of the finite dimensional space approach.

Denoting by E the energy

E(t) = 1

2

[
ρ1

∫ l0

0

u2t dx+ ρ2

∫ l1

l0

v2t dx+ ρ3

∫ l

l1

w2
t dx

+κ1

∫ l0

0

u2x dx+ κ2

∫ l1

l0

v2x dx+ κ3

∫ l

l1

w2
x dx

]
,
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and denoting by EVEF, EEVF, EEFV the energy for the three respective cases VEF, EVF

and EFV, it is not difficult to see that the energy decays for all the cases. More precisely,

d

dt
EVEF(t) = −κ0

∫ l0

0

u2xt dx− γ

∫ l

l1

w2
t dx (6.1)

d

dt
EEVF(t) = −κ0

∫ l1

l0

v2xt dx− γ

∫ l

l1

w2
t dx (6.2)

d

dt
EEFV(t) = −κ0

∫ l

l1

w2
xt dx− γ

∫ l1

l0

v2t dx (6.3)

In this regard, we have a robust numerical method of high order which in turn ensures

a natural way (without additional artificial viscosity for example) the decay of energy

with the same terms prescribed in identity (6.1).

6.1 Linear equation of Motion

First, we approximate the displacement vector [u, v, w]⊤ in space using finite elements

P2. For that, we consider the variational problem

ρ1

∫ l0

0

utt ϕ1 dx+ ρ2

∫ l1

l0

vtt ϕ2 dx+ ρ3

∫ l

l1

wtt ϕ3 dx

+κ1

∫ l0

0

ux ϕ1,x dx+ κ2

∫ l1

l0

vx ϕ2,x dx+ κ3

∫ l

l1

wx ϕ2,x dx,

= R(u, v, w;ϕ1, ϕ2, ϕ3) (6.4)

for all (ϕ1, ϕ2, ϕ3) ∈ V = {(ϕ1, ϕ2, ϕ3, ϕ1,x, ϕ2,x, ϕ3,x) ∈ D(Ai)} for i = 1, 2 and 3, defined

in (2.2)-(2.6), and where R take the values RVEF, REVF, REFV, for the different cases,

respectively, given by

RVEF(u, v, w;ϕ1, ϕ2, ϕ3) = −κ0

∫ l0

0

u2xt ϕ1,x dx− γ

∫ l

l1

w2
t ϕ3 dx (6.5)

REVF(u, v, w;ϕ1, ϕ2, ϕ3) = −κ0

∫ l1

l0

v2xt ϕ2,x dx− γ

∫ l

l1

w2
t ϕ3 dx (6.6)

REFV(u, v, w;ϕ1, ϕ2, ϕ3) = −κ0

∫ l

l1

w2
xt ϕ3,x dx− γ

∫ l1

l0

v2t ϕ2 dx. (6.7)

The variational problem (6.4) have a unique solution in the same sense of Theorem 2.2,

which we approach by two-degree piecewise polynomial basis functions (see [1, 2, 3, 4]).

Then, we choose J1 values of x in the interval (0, l0), J2 values of x in the interval (l0, l1),
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and J3 values of x in the interval (l1, l), with a total of J = J1 + J2 + J3 − 1 nodes for the

unknowns. That is,

0 = x0 < x1 < . . . < xn1
= l0 < xn1+1 < . . . < xn2

= l1 < xn2+1 < . . . < xn3
= l.

We obtain a vector [uδ(t),vδ(t),wδ(t)]
⊤ approximation of [u, v, w]⊤ in RJ×RJ×RJ . Addi-

tionally, let us define [Uδ(t),Vδ(t),Wδ(t)]
⊤ the approximation of the velocity [U, V,W ]⊤,

where Uδ(t) = u̇δ(t), Vδ(t) = v̇δ(t) and Wδ(t) = ẇδ(t). Using the boundary and trans-

mission condition, we easily obtain the linear equation of motion

M




U̇h

V̇h

Ẇh



 +
1

δx2
Cvisc




Uh

Vh

Wh



 + Cfrict




Uh

Vh

Wh



 +
1

δx2
K




uh

vh

wh



 = 0, (6.8)

where M, Cvisc, Cfrict and K are the mass, viscoelastic damping, frictional damping and

stiffness matrices of the system in M3J(R). We remark, that the matrices Cvisc and

Cfrict, have several null rows depending of each one of the tree cases. For instance, for

the VEF case, the matrix Cvisc have only the first J rows nonzero, and the matrix Cfrict

have only the last J rows nonzero.

6.2 Time discretization

Regarding now to the time discretization, it is desirable that the algorithm has at least

second-order accuracy too, and because the spatial discretization used in structural dy-

namics often leads to inclusion of high-frequency modes in the model, it is also desirable to

have unconditional stability. The method consists of updating the displacement, velocity

and acceleration vectors at current time tn = nδt to the time tn+1 = (n+1)δt, a small time

interval δt later. The Newmark algorithm [17] is based on a set of two relations expressing

the forward displacement [un+1
δ ,vn+1

δ ,wn+1
δ ]⊤ and velocity [Un+1

δ ,Vn+1
δ ,Wn+1

δ ]⊤ in terms
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of their current values and the forward and current values of the acceleration,

Un+1
δ = Un

δ + (1− γ)δt U̇n
δ + γδt U̇n+1

δ (6.9)

un+1
δ = un

δ +

(
1

2
− β

)
δt2 U̇n

δ + βδt2 U̇n+1
δ (6.10)

Vn+1
δ = Vn

δ + (1− γ)δt V̇n
δ + γδt V̇n+1

δ (6.11)

vn+1
δ = vn

δ +

(
1

2
− β

)
δt2 V̇n

δ + βδt2 V̇n+1
δ , (6.12)

Wn+1
δ = Wn

δ + (1− γ)δtẆn
δ + γδtẆn+1

δ (6.13)

wn+1
δ = wn

δ +

(
1

2
− β

)
δt2 Ẇn

δ + βδt2 Ẇn+1
δ , (6.14)

where β and γ are parameters of the methods that will be fixed later. Replacing (6.9)-

(6.14) in the equation of motion (6.8), we obtain

(
δx2M+ γδtC+ βδt2K

)



U̇n+1
δ

V̇n+1
δ

Ẇn+1
δ


 = −Cvisc






Un
δ

Vn
δ

Wn
δ


+ (1− γ)δt




U̇n
δ

V̇n
δ

Ẇn
δ






−δx2 Cfrict






Un
δ

Vn
δ

Wn
δ


+ (1− γ)δt




U̇n
δ

V̇n
δ

Ẇn
δ






−K








un
δ

vn
δ

wn
δ



+ δt




Un

δ

Vn
δ

Wn
δ



+

(
1

2
− β

)
δt2




U̇n

δ

V̇n
δ

Ẇn
δ







 .(6.15)

The acceleration [U̇n+1
δ , V̇n+1

δ ,Ẇn+1
δ ]⊤ is found from (6.15). On the other hand, the

velocity [Un+1
δ ,Vn+1

δ ,Wn+1
δ ]⊤ follow from (6.9), (6.11) and (6.13), respectively. Finally,

the displacement [un+1
δ ,vn+1

δ ,wn+1
δ ]⊤ follow from (6.10), eqref405 and (6.14), respectively

by simple vector operations.

6.3 Energy balance of the Newmark algorithm

We define the discrete energy as

En
δ :=

1

2

[
U⊤

δ ,V
⊤

δ ,W
⊤

δ

]
M




Uδ

Vδ

Wδ



+
1

2δx2
[
u⊤

δ ,v
⊤

δ ,w
⊤

δ

]
K




uδ

vδ

wδ





which is an approximation of that defined in (6.1) for the continuous case. The increment

of this energy can be expressed in terms of mean values and increments of the displacement
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and velocity by the following identity:

En+1
δ − En

δ =


1

2

[
U⊤

δ ,V
⊤

δ ,W
⊤

δ

]
M




Uδ

Vδ

Wδ


+

1

2δx2
[
u⊤

δ ,v
⊤

δ ,w
⊤

δ

]
K




uδ

vδ

wδ





n+1

n

=




U
n+ 1

2

δ

V
n+ 1

2

δ

W
n+ 1

2

δ




⊤

M




∆Uδ

∆Vδ

∆Wδ



+
1

δx2




u
n+ 1

2

δ

v
n+ 1

2

δ

w
n+ 1

2

δ




⊤

K




∆uδ

∆vδ

∆wδ





where un+ 1

2 = u
n+1+u

n

2
and ∆u = un+1 −un. Now, in order to derive the required energy

estimates, we rely on calculations and notations similar to S. Krenk [9] to finally obtain
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∆Ẇh




⊤

Cvisc




∆U̇h

∆V̇h

∆Ẇh
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where M∗ = M +
(
γ − 1

2

)
δt
(

1
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)
. Then, we choose γ = 1

2
and β = γ

2
,

reducing the above expression to
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Figure 1: Initial conditions u0, v0 and w0.

Remark 6.1 The identity (6.16) corresponds to the discrete version of (6.1)-(6.3). More

precisely, the matrices of R3J , Cfrict and Cvisc have only J nonzero rows, and depending

on the distribution of these rows, is that the right term of (6.16) coincide with each one

of the three cases VEF, EVF and EFV which correspond to (6.1), (6.2) and (6.3),

respectively. Thus, for example, in the case of the Viscoelastic-Elastic-Frictional model

VEF, it follows that

Cvisc =




κ0C̃1 0 0

0 0 0

0 0 0


 , Cfrict =




0 0 0

0 0 0

0 0 γC̃2


 ,

and then, the identity (6.16) can be rewrite as

En+1
δ − En

δ = − δt

2δx2
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∆u⊤

h

δt
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∆uh

δt
+U

n+ 1

2
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2

h

}

−δt
2
γ

{
∆w⊤

h

δt
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∆wh

δt
+W

n+ 1

2
,⊤

h C̃2W
n+ 1

2

h

}
,

which corresponds well to a discretization of (6.1) consistent with the definition of energy.

With this, we expect the rate of decay of energy in the discrete case is an accurate reflection

of what happens in the continuous case.
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Figure 2: Viscoelastic-Elastic-Frictional (VEF) model (top), and Elastic-Frictional-
Viscoelastic (EFV) model (bottom), simulation for t ∈ (15, 1000000). Exponential De-
cay, when the frictional part is isolated of the viscoelastic part.

6.4 Numerical Example

Now we present an example with one initial condition in D(A) for the three cases to

illustrate graphically the polynomial and exponential energy decay.

6.4.1 Example 1. Initial conditions with different smoothness

Let us suppose here that l = 3 and T = 1000000. We will study the asymptotic behavior

for a family of initial conditions of the form

[ u0 v0 w0 ] =





(
x− 1

2

) ∣∣x− 1
2

∣∣+ 1
4

if x ∈ (0, 1)
(
x− 3

2

) ∣∣x− 3
2

∣∣+ 3
4

if x ∈ (1, 2)

2 x2 + 9 x − 9 if x ∈ (2, 3)

0 otherwise

(6.17)
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Figure 3: Elastic-Viscoelastic-Frictional (EVF) model, simulation for t ∈ (15, 1000000).
Polinomial Decay, when the viscoelastic part is in the middle and in contact with the
fractional part.

at rest, that is U0 = V0 = W0 = 0 (see Figure 1). We suppose additionally that κ1 =

κ2 = κ3 = 1, κ0 = 10000, γ = 100. Note that the initial condition verifies be on D(A),

and meets the minimum requirements of regularity for it. The discretization is given by

J = 300 and N = 106, that is δx = L/J = 0.01 and δt = T/N = 1. Figure 2 shows the

evolutionary behavior of cases, Viscoelastic-Elastic-Frictional (VEF) model (top), and

Elastic-Frictional-Viscoelastic (EFV) model (bottom). In both cases, the energy decays

exponentially, and correspond to the cases where the viscoelastic part is isolated from

the frictional part. Both for the VEF model, as well as for the EFV model, both for

the deformations u, v, w (on the left), as well as for the deformation velocities U , V ,

W , the viscoelastic and frictional part of these four cases, practically immediately fell to

zero. On the other hand, the purely elastic, decays more slowly. Still, the total energy

decays exponentially (see Figure 4). In both cases, we plot from the time t = 15, in

order to improve the visual on the asymptotic behavior (which is the interest in short),

and removing the initial behavior while important because it determines the rest, on the

other hand, it changes the scale of the global behavior. In Figure 3, the viscoelastic part is

on the middle, isolating the elastic part of the frictional part. That is, it correspnds to the

Elastic-Viscoelastic-Frictional (EVF) model. While both the frictional, as the viscoelastic

have a behavior called dissipative, the mere fact that the frictional part is isolated from

the elastic, makes the latter not stabilize quickly enough in the case of VEF model or

EFV model, and it decays only polynomial, which is what was shown in theory in the
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Figure 4: Energy decays for the three cases VEF, EVF and EFV. Left: plot of the
energies; Right: zoom of the plot on log-log scale.

previous section, and currently checks in this figure.

Finally, in Figure 4, we plot the decay of the energies. Here, we see clearly the difference

between EFV and VEF cases (whose decay is exponential) v/s EVF case (whose decay

is polynomial). On the graph on the left, the energy is plotted directly, and clearly the

EVF case seen well above the other two. The graph on the right is a zoom of the same

graph but in log-log scale. In this zoom, shows an asymptotic behavior of the EVF case

near a straight a line, which is interpreted in a log-log scale, as polynomial behaviour,

instead the VEF and VEF cases decay much faster than just straight (exponential)
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