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1 CI2MA and Departamento de Ingenierı́a Matemática, Universidad de Concepción, Casilla 160-C, Concepcion, Chile,
rburger@ing-mat.udec.cl
2 IANS, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany, ikroeker|crohde@mathematik.uni-
stuttgart.de

Received XXXX, revised XXXX, accepted XXXX
Published online XXXX

Key words clarifier-thickener model, polynomial chaos, uncertainty quantification, Galerkin projection, finite volume
method
MSC (2000) 00-xx

The continuous sedimentation process in a clarifier-thickener can be described by a scalar nonlinear conservation law for
the local solids volume fraction. The flux density function is discontinuous with respect to spatial position due to feed
and discharge mechanisms. Typically, the feed flow cannot be given deterministically and efficient numerical simulation
requires a concept for quantifying uncertainty.
In this paper uncertainty quantification is expressed by a new hybrid stochastic Galerkin (HSG) method that extends the
classical polynomial chaos approximation by multiresolution discretization in the stochastic space. The new approach
leads to a deterministic hyperbolic system for a finite number of stochastic moments which is however partially decoupled
and thus allows efficient parallelisation. The complexity of the problem is further reduced by stochastic adaptivity.
For the approximate solution of the resulting high-dimensional system a finite volume scheme is introduced. Numerical
experiments cover one- and two-dimensional situations.
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1 Introduction

1.1 Scope

Modelling uncertainty is important in many technical applications in which one seeks to quantify the stochastic variability
of the response of a nonlinear system, usually defined by the solution of a time-dependent partial differential equation
(PDE), with respect to uncertainty in input data such as initial conditions, control parameters and PDE coefficient functions.
Straightforward Monte-Carlo (MC) computations of sampling solutions produced under stochastic variation of the input
data are easily implemented, but quantifying randomness via the MC approach is computationally very inefficient due to
the slow convergence of stochastics. However we refer to the Multi-Level Monte-Carlo [30] and Quasi Monte-Carlo [24]
for the variants of the improvement. The quantification of randomness by stochastic Galerkin or collocation methods leads
to deterministic models for at least a finite number of stochastic moments (cf. [29] for an overview), and seems to be a more
promising technique in the present situation. While this approach is supported by a meanwhile well-understood theory for
models posed in terms of linear PDEs, for nonlinear problems first steps have been done just recently [1, 32, 36, 37]. One
important subclass of nonlinear problems are hyperbolic conservation laws, on which the present work is focused.

As a prototype model in this field we consider a clarifier-thickener (CT) model for the continuous fluid-solid separation
of suspensions under gravity. The CT model provides an idealized description of secondary settling tanks in wastewater
treatment or of thickeners in mineral processing [7]. For so-called ideal suspensions of small solid, non-flocculent parti-
cles that do not exhibit the effect of sediment compressibility, the complete set of governing partial differential equations
is given by a first-order scalar conservation law for the local solids concentration that involves as a coefficient the local
volume-averaged flow velocity of the mixture (in short, bulk velocity); this velocity must satisfy a divergence-free con-
dition plus possibly an additional equation of motion [12, 13]. It is frequently assumed, however, that all variables are
horizontally constant such that a spatially one-dimensional description is sufficient. Then the governing equation is one
single scalar conservation law with a flux density function that depends spatially on position, along with suitable initial
conditions and control variables. The well-posedness and numerical analysis of this equation forms a research topic in
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itself [5, 7, 16, 18–21], since the entropy solution concept for this model does not emerge as a straightforward limit case of
the theory a conservation law with smoothly varying coefficients [25], at least unless one imposes further conditions on the
relative sizes of the flux smoothing and the parabolic regularization of the vanishing viscosity method (cf., e.g., [8,15,17]).

Typically, many input parameters cannot be described with deterministic accuracy but behave stochastically. In the
applications the uncertainty comes, for instance, from the fact that the feed flow comes from other units that are not under
control of the CT operator, or from the unpredictability of weather conditions. While a rigorous treatment should take into
account two stochastic dimensions, namely the uncertainties of the rate of inflow QF of feed suspension and that of the
solids volume fraction of the feed uF, we will for simplicity only include that of uF. This uncertainty produces a first-order
scalar conservation law with a random flux function.
It is the purpose of this work to provide a new efficient method for evaluating the uncertainty of the response of the system,
that is, of the exact or numerical solution of the governing PDE, in terms of the uncertainty in the control parameter uF.
As a by now classical approach in uncertainty quantification one could apply the stochastic Galerkin method where the
random field is represented in terms of orthonormal polynomials. This leads to a very accurate approximation in form
of a strongly coupled high-dimensional deterministic system for a finite number of moments [32]. On theother hand one
might apply the multi-wavelet stochastic discretization as e.g. in [36]. The approach still leads to a full coupling of the
polynomial basis is defined on the whole stochastic domain. The novelty of our approach consists in the application of
a hybrid stochastic Galerkin (HSG) method that combines polynomial chaos and multi-wavelet representation. However
each stochastic element is equipped with its own polynomial basis. Due this combination the HSG method leads to a
partially decoupled deterministic system, that allows efficient parallelisation. Furthermore we improve the efficiency of the
HSG method by a adaptive multiresolution concept in the stochastic space (see also [36] for an adaptive approach in the
framework of multi-resolution techniques). The HSG method provides two kinds of adaptivity in the stochastic space: the
simple polynomial order truncation and more sophisticated order of resolution adaptivity. While the adaptive parallel HSG
methods gives good numerical results for the CT operator it must be pointed out that the overall approach can be applied to
a wide range of conservation laws with uncertain coefficients.

1.2 Outline of the paper

The remainder of the paper is organized as follows. In Section 2 the governing models are described. To this end we in-
troduce in Section 2.1 a spatially two-dimensional deterministic model, Model 2D, from which a one-dimensional version,
Model 1D, is obtained if we assume that all flow variables depend on depth only. In Section 2.2 we state the final form of
both models, including the random feed.
In Sect. 3 we detail the model and introduce an approximation for the random feed uF by a stochastic Galerkin (SG) and
the new hybrid stochastic Galerkin ansatz. More specifically we review the polynomial chaos approach in Section 3.1 and
define in Section 3.2 the stochastic Galerkin system. This leads after finite volume discretization in the one- and twodimen-
sional physical space to the stochastic Galerkin finite volume method (SG-FV). In Section 3.3 we extend the SG stochastic
discretisation to the hybrid stochastic Galerkin (HSG) approach. Next, in Section 3.3.2 we formulate a stochastic Galerkin
approach, which makes explicit how the coefficients of the HSG representation are calculated. A fully discrete finite vol-
ume formulation for the stochastic Galerkin approaches, namely the respective “HSG–systems”, of Model 1D and 2D is
introduced in Sections 3.3.3 and 3.3.4 (HSG-FV). In Sect. 3.4 we consider the application of the FV methods introduced
in Sections 3.3.3 and 3.3.4 to Models 1D and 2D. We start with experiments in one space dimension and compare the
HSG-FV results with those of the Monte Carlo approach. In the two-dimensional case we compare our HSG results with
the results of the finest possible stochastic resolution. Note that the computational effort prevents any use of the Monte
Carlo approach in this situation! In Sect. 3.5 we discuss the benefits of the parallel application for SG and HSG methods.
The further improvement of the method is stochastic adaptivity (denoted as HSG–adapt), which is introduced in Section 4.
The HSG-adapt method reduces the stochastic dimension and increases the computational efficiency decisively.

2 Governing models

2.1 Deterministic versions

The fundamental conservation equations are the continuity equations of the solid and the fluid, which are both considered
as continuous, superimposed phases. In differential form, and considering a spatial domain D̃ ⊂ Rd, d = 1, 2, 3, these
equations are given by

ut(x, t) + div
(
u(x, t)vs

)
= 0,

(
1− u(x, t)

)
t
+ div

(
(1− u(x, t))vs

)
= 0, x ∈ D̃, t > 0, (1)
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where vs and vf are the solid and fluid phase velocities, respectively. If we define the solid-fluid relative velocity vr :=
vs − vf and the volume-average velocity of the mixture q := uvs + (1 − u)vf , then the governing equations (1) can be
written as follows, where for the moment we omit the argument “(x, t)”:

ut + div
(
uq + u(1− u)vr

)
= 0, div q = 0, x ∈ D̃, t > 0. (2)

For gravity separation, and following a well-known kinematic theory of sedimentation (see [5, 27]), we introduce the
constitutive assumption

vr = vr(u) =
b(u)

u(1− u)
ex,

where ex is the unit vector pointing into the direction of gravity and b = b(u) is the so-called Kynch batch flux density
function that is frequently given by the Richardson-Zaki expression [34]

b(u) = bRZ(u) := b̃(u) =

{
u∞u(1− u)nRZ for 0 ≤ u ≤ umax,
0 for u < 0 and u > umax,

(3)

where u∞ > 0 is the Stokes velocity, that is, the settling velocity of single particle in an unbounded fluid, 0 < umax ≤ 1 is
a maximum solids concentration, and nRZ ≥ 1 is a parameter. Thus, if we define the flux vector

h̃(x, t, u) := q(x, t)u + b
(
u(x, t)

)
ex, (4)

then the governing equations (2) reduce to

ut + div h̃(x, t, u) = 0, div q = 0, x ∈ D̃, t > 0, (5)

in the absence of sources and sinks. Obviously, only in d = 1 dimensions are the two scalar equations (5) solvable for u
and q = q. In d ≥ 2 dimensions an additional equation of motion must be solved; for example, in [11, 12], (5) is solved
along with the equation

−div
(
µ(u)∇q

)
+ λ∇p = −λugex, (6)

where µ = µ(u) is a strictly positive viscosity function, λ > 0 is a constant, p = p(x, t) is pressure, and g is the acceleration
of gravity, i.e. the second equation of (5) and (6) form a version of the Stokes system. (One could also consider the Navier-
Stokes equation instead of (6).) In the multi-dimensional setting, the right-hand side of (6) describes the coupling between
the concentration and velocity fields. The coupled system (5), (6) is solved (in slight variants) in [11, 12] by finite volume
and finite volume element techniques, respectively.

In the present work we wish to partially address the multi-dimensional case, but prefer not to solve the full coupled
system (5), (6) for reasons of the considerable additional computational effort, and to avoid that the uncertainty in the
concentration field be introduced into the flow field. For this reason we introduce Model 2D and Model 1D (referring to
two and one space dimensions, respectively) as follows.

For Model 2D we consider the longitudinal-infinite vessel D := R× S ⊂ R3 with the cross-sectional domain S ⊂ R2

and coordinates x = (x1, x2, x3)T. We assume that all flow variables depend on x1 and x2 only, and will henceforth
write x = (x, y). Conceptually, this assumption corresponds to a vertical channel of infinite (horizontal) depth, or to an
axisymmetric three-dimensional vessel for which the variables depend on the radial and axial coordinates only.

The longitudinal x-direction is aligned with gravity. We assume that at x1 = 0, a singular feed source is located, and
that the unit is fed with feed suspension at a volumetric rate QF = QF(t) ≥ 0 and a feed volume fraction uF = uF(t). The
feed mechanism causes the separation of the feed flow into upward- and downward-directed bulk flows. In fact, we assume
that q = q(x, t) = (qx(x, t), qy(x, t)) satisfies

q(x, t) =

{
qL(x, t) for x < 0,
qR(x, t) for x > 0,

qL = (qx
L, qy

L) and qR = (qx
R, qy

R). (7)

To ensure global conservativity, we choose QF(t) = (qx
R − qx

L)S(x = 0). In Section A we will construct a flow field that
satisfies div q = 0 along with these conditions and zero-flux boundary conditions, so in the present work q = q(x, t) is
given externally. Moreover, it is assumed that the solid-liquid separation takes place within the unit only, identified by the
x-interval (−1, 1), while outside both phases move at the same velocity, i.e., vr = 0. Thus, instead of the flux given by (4)

Copyright line will be provided by the publisher
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we employ the nonlinear flux h(x, t, u) = u(x, t)γ1(x, t) + γ2(x)b(u), where we define the discontinuous (with respect
to x) parameters

γ1(x, t) :=

{
qL(x, t) for x < 0,
qR(x, t) for x > 0,

γ2(x) :=

{
1 for x ∈ (−1, 1),
0 for x (∈ (−1, 1).

Modelling the solids feed mechanism by a singular source term we obtain the following governing equation for Model 2D:

ut(x, t) + div
(
h(x, t, u(x, t))

)
= δ(x)QF(t)uF(t) on DT × Ω, (8)

which is solved along with the initial condition u(x, 0) = u0(x) for x ∈ D, and where q = q(x, t) is given externally such
that div q = 0 and (7) is satisfied.

The uncertainty in uF and the final form of this model and Model 1D will be introduced in Section 2.2. Model 1D
is the spatially one-dimensional version of Model 2D obtained under the assumption that all flow variables depend on
depth x only. It arises from the assumption that the cross section of the unit, corresponding to the x-interval, is constant. If
uncertainty is not built in, then Model 1D is equivalent to the one-dimensional clarifier-thickener models studied in [5, 6].
The governing initial value problem is then

ut(x, t) +
(
h(x, t, u(x, t))

)
x

= δ(x)QF(t)uF(t) on ΠT := R× (0, T ),
u(x, 0) = u0(x), x ∈ R.

2.2 Random feed and final formulation of models 2D and 1D
In this work we assume that the feed concentration uF exhibits stochastic variability. In fact, for the probability measure P
let Ω = (Ω, P ) be the probability space, and we denote the random feed volume fraction by uF = uF(ω) ∈ [0, 1], where
ω ∈ Ω. For both models it is assumed that the feed source is distributed over the whole cross section {0}× S. As we will
show below, the complete feed term in (8) can be rewritten as part of the flux such that (8) assumes the form of a nonlinear
conservation law with discontinuous flux. To our knowledge, such a situation has not yet been treated in the framework of
uncertainty quantification. For Model 2D we may rewrite the source term as a part of the convective flux via

δ(x)QF(t)uF(t, ω) = div
(
H(x)QF(t)uF(t, ω)ex

)
,

where H denotes the Heaviside function and ex is the unit vector pointing into the x-direction. For Model 1D we obtain
the simpler expression

δ(x)QF(t)uF(t, ω) =
(
H(x)QF(t)uF(t, ω)

)
x
.

Thus, Model 2D can finally be cast into the following form: for a final time T > 0 we seek the solids volume fraction
u : DT := D × (0, T ) → [0, 1] as the solution of the initial value problem

ut(x, t,ω) + div g(x, t, u, ω) = 0 in DT × (0, T )× Ω,
u(x, 0, ω) = u0(x), x ∈ D,

(9)

where the flux function g is determined for t ∈ (0, T ) and ω ∈ Ω by

g(x, t, u, ω) = h(x, t, u)−H(x)QF(t)uF(t, ω)ex,

which for Model 1D reduces to

g(x, t, u, ω) = h(x, t, u)−H(x)QF(t)uF(t, ω).

Thus, the flux vector for Model 2D is given by

g(x, t, u, ω) =






(u− uF(t, ω))qL(x, t) for x < −1,

(u− uF(t, ω))qL(x, t) + b(u)ex for −1 < x < 0,
(u− uF(t, ω))qR(x, t) + b(u)ex for 0 < x < 1,
(u− uF(t, ω))qR(x, t) for x > 1,

(10)
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with an obvious analogous expression (not written out here) for the flux g = g(x, t, u, ω) of Model 1D.
The flux (10) has discontinuities for x ∈ {−1, 0, 1}. We will not directly work with (9) and the flux defined by (10) but

expand the PDE (9) into a system. To this end, we define the flux vector

f(t, u,γ1,γ2, ω) :=
(
u− uF(t, ω)

)
γ1 + b(u)γ2ex,

where the unknown vector is now (u,γ1, γ2)T ∈ R2 × R. This vector is solution to the system of balance laws

u(x, t,ω)t + div
(
f(t, u,γ1, γ2, ω)

)
= 0,

γ1
t (x, t) = H(x)

(
qR(x, t) + H(−x)qL(x, t)

)
t
,

γ2
t (x, t) = 0,

(11)

subject to the initial conditions

u(x, 0, ω) = u0(x),

γ1(x, 0) = H(x)qR(x, 0) + H(−x)qL(x, 0),

γ2(x) = χ(−1,1)(x).

3 A hybrid stochastic Galerkin (HSG) finite volume method
In this section we start with a polynomial chaos (PC) method and its application to the governing equation (11). In
Section 3.3 we extend the PC stochastic discretization to the hybrid stochastic Galerkin (HSG) method and discuss its
application to the governing model.

3.1 Preliminaries and polynomial chaos
Let θ = θ(ω) be a random variable on the probability space (Ω, P ) which satisfies θ ∈ L2(Ω). We assume that the
distribution of θ is known and that the probability density function ρ is given. The expectation of θ is given by

E [θ] :=
∫

Ω
θ(ω) dP (ω) =

∫

Ω
θ dρ(θ).

Let {φp(θ)}p∈N0
be a family of L2(Ω)-orthonormal polynomials with respect to the probability density function ρ. This

means that {φp(θ)}p∈N0
satisfies

〈φp(θ), φq(θ)〉L2(Ω) :=
∫

Ω
φp

(
θ(ω)

)
φq

(
θ(ω)

)
dP (ω) = δp,q for p, q ∈ N0. (12)

Here δp,q denotes the Kronecker symbol. The choice of the polynomials φp depends on the probability density function ρ.
For example, Gauss distribution requires Hermite polynomials, and Legendre polynomials allow us to use the approach of
uniformly distributed random variables. For definitions of the polynomials cf. [31].

The random field w = w(x, t,ω) = w(x, t, θ(ω)), (x, t) ∈ DT , with finite variance can be represented by the infinite
series

w
(
x, t, θ(ω)

)
=

∞∑

p=0

wp(x, t)φp

(
θ(ω)

)
, (x, t) ∈ DT .

Here the coefficients wp = wp(x, t), (x, t) ∈ DT are defined by

wp := 〈w, φp〉L2(Ω) =
∫

Ω
w

(
θ(ω)

)
φp

(
θ(ω)

)
dP (ω) for p ∈ N0.

Note that the expectation of the random field w is given by the coefficient w0 and its variance is given by the series∑∞
p=1(w

p)2. The truncation at the highest polynomial order No ∈ N yields a finite sum, namely

ΠNo [w]
(
x, t, θ(ω)

)
:=

No∑

p=0

wp(x, t)φp

(
θ(ω)

)
, (x, t) ∈ DT . (13)

The Cameron-Martin Theorem in [14,39] ensures convergence of the series in (13), i.e., ΠNo [w] → w in L2(Ω) for No →
∞. For further reading we refer to [23, 29, 32].
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3.2 The stochastic Galerkin finite volume (SG-FV) method
Similarly to [33] we apply the PC framework to the governing model. The resulting weakly hyperbolic system allows us to
use appropriate finite volume methods in one and two space dimensions.

3.2.1 Formulation of the stochastic Galerkin system
Let us again consider the governing equation (11). We test the equation with φ0, . . . ,φNo and obtain the system

∫

Ω

(
ut(x, t, θ(ω)) + div

((
u(x, t, θ(ω))− uF(t, θ(ω))

)
q(x, t)

+ γ2(x)b
(
u(x, t, θ(ω))

)
ex

))
φp(θ(ω)) dP (ω) = 0 for p = 0, . . . , No.

We replace u(x, t,ω) by the truncated PC-expansion

ΠNo [u] (x, t, θ(ω)) =
No∑

p=0

up(x, t)φp

(
θ(ω)

)
.

Using now the orthogonality relation (12) we obtain the truncated SG system for the coefficients u0, . . . , uNo

uk
t + div

(
(
uk − uk

F

)
q + γ2

〈
b

(
No∑

p=0

upφp

)
ex, φ0

〉

L2(Ω)



 = 0, k = 0, . . . , No. (14)

We get finally from (14) and the equations for q and γ2 an (No + 3)-dimensional system. It can be shown that this system
is weakly hyperbolic (cf. [38]).

Remark 3.1

1. The approximate solution ΠNo [u] allows us to compute easily stochastic quantities like expectation or variance from
the coefficients u0, . . . , uNo . Consequently, it is not necessary to compute the required stochastic quantities during the
computation or to store data for each realization as in Monte-Carlo simulations.

2. The structure of the system (14) makes a parallel computation in the stochastic dimensional complicated. Due to the
nonlinear flux and coupled representation of u(x, t,ω) the computation requires synchronisation in each time-step
which makes sense only on shared-memory machines and for small numbers of No.

3.2.2 1D finite volume method
The system (14) is quite general and it appears hard to construct e.g. a Godunov-type solver without further analytical
knowledge. Furthermore the common upwind-biased Engquist-Osher flux [22], which is usually applied for scalar problems
with discontinuous flux [5–7], cannot be used for the higher-dimensional SG-system (14). Therefore, at least for the
computations in one space dimension, as in [33], we use the simple Lax-Friedrichs method on a uniform mesh with cells
[xi−1/2, xi+1/2), i ∈ Z and ∆x = xi+1/2 − xi−1/2. Restricting to the u-components u0, . . . , uNo we have for time step
∆tn > 0 the SG-FV scheme

up,n+1
i = up,n

i − ∆tn

∆x

(
F p,n

i+1/2 − F p,n
i−1/2

)
(i ∈ Z, n ∈ N, p = 0, . . . , No),

F p,n
i+1/2 :=

1
2

(
fp

(
tn, u0,n

i , . . . , uNo,n
i , (γ1)n

i , (γ2)n
i

)

+fp
(
tn, u0,n

i+1, . . . , u
No,n
i+1 , (γ1)n

i+1, (γ
2)n

i+1

) )
+

∆x

2∆tn
(
up,n

i+1 − up,n
i

)
.

The function fp, for p = 0, . . . , No is defined by

fp
(
t, u0, . . . , uNo , γ1, γ2

)
= γ1 (up − up

F) + γ2

〈
b

(
No∑

q=0

uqφq

)
, φp

〉

L2(Ω)

.

Initial values are obtained from u0,0
i = u0 and u1,0

i = . . . = uNo,0
i = 0 (cf. (9)).
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3.2.3 2D finite volume method
As in the 1D case we consider the (No+3)-dimensional system (14) in 2D. The flux function is given by F = (F 0, . . . , FNo)T,
where F p for p = 0, . . . , No is defined by

F p(u,q, γ2, x, y, t) := (up − (uF)p(t))q + γ2

〈
b

(
No∑

q=0

uqφq

)
ex, φp

〉

L2(Ω)

.

For the computation we use the central-upwind numerical scheme by Kurganov and Petrova [26] on the triangulation
T :=

⋃
{Tj} consisting of triangular cells Tj . The semi-discrete SG-FV scheme is given by

d

dt
ūj := − 1

|Tj |

3∑

k=1

hjk

(
ain

jkF (ũjk,q, γ2, Mj(k), t) + aout
jk F (ũj ,q, γ2, Mj(k))

ain
jk + aout

jk

)
· njk

+
1

|Tj |

3∑

k=1

hjk

ain
jkaout

jk

ain
jk + aout

jk

[ũjk(Mj(k))− ũj(Mj(k))] .

Here the No + 1-dimensional vector ūj is the cell average on the triangle Tj , hjk is the length of the k-th side, k = 1, 2, 3,
the point Mj(k) is the midpoint of the k-th side, njk is the outer normal on the k-th side, ain

jk and aout
jk are directional

local speeds on the k-th side. The central-upwind numerical scheme uses reconstruction ũ and ũj(G) and ũjk(G) denotes
admissible reconstructions on the point G over the cells Tj and Tjk respectively (see [26] for the details). Note that the
SG-FV approach as in 1D requires no specific information as e.g Godunov solver.

For the computation of the eigenvalues Jacobian matrix we use LAPACK [4]. The initial Delaunay triangulation is
generated by Triangle [35]. The implementation uses adaptive mesh refinement.

3.3 A hybrid stochastic Galerkin (HSG) finite volume method
The SG-FV method permits fast and accurate computations for a small maximal polynomial order No. Increasing the
polynomial order No will significantly increase the computational effort and the synchronisation costs. The hybrid stochas-
tic Galerkin (HSG) method, that is introduced in this section allows us to reduce the maximal polynomial order No and
to obtain a partially decoupled system of equations. This reduces the synchronisation effort of the parallel computation
significantly and permits efficient parallel computing on distributed memory machines.

3.3.1 Stochastic discretization
Let θ = θ(ω) be again a random variable on the probability space (Ω, P ) which satisfies θ ∈ L2(Ω). For sake of brevity
we assume that θ is uniformly distributed on the interval [0, 1]. The main idea of the method introduced is the dyadical
decomposition of the stochastic domain [0, 1].

For No ∈ N0 and Nr ∈ N0 we define the interval INr
l := [2−Nr l, 2−Nr(l + 1)], and the following space of piecewise

continuous polynomials SNo, Nr :

SNo, Nr :=
{

w : [0, 1] → R
∣∣∣ w|INr

l
∈ QNo

[θ], ∀ l ∈ {0, . . . , 2Nr − 1}
}

. (15)

Here QNo [θ] denotes the space of real polynomials with degree ≤ No. The vector space SNo, Nr has the dimension
2Nr(No + 1). Note that the vector space SNo, 0 corresponds to the PC approach introduced in Section 3.1. The basis of
SNo, 0 can be given by rescaled Legendre polynomials φp, p = 0, . . . , No, such that

〈φp(θ(ω)), φq(θ(ω))〉L2(Ω) = δp,q for 0 ≤ p, q ≤ No. (16)

The space SNo, Nr is spanned by the polynomials φNr
p,l defined by

φNr
p,l(ξ) =

{
2Nr/2φp(2Nrξ − l) for ξ ∈ INr

l ,

0 otherwise
for p = 0, . . . , No and l = 0, . . . , 2Nr − 1.

The polynomials φNr
p,l satisfy the orthogonality relation

〈
φNr

p,l(θ(ω)), φNr
q,k(θ(ω))

〉

L2(Ω)
= δp,qδk,l for 0 ≤ p, q ≤ No and 0 ≤ k, l ≤ 2Nr − 1.
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Let w be a random field that satisfies w(x, t, θ(·)) ∈ L2(Ω), x ∈ DT , t ∈ [0, T ]. The projection ΠNo,Nr : L2(Ω) → SNo, Nr

is defined by

ΠNo,Nr [w] (x, t, θ) :=
2Nr−1∑

l=0

No∑

p=0

〈
w(x, t, θ), φNr

p,l

〉

L2(Ω)
φNr

p,l(θ) :=
2Nr−1∑

l=0

No∑

p=0

wNr
p,l (x, t)φNr

p,l(θ).

Here the coefficients wNr
p,l are given by

wNr
p,l :=

〈
w, φNr

p,l

〉

L2(Ω)
for 0 ≤ p ≤ No and 0 ≤ l ≤ 2Nr − 1.

For the approximation property of the projection ΠNo,Nr for No, Nr → ∞ we refer to [3]. The expectation and variance
of the projection ΠNo,Nr [w] can be directly computed through the following respective formulas:

E
[
ΠNo,Nr [w] (x, t)

]
:=

2Nr−1∑

l=0

No∑

p=0

wNr
p,l (x, t)

〈
φNr

p,l , φ0
0,0

〉

L2(Ω)
,

Var
[
ΠNo,Nr [w] (x, t)

]
:=

2Nr−1∑

l=0

No∑

p=0

No∑

q=0

wNr
p,l (x, t)wNr

q,l (x, t)
〈
φNr

p,lφ
Nr
q,l , φ0

0,0

〉

L2(Ω)

−
(
E

[
ΠNo,Nr [w] (x, t)

])2
,

In the case that the random field w is uniformly distributed on the interval [0, 1], usually denoted by w ∼ U(0, 1), we have
φ0

0,0 ≡ 1. Together with the orthogonality of φNr
q,l , q = 0, . . . , No, l = 0, . . . , 2Nr − 1 this implies

Var
[
ΠNo,Nr [w] (x, t)

]
:=

2Nr−1∑

l=0

No∑

p=0

(
wNr

p,l (x, t)
)2
−

(
E

[
ΠNo,Nr [w] (x, t)

])2
.

3.3.2 Application of the hybrid stochastic Galerkin approach to the clarifier-thickener model
Now we can apply the stochastic discretization introduced above to the governing equation (11). The idea behind this
method is to replace the stochastically perturbed parameter uF and the unknown solution u by their respective projections
onto SNr, No , denoted by ΠNo,Nr [uF] and ΠNo,Nr [u], respectively, and to compute the coefficients uNr

0,0, . . . , u
Nr
No,2Nr−1

of ΠNo,Nr [u]. In other words, the HSG approach (for the first equation in (11)) reads as follows. For No ∈ N0 and
Nr ∈ N0, find uNr

0,0, . . . , u
Nr
No,2Nr−1 : DT → R such that

∫

Ω

(
ΠNo,Nr [u]t + div

((
ΠNo,Nr [u]−ΠNo,Nr [uF]

)
q + γ2b

(
ΠNo,Nr [u]

)
ex

) )
φ dP (ω) = 0,

where φ = φNr
0,0, . . . ,φ

Nr
No,0, φ

Nr
0,1, . . . ,φ

Nr
No,2Nr−1.

Since the support of φNr
i,l , i = 0, . . . , No, l = 0, . . . , 2Nr − 1, is given by the stochastic element INr

l , the system is decoupled
in the stochastic element index l. This property is fundamental for what follows.

Let us replace the inidices i = 0, . . . , No and l = 0, . . . , 2Nr − 1 by the multi-index α = (i, l), i = 0, . . . , No and
l = 0, . . . , 2Nr − 1 or equivalently, α = 0, . . . , P = (No + 1)2Nr − 1. Then the system can be compactly written in the
following form. For No ∈ N0 and Nr ∈ N0 find uNr

0 , . . . , uNr
P : DT → R such that

∫

Ω

(
ΠNo,Nr [u]t

+ div
((

ΠNo,Nr [u]−ΠNo,Nr [uF]
)
q + γ2b

(
ΠNo,Nr [u]

)
ex

) )
φNr

α dP (ω) = 0, α = 0, . . . , P.

(17)

For the given stochastically one-dimensional approximation of uF we employ the notation ΠNo,Nr [uF]. Using now the
orthogonality from (16), we can rewrite (17) in the form

uα
t + div

(
(uα − (uF)α(t))q + γ2

〈
b
(
ΠNo,Nr [u]

)
ex, φNr

α

〉
L2(Ω)

)
= 0, α = 0, . . . , P. (18)

In the spatially one-dimensional case, the system (18) can be reduced to the system

uα
t +

(
γ1 (uα − (uF)α(t)) + γ2

〈
b
(
ΠNo,Nr [u]

)
, φNr

α

〉
L2(Ω)

)

x
= 0, α = 0, . . . , P. (19)
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With the method introduced in [38] we finally obtain from (18) or (19) a (P +3)-dimensional system for the determination
of unknown u. Using the (weak) hyperbolicity of (11) and the decoupled structure it can be shown that this system (19) is
weakly hyperbolic.

The system (18) is decoupled in the stochastic element index l = 0, . . . , 2Nr −1. This allows the efficient parallelisation
on the distributed memory machines since the synchronisation between decoupled nodes can be omitted.

3.3.3 1D finite volume method
Similarly to the stochastic Galerkin approach in the Section 3.2.2 we use the Lax-Friedrichs method on a uniform mesh
with cells [xi−1/2, xi+1/2), i ∈ Z and ∆x = xi+1/2 − xi−1/2 for the computations in one space dimension. In contrast to
scalar problems with discontinuous flux [5–7] the common upwind-biased Engquist-Osher flux [22] cannot be used for the
higher–dimensional stochastic Galerkin system. Restricting ourselves to the u-components u0, . . . , uP we have for time
step ∆tn > 0 the HSG-FV scheme

uα,n+1
i = uα,n

i − ∆tn

∆x

(
Fα,n

i+1/2 − Fα,n
i−1/2

)
(i ∈ Z, n ∈ N, α = 0, . . . , P ),

Fα,n
i+1/2 :=

1
2

(
fα

(
tn, u0,n

i , . . . , uP,n
i , (γ1)n

i , (γ2)n
i

)

+fα
(
tn, u0,n

i+1, . . . , u
P,n
i+1, (γ

1)n
i+1, (γ

2)n
i+1

) )
+

∆x

2∆tn
(
uα,n

i+1 − uα,n
i

)
.

The function fα for α = 0, . . . , P is defined by

fα
(
t, u0, . . . , uP , γ1, γ2

)
= γ1 (uα − uα

F) + γ2
〈
b
(
ΠNo,Nr [u]

)
, φα

〉
L2(Ω)

.

Initial values are obtained from uα,0
i = u0 ·

〈
φNr

α , φ0
0,0

〉
L2(Ω)

, for α = 0, . . . , P (cf. (9)).

3.3.4 2D finite volume method
Let us consider the (P + 3)-dimensional system (18) with flux function given by F = (F 0, . . . , FP )T, where Fα for
α = 0, . . . , P is defined by

Fα(u,q, γ2, x, y, t) := (uα − (uF)α(t))q + γ2
〈
b
(
ΠNo,Nr [u]

)
ex, φNr

α

〉
L2(Ω)

.

For the computation we use again the central-upwind numerical scheme [26] on the triangulation T :=
⋃
{Tj} consisting

of triangular cells Tj . The semi-discrete HSG-FV scheme is given by

d

dt
ūj := − 1

|Tj |

3∑

k=1

hjk

(
ain

jkF (ũjk,q, γ2, Mj(k), t) + aout
jk F (ũj ,q, γ2, Mj(k))

ain
jk + aout

jk

)
· njk

+
1

|Tj |

3∑

k=1

hjk

ain
jkaout

jk

ain
jk + aout

jk

[ũjk(Mj(k))− ũj(Mj(k))] .

Here ūj is the cell average on the triangle Tj . For k = 1, 2, 3 we denote by hjk the length of the k-th edge. The number
Mj(k) ∈ R2 is the midpoint of the k-th edge and njk is the outer normal on the k-th edge, ain

jk and aout
jk are the so-called

directional local speeds associated with the k-th edge. The central-upwind numerical scheme uses the reconstructions ũj

and ũjk(see [26] for the details). The initial Delaunay triangulation is generated by the mesh generator Triangle [35]. Note
that we use an adaptive dynamic mesh refinement and coarsening which will not be detailed here.

3.4 Numerical experiments
Now we can apply the previously defined hybrid stochastic Galerkin finite volume (HSG-FV) method. Let us start with
computations in one space dimension and proceed with the 2D case for some given velocity field. We analyse the accuracy
of the method. At least in one space dimension we can compute a sufficiently accurate Monte-Carlo finite volume (MC-FV)
numerical solution with a reasonable effort. We use the MC-FV result as the reference solution. In the two dimensional case
the computation of the reasonable number of samples is not practicable because of the computational effort. Consequently,
in the two-dimensional case we can compare the numerical results only with the numerical result obtained by the finest
stochastic discretization given by HSG-FV.
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Fig. 1 Steady state uF = 0.15, T = 106 for the 1D model. Blue line: (deterministic) numerical solution, red line: difference to previous
time step.
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(b)

Fig. 2 Numerical solution for the 1D model at T = 106 and uF = 0.15 + 0.05θ computed with HSG-FV method for Nr = 4, No = 4.
(a) Expectation (blue line) and the difference to the previous time-step (red line). (b) Variance (blue line) and the difference to the
previous time-step (red line).

3.4.1 Numerical experiments in one space dimension

The point of interest of the application is to determine the steady state of solutions of (9) with respect to the uncertainty,
represented by the random variable θ. In particular the random input is given by the random perturbed feed uF = 0.15+cθ,
with c ∈ R and a random variable θ uniformly distributed on the interval [0, 1] (θ ∼ U(0, 1)). Thus, the unknown u depends
on the random variable θ and the solution may or may not attain a steady state depending on the value of θ. In Section 5.1
we discuss the appropriate conditions on γ1, γ2, uF and b. For example a steady state can be achieved for the (deterministic)
choice uF ≡ 0.15. Figure 1 shows the numerical solution for this case at the time T = 106. The plot of the difference
to the previous time step (red line) shows that there is no difference to the previous timestep. In other words the solution
shown is stationary.

We assume that the random variable θ is uniformly distributed on the interval [0, 1] (θ ∼ U(0, 1)). For this case we
consider the problem (9) with uF = 0.15 + 0.05θ. Figures 2 and Figure 3 show the most important stochastic quantities of
the numerical solution. In particular Figure 2 shows the expectation and the variance of the numerical solution at T = 106,
and Figure 3 shows the expectation and the sum of the expectation and the standard deviation for the same setting.
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Fig. 3 Numerical solution for the 1D model at T = 106 and uF = 0.15 + 0.05θ computed with HSG-FV method for Nr = 4, No = 4.
Expectation (blue line) and expectation + standard deviation (red line).

Fig. 4 Distribution of the HSG-FV numerical solution for the 1D model at T = 106 with uF = 0.15 + 0.05θ (left) and the difference
to the previous time-step (right).

The HSG-FV representation of the numerical solution allows a memory-efficient storage of simulation data. We only
save the coefficients u0, . . . , uP for each mesh point and timestep. But these data allow us to reconstruct the numerical
solution for each value of θ ∈ [0, 1]. Consequently, we can consider not only the expectation (Fig. 2(a)) and the variance
(Fig. 2(b)) of the solution, but we also get, without sophisticated computation, the distribution of the numerical solution
and the distribution of the difference to the previous timestep (see Fig. 4 with respect to θ ∈ [0, 1] (θ-axis)).

The further discussion of advantages of the method requires the comparison with Monte-Carlo and SG-FV methods. To
make this comparison possible we make two changes in our setting: To make comparable simulations with the Monte-Carlo
approach we reduce the time T to T = 2.5 · 105. To stress the influence of the uncertainty we consider uF = 0.15 + 0.5θ,
with θ ∼ U(0, 1). For all one-dimensional computations in this paper we use an equidistant mesh with 400 points on
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Fig. 5 Plot (a) shows the expectation for the 1D model, T = 2.5 · 105 and uF = 0.15 + 0.5θ computed with different numerical
methods MC-FV with 500000 samples, SG-FV No = 8, HSG-FV with No = 4, Nr = 4 and HSG-adapt with No = 4, Nr = 4. Plot (b)
is an enlarged view of a portion of plot (a).

Samples 50000 100000 200000 400000
L1-error 5.61e-03 1.39e-03 1.13e-03 6.65e-04

Table 1 L1-error for the MC-FV approach. Numerical experiment in one space dimension.

HSG-FV without adaptivity HSG-FV with adaptivity
No Nr = 3 Nr = 4 Nr = 5 Nr = 3 Nr = 4 Nr = 5
2 1.41e-02 4.25e-03 1.42e-03 1.41e-02 4.25e-03 1.42e-03
3 1.00e-02 3.13e-03 1.02e-03 1.05e-02 3.51e-03 1.08e-03
4 7.38e-03 2.32e-03 7.79e-04 8.36e-03 2.65e-03 8.47e-04
5 5.42e-03 1.64e-03 6.37e-04 6.15e-03 2.05e-03 7.78e-04

Table 2 L1-error of the HSG-FV approach without adaptivity (Sect. 3.4.1) and with adaptivity (Sect. 4.4) with threshold parameter
0.01. Numerical experiment in one space dimension.

SG-FV without adaptivity SG-FV with adaptivity
No L1-error No L1-error No L1-error No L1-error
6 1.20e-01 10 7.56e-02 6 1.15e-01 10 7.51e-02
7 1.02e-01 11 6.70e-02 7 9.74e-02 11 6.58e-02
8 9.52e-02 12 6.28e-02 8 8.92e-02 12 7.33e-02
9 8.16e-02 9 7.72e-02

Table 3 L1-error of the SG-FV approach without adaptivity (Sect. 3.4.1) and with adaptivity (Sect. 4.4) with threshold parameter 0.01.

the interval [−1.2, 1.2]. The reference solution is given by the Monte-Carlo numerical solution, computed with 500000
samples.

We begin our comparison with Figure 5(a), which provides an overview on the accuracy of the methods compared.
Figure 5(a) shows expectations of the MC-FV, SG-FV, and HSG-FV approaches (with and without adaptivity) for this
setting. Usually for small stochastic influence the SG-FV method provides an accurate solution for the polynomial order
No = 8. But already for uF = 0.15 + 0.5θ this method is no longer sufficiently accurate. On the other hand, the plot of
the HSG-FV solution matches the MC-FV result almost exactly, such that we need a zoom as in Figure 5(b) to show some
difference between MC and HSG approaches.
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No Adaptivity Nr = 3 Nr = 4 Nr = 5 No Adaptivity Nr = 3 Nr = 4 Nr = 5
2 without adaptivity 950 1590 3794 4 without adaptivity 3297 5630 13781

No-adaptivity 961 1570 3746 No-adaptivity 3009 5070 12061
Nr-adaptivity 716 1113 2383 Nr-adaptivity 2568 3931 8319

Nr + No-adaptivity 678 1093 2325 Nr + No-adaptivity 2303 3566 7459
3 without adaptivity 1852 3172 7655 5 without adaptivity 5530 9581 22389

No-adaptivity 1767 2916 6918 No-adaptivity 4977 8421 20310
Nr-adaptivity 1436 2215 4638 Nr-adaptivity 4589 7512 17115

Nr + No-adaptivity 1304 2002 4306 Nr + No-adaptivity 4098 6708 14923

Table 4 Duration (in seconds) of HSG-FV(-adapt) computation on Intel(R) Core(TM)2 Quad CPU Q9550 (2.83GHz)s with adaptivity
with threshold parameter 0.001.

Number of samples
50000 100000 200000 400000 500000

Time 24009 47651 96005 192019 353391

Table 5 Duration (in seconds) of MC-FV computations on 32 CPUs. Computed on AMD Opteron(tm) Processor 2376 (2.3GHz)

No = 6 No = 7 No = 8 No = 9 No = 10 No = 11 No = 12
without No-adaptivity 703 1510 3146 6859 13038 27413 53822
with No-adaptivity 652 1422 2849 6396 12197 26107 50403

Table 6 Duration (in seconds) of SG-FV computations on 4 CPUs without and with polynomial order adaptivity. Time in sec.

Computed on 4 CPUs Computed on 16 CPUs
No Nr = 2 Nr = 3 Nr = 4 Nr = 5 Nr = 4 Nr = 5
2 350 1021 1674 3949
3 721 2055 3362 7920
4 1332 3767 6032 14427 1753 4188
5 2277 6069 10195 24346 2701 6351

Table 7 Duration (in seconds) of HSG-FV computations on Intel-Xeon E7-4830 (2.13GHz) without adaptivity.

To consider the L1-error of the numerical solution we refer to Table 1, Table 2, and Table 3. Table 1 shows the L1-error
of the MC-FV method for several numbers of samples. Table 2 shows the L1-error of the HSG-FV numerical solution
with No = 2, . . . , 5 and Nr = 3, . . . , 5, Table 3 shows the L1-error of the SG-FV numerical solution (Nr = 0) for
No = 6, . . . , 12. We can see, that the L1-error of the HSG-FV method is comparable with the L1-error of the MC method.
But on the other hand Table 4, Table 5, Table 6, and Table 7 show that the computational effort of the HSG-FV method is
significantly lower than the effort of the MC-FV method. To summarize, the computations with the HSG-FV method on a
Quad Core desktop computer are 8.5 times faster, than the MC computations on 32 CPU’s.

The further reduction of the computation time of the HSG-FV method by the parallelisation and adaptivity will be
discussed in Section 3.5 and Section 4.

3.4.2 Numerical experiments in two space dimensions

We consider the HSG approach (18) with functions q, b and uF defined in Section 5.2 and in the Appendix. We use the
2D finite volume method introduced in Section 3.3.4. Figure 6(a) and Figure 6(b) show the expectation and variance of
the numerical solution computed with HSG-FV method in two space dimensions at time T = 105. We performed this
computation with Nr = 2 and No = 2 (dim SNo, Nr = 12).

A comparable result with the MC-FV method in two space dimensions is not possible with nowadays computer power.
Therefore we compare our numerical results with the most fine HSG-FV solution we could realize, that means Nr = 3 and
No = 3. The Table 8 shows the L1-error for Nr = 1, . . . , 3 and No = 1, . . . 3.
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Fig. 6 Figure (a) Expectation (a) and Variance (b) for the 2D model of the HSG-FV approach with Nr = 2, No = 2, uF = 0.15+0.05θ

for T = 105.

Nr = 1 Nr = 2 Nr = 3
No = 1 5.04e-03 2.98e-03 7.82e-04
No = 2 4.13e-03 2.31e-03 3.49e-04
No = 3 3.95e-03 2.29e-03 0

Table 8 L1-error for T = 2.5 · 105 and uF = 0.15 + 0.25θ compared with the HSG-FV numerical solution with Nr = 3, No = 3.

3.5 The benefits of the parallel application

The application of the stochastic Galerkin approach yields a high dimensional system. The structure of this system allows
the parallel computation of the coefficients u0, . . . , uP in each time-step. In the sections below we give a short overview
over the SG-FV and HSG-FV approaches from a parallelisation point of view.

3.5.1 SG-FV approach

The SG-FV approach, typically with Nr = 0 and No ≥ 4 allows the parallelisation according to the polynomial order.
Because the system is not decoupled the values should be synchronised in each time step. This implies, that the efficient
parallelisation requires fast communication. In particular this can be achieved by using shared memory machines and
OpenMP. The computational effort can be further reduced by No-adaptivity, we refer to the Section 4.3 for details.

3.5.2 HSG-FV approach

The stochastic dimension of the system increases with Nr. However the system (18) is decoupled in the stochastic element
index, which means that the coefficient uNr

p,l(x1, t1) for p = 0, . . . , No, l = 0, . . . , 2Nr − 1 and (x1, t1) ∈ DT does not
depend on uNr

q,k(x2, t2) for each choice of q = 0, . . . , No, k = 0, . . . , 2Nr − 1 and (x2, t2) ∈ DT if k (= l. The solution on
each stochastic element INr

l , l = 0, . . . , 2Nr − 1, can be computed without any synchronisation with the solutions on INr
k ,

k (= l during the computation. This allows efficient parallelisation on distributed memory machines, for example with MPI.
In particularly the higher number of resolution allows using up to 2Nr CPUs (or nodes) without synchronisation during the
computation.

Table 7 shows the computation times on 4 and 16 CPUs for the numerical example in one space dimension. For the
higher numbers of CPUs we refer to Table 9, which shows the decrease of computation time with increasing number of
CPUs for Nr = 7 and No = 3 and No = 4 computed on 4 to 128 CPUs and Nr = 8 and No = 3 on 4 to 128 CPUs for the
numerical example in one space dimension. The computational effort can be reduced by No- and Nr-adaptivity, where the
count of CPUs (or nodes) used determines the coarsest refinement level of Nr-adaptivity. We refer to Section 4 for details.
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Number of CPUs
4 8 16 32 64 128

Nr = 7, No = 3 42459 21377 10770 5471 2804 1525
Nr = 7, No = 4 77012 38696 19470 9824 5015 2673
Nr = 8, No = 3 102504 43422 21599 11361 5889 2973

Table 9 HSG-FV computation times for Nr = 7, No = 3, 4 and Nr = 8, No = 3.
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Fig. 7 Sketch of the adapted graded tree structure for L = 3.

4 Adaptivity in the stochastic space
In this section we consider the possibilities to reduce the computational effort further by the adapting of the stochastic
dimension. We consider two methods, namely Nr-adaptivity, which analyses and reduces the Nr-order, and No-adaptivity,
which analyses and reduces so-called polynomial order. The concept of Nr-adaptivity requires a method for the compu-
tation of so called ”details”. This means the quantification of the information that will get lost by the re-coarsening step
Nr → Nr − 1. We use the concept of a multi-wavelet basis for this purpose. For further reading we refer to [9–11].

4.1 Multi-wavelet basis
Similarly to Section 3.3.1 we restrict our explanation to a unique stochastic dimension. Here θ = θ(ω) is again a random
variable on the probability space (Ω, P ) which satisfies θ ∈ L2(Ω) and θ ∼ U(0, 1). For No ∈ N0 and Nr ∈ N0 let SNo, Nr

be the space of piecewise-continuous polynomials as defined in (15). The orthogonal basis of SNo, Nr is given by rescaled
Legendre polynomials φNr

0,0, . . . ,φ
Nr
No,2Nr−1. The multi-wavelet subspace WNo, Nr is defined as the orthogonal complement

of SNo, Nr in SNo, Nr+1. The construction of the orthonormal wavelet basis is described in [2, 3, 28]. Let ψ0, . . . ,ψNo be
an orthonormal basis of WNo, 0s that satisfies

〈ψi, ψj〉 = δij , 0 ≤ i, j ≤ No.

The relation SNo, 0⊥WNo, 0 implies
〈
ψj , xi

〉
= 0, 0 ≤ i, j ≤ No.

The space WNo, Nr is spanned by multi-wavelets ψNr
i,l given by

ψNr
i,l (ξ) = 2Nr/2ψi(2Nrξ − l), i = 0, . . . , No, l = 0, . . . , 2Nr − 1,

and their support is Supp(ψNr
i,l ) = INr

l := [2−Nr l, 2−Nr(l + 1)].

4.2 Nr -adaptivity
The algorithm of the adaptive multiresolution scheme for two-dimensional problems was introduced in [9–11]. We use a
concept of a two-dimensional graded tree for dealing with the HSG-FV data structure. As usual, a node is an element of
the tree that represents a control volume of a local mesh, defined by the stochastic element I l

j for 0 ≤ l ≤ L in (15). Here
L denotes the level with the finest mesh. The root is the basis of the tree, represented by I0

0 . Each parent node has two
children, and satisfies I l

i = I l+1
2i ∪ I l+1

2i+1. A node is called leaf when it has no children.
The goal of the Nr-adaptivity is to avoid unnecessary refinements and to reduce the number of nodes on which we

perform the finite volume computation. For example, consider Figure 7. Figure 7(a) shows the structure of the graded tree
for L = 3. The red marked nodes are included in the resulting mesh (Figure 7(b)).
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Algorithm 1 Re-meshing
for I l

i ∈ N(L(Λ)) do
if I l+1

2i ∈ L(Λ) and dl+1
(2i),(i) > ε then

Λref ← Λref ∪ (2i)
end if
if I l+1

2i+1 ∈ L(Λ) and dl+1
2i+1,i > ε then

Λref ← Λref ∪ (2i + 1)
end if
if I l+1

2i ∈ L(Λ) and I l+1
2i+1 ∈ L(Λ) then

if dl+1
2i,i < ε and dl+1

2i+1,i < ε then
Λdel ← Λdel ∪ (2i) ∪ (2i + 1)

end if
end if

end for
for (i, l) ∈ Λdel do

if l > C then
Λ ← Λ \ (i, l)

end if
end for
for (i, l) ∈ Λref do

Λ ← Λ ∪ (2i, l + 1) ∪ (2i + 1, l + 1)
end for

Algorithm 2 Finite volume method with Nr-adaptivity
while t < T do

Calculate3t.
Compute u(t +3t) for all leaves in L(Λ).
Re-mesh (Algorithm 1).
t ← t +3t

end while

We start with the description of the re-meshing subroutine. We recall, that Λ denotes the set of the indices of the existing
nodes, L(Λ) denotes the set of leaves and N(L(Λ)) is the set of parents of the elements in L(Λ). The sets Λdel and
Λref contain the indices of nodes that should be deleted respectively refined. Our idea is to consider the difference of the
data on the active leaves and the projection on their parent node. We decided to use the multi-wavelet basis introduced in
Section 4.1 for this purpose. In particular, this means for the random field w ≡ w(x, t, θ(ω)) ∈ L2(Ω) that a leaf I l+1

i with
a parent node I l

j , the “detail” coefficient dl+1
i,j is given by

dl+1
i,j :=

No∑

n=0

∣∣∣∣∣

〈
No∑

p=0

wl+1
p,i φl+1

p,i , ψn,l
n,j

〉∣∣∣∣∣ .

We define the tolerance ε and the coarsest refinement level C ≥ 0. In our computations C is given by the number of
CPUs used. For example, Figure 8 shows the distribution of the refinement levels with C = 1 at T = 106. Algorithm 1
explains our re-meshing procedure. Together with the re-meshing algorithm we can introduce an algorithm for the com-
putation of the numerical solution (Algorithm 2). For the computation of the numerical flux between elements with the
different refinement level we use virtual nodes with the finer refinement level.

4.3 Polynomial order adaptivity

Theother kind of adaptivity, that we introduce is a polynomial-order adaptivity or No-adaptivity. Let w = w(x, t, θ(ω)) be
again a random field with finite variance. The main idea is to omit those polynomial coefficients that satisfy |wl

p,i| < εl for
l = 0, . . . , Nr, p = 0, . . . , No and i = 0, . . . , 22l − 1. For a given threshold parameter ε we define εl = ε · 2−l/2. For sake
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Fig. 8 Distribution of the used Nr levels at T = 106 with uF = 0.15+0.05θ computed with the finest Nr-level 4 and the coarsest level
1.

Algorithm 3 No–adaptivity
for I l

n ∈ L(Λ) do
p ← M (n).
if

∣∣wl
p,n

∣∣ < εl then
delete {wp

n}.
M (n) ← p− 1

else
add

{
wp+1

n

}
.

M (n) ← p + 1
end if

end for

Algorithm 4 Finite volume method with No and Nr-adaptivity
while t < T do

Calculate3t.
Compute u(t +3t) for all leaves in L(Λ).
Re-mesh (Algorithm 1).
Adapt Polynomial Order (Algorithm 3).
t ← t +3t

end while

of brevity we consider l = Nr. We extend the definition of the projection ΠNr,No [w] to

ΠNr,No
P−ad [w] (x, t, θ(ω)) :=

2Nr−1∑

i=0

M (i)∑

p=0

wNr
p,i(x, t)φNr

p,i

(
θ(ω)

)
.

Here M (i) ≤ No is the highest polynomial order used on the stochastic element I l
i . Algorithm 3 describes the No-

adaptivity method. Together with the Algorithm 2 (resp. Algorithm 1) we obtain the Nr- and No- adaptive finite volume
method (HSG-FV-adapt) described in Algorithm 4.

4.4 Summary

In direct comparison (with appropriate settings) the Nr-adaptivity is more efficient and accurate as No-adaptivity. On
the other hand Nr–adaptivity method requires expensive computations and requires higher programming effort. Both
methods can be used together with parallel computing. The Figure 5(a) shows the comparison of numerical solutions of the
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HSG-FV, Nr-adaptivity, HSG-FV, Nr-adaptivity
no polynomial adaptivity with polynomial adaptivity

No Nr = 3 Nr = 4 Nr = 5 Nr = 3 Nr = 4 Nr = 5
2 1.41e-02 4.33e-03 1.83e-03 1.45e-02 5.30e-03 3.52e-03
3 1.01e-02 3.20e-03 1.13e-03 1.14e-02 4.31e-03 3.37e-03
4 7.41e-03 2.46e-03 9.36e-04 8.40e-03 2.86e-03 1.72e-03
5 5.42e-03 1.64e-03 6.37e-04 6.15e-03 2.05e-03 7.78e-04

Table 10 L1-error of the HSG-FV approach with Nr-adaptivity with threshold parameter 0.001 without polynomial adaptivity, and
with polynomial order adaptivity with threshold parameter 0.01.
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Fig. 9 HSG-FV-adapt numerical solution for the 1D model at T = 106 with uF = 0.15 + 0.05θ computed with Nr = 4, No = 4, Nr–
adaptivity parameter 0.001 and No–adaptivity parameter 0.01. (a) Expectation (blue line) and the difference to the previous time-step.
(b) Variance.

equation (9) computed with and without adaptivity together with the MC-FV solution. The Figure 9 and Figure 10 show
expectation, variance and the distribution of the adaptive numerical solution. We refer to Tables 2 and 10 for the L1-error
of the HSG finite volume approach with and without adaptivity. Table 3 contains the L1-error of the SG-approach with and
without adaptivity. The computation times on a Quad-Core CPU for HSG and SG methods with and without adaptivity are
shown in Table 4 and Table 6 respectively.

5 Details of the flux construction
5.1 One-dimensional clarifier-thickener model

Let us define the function

b̃(u) =

{
u∞u(1− u)nRZ for 0 ≤ u ≤ 1,
0 for u < 0 and u > 1.

(20)

Then the function b is given by the following expression;

b(u) =






u∞u(1− u)nRZ for 0 ≤ u ≤ u∗,
p2(u) for u∗ < u ≤ umax := u∗ − b̃(u∗)/b̃′(u∗),
0 for u > umax.

(21)

Here p2(u) = αu2 + βu + γ is the unique second-order polynomial satisfying p2(u∗) = b̃(u∗), p′2(u∗) = b̃′(u∗) and
p2(umax) = 0. The insertion of p2 between u∗ and umax ensures that the function b is Lipschitz continuous with support
on [0, umax], and continuously differentiable on (0, umax), and at the same time the left-sided derivative at umax is negative.

Here, u∞ is the so-called Stokes velocity, that is, the settling velocity of a single particle in an unbounded fluid. If we
measure distance in meters and time in seconds, then a realistic value is u∞ = 10−4 m/s, while a value for the exponent
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Fig. 10 Distribution of the HSG-FV-adapt numerical solution for the 1D model at T = 106 with uF = 0.15 + 0.05θ and the difference
to the previous time-step computed with Nr-adaptivity parameter 0.001 and No-adaptivity parameter 0.01.
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Fig. 11 (a) Batch flux density function b(u) given by (20), (21) with u∞ = 10−4 m/s, nRZ = 5 and u∗ = 0.6, (b) Fluxes b(u) +
qR(u− uF) in the thickening zone (blue) and b(u) + qL(u− uF) in the sedimentation zone (red).

in (21) is nRZ = 5. If we choose, moreover, u∗ = 0.55 and umax = 0.657608695652174 which is a realistic maximum
packing density. Figure 11 (a) shows the function b(u).

We now wish to operate the unit at a steady state, and consider later perturbations of the feed parameters that give rise
to this steady state. To this end consider a cylindrical clarifier-thickener, i.e., we assume that the cross-sectional area A is
constant. We assume that the bulk flows QL ≤ 0, and QR ≥ 0 are given, and define QF := QR − QL and qF := QF/A,
qL := QL/A and qR := QR/A.

As an example, let us consider the parameters uF = 0.15, qL = −7.2 × 10−6 m/s and qR = 3.0 × 10−6 m/s. Then
there is a steady state in the thickening zone with a jump between uM = 0.68 and um = 0.006704479177, where um is the
smallest solution of the equation (qR − qL)uF = qR(u− uF) + b(u). To be definite, we assume that the unit occupies the
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depth interval x ∈ [−1, 1] (in meters), where x = xL = −1, x = 0 and x = xR = 1 are the overflow, feed, and discharge
levels, respectively. The control parameters correspond to a stationary discontinuity between um and uM.

5.2 Two-dimensional models
Let us again consider the problem (11). We consider the flow field q : DT → R2 defined by

q(x, y) :=

{
qL(x, y) for x < 0
qR(x, y) for x > 0.

We construct qL and qR according to the Section A with ql(y) = 1.6 · 10−6y2 − 7.2 · 10−6 and qr(y) = −1.6 · 10−6y2 +
3 · 10−6 respectively. The boundary ȳ is given by

ȳ(x) :=






0.2 for x < −1
x + 1.2 for − 1 ≤ x < −0.2
1 for − 0.2 ≤ x < 0.2
−1 · x + 1.2 for 0.2 ≤ x < 1
0.2 for 1 ≤ x.

The Figure 12 shows the resulting flow field q = (qx, qy). For our computations we use again the function b defined in
(21) and uF = 0.15 + 0.05θ for θ ∼ U(0, 1).

A Appendix: construction of a divergence-free flow field
Let us consider the domain

Ω :=
{
(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ ȳ(x)

}
,

where we assume that ȳ is a smooth curve, ȳ(x) ≥ ymin for all x ≥ 0 and we define ȳ0 := ȳ(0). The domain Ω is one
half of a domain that represents either the cross-sectional area of an infinite cylindrical channel, where x = 0 is the plane
of symmetry, or Ω is one half of the cross section of an axisymmetric domain, where x = 0 is the axis of symmetry. The
first and second case correspond to the parameter values σ = 0 and σ = 1, respectively. We wish to determine solutions
q = (qx, qy) to

∇ · q ≡ ∂xqx + y−σ∂y(yσqy) = 0 (22)

subject to the boundary conditions

qx(0, y) = qR(y) for 0 ≤ y ≤ ȳ0, qy(0, y) = 0 for 0 ≤ y ≤ ȳ0, qy(x, 0) = 0 for x ≥ 0,

and the following zero-flux boundary condition, where n = (ȳ′(x),−1)T is the normal vector from the outer boundary
of Ω pointing into the domain:

qx
(
x, ȳ(x)

)
ȳ′(x)− qy

(
x, ȳ(x)

)
= 0, x ≥ 0. (23)

Let us assume now that qx is given by a similarity solution of the type

qx(x, y) = p(x)qR

(
y

ȳ(x)
ȳ0

)
, (24)

where the factor p(x) still needs to be determined. This means that

∂xqx(x, y) = p′(x)qR

(
y

ȳ(x)
ȳ0

)
− p(x)q′R

(
y

ȳ(x)
ȳ0

)
y

(ȳ(x))2
y0ȳ

′(x).

Now note that integrating (22) with respect to y, we get

qy(x, y) = −y−σ

∫ y

0
ησ∂xqx(x, η) dη = y−σ

(
p(x)y0ȳ′(x)

(ȳ(x))2
A(x, y)− p′(x)B(x, y)

)
, (25)
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where we define the integrals

A(x, y) :=
∫ y

0
q′R

(
η

ȳ(x)
ȳ0

)
η1+σ dη, B(x, y) :=

∫ y

0
qR

(
η

ȳ(x)
ȳ0

)
ησ dη.

Substituting s = ηȳ0/ȳ(x) we obtain

A
(
x, ȳ(x)

)
=

(
ȳ(x)
ȳ0

)1+σ

α, α :=
∫ ȳ0

0
q′R(s)s1+σ ds, (26)

B
(
x, ȳ(x)

)
=

(
ȳ(x)
ȳ0

)σ

β, β :=
∫ ȳ0

0
qR(s)sσ ds. (27)

Inserting (26) and (27) into (25) we get

qy
(
x, ȳ(x)

)
=

p(x)ȳ′(x)α
ȳ(x)ȳσ

0

− p′(x)β
ȳσ
0

.

Combining this with (24) we get from (23) we obtain

p(x)qR(ȳ0)ȳ′(x)− p(x)ȳ′(x)α
ȳ(x)ȳσ

0

+
p′(x)β

ȳσ
0

= 0,

which can be rearranged to give the following ODE for p(x):

p′(x) + p(x)
ȳ′(x)

β

(
qR(ȳ0)ȳσ

0 −
α

ȳ(x)

)
= 0,

which has the solution

p(x) =
(

ȳ(x)
ȳ0

)α/β

exp
(
−qR(ȳ0)ȳσ

0

β

(
ȳ(x)− ȳ0

))
.

Thus, the x-component of the sought function q(x, y) is given by

qx(x, y) =
(

ȳ(x)
ȳ0

)α/β

exp
(
−qR(ȳ0)ȳσ

0

β

(
ȳ(x)− ȳ0

))
qR

(
y

ȳ(x)
ȳ0

)
.

Now, noting that

p′(x) =
(

ȳ(x)
ȳ0

)α/β

exp
(
−qR(ȳ0)ȳσ

0

β

(
ȳ(x)− ȳ0

)) ȳ′(x)
β

[
α

ȳ(x)
− qR(ȳ0)ȳσ

0

]

=
p(x)ȳ′(x)

β

[
α

ȳ(x)
− qR(ȳ0)ȳσ

0

]
,

we get from (25)

qy(x, y) = y−σp(x)ȳ′(x)
[

y0

(ȳ(x))2
A(x, y) +

1
β

(
qR(ȳ0)ȳσ

0 −
α

ȳ(x)

)
B(x, y)

]
.
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