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Abstract. Multiclass Lighthill-Whitham-Richards traffic models [Benzoni-

Gavage and Colombo, Eur. J. Appl. Math. 14:587–612 (2003); Wong and

Wong, Transp. Res. A 36:827–841 (2002)] give rise to first-order systems of
conservation laws that are hyperbolic under usual conditions, so that their

associated Cauchy problems are well-posed. Anticipation lengths and reaction

times can be incorporated into these models by adding certain conservative
second-order terms to these first-order conservation laws. These terms can

be diffusive under certain circumstances, thus, in principle, ensuring the sta-

bility of the solutions. The purpose of this paper is to analyze the stability
of these diffusively corrected models under varying reaction times and antic-

ipation lengths. It is demonstrated that instabilities may develop for high

reaction times and short anticipation lengths, and that these instabilities may
have controlled frequencies and amplitudes due to their nonlinear nature.

1. Introduction

1.1. Scope. The well-known Lighthill-Whitham-Richards (LWR) kinematic traffic
model [20, 28] states that the density of cars φ = ρ/ρmax, where ρ is the local
number of cars per mile and ρmax is some maximum bumper-to-bumper density,
can be described by the conservation law ∂tφ + ∂x(φv(φ))x = 0, where t is time,
x is the spatial coordinate along either an unbounded, one-directional highway or
a closed circuit, and the local velocity v = v(x, t) is a given function of the local
density, v = v(φ(x, t)). It is usually assumed that v(φ) = vmaxV (φ), where vmax is
the preferential velocity of drivers on a free highway and V is a hindrance function
describing the drivers’ behaviour of reducing speed in presence of other cars. The
function V satisfies V (0) = 1 and V ′(φ) ≤ 0. These assumptions lead to the
one-dimensional scalar conservation law

∂tφ+ ∂xf(φ) = 0, x ∈ R, t > 0, (1.1)

were the flux density function f is given by

f(φ) = φv(φ) = vmaxφV (φ). (1.2)
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The model (1.1), (1.2) has been extended in several directions. On one hand,
Nelson [22, 23] showed that introducing an anticipation length L and a reaction
time τ , replacing V (φ(x, t)) by V (φ(x+L−vmaxV τ, t−τ)) and neglectingO(L2+τ2)
terms when expanding the latter expression around (x, t), one obtains a “diffusively
corrected” version of (1.1), (1.2) of the following form:

∂tφ+ ∂xf(φ) = A(φ)xx. (1.3)

Here, L may also depend on φ, and under certain restrictions on L = L(φ), τ and
v(φ), the funcion A is Lipschitz continuous and increasing so that the governing
equation (1.3) of the diffusively corrected LWR model (“DCLWR model”) is a
strongly degenerate parabolic PDE in the sense that A(φ) = 0 for φ ≤ φc, where
φc is a critical density value (e.g., a perception threshold), and A′(φ) > 0 for
φ > φc. Properties of (1.3), under the additional assumption of abruptly varying
road surface conditions, were analyzed in [8]. On the other hand, Benzoni-Gavage
and Colombo [3] and Wong and Wong [33] extended the LWR model (1.1), (1.2)
to a multi-class model, the so-called “MCLWR model”, by distinguishing N classes
of drivers associated with preferential velocities vmax

1 > vmax
2 > · · · > vmax

N . For
the MCLWR model, the sought quantity is the vector Φ := (φ1, . . . , φN )T of the
densities φi of the cars of the different driver classes. The local velocity vi of vehicles
of driver class i is given by vi = vi(φ) = vmax

i V (φ) for i = 1, . . . , N , where we define
φ := φ1 + · · ·+φN . Thus, the MCLWR model is given by a strongly coupled system
of nonlinear first-order conservation laws of the type

∂tΦ + ∂xf(Φ) = 0, x ∈ R, t > 0; f(Φ) =
(
f1(Φ), . . . , fN (Φ)

)T
, (1.4)

where the components of the flux vector f(Φ) are given by

fi(Φ) = φivi(φ) = φiv
max
i V (φ), i = 1, . . . , N. (1.5)

It can be shown [14, 35] that the system (1.4), (1.5) is strictly hyperbolic for Φ ∈
D0 := {Φ ∈ RN | φ1 > 0, . . . , φN > 0, φ < 1}.

It is the purpose of this paper to introduce a new model, called diffusively
corrected multi-class LWR model (“DCMCLWR model”), by combining the as-
sumptions of the DCLWR model with those of the MCLWR model. In particular,
we associate class i of drivers with the triple (vmax

i , Li, τi), i = 1, . . . , N , which
means that drivers of different classes may have different preferential velocities,
anticipation lengths, and reaction times. The resulting model, which reduces to
(1.3) and (1.4) in the respective limit cases N = 1 and L = 0, τ = 0, where
L := (L1, . . . , LN )T and τ := (τ1, . . . , τN )T, can be cast as a quasi-linear system of
second-order PDEs of the form

∂tΦ + ∂xf(Φ) = ∂x
(
B(Φ)∂xΦ

)
. (1.6)

Here the flux vector f = f(Φ) is the same as in the MCLWR model, and B =
B(Φ) is an N × N matrix expressing the diffusive correction. The precise func-
tional form of B(Φ) depends on the choice of V (φ) and the vectors of parameters
vmax := (vmax

1 , . . . , vmax
N )T, L and τ .

The system (1.6) is supplied with an initial condition and periodic boundary
conditions. We formulate, and in part evaluate, a stability criterion for the model
(1.6) based on an analysis of the eigenvalues of the matrices

M(Φ, ξ) :=
i
ξ
Jf (Φ) +B(Φ) ∈ CN×N , ξ ∈ R+, (1.7)
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where i =
√
−1 and Jf (Φ) denotes the Jacobian matrix of f(Φ). Furthermore, by

a series of numerical experiments we illustrate the behaviour of solutions to (1.6),
and in particular the effect of different values of Li and τi for different classes of
drivers.

1.2. Related work. To put the paper into the proper perspective, we mention
first that the MCLWR model has been analyzed in a number of papers including
[4, 15, 21, 35]. In particular, its hyperbolicity has been established [15, 35] and the
admissible waves of the Riemann problem have been investigated [35]. Moreover,
the model (1.4), (1.5) admits a separable, strictly convex entropy since the corre-
sponding Jacobian matrix Jf (Φ) is diagonally symmetrizable [3, 4]. Component-
wise or characteristic high-resolution numerical schemes for (1.4), (1.5) involving
weighted essentially non-oscillatory (WENO) flux reconstructions are advanced in
[11, 14, 34, 36]. On the other hand, particularly simple first- and second-order
difference schemes for the same problem that rely on the structure of the fluxes fi
(1.5) along with the definite sign of the velocities vi are introduced in [7]. Variants
of the original MCLWR model (in the sense of [3, 33]) have been proposed and in
part analyzed for highways with varying road surface conditions [10, 37, 38], traffic
flow on networks [17, 24], and stochastic fundamental diagrams (equivalent to the
velocity functions vi) [25].

Several alternative approaches have been pursued to extend the LWR model to
finite reaction times and anticipation lengths. The treatment by Sopasakis and
Katsoulakis [31] (see also [18]) for one driver class leads to a scalar conservation
law with a non-local flux involving a non-symmetric “anticipation kernel”. In [26] a
linear stability analysis is applied to a second-order macroscopic local traffic model,
and a corrected “effective density” sensor accounts for aggressive or timid drivers. A
related analysis is presented in [30]. Ngoduy and Tampere [27] study the influence
of different reaction times (of a single driver class) in terms of the same model.
Their condition for traffic stability reads [27, Eq. (39)]

τ <
1

2φ2|V ′(φ)|vmax for 0 < φ < 1 (1.8)

(in our notation). If this condition is violated, then their model can develop insta-
bilities that can be considered as stop-and-go waves. The relation between reaction
times and anticipation lengths and traffic stability is also discussed in [32].

Finally, we mention that other kinematic flow models that give rise to systems
of the type (1.6) include the sedimentation of polydisperse suspensions [5] and the
settling and creaming of dispersions of droplets [1]. These models are typically
posed with zero-flux boundary conditions on a bounded x-interval.

1.3. Outline of the paper. The remainder of this paper is organized as follows.
In Section 2 we describe the DCMCLWR model accounting for anticipation lengths
and reaction times. In Section 3 a parabolicity analysis is performed and its re-
sults are confirmed by the numerical experiments described in Section 4. Some
conclusions are drawn in Section 5.
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2. A diffusively corrected MCLWR model

2.1. The model equations. Assume that vehicles of class i have the preferential
velocity vmax

i , where

vmax
1 ≥ vmax

2 ≥ · · · ≥ vmax
N > 0. (2.1)

Following the reasoning in [22] (see also [8]), we now assume that the behavior
of drivers of class i is associated with an anticipation distance Li and a reaction
time τi. Then the reaction of the driver does not depend on the spot value φ(x, t),
but rather on

pi(x, t) := φ (x+ Li − vmax
i V τi, t− τi) . (2.2)

This formulation takes into account that vmax
i V τi is the distance travelled by a car

of class i in a time interval of length τi. Furthermore, note that (as in [8]) notation
is ambiguous in (2.2) since we are not specific about the argument of V inside (2.2).
To turn (2.2) into a usable expression for the flux fi, we expand V (pi(x, t)) around
φ(x, t). Writing φ = φ(x, t) and denoting

τ := max
1≤i≤N

τi, L := max
1≤i≤N

Li,

we obtain

V (pi(x, t)) = V (φ) + V ′(φ)
(
∂xφ

(
Li − vmax

i V (φ)τi
)
− τi∂tφ

)
+O(τ2 + L2). (2.3)

Summing the conservation laws ∂tφi + ∂x(vmax
i φiV (φ)) = 0 over i = 1, . . . , N and

defining vmax := (vmax
1 , . . . , vmax

N )T yields

∂tφ =
N∑
k=1

∂tφk = −∂x
(
V (φ)ΦTvmax

)
.

Inserting this result into (2.3) we get

V (pi(x, t)) = V (φ) + V ′(φ)
((
Li − τivmax

i V (φ)
)
∂xφ+ τi∂x

(
V (φ)ΦTvmax

))
+O(τ2 + L2).

Neglecting the O(τ2 + L2) term and inserting the remaining expression into the
conservation equations

∂tφi(x, t) + ∂x
(
φi(x, t)vi(x, t)

)
= 0, vi(x, t) = vmax

i V
(
pi(x, t)

)
, i = 1, . . . , N,

we obtain a system of the form (1.6), where the components of the flux vector f(Φ)
are given by (1.5) and, if we assume for a moment that no perception threshold
for the anticipation length or reaction time is introduced, then the entries of the
diffusion matrix B(Φ) are given by

αij(Φ) = −V ′(φ)
(
Li + τi

[
V ′(φ)ΦTvmax + (vmax

j − vmax
i )V (φ)

])
φiv

max
i ,

1 ≤ i, j ≤ N.
(2.4)

We recall that the entries of Jf (Φ) = (∂fi(Φ)/∂φj)i,j=1,...,N are given by

∂fi(Φ)
∂φj

= vmax
i

(
δijV (φ) + φiV

′(φ)
)
, i, j = 1, . . . , N.
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In this paper we focus on the hindrance functions V according to Dick [13] and
Greenberg [16], namely

V (φ) = min
{

1,−C lnφ
}

=

{
1 for φ ≤ φDG,
−C lnφ for φ > φDG

(2.5)

with a parameter C > 0, where we employ the common value C = e/7 ≈ 0.38833
such that φDG = exp(−1/C) ≈ 0.076142. Alternatively we use the common linear
Greenshields (GS) velocity function

V (φ) = 1− φ. (2.6)

Note that in view of (2.4), the particular form of the velocity function (2.5)
implies that B(Φ) = 0 for φ ≤ φc = φDG, so (1.6) degenerates to the first-order
system (1.4) for the corresponding vectors Φ. Thus, the resulting model is strongly
degenerate. In general, and following [29], we assume that φc is an explicitly known
perception threshold or critical density such that the drivers’ reaction is instanta-
neous in relatively free flow, i.e. when φ ≤ φc, and otherwise is modeled by the
diffusion term. Thus, for a unified treatment we assume that

B(Φ) =
(
Bij(Φ)

)
i,j=1,...,N

, where Bij(Φ) =

{
0 if φ ≤ φc,
αij(Φ) if φ > φc.

(2.7)

2.2. Stability analysis. We perform a linearized stability analysis for the system
(1.6) under the assumptions of the DCMCLWR model. The linearized equation
for a small perturbation u about a constant state Φ(0) is obtained by substituting
Φ = Φ(0) + u into (1.6) and neglecting quadratic terms in u. This yields the
following linearized version of (1.6):

∂tu+ J∂xu = B∂2
xu, where J := Jf

(
Φ(0)

)
, B := B

(
Φ(0)

)
. (2.8)

We now seek solutions of (2.8) of the form u(x, t) = z(t; ξ) exp(iξx) for a fixed
frequency ξ. The vector function z satisfies the system of ordinary differential
equations

z′ = −ξ2Mz, (2.9)

where ′ ≡ d/dt and M = M(Φ(0), ξ) is the matrix defined in (1.7). The general
solution of (2.9) is of the well-known form

z(t; ξ) =
r∑
j=1

exp
(
−ξ2λjt

)
qj(t, ξ), (2.10)

where λ1, . . . , λr are the eigenvalues of M that appear in its associated Jordan
blocks of corresponding sizes m1, . . . ,mr, where m1 + · · · + mr = N , and qj are
polynomials (with vectorial coefficients related to the Jordan decomposition basis)
of degree less or equal mj − 1. If limt→+∞ |z(t; ξ)| <∞, then Re(λj) ≥ 0 if mj = 1
or Re(λj) > 0 if mj > 1.

With respect to the instability phenomena predicted by eigenvalue analysis of J
and B, we mention first that if B has an eigenvalue λ with Re(λ) < 0, then it
turns out that M will do so for |ξ| > ξ0, for some ξ0. It would then follow that this
would trigger a growth of z(t; ξ) in (2.10) when t → ∞ for |ξ| > ξ0. This would
completely ruin the solution of the nonlinear system, for, although the nonlinearity
would prevent the amplitude of the oscillations from growing indefinitely, these
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oscillations would appear in all frequencies above ξ0. Milder instabilities would be
expected if B has eigenvalues with positive real parts but M does not, since this
should only hold for relatively small values of ξ. These phenomena are illustrated
in the numerical examples.

Considering separately the two terms of the matrix M (cf. (1.7)), namely (i/ξ)J
and B, we obtain that the linearized stability condition for (1.6) when B = 0
is exactly the hyperbolicity condition for the resulting system (ξ can take any
sign), whereas the linearized stability condition when f = 0 is directly inherited
by the condition on M , i.e., the eigenvalues of B = B(Φ(0)) should have non-
negative real parts if they are simple and strictly positive real parts if they have
some corresponding Jordan block of non-trivial dimension. Unfortunately, J having
real eigenvalues and B having eigenvalues with strictly positive real parts does not
imply that eigenvalues ofM have strictly positive real parts, as the following simple
counterexample shows: with ξ = 1 and

J =
[
1 0
0 −3

]
, B =

[
−1 −3
3 3

]
,

the eigenvalues of M = iJ+B are −0.2332−2.2436i and 2.2332+4.2436i, whereas
the eigenvalues of B are 1± 2.2361i.

This discussion illustrates that the satisfaction of the stability criterion stipulated
by (2.10), namely that the pairwise distinct eigenvalues λ1, . . . , λr of the matrix
M = M(Φ(0), ξ) satisfy

Reλ1 ≤ 0, . . . ,Reλr ≤ 0, (2.11)

can in general not be evaluated exactly by analyzing J and B separately. However,
some special cases are tractable. These include the DCMCLWR with drivers hav-
ing the same maximum speed so that classes of drivers are distinguished by their
reaction times and anticipation lengths (see Sect. 2.3).

2.3. DCLWR model with drivers having the same maximum speed. Let
us consider the model (1.5), (1.6), (2.4) under the assumption

vmax
1 = · · · = vmax

N =: vmax. (2.12)

This means that the classes of vehicles are distinguished only by the drivers’ reaction
times τi and anticipation lengths Li. Under the assumption (2.12), and defining
e := (1, . . . , 1)T, Dτ := diag(τ1, . . . , τN ) and DL := diag(L1, . . . , LN ), we obtain

Jf (Φ) = vmax
(
V (φ)I + V ′(φ)ΦeT

)
,

B(Φ) = −V ′(φ)vmax
(
vmaxφV ′(φ)DτΦ +DLΦ

)
eT. (2.13)

Under the present assumptions, and setting Φ := Φ(0) and φ := φ(0), we obtain

M = vmax

[
i
ξ
V (φ)I + V ′(φ)

(
i
ξ

Φ−
(
vmaxφV ′(φ)Dτ +DL

)
Φ
)
eT

]
.

This matrix is a rank-one perturbation of a multiple of the identity matrix I, and
its eigenvalues are given by

λ̃1 = vmax

[
i
ξ
V (φ) + V ′(φ)

(
i
ξ
φ−

(
vmaxφV ′(φ)τT +LT

)
Φ
))]

,

λ̃2 = · · · = λ̃N = vmax i
ξ
V (φ),

(2.14)



MULTICLASS LWR MODEL WITH ANTICIPATION LENGTHS AND REACTION TIMES 7

with the corresponding one- and (N − 1)-dimensional eigenspaces

V1 =
{
w ∈ CN : w = α

(
i
ξ

Φ−
(
vmaxφV ′(φ)Dτ +DL

)
Φ
)
, α ∈ R

}
,

V2,...,N =
{
w ∈ RN : eTw = 0

}
,

so that all Jordan blocks are trivial. On the other hand, the rank-1 matrix B(Φ)
defined by (2.13) has the eigenvalues

β1 = −V ′(φ)vmax
(
vmaxφV ′(φ)τT +LT

)
Φ, β2 = · · · = βN = 0,

which are the real parts of λ̃1, . . . , λ̃N given by (2.14). We have proved the following
lemma.

Lemma 2.1. Under the assumption (2.12), the stability criterion (2.11) is violated
for a vector Φ := Φ(0), i.e. the matrix M has an eigenvalue µ with Reµ < 0, if and
only if V ′(φ) < 0 and (vmaxφV ′(φ)τT + LT)Φ > 0, that is, if the matrix B has a
negative eigenvalue β1.

3. Parabolicity analysis

We first quote some results from [12, 14] that are needed to establish the stability
results of each of the convective and diffusive terms appearing in (1.6).

Theorem 3.1 ([14]). Assume that the components of f(Φ) are given by (1.5), and
that the velocities vmax

i are ordered according to (2.1). If Φ ∈ D0, then the Jaco-
bian Jf (Φ) has N pairwise distinct real eigenvalues λ1, . . . , λN , and the following
interlacing property holds:

vmax
N + V ′(φ)(vmax)TΦ < λN < vmax

N < λN−1 < vmax
N−1 < · · · < vmax

2 < λ1 < vmax
1 .

Theorem 3.2 ([12]). The eigenvalues of B(Φ) are given by µi = −V ′(φ)λi, i =
1, . . . , N , where

λ1 =
C1

2
−
(
C2

1

4
− C2

)1/2

, λ2 =
C1

2
+
(
C2

1

4
− C2

)1/2

, λ3 = · · · = λN = 0,

where we define

C1 =
N∑
k=1

φkv
max
k

(
Lk + τkV

′(φ)(vmax)TΦ
)
,

C2 =
N∑

i,j=1
i<j

φiv
max
i φjv

max
j τiτj

(
Li
τi
− Lj
τj

+ (vmax
j − vmax

i )V (φ)
)

(vmax
j − vmax

i )V (φ).

(3.1)

A sufficient condition for B(Φ) to have eigenvalues with non-negative real parts
only is that C1, C2 > 0 and C2

1 6= 4C2.

Since C2
1 6= 4C2 generically, we henceforth use C1, C2 > 0 as a sufficient condition

forB(Φ) to have eigenvalues with non-negative real parts only. From the next result
we can obtain reaction times that ensure that the matrixB(Φ) has eigenvalues with
non-negative real parts only with velocity functions V (φ) that satisfy

V (φ) =

{
1 for φ ≤ φc,
W (φ) for φ > φc,

(3.2)
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where W is a function that satisfies W (φc) = 1, W (1) = 0 and W ′(φ) < 0 for
φc < φ < 1. For instance, W (φ) = −C lnφ with φc = φDG gives the Dick-
Greenberg model (2.5) and W (φ) = (1 − φ)/(1 − φv) produces a variant of the
Greenshields model (2.6).

Theorem 3.3. Let vmax
1 , . . . , vmax

N be free velocities such that vmax
1 > vmax

2 > · · · >
vmax
N , V (φ) a velocity function that satisfies (3.2) and

Li = Li(φ) = max
{
Lmin, β(vmax

i V (φ))2
}
, (3.3)

where the parameters Lmin, β > 0 are chosen such that

Lmin ≤ β(vmax
i )2. (3.4)

Then there exist reaction times τi = τ(vmax
i ) for i = 1, . . . , N , where τ(v) is a

monotone increasing function and τ1 ≤ Lmin/(vmax
1 κ), with κ = maxφ |φV ′(φ)|,

such that the matrix B(Φ) has eigenvalues with positive real part.

Note that (3.3) is a multiclass version of the equation

L(φ) = max
{
Lmin,

(v(φ))2

2a

}
proposed in [23] for N = 1, where a is the deceleration and Lmin is a minimum
anticipation distance (regardless of how small the velocity is).

Proof of Theorem 3.3. We consider φ > φc, since B(Φ) = 0 otherwise. By Theo-
rem 3.2 it is ensured that B(Φ) has eigenvalues with non-negative real parts only
when C1, C2 > 0, and this is in turn guaranteed when

Lk + τkS(Φ) ≥ 0 for all Φ and k = 1, . . . , N , S(Φ) := V ′(φ)ΦTvmax, (3.5)

∆ij :=
Li
τi
− Lj
τj

+
(
vmax
j − vmax

i

)
V (φ) ≤ 0 for all Φ and 1 ≤ i < j ≤ N . (3.6)

Let φ = φ∗i be the unique solution of Lmin = β(vmax
i )2V (φ)2, then

Li(φ) =

{
β(vmax

i )2V (φ)2 for φ ≤ φ∗i ,
Lmin for φ ≥ φ∗i .

(3.7)

From the assumption (3.4) we deduce that φc ≤ φ∗i for i = 1, . . . , N . Furthermore,
φ∗i ≥ φ∗j for i < j. Moreover, S(Φ) = V ′(φ)ΦTvmax ≥ V ′(φ)φvmax

1 implies that a
sufficient condition for (3.5) to hold is given by

τi ≤
Lmin

κvmax
1

for i = 1, . . . , N . (3.8)

We consider now condition (3.6). From (3.2) and (3.7) we get

Li
τi
− vmax

i V (φ) =



β(vmax
i )2

τi
− vmax

i if φ ≤ φc,

β(vmax
i )2W (φ)2

τi
− vmax

i W (φ) if φc ≤ φ ≤ φ∗i ,

Lmin

τi
− vmax

i W (φ) if φ∗i ≤ φ ≤ 1,

i = 1, . . . , N.

We consider a pair of indices i < j and discuss the cases determined by φ belonging
to [φc, φ

∗
j ] (Case 1), [φ∗j , φ

∗
i ] (Case 2) or [φ∗i , 1] (Case 3).
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In Case 1, if we use the functional form τi = τ(vmax
i ), for some τ to be determined,

and denote

ψ(v, φ) :=
β(vW (φ))2

τ
− vW (φ),

then ∆ij = ψ(vmax
i , φ)− ψ(vmax

j , φ). If ψv ≤ 0 then ∆ij ≤ 0 for i < j, and this is
equivalent to

τ ′ ≥ 2τ
v
− τ2

v2β̃
, β̃ := β̃(φ) := βW (φ).

We consider µ(v) = vnτ(v), with n to be determined so to simplify the latter
expression:

µ′ = nvn−1τ + vnτ ′ ≥ nvn−1τ + vn
(

2τ
v
− τ2

v2β̃

)
= nvn−1τ + 2vn−1τ − vn−2τ2

β̃
.

We take n = −2 so that this expression yields:

µ′ ≥ −v
−4τ2

β̃
= −µ

2

β̃
=⇒ µ′

µ2
= −

(
1
µ

)′
≥ − 1

β̃
= −

(
v

β̃

)′
,

and, upon integration and some algebra,

τ = v2µ ≥ β̃v2

v +A
, (3.9)

for some positive A to avoid null denominators.
In Case 2, and taking into account that Lmin ≥ β(vmax

j )2W 2 for φ ≥ φ∗j , we get

∆ij =
Li
τi
− vmax

i W (φ)−
(
Lj
τj
− vmax

j W (φ)
)

=
β(vmax

i )2W (φ)2

τi
− vmax

i W (φ)−
(
Lmin

τj
− vmax

j W (φ)
)

≤ β(vmax
i )2W (φ)2

τi
− vmax

i W (φ)−

(
β(vmax

j )2W (φ)2

τj
− vmax

j W (φ)

)
,

As in Case 2, if τ satisfies (3.9) then ∆ij ≤ 0.
In Case 3 we get

0 ≥ Lmin

τi
− vmax

i W (φ)−
(
Lmin

τj
− vmax

j W (φ)
)

= Lmin

(
1
τi
− 1
τj

)
−W (φ)

(
vmax
i − vmax

j

)
.

(3.10)

Since W (1) = 0 and vmax
i > vmax

j , then (3.10) holds if and only if τi ≥ τj .
Recapitulating, we deduce that (3.6) holds if τi = τ(wi) with τ satisfying

τ ≥ βW (φ)v2

v +A
, for all φ, τ ′ ≥ 0,

and, since W (φ) ≤ 1, this is equivalent to

τ ≥ βv2

v +A
, τ ′ ≥ 0. (3.11)
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We consider the increasing function

τ̃(v) :=
βv2

v +A
for A > 0 that certainly satisfies (3.11). Therefore, to ensure that B(Φ) with
τi = τ̃(wi) has eigenvalues with non-negative real parts only, we use (3.8), so we
need to find conditions on A so that

βv2

v +A
≤ Lmin

κvmax
1

⇐⇒ βv2 − Lmin

κvmax
1

(v +A) ≤ 0 for all 0 ≤ v ≤ vmax
1 . (3.12)

The roots of

βv2 − Lmin

κvmax
1

(v +A) = 0

are

w± =
1

2β

[
Lmin

κvmax
1

±
((

Lmin

κvmax
1

)2

+ 4β
Lmin

κvmax
1

A
)1/2

]
and (3.12) will hold if w− ≤ 0 (which is true) and vmax

1 ≤ w+, which yields after
some algebraic manipulations

β(vmax
1 )2 ≤ Lmin

κ
+

Lmin

κvmax
1

A =⇒ A ≥
(
κβ(vmax

1 )2

Lmin
− 1
)
vmax

1 > 0.

This concludes the proof. �

4. Numerical examples

In the subsequent series of examples, we solve the system (1.6) numerically for
0 ≤ t ≤ T and 0 ≤ x < L along with the initial and periodic boundary conditions

Φ(x, 0) = Φ0(x), 0 ≤ x < L; Φ(0, t) = Φ(L, t) for 0 ≤ t ≤ T ,

corresponding to a circular one-directional road of length L. Numerical approxi-
mations are obtained by the Kurganov-Tadmor (KT) scheme [19] applied to the
DCMCLWR model. In fact, Kurganov and Tadmor [19] explicitly propose a ver-
sion of their scheme for convection-diffusion problems of the type (1.6), even though
a well-posedness analysis for systems of PDEs of this type is not available in the
strongly degenerate case. In [5] the same method was applied to (1.6) in the context
of a model of polydisperse sedimentation. To further support the use of the KT
scheme, we mention that numerical experiments conducted in [12] indicate that the
KT scheme and an alternative implicit-explicit (IMEX) scheme designed for (1.6)
that involves a spectral WENO scheme for the convective part converge to the same
solution of (1.6) as ∆t,∆x→ 0 (under suitable CFL conditions). In some examples
we will compare the performance of the KT scheme with that of one of the schemes
introduced in [12], namely the scheme IMEX-RK(3,4,3).

In the following numerical examples, and unless otherwise stated, the x-interval
[0,L] is subdivided into M = 3200 subintervals of length ∆x = L/M . We denote
by ∆t the time step used to advance the numerical solution from time t = tn to
tn+1 = tn + ∆t and by Φnj the vector of numerical solutions associated with cell
[j∆x, (j+ 1)∆x), j = 0, . . . ,M −1, at time tn. For each iteration, the time step ∆t
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is determined anew by using the following formula (derived from a linearized CFL
condition):

∆t
∆x

max
0≤j≤M−1

%
(
Jf
(
Φnj
))

+
∆t

2∆x2
max

0≤j≤M−1
%
(
B
(
Φnj
))

= Ccfl,

where %(·) is the spectral radius. In the numerical examples we choose Ccfl as the
largest multiple of 0.05 that yields oscillation-free numerical solutions when these
are expected to be so.

Finally, in some of the examples we present approximate L1 errors to illustrate
the convergence properties of the numerical scheme. As in [12], these approximate
errors are computed as follows: Let us denote by (φMj,i(t))

M
j=1 and (φref

l,i (t))Mref
l=1 the

numerical solution for the i-th component at time t calculated with M and Mref

cells, respectively. We use cubic interpolation from the reference grid to the M cells
grid to compute φ̃ref

j,i (t) for j = 1, . . . ,M . We then calculate the approximate L1

error of class i by

ei(t) :=
1
M

M∑
j=1

∣∣φ̃ref
j,i (t)− φMj,i(t)

∣∣, i = 1, . . . , N.

We define the total approximate L1 error at time t as etot(t) := e1(t) + · · ·+ eN (t).

4.1. Example 1 (DG model, N = 4, stable behaviour). In Example 1 we
consider the DG velocity function (2.5), a circular road of length L = 10 mi, N = 4
driver classes with the respective preferential velocities vmax

1 = 60 mi/h, vmax
2 =

55 mi/h, vmax
3 = 50 mi/h and vmax

4 = 45 mi/h, and a uniform minimum anticipation
length Lmin = 0.03 mi. The reaction times are chosen such that the eigenvalues of
the diffusion matrixB(Φ) have non-negative real parts for Φ ∈ D0 ⊂ R4. According
to (3.1) this is ensured if the parameters τ1, . . . , τN satisfy the following condition:

τ1 ≤
Lmin

Cvmax
1

; τi ≤
(
vmax
i

vmax
i−1

)2

τi−1, i = 2, . . . , N. (4.1)

To satisfy (4.1) here, we choose τ1 = 0.0013 h, τ2 = 0.0011 h, τ3 = 0.0008 h and
τ4 = 0.0006 h. Figure 1 shows the evolution of the initial traffic “platoon” given by

Φ0(x, 0) = p(x)


0.2
0.3
0.2
0.3

 , p(x) =


10x for 0 < x ≤ 0.1,
1 for 0.1 < x ≤ 0.9,
−10(x− 1) for 0.9 < x ≤ 1,
0 otherwise.

(4.2)

We observe that the system tends to a stationary constant solution.

4.2. Examples 2–5 (DG model, N = 2, unstable behaviour). In Examples 2
to 5 we consider the DG model (2.5), a circular road of length L = 2 mi, and N = 2
driver classes. The preferential velocities of the two classes are given by vmax

1 =
80 mi/h and vmax

2 = 30 mi/h, and a minimum anticipation distance Lmin = 0.03 mi.
For Example 2, the parameters τ1 = 0.00096 h and τ2 = 0.0025 h have been chosen
in such a way that the condition for the PDE (1.3) (for N = 1) to be parabolic for
φ > φc, namely

τ ≤ L

|φV ′(φ)|vmax
for φc ≤ φ < 1, (4.3)
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Figure 1. Example 1 (DG model, N = 4): (a) initial datum (4.2)
and (b–f) numerical solution at simulated times (b) t = 0.08 h, (c)
t = 0.2 h, (d) t = 0.3 h, (e) t = 9 h and (f) T = 50.0 h.

is satisfied by both triples (vmax, L, τ) = (vmax
i , Li, τi), i = 1, 2, but that at the same

time C2 < 0 in a subregion ofD0. In Figure 2 we show a numerical example obtained
for these values of parameters in which φ1 and φ2 initially have disjoint support, i.e.
drivers of both classes are well separated. The “convoys” of both species initially
evolve according to the scalar model studied in [8, 22, 23], see Figures 2 (a–c). As
soon as both classes enter in contact, unstable solution behaviour emerges, as can
be seen in the oscillatory part of the solution visible in Figure 2 (d).
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Figure 2. Example 2 (DG model, N = 2): (a, b, c) stable be-
haviour for individual driver classes (spatially separated), followed
by (d) unstable behavior for mixed driver classes.
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Figure 3. Examples 2–8 (DG model, N = 2). Stability region for
the diffusion matrix B and instability region forM for ξ ∈ [0, 100]
for (a) Examples 2–5, (b) Examples 6–8.

To ensure the parabolicity condition, we choose reaction times according to (4.1)
by setting τ1 = 0.0008 h and τ2 = 0.0011 h in Examples 3–5. As in Example 2, we
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Figure 4. Examples 3–5 (DG model, N = 2): Simulations for
different initial conditions which lie in the stability or instability
region (cf. Figure 3): (a, b) φ0

1 = φ0
2 = 0.15 (Example 3), (c, d)

φ0
1 = φ0

2 = 0.4 (Example 4), (e, f) φ0
1 = φ0

2 = 0.25 (Example 5).

observe that with these reaction times each driver class is associated with stable
behaviour when the respective other class is absent. In Figure 3 (a) we describe a
stability region in the (φ1, φ2)-plane (phase space) corresponding to points at which
the real parts of the eigenvalues of B(Φ) are positive. This is a subregion of R2

+



MULTICLASS LWR MODEL WITH ANTICIPATION LENGTHS AND REACTION TIMES 15

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4

0.04

0.05

0.06

0.07

x [mi]

φ 1

 

 

t=0.0
t=0.1  

0 0.5 1 1.5 2 2.5 3 3.5 4
0.46

0.47

0.48

0.49

0.5

x [mi]

φ 2

 

 

t=0.0
t=0.1    

(c) (d)

φ
1

φ 2

0.02 0.04 0.06 0.08 0.1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

C
2
(Φ)=0

C
1
(Φ)=0

φ
1

φ 2

0.02 0.04 0.06 0.08 0.1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

C
1
(Φ)=0

C
2
(Φ)=0

(e) (f)

Figure 5. Example 6 (DG model, N = 2). Unperturbed initial
state in stability region of B and initial perturbation in stability
region of B and partially in instability region of M : (a, b) initial
datum and numerical solution at t = 0.1 h; (c, d) phase plane plots
of (c) the initial datum and (d) the numerical solution for t = 0.1 h;
(e, f) numerical solution for 0 ≤ t ≤ 0.1 h.

bounded by curves C1(Φ) = 0 and C2(Φ) = 0. Next, we choose the initial condition

φi(x, 0) = φ0
i + δφ0

[
cosh−2

(
320
L

(
x− 5L

16

))
− 0.25 cosh−2

(
40
L

(
x− 11L

32

))]
(4.4)
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Figure 6. Example 7 (DG model, N = 2). Unperturbed initial
state and initial perturbation in stability region of B and in insta-
bility region of M : (a, b) initial datum and numerical solution at
t = 0.1 h; (c, d) phase plane plots of (c) the initial datum and (d)
the numerical solution for t = 0.1 h; (e, f) numerical solution for
0 ≤ t ≤ 0.1 h.

for i = 1, 2 (similar to the one proposed in [27]), where δφ0 is the amplitude of
perturbation; we here choose δφ0 = 0.08. We select the initial density Φ0 in the
different regions and compute the solution until a finite time. For the initial condi-
tions φ0

1 = φ0
2 = 0.15 (Example 3) or φ0

1 = φ0
2 = 0.4 (Example 4) (Figures 4 (a–d)),
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IMEX-RK(3,4,3) KT
M error CPU time [s] error CPU time [s]
400 1.7e-3 1.92 1.8e-3 2.29
800 1.4e-3 6.60 1.7e-3 9.92
1600 9.3e-4 25.74 1.2e-3 55.94
3200 2.9e-4 105.91 8.9e-4 308.26

Table 1. Example 7 (DG model, N = 2): approximate total L1

errors and CPU times at time t = 0.03 h for the KT scheme with
Ccfl1 = 0.1 and scheme IMEX-RK(3,4,3) [12] with Ccfl = 0.6.

IMEX-RK(3,4,3) KT
M error CPU time [s] error CPU time [s]
400 3.1e-4 2.52 4.9e-4 4.05
800 1.2e-4 10.60 2.4e-4 16.82
1600 5.3e-5 39.43 8.9e-5 87.65
3200 2.3e-5 145.04 2.8e-5 490.67

Table 2. Example 8 (DG model, N = 2): approximate total L1

errors and CPU times at time t = 0.03 h for the KT scheme KT
with Ccfl1 = 0.1 and scheme IMEX-RK(3,4,3) [12] with Ccfl = 0.6.

IMEX-RK(3,4,3) KT
M error CPU time [s] error CPU time [s]
400 21.4e-4 2.12 24.9e-4 4.05
800 18.3e-4 9.12 20.3e-4 67.80
1600 14.1e-4 47.38 18.9e-4 274.75
3200 7.23e-5 205.44 10.3e-4 1059.48

Table 3. Example 10 (GS model, N = 2): approximate total L1

errors and CPU times at time t = 0.03 h for the KT scheme with
Ccfl1 = 0.05 and scheme IMEX-RK(3,4,3) [12] with Ccfl = 0.6.

i 1 2 3 4 5
Li [mi] 0.006 0.012 0.03 0.008 0.028
τi [h] 0.00028 0.00052 0.00132 0.00036 0.00122

Table 4. Example 12 (DG model, N = 5, drivers having the same
maximum speed): reaction times and anticipation distances.

which lie both in the instability region, we observe that amplitudes present in the
initial datum are expanded but remain bounded in the instability region, while the
frequencies are extended to maximum frequency. When φ0

1 = 0.25 and φ0
2 = 0.25

in the stability region (Example 5), simulations (Figures 4 (e, f)) show that ampli-
tudes of the disturbance decrease with time, and that the corresponding frequency
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Figure 7. Example 7 (DG model, N = 2): comparison of refer-
ence solution (Mref = 12800) with approximate solutions computed
by schemes KT and IMEX-RK(3,4,3) [12] with M = 1600.

of oscillation does not increase. In both cases, initial perturbations generate waves
traveling downstream and upstream.

4.3. Examples 6–8 (DG model, N = 2, mildly unstable behaviour). We
continue using the DG model (2.5), consider a circular road of length L = 4 mi
and employ vmax

1 = 80 mi/h, vmax
2 = 30 mi/h, τ1 = 0.00095 h, τ2 = 0.00075 h and

Lmin = 0.01 mi. For this choice of parameters, we observe in Figure 3 (b) that the
instability region of M = M(Φ, ξ) is a subset of the stability region of B, which
indicates that bounded or unbounded instabilities could be generated even when
the parabolicity conditions (3.1) are satisfied. As in the last example, we choose
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Figure 8. Example 8 (DG model, N = 2). Unperturbed initial
state in stability region of B and large-amplitude initial pertur-
bation partially in instability region of B: (a, b) initial datum
and numerical solution at t = 0.1 h; (c, d) phase plane plots of (c)
the initial datum and (d) numerical solution for t = 0.1 h; (e, f)
numerical solution for 0 ≤ t ≤ 0.1 h.

two initial conditions close to the instability region. We display numerical solutions
for different initial conditions. We observe in Figure 5 that an initial perturbation
is split into two waves, a wave traveling downstream which decreases rapidly in
amplitude, and another wave traveling upstream which can cause traffic instability



20 BÜRGER, MULET, AND VILLADA

(a) (b)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [mi]

φ 1,..
.,φ

4,φ

 

 

φ
1
  

φ
2

φ
3

φ
4

φ

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [mi]

φ 1,..
.,φ

4,φ

 

 

φ
1

φ
2

φ
3

φ
4

φ  
1.2 1.3 1.4 1.5 1.6 1.7

0

0.1

0.2

0.3

 

 

(c) (d)

0 2 4 6 8 10

0

0.1

0.2

x [mi]

φ 1,..
.,φ

4,φ

 

 

φ
1

φ
2

φ
3
   

φ
4

φ

0 2 4 6 8 10

0

0.1

0.2

x [mi]

φ 1,..
.,φ

4,φ

 

 

φ
1

φ
2

φ
3

φ
4

φ

(e) (f)

0 2 4 6 8 10

0

0.1

x [mi]

φ 1,..
.,φ

4,φ

 

 

φ
1
  

φ
2

φ
3

φ
4

φ

0 2 4 6 8 10

0

0.1

x [mi]

φ 1,..
.,φ

4,φ

 

 

φ
1
  

φ
2

φ
3

φ
4

φ

Figure 9. Example 9 (GS model, N = 4): (a) initial datum and
solution at simulated times (b) t = 0.08 h, (c) t = 0.2 h, (d) t =
0.3 h, (e) t = 9 h and (f) t = T = 50.0 h.

depending on the initial condition. For φ0
1 = 0.04 and φ0

2 = 0.47 (Example 6)
and an initial perturbation with amplitude δφ0 = 0.03 which does not lie in the
instability region for M , waves traveling upstream and downstream decrease in
amplitude until a steady state is nearly reached. Numerical solutions are displayed
in Figure 5.
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Figure 10. Examples 10 and 11 (GS model, N = 2): stability
region for diffusion matrix B and instability region for M .

For φ0
1 = 0.12 and φ0

2 = 0.4 (Example 7) and an initial perturbation with ampli-
tude δφ0 = 0.01, which lie in the instability region for M , waves traveling down-
stream decrease in amplitude, while waves traveling upstream grow in amplitude
and until some frequency, which cause traffic instabilities. Numerical solutions at
different times are displayed in Figure 6. Phase space diagrams are also shown in
order to display how instabilities may be triggered. In Table 1 we calculate total
approximate L1 errors and CPU times at time t = 0.03 h for two different nu-
merical schemes. The reference solution was calculated using the KT scheme with
M = 12800 subintervals. This information indicates that the numerical solutions
produced by both schemes converge to the same solution as ∆t,∆x→ 0. In partic-
ular, the oscillations visible in the numerical solution (see Figure 6 (a, b)) are not
artifacts produced by the numerical scheme.

In Example 8 we choose the constants φ0
1 = 0.05 and φ0

2 = 0.5, which lie in
the stability region, and add an initial perturbation with amplitude δφ0 = 0.05 so
that the initial function (φ1(x, 0), φ2(x, 0))T defined by (4.4) assumes values that
are in the instability region for B(Φ). In the numerical solution (see Figure 8) we
observe that waves traveling upstream generate a wave that decreases in amplitude,
and we also observe instabilities that remain controlled. In Table 2 we calculate
total approximate L1 errors and CPU times at time t = 0.03 h for two different
numerical schemes. This table indicates that oscillations present in the numerical
solution (cf. Figures 8 (a) and (b)) are not produced by the numerical scheme. That
the oscillations are not a numerical artifact is further supported by Figure 7, where
we compare the numerical solutions obtained for M = 1600 with both schemes with
the reference solution, obtained by the KT scheme with Mref = 12800.

4.4. Examples 9–11 (GS model, N = 4 and N = 2). Now, we consider a
DCMCLWR model with the Greenshields (GS) velocity function (2.6) and assume
that B(Φ) is given by (2.7) with the perception threshold φc = 0.05. In Exam-
ple 9 we choose N = 4 and vmax

1 = 60 mi/h, vmax
2 = 55 mi/h, vmax

3 = 50 mi/h,
vmax

4 = 45 mi/h and Lmin = 0.03 mi. The reaction times are chosen such that the



22 BÜRGER, MULET, AND VILLADA

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4

0.19

0.2

0.21

0.22

x [mi]

φ 1

 

 

t=0.0
t=0.3 

0 0.5 1 1.5 2 2.5 3 3.5 4

0.22

0.23

0.24

0.25

x [mi]

φ 2

 

 

T=0.0 
T=0.3  

(c) (d)

φ
1

φ 2

0.18 0.19 0.2 0.21 0.22 0.23
0.21

0.22

0.23

0.24

0.25

0.26

C
1
(Φ)=0

φ
1

φ 2

0.18 0.19 0.2 0.21 0.22 0.23
0.21

0.22

0.23

0.24

0.25

0.26

C
1
(Φ)=0

(e) (f)

Figure 11. Example 10 (GS model, N = 2). Unperturbed initial
state and small-amplitude initial perturbation in stability region
of B and in instability region of M : (a, b) initial datum and
numerical solution at t = 0.1 h; (c, d) phase plane plots of (c) the
initial datum and (d) the numerical solution for t = 0.1 h; (e, f)
numerical solution for 0 ≤ t ≤ 0.1 h.

eigenvalues of B(Φ) have positive sign. In fact, we ensure that (3.1) holds by choos-
ing τ1 = 0.0005 h, τ2 = 0.0004 h, τ3 = 0.0003 h and τ4 = 0.0002 h. Figure 9 shows
a time evolution of the initial concentration platoon to a final (nearly) constant
steady state reached at t = 50 h.
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Figure 12. Example 10 (GS model, N = 2): comparison of refer-
ence solution (Mref = 12800) with approximate solutions computed
by schemes KT and IMEX-RK(3,4,3) [12] with M = 800.

To analyze chaotic behaviour, we consider in Example 10 a circular road of
4mi. and interaction between N = 2 classes with the respective free velocities
vmax

1 = 60 mi/h and vmax
2 = 30 mi/h with an anticipation distance Lmin = 0.01mi.

Instabilities occur when we choose reaction times as τ1 = 0.0024 h and τ2 = 0.0008 h.
In Figure 10 we display the stability region for the diffusion matrix B(Φ) and the
instability region for the matrix M . As for the Dick-Greenberg model, we choose
two different initial conditions and show that traffic instabilities can occur. In
Figure 11 we display a time evolution of an initial condition with φ1 = 0.2 and
φ2 = 0.23 and a perturbation with amplitude δφ0 = 0.02 in the instability region
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Figure 13. Example 11 (GS model, N = 2): Unperturbed initial
state in stability region of B and initial perturbation in stability
region of B and in instability region of M : (a, b) initial datum
and numerical solution at t = 0.1 h; (c, d) phase plane plots of (c)
the initial datum and (d) the numerical solution for t = 0.1 h; (e,
f) numerical solution for 0 ≤ t ≤ 0.1 h.

(Example 10). We observe that the solution is a wave traveling upstream which
grows in amplitude and frequency. We also observe that those instabilities remain
controlled, both in amplitude and frequency. We provide in Table 3 and in Figure 12
information similar to that of Table 1 and Figure 7 for Example 7, illustrating that
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Figure 14. Example 12 (DG model, N = 5, drivers having the
same maximum speed): (a, b) total concentration at different
times, (c, d) individual concentrations and enlarged views at times
(c) t = 0.025 h and (d) t = 0.1 h.

also for this case, the oscillations observed are not a numerical artifact and that
both numerical schemes apparently approximate the same solution.

In Figure 13 we display a time evolution of an initial condition with φ1 = φ2 =
0.18 and a perturbation with amplitude δφ0 = 0.05 in the stability region of B but
with some values in the instability region of M (Example 11). We observe that the
solution consists of two waves traveling downstream and decreasing in amplitude.

4.5. Examples 12 and 13 (DG model, N = 5, drivers having the same
maximum speed). In Example 12 we consider a circular road of 10 mi and choose
N = 5 classes of drivers with the same free velocities vmax = 50 mi/h. To satisfy
the parabolicity condition (2.11), it is sufficient to choose reaction times τi and
anticipation distances Li such that τi ≤ Li(|φV ′(φ)|vmax)−1 for i = 1, . . . , N . We
employ the DG velocity function (2.5) and choose the reaction times and antici-
pation distances given in Table 4. Figure 14 shows a time evolution of the initial
concentration platoon Φ0(x, 0) = p(x)(0.2, 0.2, 0.2, 0.2, 0.2)T, where p(x) is given in
(4.2), for which stable behavior is observed.

When condition (2.11) is not satisfied, unstable behavior with non-controlled
oscillations appears. As an example (Example 13) we consider the same initial
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Figure 15. Example 13 (DG model, N = 5, drivers having the
same maximum speed): instabilities may occur when the parabol-
icity condition (2.11) is not satisfied.

platoon in the previous example but we choose τ2 = 0.00104 h. Simulations are
displayed in Figure 15.

5. Conclusions

We have analyzed the stability of a diffusively corrected multiclass Lighthill-
Whitham-Richards (DCMCLWR) traffic model that takes into account anticipation
lengths and reaction times. The basic result is that to achieve stability, defined in
terms of the linearized version (2.8) of (1.6), it is not sufficient to ensure that the
diffusion matrix B has eigenvalues with positive real parts; rather, one also has
to consider a contribution from the convective part defined by the Jacobian J ,
multiplied by i/ξ. Thus, it is not possible in general to identify stable or unstable
solution behaviour with a particular type of (1.6), unless we consider the special
cases J = 0, J being a rank-one perturbation of a multiple of I (as for the case of
equal free velocities discussed in Section 2.3) orB = 0 (as for the standard MCLWR
model). This contrasts, for example, with the stability analysis of a model of poly-
disperse sedimentation [9], whose governing equations can be written as (1.4), and
for which a stability analysis similar to the one conducted in Section 2.2 shows that
a criterion for stable segregation (formation of horizontal concentration interfaces
that move vertically), introduced in [2] for N = 2 and supported by experimental
results, is equivalent to hyperbolicity of (1.4). The predictions of our linearized
stability analysis are confirmed by the numerical experiments in all aspects except
that the nonlinearities in the model prevent the amplitude (and in some cases the
frequency) of the instabilities to blow up. While we associate oscillations in the
numerical solution with unstable behaviour in general, we distinguish between sit-
uations where there is a blow-up of frequency (such as in Examples 2, 3, 4 and 13),
which means that violations of the stability condition lead to strongly oscillating
solutions (akin to those studied in [6]), and situations of mildly unstable behaviour
(such as the ones observed in Examples 5 to 8 and 10) with finite frequencies of
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oscillation, and where numerical solutions can be interpreted as the formation of
stop-and-go waves (although the latter phenomenon is usually associated with much
larger amplitudes, cf., e.g., [26, 27]).

Finally, the present model, the stability analysis and its numerical simulations
allow us to draw some conclusions of stable and unstable traffic flow caused by
heterogeneous drivers’ behaviour. To elucidate this issue, let us first point out that
the condition (4.3), which is precisely the condition for the scalar equation (1.3)
to be (degenerate) parabolic, is very similar to the condition (1.8) derived in [27].
While it is plausible that traffic flow is stable, and for instance free of marked stop-
and-go waves, if reaction times of drivers are sufficiently small, our analysis leads
to a further conclusion for N ≥ 2. Namely, for that case it turns out that to ensure
stable traffic flow it is not sufficient so require that (4.3) be satisfied with L, τ
and vmax replaced by Li, τi and vmax

i for i = 1, . . . , N . This is vividly illustrated
in Example 2: two populations of drivers may produce stable traffic flow when
separated spatially, however, when they start to “mix”, then instabilities occur.
This behaviour is essentially produced by the fact that the larger reaction time τ2
of Species 2 (in Example 2) in not sufficiently small in presence of the significantly
faster drivers of class 1. In fact, in view of the assumption (2.1) the criterion (4.1)
states that the eigenvalues ofB have non-negative real parts (a condition necessary,
but in general not sufficient, to ensure stability of traffic flow) if the reaction time
τi of drivers of a given class i is adapted to the velocities of drivers of the faster
classes 1 to i− 1. In particular, (4.1) means that τ1 ≥ τ2 ≥ · · · ≥ τN .
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