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Abstract

In this paper we recast the analysis of twofold saddle point variational formulations for seve-
ral nonlinear boundary value problems arising in continuum mechanics, and derive reliable
and efficient residual-based a posteriori error estimators for the associated Galerkin schemes.
We illustrate the main results with nonlinear elliptic equations modelling heat conduction
and hyperelasticity. The main tools of our analysis include a global inf-sup condition for
a linearization of the problem, Helmholtz’s decompositions, local approximation properties
of the Raviart-Thomas and Clément interpolation operators, inverse inequalities, and the
localization technique based on triangle-bubble and edge-bubble functions. Finally, several
numerical results confirming the theoretical properties of the estimator and showing the
behaviour of the associated adaptive algorithms, are provided.
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1 Introduction

In this paper we derive new a posteriori error estimators for the Galerkin solutions of a class
of nonlinear twofold saddle point operator equations. This kind of saddle point problem, also
called dual-dual variational formulations, arised some time ago from the necessity of applying
dual-mixed finite element methods to several nonlinear boundary value problems appearing in
potential theory and elasticity. Before it, one of the most common ideas for treating nonlinear
elliptic equations was based on the inversion, thanks to the implicit function theorem, of the
constitutive equations involved. In heat conduction, for instance, the gradient of the temperature
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is expressed as a function of the temperature and the flux variable. This procedure has been
studied, including h and p versions and extensions to nonlinear parabolic problems, in several
works (see, e.g. [35], [36], and [37] and the references therein). Then, for the case of constitutive
equations that are not explicitly invertible, a new methodology was introduced first in [32] and
[33], in connection with the coupling of mixed finite element and boundary integral equation
methods for solving nonlinear transmission problems. This approach is based on the introduction
of the gradient (in potential theory and heat conduction) or the strain tensor (in elasticity and
fluid mechanics) as an additional unknown, which yields twofold saddle point operator equations
as the resulting weak formulations (see [3], [6], [7], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [30], [31] for details and diverse applications). In particular, the abstract framework that
is needed for the solvability analysis of these problems, which constitutes a natural extension
of the classical Babuška-Brezzi theory, was developed in [18] and [27]. In addition, suitable
numerical methods for solving the systems arising from the associated Galerkin schemes, have
been proposed in [23], [24], [25], and [26]. It must be mentioned, however, that the idea of
introducing further unknowns to deal with the nonlinearities of the problem was also employed,
independently, in [13] and [14], where it was called an expanded mixed finite element method.
Actually, the use of an expanded mixed formulation had already been proposed before for some
elasticity problems in [17]. Nevertheless, the twofold saddle point structure has only been
obtained and studied in the above mentioned works.

On the other hand, in order to obtain good convergence behavior of the Galerkin solution
of linear and nonlinear boundary value problems, one normally requires to apply adaptive al-
gorithms that are based on a-posteriori error estimates. This adaptivity is specially necessary
when applying finite elements (FEM), mixed finite elements (mixed-FEM), boundary elements
(BEM), or any combination of them to nonlinear problems, since in general no a-priori hints
on how to build suitable meshes are available in these cases. While the list of references on
a-posteriori error analysis for linear and nonlinear problems is nowadays quite extense, which
includes some important contributions in recent years, most of the main ideas and associated
techniques can be found in [1], [40] and the references therein. Indeed, the first results for mixed
formulations of elliptic partial differential equations of second order, which consider a-posteriori
error estimators of explicit residual type, the solution of local problems, and the eventual deriva-
tion of reliability and efficiency properties, among other issues, go back to [39], [2], [8] and [12].
Furthermore, the classical Bank-Weiser estimator from [5], which involves the solution of equi-
librated local Neumann problems, has also been applied to mixed formulations of linear and
nonlinear problems. In particular, we refer to [10], where the large-strain elasticity case, includ-
ing incompressibility, is considered, and also to [11], where implicit residual error estimators for
the coupling of finite elements and boundary elements are obtained.

In turn, several of the above mentioned papers concerning twofold saddle point variational
formulations for nonlinear problems also include the development of a posteriori error analyses
for their associated Galerkin schemes (see, e.g. [3], [6], [7], [19], [21], [31]). Moreover, all the
approaches employed in these works are based on the combination of the Bank-Weiser method
with the utilization of Ritz projectors and suitable local problems. In particular, a fully explicit
and reliable a-posteriori error estimator is derived first in [7] for the dual-mixed formulation of
a nonlinear problem in plane elasticity. The related case of nonlinear incompressible elasticity
is initially analyzed in [31] and later on in [19]. Similar estimates to those given in [7] are
also presented in [3] and [21] for the dual-mixed formulations of nonlinear elliptic equations
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in divergence form and quasi-Newtonian Stokes flows, respectively. Then the results from [7]
and [31] are extended in [6] to the coupling of dual mixed-FEM and BEM as applied to the
linear-nonlinear transmission problem in plane hyperelasticity with mixed boundary conditions
that is studied in [22]. The main contribution of [6] consists of a reliable a-posteriori error
estimator that depends on the solution of local Dirichlet problems and on residual terms on the
transmission and Neumann boundaries, which are given in a negative order Sobolev norm. In
addition, for certain specific subspaces, two fully local a-posteriori error estimates, in which the
residual terms are bounded by weighted local L2-norms, are provided.

Nevertheless, no one of the a posteriori error estimators developed so far for twofold saddle
point variational formulations had been shown to be efficient until [29]. The closest result in
this direction had been given by the quasi-efficiency property, which, introduced in [3], [31],
[21] and [19], refers to the idea of obtaining efficiency up to one or more terms. However,
these extra terms usually depend on empirically chosen auxiliary functions, whence there is
no theoretical support for them to be of higher order. Only recently, and in connection with
a velocity-pseudostress approach for a class of quasi-Newtonian Stokes flows, a reliable and
efficient residual-based a posteriori error estimator for the resulting nonlinear twofold saddle
point operator equation was provided in [29]. The key aspects of the analysis in [29] are a global
inf-sup condition for a linearized version of the original problem, and a conveniently constructed
Helmholtz decomposition of the space containing the stresses of the fluid, together with its
discrete counterpart. Motivated by the above, the main purpose of the present work is to extend
the results from [29] to any nonlinear twofold saddle point variational formulation. According
to this, the rest of the paper is organized as follows. In Section 2 we recall from [18] and [27]
the main theoretical results needed for the continuous and discrete analyses of nonlinear twofold
saddle point operator equations. A linearization technique is then utilized in Section 3 to deduce
an abstract a posteriori error estimate for formulations of this kind. Next, this theory is applied
in Sections 4 and 5 to derive reliable and efficient residual-based a posteriori error estimators for
nonlinear problems from heat conduction and hyperelasticity, respectively. Similarly as for linear
problems, the main tools employed include Helmholtz’s decompositions, local approximation
properties of interpolation operators, inverse inequalities, and the localization technique based
on triangle-bubble and edge-bubble functions. Finally, several numerical results confirming the
reliability and efficiency of the estimators and illustrating the good performance of the associated
adaptive algorithms are reported in Section 6.

2 A class of nonlinear twofold saddle point problems

Let X1, M1, and M be Hilbert spaces, and consider a nonlinear operator A1 : X1 → X ′
1, and

linear bounded operators B1 : X1 →M ′
1 and B :M1 →M ′, with transposes B′

1 : M1 → X ′
1 and

B
′ : M → M ′

1, respectively. Then, given (H,G,F) ∈ X ′
1 ×M ′

1 ×M ′, we are interested in the
following nonlinear variational problem: Find (t,σ, u) ∈ X := X1 ×M1 ×M such that

[A1(t), s] + [B1(s),σ] = [H, s] ∀ s ∈ X1 ,

[B1(t), τ ] + [B(τ ), u] = [G, τ ] ∀ τ ∈M1 ,

[B(σ), v] = [F, v] ∀ v ∈M ,

(2.1)

where [·, ·] stands in each case for the duality pairing induced by the corresponding operators
and functionals. Note that (2.1) can also be written, equivalently, as the matrix equation: Find
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(t,σ, u) ∈ X such that 


A1 B
′
1 O

B1 O B
′

O B O







t

σ

u


 =




H

G

F


 ,

which clearly shows a twofold saddle point structure.

Furthermore, the abstract theory for this kind of variational formulation is already available
in the literature (see [18], [27]), and their main results are collected in what follows.

Theorem 2.1 Let V := Ker (B), define V1 := {s ∈ X1 : [B1(s), τ ] = 0 ∀ τ ∈ V }, and let
Π1 : X

′
1 → V ′

1 be the operator defined by Π1(H) = H|V1 for all H ∈ X ′
1. Assume that

i) the nonlinear operator A1 : X1 → X ′
1 is Lipschitz continuous with a Lipschitz constant

γ > 0, and for any t̃ ∈ X1, the nonlinear operator Π1A1(· + t̃) : V1 → V ′
1 is strongly

monotone with a monotonicity constant α > 0 independent of t̃.

ii) there exists β > 0 such that for all v ∈M

sup
τ∈M1\{0}

[B(τ ), v]

||τ ||M1

≥ β ||v||M ; (2.2)

iii) there exists β1 > 0 such that for all τ ∈ V

sup
s∈X1\{0}

[B1(s), τ ]

||s||X1

≥ β1 ||τ ||M1 ; (2.3)

Then, for each (H,G,F) ∈ X ′
1 ×M ′

1 ×M ′ there exists a unique (t,σ, u) ∈ X solution of (2.1).
Moreover, there exists C > 0, independent of the solution, such that

‖(t,σ, u)‖X ≤ C
{
‖H‖+ ‖G‖+ ‖F‖+ ‖A1(0)‖

}
.

Proof. See [18, Theorem 2.4] (see also [27, Theorem 2.1] or [30, Theorem 4.1]). �

Now, let X1,h, M1,h and Mh be finite dimensional subspaces of X1, M1 and M , respectively.
Then the Galerkin scheme associated with (2.1) reads as follows: Find (th,σh, uh) ∈ Xh :=
X1,h ×M1,h ×Mh such that

[A1(th), sh] + [B1(sh),σh] = [H, sh] ∀ sh ∈ X1,h ,

[B1(th), τ h] + [B(τ h), uh] = [G, τ h] ∀ τ h ∈M1,h ,

[B(σh), vh] = [F, vh] ∀ vh ∈Mh .

(2.4)

The discrete analogue of Theorem 2.1 is established next.

Theorem 2.2 Let Vh := {τ h ∈ M1,h : [B(τ h), vh] = 0 ∀ vh ∈ Mh}, define the space
V1,h := {sh ∈ X1,h : [B1(sh), τ h] = 0 ∀ τh ∈ Vh} and let Π1,h : X ′

1,h → V ′
1,h be the

operator defined by Π1,h(Hh) = Hh|V1,h
for all Hh ∈ X ′

1,h. Further, let A1,h := p′hA1 : X1 → X ′
1,h

where ph : X1,h → X1 is the canonical injection with adjoint p′h : X ′
1 → X ′

1,h. Assume that
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i) the nonlinear operator A1,h : X1 → X ′
1,h is Lipschitz-continuous with a Lipschitz constant

γh > 0, and for any t̃ ∈ X1,h, the nonlinear operator Π1,hA1,h(· + t̃) : V1,h → V ′
1,h is

strongly monotone with a monotonicity constant αh > 0 independent of t̃.

ii) there exists βh > 0 such that for all vh ∈Mh

sup
τh ∈M1,h\{0}

[B(τ h), vh]

||τ h||M1

≥ βh ||vh||M ;

iii) there exists β1,h > 0 such that for all τ h ∈ Vh

sup
sh ∈X1,h\{0}

[B1(sh), τ h]

||sh||X1

≥ β1,h ||τ h||M1 ;

Then, for each (H,G,F) ∈ X ′
1 ×M ′

1 ×M ′ there exists a unique (th,σh, uh) ∈ Xh solution of
(2.4). Moreover, there exists Ch > 0, independent of the solution, but depending on h, such that

‖(th,σh, uh)‖X ≤ Ch

{
‖Hh‖+ ‖Gh‖+ ‖Fh‖+ ‖A1,h(0)‖

}
,

where Hh := H|X1,h
, Gh := G|M1,h

, and Fh := F|Mh
.

Proof. See [18, Theorem 3.2] (see also [27, Theorem 3.1] or [30, Theorem 4.2]). �

Finally, concerning the error analysis, we have the following result.

Theorem 2.3 Assume that the hypotheses of Theorems 2.1 and 2.2 are satisfied, and let (t,σ, u)
∈ X and (th,σh, uh) ∈ Xh be the unique solutions of (2.1) and (2.4), respectively. In addition,
suppose that there exist positive constants γ̃, α̃, β̃, and β̃1 such that γh ≤ γ̃, αh ≥ α̃, βh ≥ β̃,
and β1,h ≥ β̃1 for all h. Then, there exists C > 0, independent of h, such that the following Céa
error estimate holds:

‖(t,σ, u)− (th,σh, uh)‖X ≤ C inf
(sh,τh,vh)

∈Xh

‖(t,σ, u)− (sh, τ h, vh)‖X.

Proof. See [18, Section 4] (see also [27, Theorem 3.3]). �

3 An abstract a posteriori error estimate

We begin by assuming that the nonlinear operator A1 : X1 → X ′
1 is Gâteaux differentiable.

This means that for each x ∈ X1 there exists a bounded and linear operator DA1(x) : X1 → X ′
1

such that

DA1(x)(r) = lim
ǫ→ 0

A1(x+ ǫ r)− A1(x)

ǫ
∀ r ∈ X1.

It follows that for each x ∈ X1, DA1(x) can be considered as a bilinear form acting fromX1×X1

into R as follows:
DA1(x)(r, s) := DA1(x)(r)(s) ∀x, r, s ∈ X1.
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Hence, we also suppose that the family {DA1(x)}x∈X1 is uniformly bounded and uniformly
elliptic on X1 × X1 and V1 × V1, respectively, that is that there exist M,α > 0 such that for
each x ∈ X1 there hold

|DA1(x)(r, s)| ≤ M‖r‖ ‖s‖ ∀(r, s) ∈ X1 × X1,

and
DA1(x)(r, r) ≥ α ‖r‖2 ∀ r ∈ V1 ,

where, as set in Theorem 2.1, V := Ker(B) and V1 := {s ∈ X1 : [B1(s), τ ] = 0 ∀ τ ∈ V }. In
addition, we assume that the linear operators B and B1 satisfy the continuous inf-sup conditions
(2.2) and (2.3) (cf. Theorem 2.1).

Therefore, as a consequence of the continuous dependence result provided by the linear
version of Theorem 2.1 (cf. (2.1) with A1 linear), we conclude that the linear operator L
obtained by adding the three equations of the left hand side of (2.1), after replacing A1 by the
Gâteaux derivative DA1(x) at any x ∈ X1, satisfies a global inf-sup condition. More precisely,
there exists a constant C > 0, independent of x ∈ X1, such that

c ‖(r, ζ , w)‖X ≤ sup
(s,τ ,v)∈X\{0}

[L(s, τ , v), (r, ζ , w)]

‖(s, τ , v)‖X
(3.1)

for all (x, (r, τ , w)) ∈ X1 ×X, where

[L(s, τ , v), (r, ζ , w)] := DA1(x)(r, s) + [B1(s), ζ ] + [B1(r), τ ] + [B(τ ), w] + [B(ζ), v]. (3.2)

Then, we have the following abstract a posteriori error estimate.

Theorem 3.1 Let (t,σ, u) ∈ X and (th,σh, uh) ∈ Xh be the unique solutions of the continuous
and discrete formulations (2.1) and (2.4), respectively. Then, there exists C > 0, independent
of h, such that

‖(t,σ, u)− (th,σh, uh)‖X ≤ C
{
‖R1‖X′

1
+ ‖R2‖M ′

1
+ ‖R3‖M ′

}
, (3.3)

where
R1(s) := [H, s]− [A1(th), s] − [B1(s),σh] ∀ s ∈ X1, (3.4)

R2(τ ) := [G, τ ]− [B1(th), τ ]− [B(τ ), uh] ∀ τ ∈ M1, (3.5)

R3(v) := [F, v]− [B(σh), v] ∀ v ∈ M. (3.6)

Proof. We first observe, thanks to the mean value theorem, that there exists a convex combina-
tion of t and th, say t̃h ∈ X1, such that

DA1(t̃h)(t − th, s) = [A1(t), s]− [A1(th, s)] ∀ s ∈ X1. (3.7)

Then, applying (3.1) and (3.2) to the error (r, ζ, w) := (t,σ, u) − (th,σh, uh), and using the
identity (3.7) and the fact that

‖(s, τ , v)‖X ≥ max{‖s‖X1 , ‖τ‖M1 , ‖v‖M} ∀ (s, τ , v) ∈ X,
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we find that

c ‖(t,σ, u)− (th,σh, uh)‖X ≤ sup
(s,τ ,v)∈X\{0}

{
R1(s) +R2(τ ) +R3(v)

‖(s, τ , v)‖X

}

≤ ‖R1‖X′
1
+ ‖R2‖M ′

1
+ ‖R3‖M ′ ,

where R1 ∈ X ′
1, R2 ∈M ′

1, and R3 ∈M ′, are given by

R1(s) := [A, (t), s] − [A1(th), s] + [B1(s),σ − σh] ∀ s ∈ X1 ,

R2(τ ) := [B1(t− th), τ ] + [B(τ ), u− uh] ∀ τ ∈M1 ,

R3(v) := [B(σ − σh), v] ∀ v ∈M ,

Then, according to the three equations of the continuous formulation (2.1), the above functionals
become as given in (3.4), (3.5), and (3.6). �

We remark that this theorem provides the key estimate for the reliability of a residual-based
a posteriori error estimator for our Galerkin scheme (2.1). Moreover, in most of the applications
that we have in mind, particularly in the ones to be developed in the following sections, the
norms of the functionals R1 and R3 are simply estimated from the identities:

‖R1‖X′
1
= ‖H − A1(th)− B

′
1(σh)‖X′

1
= sup

s∈X1\{0}

[H− A1(th)− B
′
1(σh), s]

‖s‖X1

,

and

‖R3‖M ′ = ‖F− B(σh)‖M ′ = sup
v∈M\{0}

[F− B(σh), v]

‖v‖M
,

which follow straightforwardly from (3.4) and (3.6). In turn, the estimate for ‖R2‖M ′
1
could also

be obtained analogously from the expression

‖R2‖M ′
1
= ‖G − B1(th)− B

′(uh)‖M ′
1
= sup

τ∈M1\{0}

[G − B1(th)− B
′(uh), τ ]

‖τ‖M1

. (3.8)

However, this procedure will usually yield reliability but not efficiency of our estimate. Hence,
in order to overcome this difficulty, one needs to introduce a suitable bounded linear operator
Πh :M1 → M1,h so that (I−Πh) gives rise to the additional terms that are needed for efficiency.
Indeed, noting from the second equation of (2.4) that R2(τ h) = 0 ∀ τh ∈ M1,h, we can write
R2(τ ) = R2(τ −Πh(τ )) ∀ τ ∈ M1, and then replace (3.8) by

‖R2‖M ′
1
= sup

τ∈M1
τ 6=0

R2(τ −Πh(τ ))

‖τ‖M1

= sup
τ∈M1
τ 6=0

[G− B1(th)− B
′(uh), τ −Πh(τ )]

‖τ ‖M1

. (3.9)

In this way, the extra terms arising from τ −Πh(τ ), mostly given by powers of the meshsizes
multiplied by local norms of τ , will be crucial for the efficiency of the a posteriori error estimator.
This comment will be better understood throughout the examples shown next.
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4 A problem from heat conduction

We first illustrate the application of the abstract estimate provided in the previous section with
the nonlinear elliptic problem in divergence form analyzed in [3] and [27]. In order to describe
the boundary value problem of interest, we let Ω be a bounded and simply connected domain
in R

2 with Lipschitz-continuous boundary Γ := ∂Ω. Then, given f ∈ L2(Ω), g ∈ H1/2(Γ) and
a scalar function κ : Ω×R

+ → R, we look for u ∈ H1(Ω) such that

−div(κ(·, |∇u|)∇u) = f in Ω, u = g on Γ, (4.1)

where | · | stands for the euclidean norm in R
2 and div denotes the usual divergence operator.

This kind of nonlinear elliptic problem in divergence form appears in several applications, such
as steady heat conduction and the computation of the magnetic field of electromagnetic devices.
In what follows, we assume that κ ∈ C1(Ω×R

+) and that there exist constants κ0, κ1 > 0 such
that for all (x, ρ) ∈ Ω×R

+:

κ0 ≤ κ(x, ρ) ≤ κ1,

κ0 ≤ κ(x, ρ) + ρ
∂

∂ρ
κ(x, ρ) ≤ κ1,

|∇xκ(x, ρ)| ≤ κ1.

(4.2)

4.1 The continuous twofold saddle point formulation

We now establish the dual-mixed variational formulation of (4.1). For this purpose we introduce
the further unknowns t := ∇u and σ = κ(·, |∇u|)∇u in Ω so that (4.1) is rewritten as the
nonlinear first order system:

t = ∇u in Ω , σ = κ(·, |t|) t in Ω ,

divσ = − f in Ω , u = g on Γ .

In this way, proceeding in the usual form (see e.g. [3] or [27] for details), we arrive at the
following problem: Find (t,σ, u) ∈ [L2(Ω)]2 × H(div; Ω)× L2(Ω) such that

∫

Ω
κ(·, |t|)t · s −

∫

Ω
σ · s = 0

−

∫

Ω
τ · t −

∫

Ω
u div τ = −〈 τ · ν, g〉

−

∫

Ω
v divσ =

∫

Ω
fv

(4.3)

for all (s, τ , v) ∈ [L2(Ω)]2 × H(div; Ω) × L2(Ω), where 〈·, ·〉 stands for the duality pairing of
H−1/2(Γ) and H1/2(Γ) with respect to the L2(Γ) - inner product, and ν denotes the unit outward
normal to Γ. We also recall here that H(div; Ω) is the space of functions τ ∈ [L2(Ω)]2 such that
div τ ∈ L2(Ω). It is well known that H(div; Ω) is a Hilbert space with the norm ‖ · ‖div,Ω
induced by the scalar product

〈ζ, τ 〉div,Ω :=

∫

Ω

(
ζ · τ + divζ divτ

)
, (4.4)
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and that for all τ ∈ H(div; Ω), τ · ν ∈ H−1/2(Γ) with ‖τ · ν‖−1/2,Γ ≤ ‖τ‖div,Ω.

Now, it is easy to see that (4.3) has the twofold saddle point structure considered in Section
2. In fact, let X1 := [L2(Ω)]2, M1 := H(div; Ω), M := L2(Ω), X := X1 × M1 × M , and
define the nonlinear operator A1 : X1 → X ′

1, the bounded linear operators B1 : X1 → M ′
1 and

B :M1 → M ′ and the functionals H ∈ X ′
1, G ∈ M ′

1 and F ∈ M ′, as follows:

[A1(r), s] :=

∫

Ω
κ(·, |r|)r · s,

[B1(r), τ ] := −

∫

Ω
r · τ ,

[B(ζ), v] := −

∫

Ω
v div ζ,

(4.5)

[H, s] := 0, [G, τ ] = −〈 τ · ν, g〉, and [F, v] :=

∫

Ω
f v, (4.6)

for all (r, ζ), (s, τ ) ∈ X1 × M1 and for all v ∈ M . We remark here that the first condition in
(4.2) ensures that A1(r) ∈ X ′

1 for all r ∈ X1, which confirms that A1 is well defined.

Then, it is clear that, with the above definitions, our variational formulation (4.3) can be
written in the twofold saddle point structure given by (2.1).

The solvability of (4.3) was proved in [27]. It reduces to show that A1, B1 and B satisfy the
hypotheses of Theorem 2.1. The corresponding result is stated as follows.

Theorem 4.1 There exists a unique (t,σ, u) ∈ X solution of the nonlinear twofold saddle point
problem (4.3). Moreover, there exists C > 0, independent of the solution, such that

‖(t,σ, u)‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. See [27, Theorem 4.1]. �

4.2 The associated Galerkin scheme

In order to define the Galerkin scheme associated with (4.3), we assume from now on that Γ is a
polygonal curve and let {Th}h>0 be a regular family of triangulations of Ω, made up of triangles
T of diameter hT , such that h := sup {hT : T ∈ Th} and Ω :=

⋃
{T : T ∈ Th}. Given an integer

ℓ ≥ 0 and a subset S of R2, we denote by Pℓ(S) the space of polynomials of total degree at
most ℓ defined on S. In addition, for each T ∈ Th and for each integer k ≥ 0 we define the local
Raviart-Thomas space of order k (see, e.g. [9], [38])

RTk(T ) := [Pk(T )]
2 ⊕ Pk(T )x,

where x is a generic vector of R2. Then, we define the following finite element subspaces

X1,h := {sh ∈ [L2(Ω)]2 : sh|T ∈ [Pk(T )]
2 ∀T ∈ Th}, (4.7)

M1,h := {τ h ∈ H(div; Ω) : τh|T ∈ RTk(T ) ∀T ∈ Th}, (4.8)

Mh := {vh ∈ L2(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th}. (4.9)

The well-posedness of the Galerkin scheme associated with (4.3) is established as follows.
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Theorem 4.2 Let k be a non-negative integer and let X1,h, M1,h, and Mh be given by (4.7),
(4.8), and (4.9). Then there exists a unique solution (th,σh, uh) ∈ Xh := X1,h×M1,h×Mh of the
discrete scheme (2.4) with the operators and functionals defined by (4.5) and (4.6). Moreover,
there exist positive constants c and C, independent of h such that

‖(th,σh, uh)‖X ≤ c
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
, (4.10)

and
‖(t,σ, u)− (th,σh, uh)‖X ≤ C inf

(sh,τh,vh)

∈Xh

‖(t,σ, u)− (sh, τ h, vh)‖X. (4.11)

Proof. Similarly as for Theorem 4.1, it reduces to show that A1, B1, and B satisfy the hypotheses
of Theorem 2.2. We omit further details here and refer to [29, Section 2.4] for a very close analysis
or to [27, Section 4.2] for a fully discrete version with k = 0. �

In turn, the following theorem provides the rate of convergence of the Galerkin scheme
associated with (4.3).

Theorem 4.3 Let k be a non-negative integer and let X1,h, M1,h, and Mh be given by (4.7),
(4.8), and (4.9). Let (t,σ, u) ∈ X and (th,σh, uh) ∈ Xh be the unique solutions of (4.3)
and its associated Galerkin scheme, respectively. Assume that t ∈ [Hδ(Ω)]2, σ ∈ [Hδ(Ω)]2,
divσ ∈ Hδ(Ω), and u ∈ Hδ(Ω), for some δ ∈ (0, k+1]. Then, there exists C > 0, independent
of h, such that

‖(t,σ, u)− (th,σh, uh)‖X ≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖δ,Ω

}
. (4.12)

Proof. It follows from the Céa estimate (4.11) and the approximation properties of the subspaces
X1,h, M1,h, and Mh (see, e.g. [29, Section 2.4]). �

4.3 The a posteriori error analysis

4.3.1 Preliminaries

We begin by introducing further notations. We let Eh be the set of all edges of the triangulation
Th, and given T ∈ Th, we let E(T ) be the set of its edges. Then we write Eh = Eh(Ω) ∪ Eh(Γ),
where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. In what follows, he stands
for the length of the edge e. Also, for each e ∈ Eh we fix a unit normal vector νe := (ν1 , ν2)

t,
and let se := (−ν2 , ν1)

t be the corresponding fixed unit tangential vector along e. Then, given
e ∈ Eh(Ω) and τ ∈ [L2(Ω)]2 such that τ |T ∈ [C(T )]2 on each T ∈ Th, we let [τ · se] be the

corresponding jump across e, that is [τ · se] :=
(
τ |T − τ |T ′

)
· se, where T and T ′ are the

triangles of Th having e as a common edge. Abusing notation, when e ∈ Eh(Γ), we also write
[τ · se] := τ |e · se. Similar definitions hold for the tangential jumps of scalar fields v ∈ L2(Ω)
such that v|T ∈ C(T ) on each T ∈ Th. From now on, when no confusion arises, we simply
write s and ν instead of se and νe, respectively. Finally, given scalar and vector fields v and
τ := (τ1, τ2)

t, respectively, we let

curl(v) :=
( ∂v
∂x2

−
∂v

∂x1

)
t

(4.13)
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and

curl(τ ) :=
∂τ2
∂x1

−
∂τ1
∂x2

. (4.14)

On the other hand, we let Ek
h : [H1(Ω)]2 → M1,h be the usual Raviart-Thomas interpola-

tion operator (see e.g. [38], [9]), which, given τ ∈ [H1(Ω)]2, is characterized by the following
identities:∫

e
Ek

h(τ ) · ν ψ =

∫

e
τ · ν ψ ∀ edge e ∈ Th, ∀ψ ∈ Pk(e), when k ≥ 0, (4.15)

and ∫

T
Ek

h(τ ) ·ψ =

∫

T
τ · ψ ∀T ∈ Th, ∀ψ ∈ [Pk−1(T )]

2, when k ≥ 1. (4.16)

It is easy to show, using (4.15) and (4.16), that

div
(
Ek

h(τ )
)
= Pk

h

(
div(τ )

)
∀τ ∈ [H1(Ω)]2, (4.17)

where Pk
h is the orthogonal projector from L2(Ω) into Mh. It is well known (see, e.g. [15]) that

for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, there holds

‖v − Pk
h(v)‖0,T ≤ C hmT |v|m,T ∀T ∈ Th. (4.18)

Furthermore, the operator Ek
h satisfies the following approximation properties (see, e.g. [9],

[38]), which, by the way, yielded the terms hδ‖σ‖δ,Ω and hδ‖div σ‖δ,Ω for δ = m in the estimate
(4.12), that is

‖τ − Ek
h(τ )‖0,T ≤ C hmT |τ |m,T ∀T ∈ Th, (4.19)

for each τ ∈ [Hm(Ω)]2, with 1 ≤ m ≤ k + 1,

‖div
(
τ − Ek

h(τ )
)
‖0,T ≤ C hmT |div τ |m,T ∀T ∈ Th, (4.20)

for each τ ∈ [H1(Ω)]2 such that div τ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, and

‖τ · ν − Ek
h(τ ) · ν‖0,e ≤ C h1/2e ‖τ ‖1,Te ∀ edge e ∈ Th, (4.21)

for each τ ∈ [H1(Ω)]2, where Te ∈ Th contains e on its boundary. Note, in particular, that
(4.20) follows directly from (4.17) and (4.18). In addition, it turns out (see, e.g. [34, Theorem
3.16]) that actually Ek

h can also be defined as a bounded linear operator from the larger space
[Hδ(Ω)]2 ∩ H(div; Ω) into M1,h for all δ ∈ (0, 1], and that in this case there holds

‖τ − Ek
h(τ )‖0,T ≤ C hδT

{
‖τ‖δ,T + ‖div τ‖0,T

}
∀T ∈ Th.

In turn, we also need to consider the Clément interpolant Ih : H1(Ω) → Xh (cf. [16]), where

Xh :=
{
vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th

}
.

It is well known (see [16]) that there exist constants C1, C2 > 0, independent of h, such that for
all v ∈ H1(Ω) there hold

‖v − Ih(v)‖0,T ≤ C1 hT ‖v‖1,∆(T ) ∀T ∈ Th, (4.22)

and
‖v − Ih(v)‖0,e ≤ C2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh, (4.23)

where ∆(T ) and ∆(e) are the union of all elements intersecting with T and e, respectively.
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4.3.2 Reliability analysis

We first observe, from the fact that κ ∈ C1(Ω × R
+) and the assumptions (4.2), that A1 is

Gâteaux differentiable and that {DA1(x)}x∈X1 is a family of uniformly bounded and uniformly
elliptic bilinear forms on X1× X1. In particular, for the proof of the latter we refer to [3, Lemma
3]. Hence, a straightforward application of the abstract estimate (3.3) (cf. Theorem 3.1) gives

‖(t,σ, u)− (th,σh, uh)‖X ≤ C
{
‖R1‖X′

1
+ ‖R2‖M ′

1
+ ‖R3‖M ′

}
, (4.24)

where

R1(s) := −

∫

Ω
κ(·, |th|)th · s+

∫

Ω
σh · s ∀ s ∈ X1, (4.25)

R2(τ ) := −〈 τ · ν , g〉 +

∫

Ω
th · τ +

∫

Ω
uh div τ ∀ τ ∈ M1, (4.26)

and

R3(v) :=

∫

Ω
fv +

∫

Ω
v divσh ∀ v ∈ M. (4.27)

It follows, using the Riesz Representation Theorem, that

‖R1‖X′
1
= ‖σh − κ(·, |th|)th‖0,Ω (4.28)

and
‖R3‖M ′ = ‖f + divσh‖0,Ω. (4.29)

Next, we proceed as in [29, Section 4.2] to derive an upper bound for ‖R2‖M ′
1
. For this

purpose, and in order to choose a suitable operator Πh : M1 → M1,h to be utilized in (3.9),
we consider a Helmholtz decomposition of M1, which means that for each τ ∈ M1 there exist

ϕ ∈ H1(Ω) with

∫

Ω
ϕ = 0, and z ∈ H2(Ω), such that

τ = curlϕ+∇z, (4.30)

and
‖ϕ‖1,Ω + ‖z‖2,Ω ≤ C ‖τ‖div,Ω. (4.31)

Then, we let ϕh := Ih(ϕ) and define

Πh(τ ) := curlϕh + Ek
h(∇z). (4.32)

We refer to (4.32) as a discrete Helmholtz decomposition of τ . Then, employing the expressions
(4.30) and (4.32), and noting, according to (4.9) and (4.17) and the fact that div(∇z) = div τ ,
that ∫

Ω
uh div(∇z − Ek

h(∇z)) =

∫

Ω
uh

{
div(τ ) − Pk

h

(
div(τ )

)}
= 0,

we deduce from (4.26) that

R2(τ ) = R2(τ −Πh(τ )) = R̂2(ϕ) + R̃2(z) ∀τ ∈ M1,
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where

R̂2

(
ϕ) := R2(curl(ϕ− ϕh)

)
= −〈curl(ϕ− ϕh) · ν, g〉+

∫

Ω
th · curl(ϕ − ϕh) (4.33)

and

R̃2(z) := R2

(
∇z − Ek

h(∇z)
)
= −〈(∇z − Ek

h(∇z)) · ν, g〉+

∫

Ω
th · (∇z − Ek

h(∇z)). (4.34)

The following two lemmas provide upper bounds for |R̂2(ϕ)| and |R̃2(z)|.

Lemma 4.1 Assume that g ∈ H1(Γ). Then, there exists C > 0, independent of h, such that

|R̂2(ϕ)| ≤ C

{
∑

T∈Th

θ̂22,T

}1/2

‖τ‖div,Ω, (4.35)

where

θ̂22,T := h2T ‖curl{th}‖
2
0,T +

∑

e∈E(T )∩Eh(Ω)

he ‖[th · s]‖20, e +
∑

e∈E(T )∩Eh(Γ)

he

∥∥∥dg
ds

− th · s
∥∥∥
2

0,e
.

Proof. We proceed analogously to the proof of [28, Lemma 4.3]. In fact, using that

curl(ϕ− ϕh) · ν =
d

d s
(ϕ− ϕh)

and then integrating by parts on Γ, we find that

〈curl(ϕ− ϕh) · ν, g〉 = −〈ϕ− ϕh,
dg

ds
〉 = −

∑

e∈Eh(Γ)

∫

e
(ϕ− ϕh)

dg

ds
.

Now, integrating by parts on each T ∈ Th, we obtain that

∫

Ω
th · curl(ϕ− ϕh) =

∑

T∈Th

{∫

T
curl(th) (ϕ − ϕh)−

∫

∂ T
th · s (ϕ− ϕh)

}

=
∑

T∈Th

∫

T
curl(th) (ϕ − ϕh)−

∑

e∈Eh(Ω)

[th · s] (ϕ− ϕh)−
∑

e∈Eh(Γ)

th · s (ϕ− ϕh) .

Then, replacing the above expressions into (4.33), we deduce that

R̂2(ϕ) =
∑

T∈Th

∫

T
curl(th) (ϕ−ϕh) −

∑

e∈Eh(Ω)

∫

e
[th ·s] (ϕ−ϕh) +

∑

e∈Eh(Γ)

∫

e

{ dg
ds

−th ·s
}
(ϕ−ϕh) .

In this way, applying the Cauchy-Schwarz inequality, the approximation properties of the Clé-
ment interpolant (cf. (4.22), (4.23)), the fact that the number of triangles in ∆(T ) and ∆(e) are
bounded, and finally the estimate (4.31), we arrive at the upper bound (4.35). �
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Lemma 4.2 There exists C > 0, independent of h, such that

|R̃2(z)| ≤ C

{
∑

T∈Th

θ̃22, T

}1/2

‖τ‖div,Ω , (4.36)

where
θ̃22, T := h2T ‖∇uh − th ‖

2
0, T +

∑

e∈E(T )∩Eh(Γ)

he ‖g − uh ‖
2
0, e .

Proof. Since uh|e ∈ Pk(e) for each edge e ∈ Eh (in particular for each edge e ∈ Eh(Γ)), the
characterization identity (4.15) yields

∫

e

(
∇z − Ek

h(∇z)
)
· ν uh = 0 ∀ e ∈ Eh(Γ).

Similarly, the fact that ∇uh|T ∈ [Pk−1(T )]
2 for each T ∈ Th and the identity (4.16) imply that

∫

T

(
∇z − Ek

h(∇z)
)
· ∇uh = 0 ∀T ∈ Th.

Then, introducing the above null expressions into the definition of R̃2 (cf. (4.33)), we obtain
that

R̃2(z) =
∑

e∈Eh(Γ)

∫

e

(
∇z − Ek

h(∇z)
)
· ν (uh − g) +

∑

T∈Th

∫

T
(th −∇uh) · (∇z − Ek

h(∇z)).

Finally, applying the Cauchy-Schwarz inequality, the approximation properties of the Raviart-
Thomas interpolation operator (cf. (4.19), (4.21)), and then the estimate (4.31), we get the
upper bound (4.36). �

As a direct consequence of Lemmas 4.1 and 4.2, we deduce from (4.32) that

|R2(τ )| = |R2(τ −Πh(τ ))| ≤




∑

T∈Th

(
θ̂22, T + θ̃22, T

)




1/2

‖τ‖div,Ω ∀ τ ∈ M1,

which, using (3.9), gives an upper bound for ‖R2‖M ′
1
.

In this way, according to our previous analysis, we can establish the following reliability
result.

Theorem 4.4 Let (t,σ, u) ∈ X and (th,σh, uh) ∈ Xh be the unique solutions of (4.3) and
its associated Galerkin scheme, respectively, and assume that g ∈ H1(Γ). Then, there exists a
positive constant Crel, independent of h, such that

‖(t,σ, u)− (th,σh, uh)‖X ≤ Crel θ ,

where θ2 :=
∑

T ∈Th

θ2T and

θ2T := ‖σh − κ(·, |th|)th‖
2
0,T + ‖f + divσh‖

2
0,T + h2T ‖curl{th}‖

2
0,T + h2T ‖∇uh − th‖

2
0,T

+
∑

e∈E(T )∩Eh(Ω)

he ‖[th · s]‖20,e +
∑

e∈E(T )∩Eh(Γ)

he

{∥∥∥∥
dg

ds
− th · s

∥∥∥∥
2

0,e

+ ‖g − uh‖
2
0,e

}
.

(4.37)
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Proof. It follows from (4.24), (4.28), (4.29), and Lemmas 4.1 and 4.2. We omit further details.
�

4.3.3 Efficiency analysis

The purpose of this section is to prove the efficiency of our a posteriori error estimator θ, which
means that there exists a positive constant Ceff such that

Ceff θ + h.o.t. ≤ ‖(t,σ, u)− (th,σh, uh)‖X, (4.38)

where h.o.t. stands for one or several terms of higher order. To this end, in what follows ve
establish suitable upper bounds for the seven terms defining the local error indicator θ2T .

We begin by noticing, since divσ = − f in Ω, that

‖f + divσh‖0,T = ‖div(σ − σh)‖0,T ≤ ‖σ − σh‖div,T ∀T ∈ Th . (4.39)

In addition, using that σ = κ(·, |t|)t in Ω, and applying the Lipschitz-continuity of A1, but
restricted to each T ∈ Th, we find that

‖σh − κ(·, |th|)th‖0,T ≤ ‖σ − σh‖0,T + ‖κ(·, |t|)t − κ(·, |th|)th‖0,T

≤ ‖σ − σh‖div,T + C ‖t− th‖0,T ∀T ∈ Th .
(4.40)

We now proceed to bound the terms involving the mesh parameters hT and he. For this
purpose we make use of the general results and estimates already available for linear problems
(see, e.g. [28, Section 4.2]), which are all derived by employing triangle-bubble and edge-bubble
functions, together with extension operators and discrete trace and inverse inequalities. Further
details on these tools and techniques can be found in [29, Lemma 4.7 and 4.8, eq (4.34)].

The estimates of the remaining five terms defining θ2T (cf. (4.37)) are stated as follows.

Lemma 4.3 There exist C1, C2 > 0, independent of h, such that

h2T ‖curl{th}‖
2
0,T ≤ C1 ‖t − th‖

2
0,T ∀T ∈ Th ,

he ‖[th · s]‖
2
0,e ≤ C2 ‖t − th‖

2
0,we

∀ e ∈ Eh(Ω) ,

where we := ∪{T ∈ Th : e ∈ E(T )}.

Proof. It is a direct application of the general results provided in [28, Lemmas 4.9 and 4.10] to
ρh = th and ρ = t, noting that curl{ρ} = curl{∇u} = 0 in Ω. �

Lemma 4.4 There exists C3 > 0, independent of h, such that

h2T ‖∇uh − th‖
2
0,T ≤ C3

{
‖u− uh‖

2
0,T + h2T ‖t− th‖

2
0,T

}
∀T ∈ Th .

Proof. It basically follows from the proof of [28, Lemma 4.13], which is a slight modification of
the proof of [12, Lemma 6.3], by simply replacing the tensor utilized there by our vector th, and
then using that t = ∇u in Ω. �
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Lemma 4.5 Assume that g is piecewise polynomial. Then there exists C4 > 0, independent of
h, such that

he

∥∥∥∥
dg

ds
− th · s

∥∥∥∥
2

0.e

≤ C4 ‖t− th‖
2
0,T ∀T ∈ Eh(Γ) ,

where T is the triangle of Th having e as an edge.

Proof. Similarly to the proof of Lemma 4.4, it follows from [28, Lemma 4.15] by replacing the

tensor employed there by our vector th, and then using that
dg

ds
= ∇u · s = t · s on Γ. �

Lemma 4.6 There exists C5 > 0, independent of h, such that

he ‖g − uh‖
2
0,e ≤ C5

{
‖u− uh‖

2
0,T + h2T ‖t− th‖

2
0,T

}
∀ e ∈ Eh(Γ) ,

where T is the triangle of Th having e as an edge.

Proof. As in the previous lemmas, it results from [28, Lemma 4.14] by replacing the tensor used
there by our vector th, and then using that ∇u = t in Ω and u = g on Γ. In addition,
at the end of the proof, the efficiency estimate for h2T ‖∇uh − th‖

2
0,T provided by Lemma 4.4 is

also employed. �

It is important to observe here that if g were not piecewise polynomial, but sufficiently
smooth, then higher order terms given by the errors arising from polynomial approximations
of g would appear in the efficiency estimate given by Lemma 4.5, thus explaining the eventual
expression h.o.t. in (4.38). Consequently, the efficiency of θ (as defined by (4.38)) follows directly
from estimates (4.39) and (4.40), together with Lemmas 4.3 throughout 4.6, after summing up
over T ∈ Th and applying that the number of triangles on each domain we (cf. Lemma 4.3) is
actually bounded by two.

5 A problem from nonlinear elasticity

In this section we consider the pure displacement version of the hyperelasticity problem studied
in [7]. More precisely, let Ω be a bounded and simply connected domain in R

2 with Lipschitz-
continuous boundary Γ. Our goal is to determine the displacement u and stress σ of a hyper-
elastic material occupying the region Ω, which is subject to a volume force and has a known
displacement on the boundary Γ. In other words, given f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, the
nonlinear boundary value problem reads as follows: Find a tensor field σ and a vector field u
such that

σ = λ̃(‖e(u)d‖)
(
divu

)
I + µ̃(‖e(u)d‖) e(u) in Ω ,

divσ = − f in Ω , u = g on Γ,
(5.1)

where λ̃, µ̃ : R
+ → R are the nonlinear Lamé functions, e(u) := 1

2

(
∇u +

(
∇u
)
t
)

is the

strain tensor of small deformations, ‖·‖ is the euclidean norm in R
2×2, the superscript d denotes

the corresponding deviatoric tensor, div is the usual divergence operator div acting along the
rows of each tensor, and ν stands for the unit outward normal to Γ. From now on we suppose
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that λ̃, µ̃ ∈ C1(R+) and that there exist κ, µ0, µ1, µ2 > 0 such that for all ρ ≥ 0,

λ̃(ρ) = κ−
1

2
µ̃(ρ) ,

µ0 ≤ µ̃(ρ) < 2κ,

µ1 ≤ µ̃(ρ) + ρ µ̃′(ρ) ≤ µ2.

(5.2)

5.1 The continuous twofold saddle point formulation

We first proceed as in [7] and derive the dual-mixed variational formulation of (5.1). In what
follows, for each r ∈ [L2(Ω)]2×2 we define

λ̂(r) := λ̃(‖rd‖)

and
µ̂(r) := µ̃(‖rd‖) ,

so that, introducing the new unknown t := e(u), problem (5.1) adopts the equivalent form

t = e(u) in Ω , σ = λ̂(t) tr(t) I + µ̂(t) t in Ω ,

divσ = − f in Ω , u = g on Γ .

Let us now consider the space

H(div; Ω) :=
{
τ ∈ [L2(Ω)]2×2 : div τ ∈ [L2(Ω)]2

}
,

with the inner product given for each ζ, τ ∈ H(div; Ω) by (cf. (4.4))

〈ζ, τ 〉div,Ω :=

2∑

i=1

〈(ζi1 ζi2), (τi1 τi2)〉div,Ω ,

and the subspace R of [L2(Ω)]2×2 defined as

R :=
{
η ∈ [L2(Ω)]2×2 : η + ηt = 0

}
,

equipped with its scalar product inherited from [L2(Ω)]2×2. These tensor spaces become Hilbert
spaces when endowed with the norms induced by such inner products, which will be denoted by
‖ · ‖div,Ω and ‖ · ‖R, respectively. In addition, maintaining the notation 〈·, ·〉 of Section 4.1 for
the duality pairing of H−1/2(Γ) and H1/2(Γ) with respect to the L2(Γ) - inner product, we use
now 〈〈·, ·〉〉 to denote the corresponding duality pairing on [H−1/2(Γ)]2 × [H1/2(Γ)]2. In other
words, for each Φ := (Φ1,Φ2) ∈ [H−1/2(Γ)]2 and Ψ := (Ψ1,Ψ2) ∈ [H1/2(Γ)]2 we set

〈〈Φ,Ψ〉〉 :=

2∑

j=1

〈Φj ,Ψj〉.

Then, rewriting the identity t = e(u) as

t = ∇u − γ ,
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where

γ :=
1

2

(
∇u− (∇u)t

)

is an auxiliary unknown (named rotation) living in R, and following the usual procedure (see
e.g. [7]), we arrive at the problem: Find (t,σ,u,γ) ∈ [L2(Ω)]2×2 × H(div; Ω) × [L2(Ω)]2 × R
such that

∫

Ω

(
λ̂(t) tr(t) tr(s) + µ̂(t) t : s

)
−

∫

Ω
σ : s = 0 ,

−

∫

Ω
t : τ −

∫

Ω
u · divτ −

∫

Ω
γ : τ = −〈〈 τν , g 〉〉 ,

−

∫

Ω
v · divσ −

∫

Ω
η : σ =

∫

Ω
f · v ,

(5.3)

for all (s, τ ,v,η) ∈ [L2(Ω)]2×2 × H(div; Ω)× [L2(Ω)]2 ×R.

It is clear that (5.3) has the form of the twofold saddle point problem (2.1), with the Hilbert
spaces X1 := [L2(Ω)]2×2, M1 := H(div; Ω), and M := [L2(Ω)]2 × R, provided with the
norms ‖ · ‖0,Ω, ‖ · ‖div,Ω and ‖ · ‖2M := ‖ · ‖20,Ω + ‖ · ‖2R, respectively, and the nonlinear operator
A1 : X1 → X ′

1, the bounded linear operators B1 : X1 → M ′
1 and B : M1 → M ′, and the

bounded linear functionals H ∈ X ′
1, G ∈ M ′

1 and F ∈ M ′, given for each r, s ∈ X1, ζ, τ ∈M1

and (v,η) ∈M as

[A1(r), s] :=

∫

Ω

(
λ̂(r) tr(r) tr(s) + µ̂(r) r : s

)
,

[B1(r), τ ] := −

∫

Ω
r : τ ,

[B(ζ), (v,η)] := −

∫

Ω
v · div ζ −

∫

Ω
ζ : η,

(5.4)

[H, s] := 0, [G, τ ] := −〈〈 τv , g 〉〉, and [F, (v,η)] :=

∫

Ω
f · v. (5.5)

In view of the two first assumptions in (5.2), it is easy to see that A1 is well defined. In
addition, the existence of a unique solution for (5.3), which follows from a straightforward
application of Theorem 2.1, was previously stated in [7] (similarly as we did for Theorem 4.1).
More precisely, we have the following result.

Theorem 5.1 There exists a unique (t,σ, (u,γ)) ∈ X solution of the nonlinear twofold saddle
point problem (5.3). In addition, there exists C > 0, independent of the solution, such that

‖(t,σ, (u,γ))‖X ≤ C
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
.

Proof. See [7, Theorem 4.5] for the existence of a unique solution, and [7, Lemmas 4.1, 4.3 and
4.4] together with Theorem 2.1 for that of C > 0. �
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5.2 The associated Galerkin scheme

As in Section 4.2, in what follows we suppose that Γ is a polygonal curve and that {Th}h>0

is a regular family of triangulations of Ω, made up of triangles T of diameter hT , such that
h := sup {hT : T ∈ Th} and Ω :=

⋃
{T : T ∈ Th}. Also, given T ∈ Th, we let bT be

the triangle-bubble function defined as the unique polynomial in P3(T ) vanishing on ∂T with∫
T bT = 1, and extended as 0 on Ω\T . Then, we introduce the finite element subspaces

X1,h :=
{
τh ∈ [L2(Ω)]2×2 : τ h|T ∈ [P0(T )]

2×2 ⊕ [P0(T ) (curl bT )
t]2 ∀T ∈ Th

}
, (5.6)

M1,h :=
{
τh ∈ H(div; Ω) : τh|T ∈ [RT0(T )]

2 ⊕ [P0(T ) (curl bT )
t]2 ∀T ∈ Th

}
, (5.7)

and
Mh := Vh ×Rh , (5.8)

where
Vh :=

{
vh ∈ [L2(Ω)]2 : vh|T ∈ [P0(T )]

2 ∀T ∈ Th

}

and
Rh :=

{
ηh ∈ [C(Ω)]2×2 ∩R : ηh|T ∈ [P1(T )]

2×2 ∀T ∈ Th

}
.

Note that M1,h ×Mh corresponds to the classical PEERS-space introduced originally in [4] for
the linear elasticity problem.

Next, we recall from [7] that the Galerkin scheme associated with the continuous problem
(5.3) is well-posed. We remark, however, that the present definition of the space X1,h, which
is motivated by the analysis provided in [29, Lemma 2.6, Section 2.4], simplifies the original
definition given in [7, eq. (5.3), Section 5] in such a way that the well-posedness of the discrete
scheme is still valid. More precisely, we can establish the following theorem.

Theorem 5.2 Let X1,h, M1,h and Mh be the finite element subspaces given by (5.6), (5.7) and
(5.8). Then, there exists a unique solution (th,σh, (uh,γh)) ∈ Xh := X1,h × M1,h × Mh of the
discrete scheme (2.4) with the operators and functionals defined by (5.4) and (5.5). Furthermore,
there exist positive constants c and C, independent of h, such that

‖(th,σh, (uh,γh))‖X ≤ c
{
‖f‖0,Ω + ‖g‖1/2,Γ

}
,

and

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ C inf
(sh,τh,(vh,ηh))

∈Xh

‖(t,σ, (u,γ))− (sh, τ h, (vh,ηh))‖X .

(5.9)

Proof. It follows from [7, Theorem 5.1], [7, Lemma 4.1] and Theorem 2.2. �

Thanks to the Céa estimate (5.9) and the approximation properties of the subspaces X1,h,
M1,h and Mh (see, e.g. [29, Section 2.4]), the rate of convergence of the Galerkin scheme
associated with (5.3) is stated as follows.
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Theorem 5.3 Assume that X1,h, M1,h andMh are the subspaces given by (5.6), (5.7) and (5.8),
and that (t,σ, (u,γ)) ∈ X and (th,σh, (uh,γh)) ∈ Xh are the unique solutions of (5.3) and its
associated Galerkin scheme, respectively. Suppose, in addition, that t,σ,γ ∈ [Hδ(Ω)]2×2 and
u,divσ ∈ [Hδ(Ω)]2 for some δ ∈ (0, 1]. Then, there exists C > 0, independent of h, such that

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ C hδ
{
‖t‖δ,Ω + ‖σ‖δ,Ω + ‖divσ‖δ,Ω + ‖u‖δ,Ω + ‖γ‖δ,Ω

}
.

5.3 The a posteriori error analysis

5.3.1 Reliability analysis

We now aim to apply the abstract estimate given by Theorem 3.1 to derive a reliable and efficient
residual-based a posteriori error estimator for the Galerkin scheme associated with (5.3). For
this purpose, we first verify that the hypotheses specified at the beginning of Section 3 are
satisfied. Indeed, we have the following result.

Lemma 5.1 The nonlinear operator A1 : X1 → X ′
1 defined in (5.4) is Gâteaux differentiable

in X1. Moreover, the family {DA1(x)}x∈X1 is uniformly bounded on X1 × X1 and uniformly
elliptic on V1 × V1, where V1 := ker (B1).

Proof. We begin by observing, thanks to simple computations and the C1-regularity of µ̃ and
λ̃, that for all x, r, s ∈ X1 there holds

lim
ǫ→ 0

[
A1(x+ ǫ r)− A1(x), s

]

ǫ
=

∫

Ω
λ̃′(‖xd‖)

(xd : rd)

‖xd‖
tr(x) tr(s)

+

∫

Ω
λ̃(‖xd‖) tr(r) tr(s) +

∫

Ω
µ̃′(‖xd‖)

(xd : rd)

‖xd‖
x : s +

∫

Ω
µ̃(‖xd‖) r : s ,

(5.10)

if xd 6= 0, and

lim
ǫ→ 0

[
A1(x+ ǫ r)− A1(x), s

]

ǫ
=

∫

Ω
λ̃′(0) ‖rd‖ tr(x) tr(s)

+

∫

Ω
λ̃(0) tr(r) tr(s) +

∫

Ω
µ̃′(0) ‖rd‖x : s +

∫

Ω
µ̃(0) r : s ,

(5.11)

if xd = 0, which shows, in any case, that A1 is Gâteaux differentiable at x. Moreover, DA1(x)
is the bounded linear operator from X1 into X ′

1 that can be identified with the bilinear form
DA1(x) : X1 ×X1 → R defined by

DA1(x)(r, s) := lim
ǫ→ 0

[
A1(x+ ǫ r)− A1(x), s

]

ǫ
∀ r, s ∈ X1 .

Let us now prove that the family {DA1(x)}x∈X1 is both uniformly bounded and uniformly

elliptic on X1 ×X1. In fact, taking into account the relationship between λ̃ and µ̃ (cf. (5.2)),
we find from (5.10) that for all x, r, s ∈ X1, with xd 6= 0, there holds

DA1(x)(r, s) =

∫

Ω
µ̃′(‖xd‖)

(xd : rd)

‖xd‖
xd : s +

∫

Ω
µ̃(‖xd‖) rd : s +

∫

Ω
κ tr(r) tr(s) , (5.12)
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which, employing the Cauchy-Schwarz inequality and the fact that ‖rd‖ ≤ ‖r‖, yields

∣∣DA1(x)(r, s)
∣∣ ≤

∫

Ω

{
|µ̃′(‖xd‖)| ‖xd‖ + µ̃(‖xd‖) + 2κ

}
‖r‖ ‖s‖ .

If µ̃′(‖xd‖) ≥ 0, the above inequality and the third equation in (5.2) imply that

∣∣DA1(x)(r, s)
∣∣ ≤

(
µ2 + 2κ

)
‖r‖X1 ‖s‖X1 ,

whereas if µ̃′(‖xd‖) < 0, we can write

∣∣DA1(x)(r, s)
∣∣ ≤

∫

Ω

{
− µ̃′(‖xd‖) ‖xd‖ − µ̃(‖xd‖) + 2 µ̃(‖xd‖) + 2κ

}
‖r‖ ‖s‖ ,

from which, using the second and third equations in (5.2), we deduce that

∣∣DA1(x)(r, s)
∣∣ ≤ 6κ ‖r‖X1 ‖s‖X1 .

On the other hand, for all x, r ∈ X1, with xd 6= 0, we have from (5.12) that

DA1(x)(r, r) =

∫

Ω
µ̃′(‖xd‖)

(xd : rd)2

‖xd‖
+

∫

Ω
µ̃(‖xd‖) ‖rd‖2 +

∫

Ω
κ
(
tr(r)

)2
. (5.13)

If µ̃′(‖xd‖) ≥ 0, we use the second equation in (5.2) and find that

DA1(x)(r, r) ≥

∫

Ω

{
µ̃(‖xd‖) ‖rd‖2 + κ

(
tr(r)

)2 }
≥ min{µ0, 2κ} ‖r‖

2
X1
,

whereas if µ̃′(‖xd‖) < 0, we deduce from (5.13) and the third equation in (5.2) that

DA1(x)(r, r) ≥

∫

Ω

{
− |µ̃′(‖xd‖)| ‖xd‖ ‖rd‖2 + µ̃(‖xd‖) ‖rd‖2 + κ

(
tr(r)

)2 }

=

∫

Ω

{
µ̃′(‖xd‖) ‖xd‖ ‖rd‖2 + µ̃(‖xd‖) ‖rd‖2 + κ

(
tr(r)

)2 }

≥ min{µ1, 2κ} ‖r‖
2
X1
.

The case xd = 0 proceeds similarly for both properties of DA1. We omit further details. �

We are now in a position to make use again of Theorem 3.1. More specifically, from the
estimate (3.3) we deduce the existence of C > 0 such that

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ C
{
‖R1‖X′

1
+ ‖R2‖M ′

1
+ ‖R3‖M ′

}
, (5.14)

where for all (s, τ , (v,η)) ∈ X we have

R1(s) := −

∫

Ω
λ̂(th) tr(th) I : s −

∫

Ω
µ̂(th) th : s +

∫

Ω
σh : s ,

R2(τ ) := −〈〈τν,g〉〉 +

∫

Ω
uh · div τ +

∫

Ω
(th + γh) : τ ,
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and

R3(v,η) :=

∫

Ω
f · v +

∫

Ω
v · divσh +

∫

Ω
σh : η .

It is straightforward to see that

‖R1‖X′
1
= ‖σh − λ̂(th) tr(th) I− µ̂(th) th‖0,Ω . (5.15)

It is also an easy matter to arrive at the estimate

‖R3‖M ′ ≤ ‖f + divσh‖0,Ω +
1

2
‖σh − σ

t

h‖0,Ω , (5.16)

which follows from the Cauchy-Schwarz inequality and the fact, because of the skew-symmetry

of η ∈ R, that

∫

Ω
σh : η =

1

2

∫

Ω

(
σh − σ

t

h

)
: η.

In what follows, given vector and tensor fields ϕ := (ϕ1, ϕ2) and τ := (τij)2×2, respectively,
and having in mind (4.13) and (4.14), we let curlϕ and curl(τ ) be the tensor and vector fields
given by

curlϕ :=

(
curl(ϕ1)

t

curl(ϕ2)
t

)
=

(
∂ϕ1

∂x2
−∂ϕ1

∂x1

∂ϕ2

∂x2
−∂ϕ2

∂x1

)
, (5.17)

and

curl(τ ) :=

(
curl(τ11, τ12)

curl(τ21, τ22)

)
=

(
∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)
. (5.18)

We now proceed as in Section 4.3.2 (see also [29, Section 4.2]) to derive an upper bound
for ‖R2‖M ′

1
. In fact, in order to define a suitable operator Πh : M1 → M1,h to be employed

in the corresponding abstract estimate (3.9), we first observe that in this case the Helmholtz
decomposition of M1 := H(div; Ω) ensures that for all τ ∈ M1 there exist ϕ ∈ [H1(Ω)]2, with∫

Ω
ϕ = 0, and z ∈ [H2(Ω)]2, satisfying

τ = curlϕ+∇z,

and
‖ϕ‖1,Ω + ‖z‖2,Ω ≤ C ‖τ‖div,Ω . (5.19)

Then, denoting by Ih and Eh the tensor versions of the Clément interpolant Ih and the Raviart-
Thomas interpolation operator E0

h, respectively, we define

Πh(τ ) := curlϕh +Eh(∇z) ,

where ϕh := Ih(ϕ). It is easy to see that Ih and Eh satisfy analog properties to those given by
(4.15), (4.16) and (4.18)-(4.23). In addition, noting that uh ∈ Vh, there also holds

∫

Ω
uh · div (∇z−Eh(∇z)) =

∫

Ω
uh · {div τ −Ph(div τ )} = 0 ∀ τ ∈ M1 ,

where Ph : [L2(Ω)]2 → Vh is the orthogonal projector. This identity, together with the fact that

R2(τ ) = R2(τ −Πh(τ )),
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allows us to express R2 in the equivalent way

R2(τ ) = R̂2(ϕ) + R̃2(z) ∀ τ ∈ M1 , (5.20)

with
R̂2

(
ϕ) := R2(curl(ϕ−ϕh)

)

= −〈〈curl(ϕ−ϕh)ν , g〉〉 +

∫

Ω
(th + γh) : curl(ϕ−ϕh)

(5.21)

and
R̃2(z) := R2

(
∇z−Eh(∇z)

)

= −〈〈(∇z−Eh(∇z))ν , g〉〉 +

∫

Ω
(th + γh) : (∇z−Eh(∇z)) .

(5.22)

Before stating respective upper bounds for |R̂2(ϕ)| and |R̃2(z)|, we extend to the tensorial
framework the concept of jump across an edge. Thus, given e ∈ Eh, we fix a normal vector
νe = (ν1, ν2)

t and take se := (−ν2, ν1)
t, that is, the corresponding tangential vector along e.

Then, for e ∈ Eh(Ω) and τ ∈ [L2(Ω)]2×2 such that τ |T ∈ [C(T )]2×2 ∀T ∈ Th, [τ se] stands
for the corresponding jump across e, i.e. [τ se] := (τ |T − τ |T ′)|e se, T and T ′ being the
unique triangles of Th having e as a common edge. When there is no cause for confusion, we
will write s and τ instead of se and τ e, respectively.

Lemma 5.2 Assume that g ∈ [H1(Γ)]2. Then there exists C > 0, independent of h, such that

|R̂2(ϕ)| ≤ C

{
∑

T∈Th

θ̂22,T

}1/2

‖τ‖div,Ω ,

where

θ̂22,T := h2T ‖curl(th + γh)‖
2
0,T

+
∑

e∈E(T )∩Eh(Ω)

he ‖[(th + γh) s]‖
2
0, e +

∑

e∈E(T )∩ Eh(Γ)

he

∥∥∥dg
ds

− (th + γh) s
∥∥∥
2

0,e
.

Proof. We proceed analogously to the proof of Lemma 4.1 (see also [28, Lemma 4.3]). For the
first summand in (5.21) we integrate by parts on Γ, noticing that

curl(ϕ−ϕh)ν =
d

d s
(ϕ−ϕh) ,

which yields

〈〈curl(ϕ−ϕh)ν, g〉〉 = −〈〈ϕ−ϕh,
dg

ds
〉〉 = −

∑

e∈Eh(Γ)

∫

e

dg

ds
· (ϕ−ϕh) .

For the second one we also integrate by parts, now on each T ∈ Th, arriving at

∫

Ω
(th + γh) : curl(ϕ−ϕh) =

∑

T∈Th

{∫

T
curl(th + γh) · (ϕ−ϕh)−

∫

∂ T
(th + γh) s · (ϕ−ϕh)

}
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=
∑

T∈Th

∫

T
curl(th+γh) · (ϕ−ϕh)−

∑

e∈Eh(Ω)

[(th+γh) s] · (ϕ−ϕh)−
∑

e∈Eh(Γ)

(th+γ) s · (ϕ−ϕh) .

Finally, it follows from the above expressions and the definition of R̂2 (cf. (5.21)) that

R̂2(ϕ) =
∑

T∈Th

∫

T
curl(th + γh) · (ϕ−ϕh)

−
∑

e∈Eh(Ω)

∫

e
[(th + γh) s] · (ϕ−ϕh) +

∑

e∈Eh(Γ)

∫

e

{ dg
ds

− (th + γh) s
}
· (ϕ−ϕh) ,

and all we have to do next is to apply the Cauchy-Schwarz inequality, the approximation proper-
ties of the operator Ih (cf. (4.22) and (4.23)), the fact that the number of triangles in ∆(T ) and
∆(e) are bounded, and the estimate (5.19). We omit further details. �

Lemma 5.3 There exists C > 0, independent of h, such that

|R̃2(z)| ≤ C

{
∑

T∈Th

θ̃22, T

}1/2

‖τ‖div,Ω ,

where
θ̃22, T := h2T ‖ th + γh ‖

2
0, T +

∑

e∈E(T )∩Eh(Γ)

he ‖g − uh ‖
2
0, e .

Proof. Since uh|e ∈ [P0(e)]
2 ∀ e ∈ Eh, the tensor version of the identity (4.15) gives

∫

e

(
∇z−Eh(∇z)

)
ν · uh = 0 ∀ e ∈ Eh(Γ) ,

and hence R̃2 (cf. (5.22)) becomes

R̃2(z) =
∑

e∈Eh(Γ)

∫

e

(
∇z−Eh(∇z)

)
ν · (uh − g) +

∑

T∈Th

∫

T
(th + γh) : (∇z−Eh(∇z)) .

Hence, for the rest of the proof it suffices to apply the Cauchy-Schwarz inequality, the approxi-
mation properties of the operator Eh (cf. (4.19) and (4.21)), and the estimate (5.19). �

Finally, Lemmas 5.2 and 5.3, together with the identities (5.14), (5.15), (5.16), (5.20), and
(3.9), provide the following reliability estimate.

Theorem 5.4 Let (t,σ, (u,γ)) ∈ X and (th,σh, (uh,γ)) ∈ Xh be the unique solutions of the
saddle point problem (4.3) and its associated Galerkin scheme, respectively, and assume that
g ∈ [H1(Γ)]2. Then, there exists a positive constant Crel, independent of h, such that

‖(t,σ, (u,γ))− (th,σh, (uh,γh))‖X ≤ Crel θ ,
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where θ2 :=
∑

T ∈Th

θ2T and

θ2T := ‖σh − λ̂(th) tr(th) I − µ̂(th) th‖
2
0,T + ‖f + divσh‖

2
0,T + ‖σh − σ

t

h‖
2
0,T

+ h2T ‖curl(th + γh)‖
2
0,T + h2T ‖ th + γh ‖

2
0,T +

∑

e∈E(T )∩Eh(Ω)

he ‖[(th + γh) s]‖
2
0,e

+
∑

e∈E(T )∩Eh(Γ)

he

{∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

+ ‖g − uh‖
2
0,e

}
.

(5.23)

5.3.2 Efficiency analysis

We now study the efficiency of our a posteriori error estimator θ, along the lines of Section 4.3.3.
More precisely, we aim to prove the existence of a positive constant Ceff such that

Ceff θ + h.o.t. ≤ ‖(t,σ, (u,γ))− (th,σh, (uh − γh))‖X , (5.24)

where h.o.t. stands for one or several terms of higher order. To this end, in what follows we
establish suitable upper bounds for each one of the eight terms defining θ2T . We begin with the
first three of them, whose corresponding estimates are pretty straightforward.

On one hand, since σ = λ̂(t) tr(t) I + µ̂(t) t, the Lipschitz-continuity of A1, restricted to
each T ∈ Th, implies that

‖σh − λ̂(th) tr(th) I − µ̂(th) th‖0,T

≤ ‖σ − σh‖0,T + ‖λ̂(t) tr(t) I + µ̂(t) t − λ̂(th) tr(th) I − µ̂(th) th‖0,T

≤ C
{
‖σ − σh‖div,T + ‖t− th‖0,T

}
∀T ∈ Th .

Next, since divσ = − f in Ω, we have that

‖f + divσh‖0,T = ‖div(σ − σh)‖0,T ≤ ‖σ − σh‖div,T ∀T ∈ Th .

On the other hand, taking into account the symmetry of σ, we easily find that

‖σh − σ
t

h‖0,T ≤ ‖σ − σh‖0,T + ‖σt − σt

h‖0,T ≤ 2 ‖σ − σh‖0,T ∀T ∈ Th .

The upper bounds for the remaining five terms, being the analogue of the estimates provided
by Lemmas 4.3, 4.4, 4.5, and 4.6, respectively, are established next by applying also some results
from [28].

Lemma 5.4 There exist C1, C2 > 0, independent of h, such that

h2T ‖curl(th + γh))‖
2
0,T ≤ C1

{
‖t− th‖

2
0,T + ‖γ − γh‖

2
0,T

}
∀T ∈ Th ,

he ‖[(th + γh) s]‖
2
0,e ≤ C2

{
‖t− th‖

2
0,we

+ ‖γ − γh‖
2
0,we

}
∀ e ∈ Eh(Ω) ,

where we := ∪
{
T ∈ Th : e ∈ E(T )

}
.
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Proof. It suffices to apply [28, Lemmas 4.9 and 4.10] to ρh = th + γh and ρ = t + γ, making
use of the fact that curl(ρ) = curl(∇u) = 0 in Ω. �

Lemma 5.5 There exists C3 > 0, independent of h, such that

h2T ‖th + γh‖
2
0,T ≤ C3

{
‖u− uh‖

2
0,T + h2T ‖t − th‖

2
0,T + h2T ‖γ − γh‖

2
0,T

}
∀T ∈ Th .

Proof. It follows from a slight modification of [28, Lemma 4.13], by replacing the tensor utilized
there by th+γh, using in this case that ∇uh vanishes, and recalling that ∇u = t + γ in Ω.
We omit further details. �

Lemma 5.6 Assume that g is piecewise polynomial. Then there exists C4 > 0, independent of
h, such that

he

∥∥∥∥
dg

ds
− (th + γh) s

∥∥∥∥
2

0,e

≤ C4

{
‖t− th‖

2
0,T + ‖γ − γh‖

2
0,T

}
∀ e ∈ Eh(Γ) ,

where T is the triangle of Th having e as an edge.

Proof. It suffices to modify the proof of [28, Lemma 4.15], by using
dg

ds
− (th + γh) s instead

of
dg

ds
−

1

2µ
σt

h s, and noting in the present case that
dg

ds
= (∇u) s = (t+ γ) s on Γ. �

Lemma 5.7 There exists C5 > 0, independent of h, such that

he ‖g − uh‖
2
0,e ≤ C5

{
‖u− uh‖

2
0,T + h2T ‖t − th‖

2
0,T + h2T ‖γ − γh‖

2
0,T

}
∀ e ∈ Eh(Γ) ,

where T is the triangle of Th having e as an edge.

Proof. It follows as in the proof of [28, Lemma 4.14] by taking now χT := th + γh, and then
using that ∇u = t + γ in Ω and u = g on Γ. At the end, the efficiency estimate for
h2T ‖th + γh‖

2
0,T given by Lemma 5.5 is also utilized. �

At this point we observe that the same remark provided at the end of Section 4.3.3, which
concerns an eventual non-polynomial g and the consequent appearing of higher order terms
(h.o.t.) in the upper bound given by Lemma 5.6, is also valid here. In this way, the efficiency of
θ (as defined by (5.24)) follows directly from the three simple estimates derived at the beginning
of this section, together with Lemmas 5.4 throughout 5.7, after summing up over T ∈ Th and
applying that the number of triangles on each domain we (cf. Lemma 5.4) is bounded by 2.

6 Numerical results

In this section we present numerical examples illustrating the performance of the Galerkin
schemes associated with (4.3) and (5.3), confirming the reliability and efficiency of the respective
a posteriori error estimators θ derived in Sections 4.3 and 5.3, and showing the behaviour of the
associated adaptive algorithms. We consider the finite element subspaces X1,h, M1,h, and Mh

given by (4.7), (4.8), and (4.9) with k = 0 for the problem from heat conduction, and the specific
finite element subspaces X1,h, M1,h, and Mh given by (5.6), (5.7), and (5.8) for the problem
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from nonlinear elasticity. All the nonlinear algebraic systems arising from both Galerkin schemes
are solved by the Newton method with a tolerance of 1E-05 and taking as initial iteration the
solution of the associated linear problems with κ, λ̃ and µ̃ constant.

In what follows, N stands for the total number of degrees of freedom (unknowns) of each
Galerkin scheme. In turn, the individual and total errors for the problem from heat conduction
are given by

e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σh‖div,Ω , e(u) := ‖u− uh‖0,Ω ,

and
e(t,σ, u) :=

{
(e(t))2 + (e(σ))2 + (e(u))2

}1/2
,

whereas the effectivity index with respect to θ is defined by

eff(θ) := e(t,σ, u)/θ .

Then, we introduce the experimental rates of convergence

r(t) :=
log(e(t)/e′(t))

log(h/h′)
, r(σ) :=

log(e(σ)/e′(σ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

and

r(t,σ, u) :=
log(e(t,σ, u)/e′(t,σ, u))

log(h/h′)
,

where e and e
′ denote the corresponding errors at two consecutive triangulations with mesh

sizes h and h′, respectively. However, when the adaptive algorithm is applied (see details be-
low), the expression log(h/h′) appearing in the computation of the above rates is replaced by
− 1

2 log(N/N ′), where N and N ′ denote the corresponding degrees of freedom of each triangu-
lation. Similar notations to the above, whose meanings become clear from the tables shown
below, are used for the nonlinear elasticity problem.

The examples to be considered in this section are described next. Examples 1 and 2 are
employed to illustrate the performance of the discrete schemes and to confirm the reliability
and efficiency of the a posteriori error estimator θ when a sequence of quasi-uniform meshes is
considered. Then, Examples 3 and 4 are utilized to show the behavior of the associated adaptive
algorithms, which apply the following procedure from [40]:

1) Start with a coarse mesh Th.

2) Solve the discrete problem for the actual mesh Th.

3) Compute θT (cf. (4.37) and (5.23)) for each triangle T ∈ Th.

4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each T ′ ∈ Th whose indicator θT ′ satisfies

θT ′ ≥
1

2
max

{
θT : T ∈ Th

}
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6) Define resulting mesh as actual mesh Th and go to step 2.

Examples 1 and 3 deal with the problem from heat conduction and take κ : Ω × R
+ → R

given by

κ(x, ρ) := 2 +
1

1 + ρ
∀ (x, ρ) ∈ Ω× R

+ ,

which is easily shown to satisfy (4.2). In these examples we consider Ω =]0, 1[2 and the L-shaped
domain Ω =]− 1, 1[2 \ [0, 1]2, and choose the data f and g so that the exact solutions are given,
respectively, for each x := (x1, x2)

t ∈ Ω by

u(x) := sinx1 cos x2 exp(x1x2) ,

and

u(x) :=
(
x21 + x22

)5/6
sin

(
2θ − π

3

)
, with θ = Arctan

(
x2
x1

)
.

Note that the partial derivatives of the solution of Example 3 are singular at the origin, which
is the middle corner of the L.

In turn, Examples 2 and 4 refer to the problem from nonlinear elasticity and consider the
Lamé functions λ̃, µ̃ : R+ → R defined by

λ̃(ρ) := κ−
1

2
µ̃(ρ) and µ̃(ρ) := κ0 + κ1 (1 + ρ2)(β−2)/2 ∀ ρ ∈ R

+ ,

with the parameters κ = 1, κ0 = κ1 = 0.5, and β = 1.5, which are easily shown to verify
the assumptions (5.2). In these examples we set Ω =]0, 1[2 and the T -shaped domain Ω =
]− 1, 1[2 \

(
[−1,−0.25]× [−1, 0.5]∪ [0.25, 1]× [−1, 0.5]

)
, and choose the data f and g so that the

exact solutions are given, respectively, for each x := (x1, x2)
t ∈ Ω by

u(x) :=




sinx1 cos x2 exp(x1x2)

cosx1 sinx2 exp(−x1x2)


 ,

and

u(x) :=

(∥∥x− (−0.25, 0.5)
∥∥5/3 sin

(
2θ1 + π

3

)
,
∥∥x− (0.25, 0.5)

∥∥5/3 sin

(
2θ2
3

))
t

with

θ1 = Arctan

(
x2 − 0.50

x1 + 0.25

)
and θ2 = Arctan

(
x2 − 0.50

x1 − 0.25

)
.

Note now that the partial derivatives of the solution of Example 4 are singular at the points
(−0.25, 0.5) and (0.25, 0.5), which are the middle corners of the T .

In Tables 6.1 and 6.2 we summarize the convergence history of the mixed finite element
schemes associated with (4.3) and (5.3) as applied to Examples 1 and 2, respectively, for se-
quences of quasi-uniform triangulations of the domains. The number of Newton iterations
required, for the tolerance given, ranges between 3 and 5 for Example 1, and between 1 and
3 for Example 2. We observe in these tables, looking at the corresponding experimental rates
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N h e(t) r(t) e(σ) r(σ) e(u) r(u) eff(θ)
2336 1/16 3.508E−02 − 1.234E−01 − 1.808E−02 − 0.5403
3640 1/20 2.814E−02 0.989 9.884E−02 0.994 1.446E−02 1.000 0.5386
5232 1/24 2.349E−02 0.992 8.244E−02 0.996 1.205E−02 1.000 0.5376
7112 1/28 2.015E−02 0.994 7.070E−02 0.997 1.033E−02 1.000 0.5369
9280 1/32 1.764E−02 0.998 6.188E−02 0.997 9.040E−03 1.000 0.5365

11736 1/36 1.569E−02 0.996 5.502E−02 0.998 8.035E−03 1.000 0.5361
20832 1/48 1.178E−02 0.997 4.128E−02 0.999 6.027E−03 1.000 0.5355
36992 1/64 8.841E−03 0.998 3.097E−02 0.999 4.520E−03 1.000 0.5349
83136 1/96 5.897E−03 0.999 2.065E−02 1.000 3.013E−03 1.000 0.5346

147712 1/128 4.424E−03 0.999 1.549E−02 1.000 2.260E−03 1.000 0.5344
230720 1/160 3.540E−03 0.998 1.239E−02 1.000 1.808E−03 1.000 0.5343
452032 1/224 2.531E−03 0.998 8.854E−03 0.999 1.292E−03 1.000 0.5343
922240 1/320 1.774E−03 0.996 6.200E−03 0.999 9.042E−04 1.000 0.5343

1327872 1/384 1.475E−03 1.014 5.165E−03 1.001 7.533E−04 1.001 0.5343

Table 6.1: Example 1, quasi–uniform scheme

of convergence, that the O(h) predicted by Theorems 4.3 and 5.3 (with δ = 1 in both cases)
is attained by all the unknowns. In particular, as observed in the tenth column of Table 6.2,
the convergence of γh is a bit faster than expected (around 1.4), which could mean either a
superconvergence phenomenon or a special behavior of the particular solutions involved. We
will investigate this issue in a separate work. On the other hand, we notice that the effectivity
indexes eff(θ) remain bounded in both examples (they lie in neighborhoods of 0.53 and 0.34),
which illustrates, in these cases of regular solutions, the reliability and efficiency of θ.

Next, in Tables 6.3, 6.4, 6.5, and 6.6, we provide the convergence history of the quasi-uniform
and adaptive schemes as applied to Examples 3 and 4. The number of Newton iterations required
ranges between 5 and 9, and between 3 and 7, respectively. We notice, as expected, that the
errors of the adaptive methods decrease faster than those obtained by the quasi-uniform ones.
This fact is better illustrated in Figures 6.1 and 6.3 where we display the total errors e(t,σ, u)
and e(t,σ,u,γ) vs. the degrees of freedom N for both refinements. Note that these figures
include additional data on the quasi-uniform refinements that are not shown in the corresponding
tables. Furthermore, the effectivity indexes remain again bounded from above and below, which
confirms the reliability and efficiency of θ in these cases of non-smooth solutions, as well. Some
intermediate meshes obtained with the adaptive algorithm are displayed in Figures 6.2 and 6.4.
It is important to observe here that the adapted meshes concentrate the refinements around the
origin in Example 3, and around the points (−0.25, 0.5) and (0.25, 0.5) in Example 4, which
confirms that the method is able to recognize the singularity regions of the solutions.

Finally, in order to illustrate the accurateness of the Galerkin methods and their associ-
ated adaptive algorithms, in Figures 6.5, 6.6, 6.7, and 6.8, we display some components of the
approximate (left) and exact (right) solutions for all the examples.
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N h e(t) r(t) e(σ) r(σ) e(u) r(u) e(γ) r(γ) eff(θ)
7009 1/16 3.808E−02 − 7.034E−02 − 2.003E−02 − 1.472E−02 − 0.3418

10921 1/20 3.047E−02 1.000 5.628E−02 1.000 1.602E−02 1.000 1.106E−02 1.294 0.3412
15697 1/24 2.539E−02 1.001 4.690E−02 1.000 1.335E−02 1.000 8.693E−03 1.327 0.3409
21337 1/28 2.176E−02 1.002 4.020E−02 1.000 1.145E−02 1.000 7.065E−03 1.351 0.3407
27841 1/32 1.903E−02 1.002 3.517E−02 1.000 1.001E−02 1.000 5.887E−03 1.370 0.3407
35209 1/36 1.691E−02 1.002 3.126E−02 1.000 8.902E−03 1.000 5.003E−03 1.385 0.3406
62497 1/48 1.268E−02 1.002 2.344E−02 1.000 6.676E−03 1.000 3.342E−03 1.407 0.3407

110977 1/64 9.502E−03 1.002 1.758E−02 1.000 5.007E−03 1.000 2.217E−03 1.432 0.3408
173281 1/80 7.598E−03 1.002 1.406E−02 1.000 4.006E−03 1.000 1.607E−03 1.443 0.3409
249409 1/96 6.330E−03 1.002 1.172E−02 1.000 3.338E−03 1.000 1.233E−03 1.453 0.3409
443137 1/128 4.746E−03 1.000 8.790E−03 0.999 2.504E−03 1.000 8.165E−04 1.403 0.3411
692161 1/160 3.796E−03 1.000 7.032E−03 1.000 2.003E−03 1.000 5.909E−04 1.448 0.3412
996481 1/192 3.164E−03 1.000 5.861E−03 1.000 1.669E−03 1.000 4.545E−04 1.440 0.3413

Table 6.2: Example 2, quasi–uniform scheme

N h e(t) e(σ) e(u) e(t,σ, u) r(t,σ, u) eff(θ)
31 1/1 5.636E−01 2.452E−00 4.687E−01 2.559E−00 − 0.6448

399 1/3 1.604E−01 1.034E−00 1.147E−01 1.053E−00 0.659 0.8097
1082 1/5 9.855E−02 7.960E−01 7.043E−02 8.052E−01 0.179 0.8673
2278 1/7 6.725E−02 6.268E−01 4.723E−02 6.322E−01 0.522 0.8949
3654 1/9 5.313E−02 5.333E−01 3.744E−02 5.373E−01 0.176 0.9075
5552 1/11 4.338E−02 4.685E−01 2.998E−02 4.715E−01 0.158 0.9191
7891 1/13 3.625E−02 4.241E−01 2.511E−02 4.263E−01 0.230 0.9304

10266 1/15 3.194E−02 3.925E−01 2.225E−02 3.944E−01 1.314 0.9362
13262 1/17 2.786E−02 3.569E−01 1.950E−02 3.585E−01 0.612 0.9401
18656 1/20 2.370E−02 3.270E−01 1.648E−02 3.283E−01 0.606 0.9481
29359 1/25 1.878E−02 2.808E−01 1.304E−02 2.817E−01 0.704 0.9557
56678 1/35 1.361E−02 2.359E−01 9.424E−03 2.365E−01 0.278 0.9664

114662 1/50 9.532E−03 1.856E−01 6.630E−03 1.859E−01 0.869 0.9731
184770 1/63 7.495E−03 1.527E−01 5.208E−03 1.530E−01 0.706 0.9753
297995 1/80 5.916E−03 1.376E−01 4.116E−03 1.378E−01 0.189 0.9809
460480 1/100 4.756E−03 1.170E−01 3.300E−03 1.172E−01 0.411 0.9830
909848 1/140 3.382E−03 9.395E−02 2.348E−03 9.404E−02 0.582 0.9866

1185751 1/160 2.967E−03 8.094E−02 2.056E−03 8.102E−02 1.116 0.9861

Table 6.3: Example 3, quasi–uniform scheme
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N h e(t) e(σ) e(u) e(t,σ, u) r(t,σ, u) eff(θ)
31 1.000 5.636E−01 2.452E−00 4.687E−01 2.559E−00 − 0.6448

116 0.707 3.101E−01 1.764E−00 2.393E−01 1.807E−00 0.528 0.7420
344 0.707 1.851E−01 1.244E−00 1.448E−01 1.266E−00 0.654 0.7727
613 0.500 1.486E−01 9.065E−01 1.141E−01 9.257E−01 1.084 0.7500
971 0.500 1.325E−01 7.161E−01 1.002E−01 7.352E−01 1.002 0.7150

1439 0.354 1.093E−01 5.544E−01 7.864E−02 5.706E−01 1.289 0.6969
1992 0.250 8.809E−02 4.759E−01 6.360E−02 4.881E−01 0.960 0.7189
3093 0.250 7.049E−02 3.828E−01 5.170E−02 3.926E−01 0.989 0.7183
4622 0.177 6.109E−02 2.985E−01 4.418E−02 3.079E−01 1.211 0.6802
7705 0.125 4.412E−02 2.372E−01 3.224E−02 2.435E−01 0.919 0.7098

12071 0.125 3.512E−02 1.935E−01 2.560E−02 1.983E−01 0.914 0.7192
17208 0.088 3.139E−02 1.545E−01 2.268E−02 1.593E−01 1.235 0.6796
29560 0.063 2.246E−02 1.226E−01 1.627E−02 1.256E−01 0.877 0.7135
47566 0.063 1.766E−02 9.796E−02 1.281E−02 1.004E−01 0.945 0.7177
67440 0.044 1.592E−02 7.840E−02 1.145E−02 8.082E−02 1.241 0.6769

118541 0.044 1.129E−02 6.189E−02 8.180E−03 6.344E−02 0.858 0.7123
189949 0.031 8.853E−03 4.947E−02 6.400E−03 5.066E−02 0.954 0.7179
265901 0.022 8.003E−03 3.990E−02 5.752E−03 4.110E−02 1.243 0.6792
471990 0.022 5.663E−03 3.137E−02 4.102E−03 3.214E−02 0.857 0.7144
754889 0.016 4.441E−03 2.505E−02 3.202E−03 2.565E−02 0.962 0.7198

1052262 0.011 4.018E−03 2.024E−02 2.884E−03 2.083E−02 1.252 0.6817

Table 6.4: Example 3, adaptive scheme
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Figure 6.1: Example 3, e(t,σ, u) vs. N
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Figure 6.2: Example 3, adapted meshes with 3093, 7705, 17208, and 29560 degrees of freedom

N h e(t) e(σ) e(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) eff(θ)
184 1/1 4.559E−01 1.038E−00 2.681E−01 6.425E−01 1.331E−00 − 0.3549
745 1/3 1.955E−01 5.934E−01 1.018E−01 1.364E−01 6.475E−01 0.949 0.5292

2212 1/5 1.116E−01 4.096E−01 6.021E−02 6.107E−02 4.331E−01 0.750 0.6055
3817 1/7 8.701E−02 3.638E−01 4.502E−02 4.496E−02 3.794E−01 0.557 0.6561
6256 1/9 6.572E−02 2.981E−01 3.485E−02 2.810E−02 3.085E−01 0.662 0.6897
9211 1/11 5.351E−02 2.519E−01 2.917E−02 2.267E−02 2.602E−01 0.620 0.6999

13297 1/13 4.484E−02 2.330E−01 2.433E−02 2.004E−02 2.393E−01 0.855 0.7310
17953 1/15 3.905E−02 2.133E−01 2.091E−02 1.478E−02 2.184E−01 1.180 0.7530
23281 1/17 3.399E−02 1.904E−01 1.830E−02 1.295E−02 1.946E−01 1.344 0.7592
31873 1/20 2.916E−02 1.745E−01 1.577E−02 1.082E−02 1.780E−01 0.617 0.7795
50620 1/25 2.303E−02 1.505E−01 1.249E−02 8.023E−03 1.530E−01 0.661 0.8052
98572 1/35 1.647E−02 1.245E−01 8.849E−03 4.925E−03 1.260E−01 0.412 0.8446

203521 1/50 1.144E−02 9.795E−02 6.166E−03 3.000E−03 9.886E−02 0.643 0.8732
321172 1/63 9.091E−03 8.151E−02 4.905E−03 2.233E−03 8.219E−02 1.133 0.8824
519349 1/80 7.151E−03 7.079E−02 3.851E−03 1.667E−03 7.127E−02 0.955 0.9005
813916 1/100 5.696E−03 5.672E−02 3.080E−03 1.258E−03 5.710E−02 1.206 0.9016

1168369 1/120 4.761E−03 5.340E−02 2.568E−03 1.022E−03 5.368E−02 0.339 0.9201
1599502 1/140 4.067E−03 5.008E−02 2.200E−03 8.364E−04 5.030E−02 0.422 0.9322

Table 6.5: Example 4, quasi–uniform scheme
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N h e(t) e(σ) e(u) e(γ) e(t,σ,u,γ) r(t,σ,u,γ) eff(θ)
184 1.000 4.559E−01 1.038E−00 2.681E−01 6.425E−01 1.331E−00 − 0.3549
478 0.707 2.437E−01 7.089E−01 1.513E−01 2.229E−01 7.966E−01 1.075 0.4503

1315 0.451 1.543E−01 4.896E−01 9.529E−02 1.374E−01 5.399E−01 0.769 0.4692
2521 0.375 1.145E−01 4.091E−01 7.060E−02 9.900E−02 4.419E−01 0.616 0.5079
4750 0.250 8.519E−02 3.021E−01 4.982E−02 6.101E−02 3.235E−01 0.984 0.5280

10390 0.188 5.581E−02 2.173E−01 3.519E−02 4.198E−02 2.309E−01 0.862 0.5383
17332 0.125 4.600E−02 1.705E−01 2.647E−02 3.096E−02 1.812E−01 0.948 0.5450
27646 0.125 3.562E−02 1.361E−01 2.115E−02 2.359E−02 1.442E−01 0.977 0.5520
39226 0.094 2.937E−02 1.128E−01 1.828E−02 1.990E−02 1.197E−01 1.066 0.5449
66862 0.088 2.319E−02 8.580E−02 1.383E−02 1.378E−02 9.100E−02 1.028 0.5420

108520 0.063 1.797E−02 6.903E−02 1.054E−02 1.100E−02 7.294E−02 0.913 0.5567
157513 0.047 1.470E−02 5.630E−02 9.191E−03 8.916E−03 5.958E−02 1.087 0.5482
265285 0.044 1.159E−02 4.353E−02 6.988E−03 6.373E−03 4.603E−02 0.990 0.5480
426394 0.031 9.028E−03 3.491E−02 5.352E−03 4.804E−03 3.677E−02 0.947 0.5618
596311 0.023 7.521E−03 2.915E−02 4.671E−03 3.945E−03 3.072E−02 1.072 0.5580
899497 0.023 6.386E−03 2.445E−02 3.814E−03 4.002E−03 2.587E−02 0.836 0.5546

1183669 0.016 5.539E−03 2.099E−02 3.313E−03 3.010E−03 2.216E−02 1.127 0.5568
1594771 0.016 4.752E−03 1.814E−02 2.825E−03 2.628E−03 1.914E−02 0.982 0.5598

Table 6.6: Example 4, adaptive scheme
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Figure 6.3: Example 4, e(t,σ,u,γ) vs. N
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Figure 6.4: Example 4, adapted meshes with 10390, 17332, 39226, and 66862 degrees of freedom

Figure 6.5: Example 1, approximate and exact σ1 and t2 (N = 36992)
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Figure 6.6: Example 2, approximate and exact σ11 and u2 (N = 173281)

Figure 6.7: Example 3, approximate and exact σ2 and u (N = 189949) for adaptive scheme

Figure 6.8: Example 4, approximate and exact t11 and u2 (N = 108520) for adaptive scheme
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problem. Modélisation Mathématique et Analyse Numérique, vol. 25, pp. 561-578, (1991).

[18] G.N. Gatica, Solvability and Galerkin approximations of a class of nonlinear operator
equations. Zeitschrif für Analysis und ihre Anwendungen, vol. 21, 3, pp. 761-781, (2002).

36



[19] G.N. Gatica, L.F. Gatica, and E.P. Stephan, A dual-mixed finite element method for
nonlinear incompressible elasticity with mixed boundary conditions. Computer Methods in
Applied Mechanics and Engineering, vol. 196, 35-36, pp. 3348-3369, (2007).
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