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Abstract

The mathematical modeling of the unsaturated flow problem requires the

simultaneous resolution of two problems: the Richards equation and the es-

timation of the hydraulic parameters involved in hydraulic conductivity and

in the retention curve. Various techniques have been applied to both prob-

lems in a wide range of situations. In this article, a novel implementation

of the processing techniques involved in copper heap leaching is presented.

Specifically, the impact of the used numerical method and the selection of

the parametric family are evaluated. From a methodological point of view, a
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global algorithm is proposed that integrates the solutions of both problems.

Finally, our computational experiments are compared with previous experi-

mental results from the Chilean copper mining industry and related works,

and we obtain better results.

Keywords: parameter estimation, heap leaching, Richards equation.

1. Introduction

Heap leaching is a widely used extraction method for low-grade minerals

as well as copper, gold, silver, and uranium. Copper minerals are primar-

ily categorized as either copper sulphides or oxides. During heap leaching,

sulfuric acid (the leaching agent) is continuously applied to the top of the

ore pile. The bioleaching process is suitable for copper recovery of the more

stable sulphide minerals from copper ores.

The construction of the heap is preceded by a crushing and agglomeration

process that determines the hydrodynamic properties of the stack: mechani-

cal stability, particle size, porosity, and permeability. The chemical properties

are mainly determined by the composition of the ore itself [7].

From a macroscopic point of view, the mathematical modeling of flow

and transport in porous media requires the resolution of two main problems:

the Differential Equation (DP), and the Parameters Estimation (PE). For

both problems, there are several techniques that have been applied in a wide

range of situations.

The HeapSim code [6, 14] is a part of the bioleaching model, in which

the estimation of different types of parameters is performed by varying one

parameter at a time and adjusting regression curves by the least squares
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method. The process of estimation in this program is primarily empirical and

relies heavily on the expertise of the user. For completeness, we mention [13]

where a parameter estimation under saturated flow conditions was performed,

and [3, 2, 4] for a brief discussion of the hydraulic parameters for two phase

flow in copper heap leaching.

In [10], the fluid flow problem was modeled under unsaturated condi-

tions in copper column leaching, the Richards equation was solved with a

finite difference scheme, and the parameters were estimated with the Sim-

plex Search method. Additionally, in [10] the van Genuchten family was

applied, with a constant irrigation rate. In [16] the fluid flow problem was

also modeled under unsaturated conditions in a copper heap and in column

leaching, the Richards equation was solved with a finite difference scheme,

and the parameters were estimated by means of fitting regression curves.

In [16], a combination of the van Genuchten model along with the Brooks-

Corey model was considered, but no adequate justification for this choice

was presented. Moreover, in [16] the experimental data outflow from a semi-

industrial heap leaching was considered. The simulation was based on a one

dimensional mathematical model. Unfortunately, the observed outflow was

compared only with the average simulated flow and did not consider daily

fluctuations in outflow or the variable irrigation rates. In [12], the fluid flow

problem was also modeled under unsaturated conditions in a copper leach

pad. The Richards equation and the parameters estimation problems were

solved with Hydrus 2D software (cf. [15]). The simulated outflow in [12]

considers the variable irrigation rate and daily fluctuations of the outflow,

achieving a proper fit to the experimental data. To the best of our knowledge,
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[10, 12] and [16] are the only works that have been conducted in this area.

This paper provides a novel application of DP and PE problems to copper

heap leaching under unsaturated flow conditions. In the DP problem, the

Richards equation is solved with the same numerical scheme applied in [10].

The PE problem is solved with the Levenberg-Marquardt algorithm (cf. [9])

from the MATLAB optimization toolbox, [17].

The main objective of this work is to provide a global algorithm that con-

siders the solution of both problems in a way that is easy to implement by

the mining industry. This article describes an advantageous method for the

estimation of hydraulic parameters. We present a global algorithm that inte-

grates the numerical solution of the Richards equation with the optimization

method and provides a numerical error estimation.

We have organized this article into six sections. Section 2 presents the

model problem. In Section 3, the numerical solution of the Richards equation

is presented. In Section 4, the Global Algorithm of estimation is developed,

which combines the optimization and differential problems. Section 5 reports

five computational experiments, and Section 6 presents the main conclusions.

2. Model Problem

Figure 1 represents a leaching column of length H > 0 that is wet with a

liquid irrigation rate R(t) ≥ 0. At the base of the column, the experimental

outflow qoj is measured at specific time intervals tj, j ∈ {1, ..., N}.
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Figure 1. Mathematical domain.

If θ = θ(z, t) is the moisture content in the column at the height z ∈ [0, H]

(the spatial coordinate z is positive in the downward direction) at time t ∈

[0, T ], then according to the mass conservation law, and Darcy’s law, the

Richards equation (cf. [1] for detailed derivation of this equation) becomes,

∂θ

∂t
=

∂

∂z

(
D(θ)

∂θ

∂z

)
− ∂

∂z
K(θ) (1)

with the initial and boundary conditions,

θ = θinitial in t = 0 , z > 0 (2)

−D(θ)
∂θ

∂z
+K(θ) = R(t) in z = 0 , t > 0 (3)
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∂θ

∂z
= 0 in z = H , t > 0 (4)

where the hydraulic conductivity K(θ), the diffusivity D(θ) = K(θ)/ dθ
dh
, and

the retention curve h(θ) are all non-linear functions, θinitial is the initial

volumetric water content, and h is the soil water potential.

The differential problem (DP) consists of obtaining an approximation of

θ on the rectangle [0, H]× [0, T ], from equation (1), under conditions (2), (3)

and (4).

Remark 1. With respect to the functions K(θ) and h(θ), in this work the

following two parametric families will be considered:

1. Family VG. This parametric family corresponds to van Genuchten

which is defined as [8]:

K(θ) := Ks

√
S(θ)

(
1−

(
1− S

1
m (θ)

)m)2

(5)

S(θ) :=
θ(h)− θr
θs − θr

=
1

(1 + (α|h|)n)m
, (6)

where m = 1− 1
n
, n > 1, Ks is the saturated hydraulic conductivity of

porous media, θr is the residual volumetric content of liquid, and θs is

the volumetric content of liquid saturation.

2. Family VGM. This parametric family corresponds to a modification

of van Genuchten [8], which was applied in [4, 16]. Specifically,

K(θ) = KsS
δ(θ) (7)

S(θ) =
θ(h)− θr
θs − θr

=
1

(1 + (α|h|)n)m
, (8)
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where m = 1 − 2
n
, δ = 3 + 2

nm
, Ks is the saturated hydraulic conduc-

tivity of porous media, θr is the residual volumetric content of liquid,

and θs is the volumetric content of liquid saturation.

3. Numerical Solution of the Richards Equation

The numerical solution of equation (1) is based on the finite difference

method, specifically, the Crank-Nicholson modified method (cf. [5]). The

election of this method follows [10] to enable a better comparison with our

computational experiments.

Let [0, H] be the spatial domain and [0, T ] the temporal domain. Let Nz

and Nt be the number of subintervals for [0, H] and [0, T ], respectively. We

define ∆z := H/Nz, ∆t := T/Nt, and θji is an approximation of θ(i∆z, j∆t),

with i ∈ {0, ..., Nz} and j ∈ {0, ..., Nt}. Therefore, the discretization of (1),

for i ∈ {0, ..., Nz} and j ∈ {0, ..., Nt− 1}, is given by:

θj+1
i − θji
∆t

=
1

2
· (Ej+1

i + Ej
i )−

1

2
· (F j+1

i + F j
i ), (9)

where,

Ej+1
i :=

Dff · (θj+1
i+1 − θj+1

i )−Dbf · (θj+1
i − θj+1

i−1 )

(∆z)2

Ej
i :=

Df · (θji+1 − θji )−Db · (θji − θji−1)

(∆z)2

Fm
i :=

Km
i+1 −Km

i−1

2∆z
;m = j, j + 1,

with Dff :=
Dj+1

i+1+Dj+1
i

2
, Dbf :=

Dj+1
i +Dj+1

i−1

2
, Df :=

Dj
i+1+Dj

i

2
, Db :=

Dj
i+Dj

i−1

2
,

Dj
i := D(θji ) and Kj

i := K(θji ). With respect to the boundary conditions,

the discrete version of (3), that is, for i = 0, is given by
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−Dj
0

(θj0 − θj−1)

∆z
+Kj

0 = Rj, ∀j = 0, ..., Nt. (10)

On the other hand, the discrete version of (4), that is, for i = Nz, is given

by

θjNz+1 − θjNz

∆z
= 0, ∀j = 0, ..., Nt. (11)

The discretization in space is at most first order as the diffusion coefficients

are not constant. Furthermore, the discretization in time is also first-order

(semi-implicit Euler method). For this reason the first-order discretization

(11) is sufficient.

The matrix form of the nonlinear system (9), for m ∈ {0, ..., Nt − 1} and

i ∈ {0, ..., Nt}, is given by

A(θm+1)θm+1 = b(θm) + c(θm+1), (12)

where θm+1 = (θm+1
i )(Nz+1)×1 and the entries of A(θm+1), b(θm) and c(θm+1)

are defined as follows. The matrix A = A(θm+1)(Nz+1)×(Nz+1) is given by

A =


1 + w1(Dff + Dbf ) −w1Dff 0 · · · · · ·

−w1Dbf 1 + w1(Dff + Dbf ) −w1Dff 0 · · ·

· · · · · · · · · · · ·

· · · 0 −w1Dbf 1 + w1(Dff + Dbf ) −w1Dff

· · · · · · 0 −w1Dbf 1 + w1(Dff + Dbf )


where w1 :=

∆t
2(∆z)2

. The entries of b = b(θm)(Nz+1)×1, for i ∈ {0, ..., Nz}, are

given by

bi+1 = θji + w1[Df (θ
j
i+1 − θji )−Db(θ

j
i − θji−1)]− w2(K

j
i+1 −Kj

i−1),

where w2 :=
∆t
4∆z

, and the entries of c = c(θm+1)(Nz+1)×1, for i ∈ {1, ..., Nz−1}

are

ci+1 = −w2(K
j+1
i+1 −Kj+1

i−1 ),
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and for i = 0

c1 = −w2(K
j+1
1 −Kj+1

−1 ) + w1Dbfθ
j+1
−1 ,

where θj+1
−1 is computed from the boundary condition (10), and for i = Nz

cNz+1 = −w2(K
j+1
Nz+1 −Kj+1

Nz−1) + w1Dffθ
j+1
Nz+1,

where θj+1
Nz+1 is computed from the boundary condition (11).

Remark 2. The system in (12) is implicit in time and will be solved by a

corrector-predictor method. Specifically, in this work we consider two ver-

sions for this method:

1. Version CP1. This version corresponds to the method applied in [10].

In the jth-iteration, the system is solved as

A(θj)θaux = b(θj) + c(θj), (13)

for θaux and then θj+1 is computed from

A(θaux)θ
j+1 = b(θj) + c(θaux). (14)

2. Version CP2. This version corresponds to the method applied in [5].

For j ∈ {0, ..., Nt− 1}, the vector θp is computed from

A(θj)θp = b(θj) + c(θj) (15)

where θp is a prediction of θj+1. Next, θc which is a correction of θp, is

calculated from

A(θp)θc = b(θj) + c(θp), (16)
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which is a correction that is acceptable as an estimation of θj+1 when

∥A(θc)θc − (b(θj) + c(θc))∥2 < ϵ, (17)

where ϵ is a user’s value; otherwise, θp = θc. θc is computed again from

(16) until (17) is satisfied. In this case,

θj+1 = θc.

Note that the application of CP1 and CP2 is based in the resolution of a

linear tridiagonal system (12) which is diagonal dominant. This system was

solved with the Thomas algorithm [5], which is based on a LU factorization

when is applied to a tridiagonal matrix.

4. Global Algorithm of Parameter Estimation

In this work the parameter vector considered is (α, n) (cf. Remark 1).

Comparing the experimental outflow qoj , j = 1, ..., N with the numerical

solutions of the DP: q(θ; (α, n)) = −D(θ; (α, n))∂θ
∂z

+K(θ; (α, n)) (maintain-

ing the same notation for discrete and continuous solutions), the objective

function

Ω(α, n) =
N∑
j=1

(
qoj − q̂(θ̂j(α, n))

)2

, (18)

is obtained, where q̂(θ̂j((α, n))) is the numerical outflow estimated in tj, with

j = 1, ..., N .

The minimization of the function (18) is based on the Levenberg-Marquardt

algorithm, which will be applied using the MATLAB function lsqnonlin (cf.

[17]), which is based on [11]. A complete analysis of the convergence and a

detailed discussion of the computational implementation of the algorithm is
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presented in [9] and was also discussed in [11]. Here, the primary application

of the Levenberg-Marquardt algorithm is curve fitting using the least squares

method.

The input for the optimization algorithm of (18) are: qo (vector of experi-

mental flow), (α0, n0) (vector of initial values), T (length of temporal interval

of simulation for DP), H (height of leaching column), and Nt and Nz (the

size of partitions in time and space, respectively). This data is applied to

lsqnonlin and the output is the vector (αopt, nopt), where Ω(α, n) is minimum.

Figure 2 describes the computational structure of the routine and its

subroutines by showing the order in which the calculations are made and the

order in which the functions are used, where the qfunction is a MATLAB

function that computes the vector r and its components

r(θj(α, n)) = qoj − q̂(θ̂j(α, n)), j = 1, ..., N.

After the incorporation of the specified data by the user in Section 5, the

lsqnonlin function is invoked, which in turn invokes the qfunction (m-function

created by the user), which in turn invokes the subroutine Solve DP. This

process is repeated as many times as seems necessary by the function lsqnon-

lin.
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Start

Read
input data

Solve
(DP)

Evaluate
qfunction
in the
solution
found

Apply the
Levenberg-
Marquardt
algorithm

from
lsqnonlin

Show
results

End

Figure 2. Flowchart of the Global Estimation Algorithm.

The subroutine Solve (DP), which is detailed in Figure 3, takes the data

from the qfunction and solves the Richards equation. Specifically, applies

de Predictor-Corrector method and the Thomas’s algorithm (cf. Section 3

and Remark 2).
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Read
data from
qfunction

Assemble
tridiagonal
matrix and
vectors

Solve the
systems
using the
Thomas
algorithm

Deliver
results to
qfunction

Figure 3. Flowchart for Solve (DP)

5. Computational Experiments

The copper heap in Tranque Barahona, Chile that was researched in ar-

ticles [12, 16] was also investigated for this article. The heap is 550 cm high,

220 cm wide, and has a base of length 500 cm, with lateral slopes 1:1. Drip

irrigation was conducted on a surface of 308m2. Additionally, a programmed

variable irrigation was applied to the heap for 44 days. For more details see

Table 1 (where VG is used as acronym for van Genuchten).

In experiments 1, 2, 3 and 4, (see sections 5.1, 5.2, 5.3, and 5.4, respec-

tively) the parametric family VG defined by (5) and (6) was considered. In

experiment 5 (see section 5.5), the parametric family VGM defined by (7)

13



Parameter Symbol Value

Total Time T 44 [day]

Height H 550 [cm]

Initial Moisture θinitial 0.14 [cm3/cm3]

Saturated Moisture θs 0.33 [cm3/cm3]

Residual Moisture θr 0 [cm3/cm3]

Saturated Hydraulic Conductivity Ks 170 [cm/day]

VG Parameter α 0.035 [1/cm]

VG Parameter n 2.267

Size of Time Step ∆t 1/24 [day]

Size of Space Step ∆z 2.5 [cm]

Table 1: Simulation Parameters

and (8) was considered (cf. Remark 1).

5.1. Experiment 1

In this experiment only the DP problem was solved, that is, the Richards

equation, following the parameters outlined in Table 1. The values of the

van Genuchten parameters were (α1, n1) = (0.035, 2.267). The parametric

family utilized was VGM: (7)-(8), and the corrector-predictor method was

CP1: (13)-(14). In Experiment 1, the numerical value of the relative residual

norm is

100 · ∥qo − q̂(θ̂(α1, n1))∥2/∥qo∥2 = 47.39%,

where ∥qo∥2 = 133.4280[m3/day].

Figure 4 contains the evolution of influent, effluent and modeled flows.
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Figure 4. Measured and Modeled Outflow

In Figure 4, we can see that the model is better adjusted to the observed

outflow from the 14 day simulation, and this situation is maintained until

day 42.

5.2. Experiment 2

In this experiment, we performed the Global Estimation Algorithm, as

described in Figure 2. The data in Table 1 was used except for the VG param-

eters vector, which was changed by the initial parameter vector (α0, n0) =

(0.035, 2.315). The parametric family utilized was VGM: (7)-(8), and the

corrector-predictor method was CP1: (13)-(14). The results are summarized

in Table 2, where αopt2 and nopt2 are the optimal values obtained with the

Levenberg-Marquardt algorithm. The observed influent and effluent versus

the estimated outflow with the optimal parameters is similar to Experiment

1 (to see Figura 4). In Table 2, one iteration includes the evaluation of the
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Parameter Value

α0 0.035 [1/cm]

n0 2.315

αopt2 0.049 [1/cm]

nopt2 2.230

∥qo − q̂(θ̂(αopt2, nopt2))∥2 55.3768 [m3/day]

N iterations 15

Mean time by iteration 890 [s]

Table 2: Optimal Values for α and n

qfunction by lsqnonlin and the solution of the DP. This process takes ap-

proximately 890 [s] . In Experiment 1, the numerical value of the relative

residual norm is

100 · ∥qo − q̂(θ̂(αopt2, nopt2))∥2/∥qo∥2 = 41.50%.

5.3. Experiment 3

This experiment is a continuation of Experiment 2. In Experiment 3, the

impact of changing the size of the steps in space and time is evaluated. Four

tests were performed with the same data in Table 1, with α, n, ∆t and ∆z

reported in Table 3. The data concerning the residual norms, the number of

iterations, and the mean time elapsed are located in Table 4. In these four

tests, the initial vector parameters were (α0, n0) = (0.035, 2.315).

The results of Experiment 3 show that the initial values ∆z = 2.5[cm] and

∆t = 1/24[day] are suitable, this is, are sufficiently small. The only impact

observed after reducing the values of ∆z and ∆t was a reduction in the

16



relative residual norm and an increase in the mean time of calculation. In

tests 1 to 4 the parameters estimated were αopt3 = 0.04999999 and nopt3 =

2.2300000, where only the first four decimal places are physically significant.

Finally, note that the differences observed between 9 and 14 decimal places

can be explained by the internal computer arithmetic.

Test ∆t ∆z (αopt3, nopt3)

1 1
24

[day] 2.5 [cm] (0.04999999823866, 2.23000002251736)

2 1
29

[day] 2.0 [cm] (0.04999999999996, 2.23000000000012)

3 1
36

[day] 1.5 [cm] (0.04999999780221, 2.23000004077647)

4 1
48

[day] 1.0 [cm] (0.04999999738890, 2.23000004007278)

Table 3: Optimal Values

Test Relative Residual Norm Iterations Mean Time

1 41.50% 15 890 [s]

2 40.59% 18 2326 [s]

3 40.27% 15 3590 [s]

4 40.02% 15 5229 [s]

Table 4: Residual norm, iterations, mean time

The observed influent and effluent versus the estimated outflow in test 1,2,3

and 4, is similar to Experiment 1 (to see Figure 4).

5.4. Experiment 4

In this experiment the impact of corrector-predictor method (cf. Re-

mark 2) is evaluated. The parametric family utilized was VGM: (7)-(8), and
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the corrector-predictor method was CP2: (15)-(16). In Figure 5, the same

comparison between the influent and effluent experimental flows, and the

simulated outflow is made, but with the under improved predictor-corrector

method (cf. Remark 2 and compare the Figures 4 and 5).

Figure 5. Outflow with improved predictor-corrector method.

The new optimal parameters vector is (αopt4, nopt4) = (0.01, 2.201).

In Experiment 4, the numerical value of the relative residual norm is

100 · ∥qo − q̂(θ̂(αopt4, nopt4))∥2/∥qo∥2 = 29.01%.

5.5. Experiment 5

Experiment 5 reports the results of two main modifications made to the

previous results. The parametric family utilized was VG: (5)-(6), and the

corrector-predictor method was CP2: (15)-(16). Under these new condi-

tions, the optimal parameter vector was (αopt5, nopt5) = (0.013, 1.306). In
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Experiment 5, the numerical value of the relative residual norm is

100 · ∥qo − q̂(θ̂(αopt5, nopt5))∥2/∥qo∥2 = 3.49%.

Figure 6 shows the experimental data and the estimated data. The improved

conditions compared with the works [10, 12, 16]. In [12], the heap was divided

into three layers (top, middle and bottom), and the estimation of the van

Genuchten parameters, α and n, were made for each of these layers. For

the parameter α, the values obtained were 0.03023[1/cm], 0.01368[1/cm],

and 0.07060[1/cm], respectively. For the parameter n, the values obtained

were 1.265[−], 1.411[−] and 1.200[−], respectively. Therefore, our estimates

of (αopt5, nopt5) = (0.013, 1.306) correlate well with those obtained with the

Hydrus Software 2D. However, the error of our fit is lower.

Figure 6. Outflow with improved method.

19



Figure 7. Retention Curve h(θ).

Finally, Figure 7 shows the Retention Curve (6) with the same data and

under the same conditions as in Figure 6.

6. Conclusions

In this paper, the problem associated with the parametric estimation

from the soil water retention curve and the hydraulic conductivity function,

has been solved in the context of mathematical modeling of the fluid flow in

copper heap leaching, under unsaturated conditions.

In relation to the numerical solution of the algebraic nonlinear system

from the discretization of the Richards equation, we evaluated two cases:

first, the corrector-predictor method in [10], and second, a better version of

the same method. With respect to the parametric families, we evaluated two

cases: a combination of the van Genuchten and Brooks-Corey models follow-

20



ing [4, 16], as well as the van Genuchten family following [10, 12]. The opti-

mization problem was solved with the Levenberg-Marquardt algorithm taken

from MATLAB. All simulations were compared with experimental data, so

that our method would have less error associated with it in comparison with

the methods of [2, 4, 10, 12, 16].

This article presents a detailed description of the estimation process and

emphasizes the importance of carefully selecting the parametric family and

the method employed in the numerical solution of the differential problem.

The algorithm developed in this article may be useful in the pre-industrial

stages of the design process of leach pads, especially in the experiments con-

ducted in columns where an efficient and exact estimation of the hydro-

dynamic characteristics assists in the establishment of optimal extraction

conditions on an industrial scale. This work is expected to impact the de-

cision making process of metallurgical engineers. Indeed, when the outflow

in a leaching pad is simulated, a significant percentage of unexplained vari-

ability in the model can be attributed to the methods of approach and/or

optimization used.

Our main conclusion for the industrial practice is the need to use software

in experimental leaching columns to evaluate: the best solution choice for

the differential problem and different parametric families and, to achieve an

optimum fit to the experimental data obtained in the pre-industrial stage.

We will continue to examine these methods through the repetition of

these tests with different numerical methods, the evaluation of other para-

metric families, the analysis of changes in critical parameters, and through

the evaluation of an the improved version of the optimization algorithm.
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