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Abstract

We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in
2D. The model consists of an elastic body which is subject to a given incident wave that travels in the
fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin
boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior
boundary, which is located far from the obstacle. The media are governed by the elastodynamic
and acoustic equations in time-harmonic regime, respectively, and the transmission conditions are
given by the equilibrium of forces and the equality of the corresponding normal displacements.
We first apply dual-mixed approaches in both domains, and then employ the governing equations
to eliminate the displacement u of the solid and the pressure p of the fluid. In addition, since
both transmission conditions become essential, they are enforced weakly by means of two suitable
Lagrange multipliers. As a consequence, the Cauchy stress tensor and the rotation of the solid,
together with the gradient of p and the traces of u and p on the boundary of the fluid, constitute
the unknowns of the coupled problem. Next, we show that suitable decompositions of the spaces to
which the stress and the gradient of p belong, allow the application of the Babuska-Brezzi theory
and the Fredholm alternative for analyzing the solvability of the resulting continuous formulation.
The unknowns of the solid and the fluid are then approximated by a conforming Galerkin scheme
defined in terms of PEERS elements in the solid, Raviart-Thomas of lowest order in the fluid, and
continuous piecewise linear functions on the boundary. Then, the analysis of the discrete method
relies on a stable decomposition of the corresponding finite element spaces and also on a classical
result on projection methods for Fredholm operators of index zero. Finally, some numerical results
illustrating the theory are presented.
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1 Introduction

In this paper we focus again on the two-dimensional fluid-solid interaction problem studied recently
in [6] (see also [8] for a version employing boundary integral equation methods). More precisely, we
consider an incident acoustic wave upon a bounded elastic body (obstacle) fully surrounded by a fluid,
and are interested in determining both the response of the body and the scattered wave. The obstacle
is supposed to be a long cylinder parallel to the x3-axis whose cross-section is §25. The boundary
of €, is denoted by . We assume that the incident wave and the volume force acting on the body
exhibit a time-harmonic behaviour with e™*“? ansatz and phasors p; and f, respectively, so that p;
satisfies the Helmholtz equation in R?\Q,. Hence, since the phenomenon is supposed to be invariant
under a translation in the x3-direction, we may consider a bidimensional interaction problem posed
in the frequency domain. In this way, in what follows we let o5 : Q, — C>*2 u: Q, — C?, and
p : R2\Q, — C be the amplitudes of the Cauchy stress tensor, the displacement field, and the total
(incident + scattered) pressure, respectively, where C stands for the set of complex numbers.

The fluid is assumed to be perfect, compressible, and homogeneous, with density p; and wave
w

number ky := —, where vg is the speed of sound in the linearized fluid, whereas the solid is supposed
V)

0
to be isotropic and linearly elastic with density ps and Lamé constants p and A. The latter means, in
particular, that the corresponding constitutive equation is given by Hooke’s law, that is

os = AMre(u)I + 2pue(u) in Q,

where e(u) := 1 (Vu + (Vu)*) is the strain tensor of small deformations, V is the gradient tensor, tr
denotes the matrix trace, * stands for the transpose of a matrix, and I is the identity matrix of C2*2,
Consequently, under the hypotheses of small oscillations, both in the solid and the fluid, the unknowns
o, u, and p satisfy the elastodynamic and acoustic equations in time-harmonic regime, that is:

dive, + k2u = —f in Q,

Ap + ﬁfep 0 in R2\Q,,

where the wave number k¢ of the solid is defined by ,/ps w, together with the transmission conditions:

oV = —pv on X,
prwiu-v = % on X, (1)
and the behaviour at infinity given by
p—pi = O(r™") (1.2)
and
a(pa—rpi) ks (p—pi) = oz V), (1.3)
asr = ||x|| — -oo, uniformly for all directions ﬁ Hereafter, div stands for the usual divergence

operator div acting on each row of the tensor, ||x|| is the euclidean norm of a vector x := (1, 22)* € R?
and v denotes the unit outward normal on ¥, that is pointing toward R?\€2,. The transmission condi-
tions given in (1.1) constitute the equilibrium of forces and the equality of the normal displacements
of the solid and fluid, whereas the equation (1.3) is known as the Sommerfeld radiation condition.



The coupling of dual-mixed and primal finite element methods is applied in [6] to analyze the
above interaction problem. Actually, the original model is first simplified by assuming that the fluid
occupies a bounded annular region €27, whence a Robin boundary condition imitating the behavior of
the scattered field at infinity is imposed on the exterior boundary of €2y, which is located far from the
obstacle. Then, the approach in [6] employs a dual-mixed variational formulation for plane elasticity
in the solid and keeps the usual primal formulation in the linearized fluid region. In addition, the
elastodynamic equation is used to eliminate the displacement unknown from the resulting formulation.
Furthermore, since one of the transmission conditions becomes essential, it is enforced weakly by means
of a Lagrange multiplier. As a consequence, the stress tensor in the solid and the pressure in the fluid,
which solves the Helmholtz equation, constitute the main unknowns. Next, a judicious decomposition
of the space of stresses renders suitable the application of the Fredholm alternative and the Babuska-
Brezzi theory for the analysis of the whole coupled problem. The corresponding discrete scheme is
defined with PEERS elements in the obstacle and the traditional first order Lagrange finite elements
in the fluid domain. The stability and convergence of this Galerkin method also relies on a stable
decomposition of the finite element space used to approximate the stress variable. On the other hand,
the strategy from [6] is modified in [8] in such a way that, instead of introducing a Robin condition on
the exterior boundary, a non-local absorbing boundary condition based on boundary integral equations
is considered there. Consequently, the exterior boundary can be chosen as any parametrizable smooth
closed curve containing the solid, which, in order to minimize the size of the computational domain,
is adjusted as sharply as possible to the shape of the obstacle. The rest of the analysis for the
corresponding continuous and discrete formulations follows very closely the techniques and arguments
developed in [6]. We refer to [8] for further details on this modified approach.

The goal of the present paper is to additionaly extend the approach from [6] and [8] by employing
now dual-mixed formulations in both media. This means that, besides o5, we now set the additional
unknown

of = Vp in R\Q,,

so that the Helmholtz equation and the second condition in (1.1) are rewritten, respectively, as
divey + Fc}p =0 in RAHQ,, (1.4)

and
2

of-Vv =pfwu-v on 3. (1.5)
The introduction of o and the resulting equation (1.4) is motivated by the eventual need of obtaining
direct and more accurate finite element approximations for the pressure gradient o := Vp (instead
of applying numerical differentiation, with the consequent loss of accuracy, to the approximation of p
arising from the usual primal formulation). The above is required, for instance, to solve the inverse
problem related to the Helmholtz equation, in which the boundary integral representation of the far
field pattern, a crucial variable in an associated iterative algorithm, depends on both the trace of p
and the normal trace of o (see, e.g. [5, Chapter 2, Theorem 2.5]). To this respect, a H(div)-type
approximation of o is certainly better suited for this purpose. Moreover, since both transmission
conditions become now essential, they are enforced weakly by using the traces of the displacement
and the pressure on the interface as suitable Lagrange multipliers. Hence, the fact that these variables
of evident physical interest can also be approximated directly from the associated Galerkin schemes,
constitute another important advantage of the fully-mixed approach proposed here. The rest of this
work is organized as follows. In Section 2 we redefine the fluid-solid interaction problem on an annular
domain Qy C R? (as in [6] and [8]), and derive the associated continuous variational formulation.
Then, in Section 3 we utilize the Fredholm and Babuska-Brezzi theories to analyze the resulting saddle



point problem and provide sufficient conditions for its well-posedness. The corresponding Galerkin
scheme is studied in Section 4. Finally, some numerical experiments illustrating the theoretical results
are reported in Section 5.

We end this section with further notations to be used below. Since in the sequel we deal with
complex valued functions, we use the symbol ¢ for /—1, and denote by z and |z| the conjugate and
modulus, respectively, of each z € C. Also, given 75 := (7;5), s = ((ij) € C**2, we define the

deviator tensor 7¢ := 14 — %tr(rs) I, the tensor product 75 : {, = Z?,j:l 7ij Gij, and the conjugate
tensor T, := (T;). In turn, in what follows we utilize standard simplified terminology for Sobolev

spaces and norms. In particular, if O is a domain, S is a closed Lipschitz curve, and r € R, we define
H™(0) := [H"(0)]?, H'(0) := [H"(0)]**?, and H'(S) := [H"(S)]?.

However, when 7 = 0 we usually write L2(0), L2(0), and L?(S) instead of H°(0), H°(O), and H’(S),
respectively. The corresponding norms are denoted by || - ||.,0 (for H"(O), H"(O), and H"(0O)) and
| - |lrs (for H"(S) and H"(S)). In general, given any Hilbert space H, we use H and H to denote
H? and H?*2) respectively. In addition, we use (-,-)s to denote the usual duality pairings between
H~Y2(8) and H'/?(S), and between H~1/2(S) and H'/?(S). Furthermore, the Hilbert space

H(div; 0) := {w € L%(0): divw e LZ(O)} ,

is standard in the realm of mixed problems (see [4], [11]). The space of matrix valued functions whose
rows belong to H(div; O) will be denoted H(div; O). The Hilbert norms of H(div; O) and H(div; O)
are denoted by || - ||aiv:0 and || - [|div:0, respectively. Note that if 7 € H(div; O), then div T € L*(0O).
Finally, we employ 0 to denote a generic null vector (including the null functional and operator), and
use C' and ¢, with or without subscripts, bars, tildes or hats, to denote generic constants independent
of the discretization parameters, which may take different values at different places.

2 The continuous variational formulation

We first observe, as a consequence of (1.2) and (1.3), that the outgoing waves are absorbed by the far
field. According to this fact, and in order to obtain a convenient simplification of our model problem,
we now proceed similarly as in [6] and introduce a sufficiently large polyhedral surface I" approximating
a sphere centered at the origin, whose interior contains €. Then, we define (2 as the annular region
bounded by ¥ and I', and consider the Robin boundary condition:

ofV —1kfp =g :=Vp;-v —akgp; on I,

where v denotes also the unit outward normal on I'. Therefore, given f € L?(Q,) and g € H~'/2(I),
we are now interested in the following fluid-solid interaction problem: Find o, € H(div;Qs), u €
H!(Qy), o5 € H(div;Qy), and p € H'(), such that there hold in the distributional sense:

os = Ce(u) in Q,
divo, + ﬁzu = —f in €,
o = Vp in Qp,

divey + w5p = 0 in Q, (2.1)
o,V = —pv on X,
ofv = pwau-u on X,
ofV —1kfp = ¢ on I,



where C is the elasticity operator given by Hooke’s law, that is
CC, = Mr(¢)TI + 2u¢, V¢, € L2(9Q,). (2.2)
It is clear from (2.2) that C is bounded and invertible and that the operator C~! reduces to

LA
207" Ap (At p)

In addition, the above identity and simple algebraic manipulations yields

cre, tr(¢,)I V¢, € L2(Q,).

[ et = o IR, Ve € L), 23)
Qs K

We now apply dual-mixed approaches in the solid 2, and the fluid Qf to derive the fully-mixed
variational formulation of (2.1). Indeed, following the usual procedure from linear elasticity (see [1],
[6] and [19]), we first introduce the rotation

v = %(Vu— (VW) € 12, (Q,)

asym

as a further unknown, where Lzsym(Qs) denotes the space of asymmetric tensors with entries in L?(€2).

According to this, the constitutive equation can be rewritten in the form
Clo, =¢e(u) = Vu — ~,

which, multiplying by a function 7, € H(div;{),) and integrating by parts, yields

C_105:7-5+/ u~div7's<7'51/,u)g+/ Ts:7 = 0. (2.4)
QS S

S

Then, using the elastodynamic equation (cf. second equation of (2.1)) to eliminate u in €, and
introducing the additional unknown

Ps = u|2 S HI/Z(E)’ (25)
we find that (2.4) becomes
1 1 . . 1 .
Cos:iTs — — divos -divrs — (tsv, 0,0y + TsiY = — f-divrs. (2.6)
Qs K/S s s K/S Qs

Similarly, multiplying the constitutive equation oy = Vp in Q by 75 € H(div;{2¢), integrating
by parts, noting that the normal vector points inward €2y on ¥, replacing from the Helmholtz equation
p = — %2 divoy in 0y, and introducing the auxiliary unknown

f

Qof = (9027901“) = (p|z,p!r) € H1/2(E) X H1/2(F)’ (27)

we arrive at

1 ) )
/ of-Tf — ) / divesdivry + (15 -v,05)x — (T7-v,90)r = 0. (2.8)
Qy f /8y
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Finally, the symmetry of o, the transmission conditions on 3, and the Robin boundary condition
on I' are imposed weakly through the relations:

/Us:n = 0 VN € Ligyn(Qs),

o s — (o) = 0 e HEE),
(o7 v, ¥g)y — pre® (v, @)y = 0 vy, € HY2(T),
—{opv, o) +erg e, drdp = = (9, % )p Vi € HY2(D),

where the traces of u and p have been replaced by the new unknowns introduced in (2.5) and (2.7), the
expression (¢, - v, 1)y )y in the second transmission condition has been rewritten as (¥, v, @, )y,
and the signs of the first transmission condition and the Robin boundary condition have been changed
for convenience. Note that ¢, and ¢, constitute precisely the Lagrange multipliers associated with
the transmission and Robin boundary conditions.

Throughout the rest of the paper we make the identification H(09) = H'(X) x H'(T) for each
t € R, with the norm || ¢|lr.00, = [¥glles + [[¢pller for each v, := (¢y,9) € HY(08y).

Therefore, adding (2.6), (2.8), and (2.9), and defining the spaces

H = H(div; Q) x H(div; Q) and Q := L2 () x HY2(Z) x HY2(8Qy),

asym

we arrive at the following fully-mixed variational formulation of (2.1): Find ¢ := (o,,0f) € H and
% = (77 (psasof) € Q such that

A(e,7) + B(T,y) = F(7) VT = (15,7f) € H,
(2.10)

13((7377) + }<(‘7777) = (;(77) \777 = (777@bs71bf) € (27

where F': H — C and G : Q — C are the lineal functionals
~ 1 . ~
F(7) = 2/ f-divry, V7T := (r,,75) € H,
Ks JQ,
G(ﬁ) = _<97 ’QZ}F >1“ Vﬁ = (77,1/’37¢f) = (777’%03,(%[)2’7%)) € Q’
and A:HxH—-C, B:HxQ —C, and K : Q x Q — C are the bilinear forms defined by
PN —1 1 . . 1 i .
A, T) = CC:iTs — = div(, -divr, + CrTr——> div(ydivry

Y (C.7) == ((CoCp)s (Ts,75)) € Hx H,

B(T,m) = Bs(rs,(n,%5)) + By(rp,%p)  V(T,m) = (76, 75), (MY, %)) € HxQ, (2.12)

Bu(re, (m.4h,)) == / oin — (revytby)n, (2.13)
Bp(Ty,by) = (Tp-v,bg)s — (T7-vod)r, (2.14)
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and
K(527ﬁ) == <§E V?d’s)E - pfw2 <¢2 V7£s>2 =+ Z’k‘;f <§F7¢F>F

VX = (€ €r) = (X €5 (6:,60)) € Q, (2.15)
V,ﬁ = (Ir]v’lps’,lﬁbf) = (n7¢sa(wz7¢r)) € Q

It is straightforward to see, applying the Cauchy-Schwarz inequality, the duality pairings (-, )x
and (-, -)r, and the usual trace theorems in H(div;(2s) and H(div; ), that F', G, A, B, B, By, and
K are all bounded with constants depending on g, p, k¢, py, and w.

3 Analysis of the continuous variational formulation

In this section we proceed analogously to [6] and employ suitable decompositions of H(div; {2,) and
H(div; Q) to show that (2.10) becomes a compact perturbation of a well-posed problem. To this
end, we now need to introduce two projectors defined in terms of auxiliary Neumann boundary value
problems posed in €2 and €2, respectively.

3.1 The associated projectors

We begin by recalling from the analysis in [6, Section 4.1] the definition of the projector in Q. In
fact, let us first denote by RM(€2,) the space of rigid body motions in g, that is

RM(Qs) = {V:QS%CQ: v(x):<a>+c< x2> Vx::<x1>€Qs,a,b,c€C},
b —I1 X9

and let M : L2(Q,) — RM(€) be the associated orthogonal projector. Then, given 74 € H(div;Qy),
we consider the boundary value problem

s =Ce(u) in Q, dive;, = (I-M)(divry) in €,
(3.1)
g;v =0 on X, uc (I-M)(L*Q)),

where Ce(u) is defined according to (2.2). Hereafter, I denotes also a generic identity operator.
Note that the application of the operator I — M on the right hand side of the equilibrium equation is
needed to guarantee the usual compatibility condition for the Neumann problem (3.1) (cf. [3, Theorem
9.2.30]), and that the orthogonality condition on u is required for uniqueness. Indeed, it is well known
(see, e.g. [7, Section 3, Theorem 3.1]) that (3.1) is well-posed. In addition, owing to the regularity
result for the elasticity problem with Neumann boundary conditions (see, e.g. [12], [13]), we know
that (G, 01) € HE(Qg) x H!T¢(€y), for some € > 0, and there holds

16slle, + lallhiten, < Clldivrsfog, - (3.2)

We now introduce the linear operator Py : H(div; ) — H(div; Q) defined by

Ps(rs) :== &5 Vs € H(div; Qy), (3.3)
where 65 := Ce(u) and u is the unique solution of (3.1). It is clear from (3.1) that
P,(15)" = Py(rs) in Q,, divPy(7;) = I-M)(divr,) in Q,, (3.4)
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and
Ps(rs)v = 0 on X. (3.5)

Then, the continuous dependence result for (3.1) gives

IPs(75)lldivse, < ClldivTs

lo.0. V1, € H(div; Qy),

which shows that Py is bounded. Moreover, it is easy to see from (3.1), (3.3), (3.4), and (3.5) that P
is actually a projector, and hence there holds

H(div;Qs) = Ps(H(div;Qs)) & (I —Py)(H(div;Qsy)) . (3.6)
Finally, it is clear from (3.2) that P(7s) € H(Qs) and

||PS(TS)||E,QS < C||diVTs|

0,02 V1, € H(div; Q). (3.7)

We proceed analogously for the domain Q. In fact, let Py(§2¢) be the space of constant polynomials
on Qy, and let J : L*(Qf) — Py(€2f) be the corresponding orthogonal projector. Then, given 7 €
H(div;Q¢), we consider the Neumann boundary value problem

oy =Vp in Qp, divey = (I-J)(divry) in Q,
(3.8)
grprv=0 on SUDL, ped-I)(L*Q)).

Analogue remarks to those given for the compatibility condition and uniqueness of solution of (3.1)
are valid here with J instead of M. In addition, it is not difficult to see that (3.8) is well-posed as
well. Furthermore, the classical regularity result for the Poisson problem with Neumann boundary
conditions (see, e.g. [12], [13]) implies that (6 ¢,p) € H (Qy) x H'T¢(Qy), for some € > 0 (parameter
that can be assumed, from now on, to be the same of (3.2)), and that

16 flles, + [lisen, < Clldivrsllon, (3.9
We now define the linear operator Py : H(div; Q) — H(div; Q) by
Py(ty) := oy VT € H(div; Qy), (3.10)
where 6 := Vp and p is the unique solution of (3.8). It follows that
divPy(ry) = I—=J)(divry) in Qf and Py(ry)-v =0 on T UT. (3.11)
In addition, thanks to the continuous dependence result for (3.8), there holds
IPr(Tp)llaivie, < Clldivrylloe, — Vry € H(div;Qy),

which shows that Py is bounded. Furthermore, it is straightforward from (3.8), (3.10), and (3.11)
that Py is a projector, and therefore

H(div; Qf) = Py (H(div;Qy)) @ (I—Py) (H(div;Qy)) . (3.12)
Also, it is clear from (3.9) that P;(7;) € H(Qy) and

IPs(rp)llee, < Cldivrslloe,  V7r € H(div;€y). (3.13)



3.2 Decomposition of the bilinear form A

We begin the analysis by introducing the bilinear forms A} : H(div; Q) x H(div;Qs) — C and
A}' s H(div; Q) x H(div; Q) — C given by

1
A:(CS’T‘S) = C_l Cs P Ts + 2 / div CS -div Ts \V/Csa Ts € H(diV, Qs)’ (314)
Qs Ry s
and
Cfva / CpeiTy + — / div(y-divry V¢, Ty € H(div;Qy), (3.15)

which are clearly bounded, symmetric, and positive semi-definite. Actually, it is straightforward to
see from (3.15) that A? is H(div; Q¢)-elliptic, that is there exists a}“ := min {1, H%} > 0 such that
¥

Af(rp,75) = of ITsllae,  V7r € H(div;Qp), (3.16)

and we show below in Section 3.3 that Al is also elliptic but on a subspace of H(div; Q).

In what follows, we employ the decompositions (3.6) and (3.12) to reformulate (2.10) in a more

suitable form. More precisely, the unknown ¢ := (o,,0f) and the corresponding test function
T := (Ts,7y), both in H, are replaced, respectively, by the expressions

o; = Py(os) + I1-Ps)(os), o5 =Pyloy) + (I-Py)(oy) (3.17)
and

Ts = Py(rs) + T=Py)(7s), 75 =Ps(ry) + I-Py)(7y). (3.18)

To this respect, we observe, according to (3.4), (3.5), and the fact that Vv € LZ,(€) for all
v € RM(y), that for all {,, 75 € H(div; Qs), there holds

/ div(I - P,)(¢,) - divPy(7s) = / M(div ¢,) - div Pg(75)
s s (3.19)
- /Q.VM(dist) 1 Py(7s) + (Ps(ms) v, M(div(,) )y =0.

Analogously, according to (3.11), we deduce that for all ¢, 7y € H(div;{y), there holds

div(iI-P divP (1) = J(div divP (T
/Qf (I-Py)(¢y) f(ry) = J(div(y) /Qf 7(T5) 520
= J(div¢,) {(Ps(rg) v, r = (Py(ry) v, s} = 0.

Hence, using the decompositions (3.6) and (3.12), and the identities (3.19) and (3.20), and adding
and substracting suitable terms, we find that A (cf. (2.11)) can be decomposed as

A7) = A7) + Ko(C.7)  V(C.7) = (€ Cp)s (T5,7y)) € Hx H,

where Ag: Hx H — C and Ky : H x H— C are given by
Ao(8,7) = AslCorms) + Af(Cpi7p) (3.21)

9



and

KO(Za ?) = KS(CsvTS) + Kf(Cfan)’ (3'22)

with the bilinear forms Ay : H(div;Q,) x H(div; Q) — C, Ay : H(div;Qf) x H(div;Qf) — C,
K, : H(div; Q) x H(div; Q) — C, and Ky : H(div; Qf) x H(div; Qf) — C defined by

As (€ 7s)) 1= — AT(Ps(C,), Ps(T5)) + AT (T —Ps)(C,), (T = Ps)(75)) (3.23)
Ap(Cpomy) = —AF(Py(Cp), Pr(Ty)) + AT (X =Pp)(Cy), (T—Pp)(Ty)), (3.24)

K (€, 7s)) =2 C_IPS(Cs) 1 Py(Ts) + C_IPS(Cs) t(I=P)(7s)
2 . 2 (3.25)
+ / CTHI-P)(C)  P(ry) — (14 ) / div(I — P,)(C,) - div(I — P,)(ry) ,

s S

and

2 (3.26)

+ /Qf (I—Pf)(cf)~Pf(Tf) - (1+ ) /ﬂf diV(I—Pf)(Cf)-diV(I—Pf)(Tf).

2
Ky

Next, welet A gy H—H, Ko H—H, B: H— Q and K: Q — Q be the linear and bounded
operators induced by the bilinear forms (3.21), (3.22), (2.12), and (2.15), respectively. In addition, we
let B* : Q — H be the adjoint of B, and denote by F and G the Riesz representants of the functionals
F and G. Hence, using these notations and taking into account the decompositions (3.17) and (3.18),

the fully-mixed variational formulation (2.10) can be rewritten as the following operator equation:
Find (¢,7) € H x Q such that

A, B* o Ko O c\ [(F
(5 %) (3) (0 ) (3)-(e) 52
Moreover, it is quite straightforward from the definitions of Ay (cf. (3.21)) and B (cf. (2.12)) that
(up to a permutation of rows) there holds

A, B 0 o
Ay BT (G _|_B. 0 0. 2) (32)
B 0 3 o A; B} o |’ '
Bf 0 Pr

where A : H(div; Q) — H(div;Qs), Bs : H(div; Q) — Lzsym(Qs) x HY2(Z), Ay : H(div; Qf) —

H(div; Qy), and By : H(div; Q) — H1/2(8Qf) are the bounded linear operators induced by Ay, B,
Ay, and By, respectively.

In the following section we show that the matrix operators on the left hand side of (3.27) become
bijective and compact, respectively. In particular, concerning the bijectivity issue, and because of the
block-diagonal saddle point structure shown by the right-hand side of (3.28), it suffices to apply the
well known Babuska-Brezzi theory independently to each one of the two blocks arising there.
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3.3 Application of the Babuska-Brezzi and Fredholm theories

We begin with the continuous inf-sup conditions for the bilinear forms B and By, which are equivalent
to the surjectivity of By and By, respectively. For this purpose, we first notice from (2.13) and (2.14)
that these operators are given by

Bi(7s) = (;(Ts —75), —Rs(Ts 1/)> V1s € H(div;Qy), (3.29)
and
B¢(ts) = (Ry(Ts-v),— R (T V)) VT e H(div; Qy), (3.30)

where R, : H V/2(2) = HY/2(X), Ry, : H /(%) — HY*(X), and R,. : H~Y2(T') — H'/?(T'), are the
respective Riesz operators. Hence, we have the following lemmas.

Lemma 3.1 There exists Bs > 0 such that

sup |BS(TS7(7’)¢S) |

> Bl )l V() € L2 m(Q) x HY2(S).
ToeHdivio\{0}  |ITslldivia,

Proof. We proceed as in the proof of [9, Lemma 4.1]. Given (n,,) € L2, () x H/2(X) we let

asym
z € H'(£,) be the unique (up to a rigid motion) solution of the variational formulation

/ e(z) :e(w) = — / r(n,v,) w — / n:Vw + (R;1 (), w)s Vwe HY(Q,), (3.31)
Qs Qs

Qs

where r(n,1,) € RM(Qy) is characterized by

/ r(n,v,) w = —/ n:Vw + (R;1 (), w)s Vw € RM(Qy).

s s

Then, defining {, := &(z) + n, we find from (3.31) that div{, = r(n,v,) in Q, whence ¢, €
H(div; Qs), and thus {,v = —R;(,) on . It follows that Bs(¢,) = (n,%,), which proves the
surjectivity of Bs.

O

Lemma 3.2 There exists 3y > 0 such that

Br(Ts,
sup | Be(Ts,94) |

' > Brll¥ylli/2,00; Vb = (Ug,9r) € H'2(09y).
rerdivienor  7rlldaivio;

Proof. Given 9, = (¢y,%) € H1/2(8Qf), we let z € H'(Qy) be the unique solution (up to a
constant) of the Neumann boundary value problem

b
Q]

Vzov =R ' ipy) on B, Vzev=-R'¢.) on TI.

Az = o { RS We) s + (R (W), e} i 9y,

(3.32)

Then, defining ¢y := Vz in Qp, we easily see that
Bf(Cf) = (Rz(Cf ' V)a _RF(C]" ' V)) = (¢27¢p)7

which shows that By is surjective.

11



O

We now let V, and V¢ be the kernels of B, and By, respectively, that is, according to (3.29) and
(3.30),

Vi ::{TSEH(diV;QS)Z T =7 in Qs, Tsv=0 on E}, (3.33)
V= {TfeH(div;Qf): Tprv =0 on ¥, T;-v=0 on F}, (3.34)

and aim to prove that A,|v,xv, and A¢|v ;xv, induce bijective operators. In particular, for A, we
proceed as in [6, Section 4.2] and make use of the decomposition

H(div; Q) = Hp(div;Qs) & CT,

with
Ho(div; Q) := {TS € H(div; Q) : / trrs =0 }, (3.35)
and the inequalities S
I3 0, + IdivrslBo, = elrsolia,  V7s € H(div; Q) (3.36)
(cf. [4, Proposition 3.1, Chapter IV]), and

HTs,O”(Ziiv;Qs > o2 |74l v, V1, € H(div; Q) (3.37)

(cf. [6, Lemma 4.5]), with
H(div; Q) = {’7’5 € H(div;Qs): 7sv =0 on X }, (3.38)

where each 7, € H(div; <) is written as 7, = 750 + dI, with 759 € Hy(div; ) and d € C.
The following lemma establishes the H(div; Q)-ellipticity of Af.
Lemma 3.3 There exists af > 0, depending on p, ks, c1, and ca, such that
Al (16,7 > af |Tolldva, V7 € H(div; Q). (3.39)

Proof. According to the definition of Af (cf. (3.14)), and using the inequalities (2.3), (3.36), and
(3.37), we find that for each 7, € H(div; ) there holds

_ 1 1 )
Af (16, 75) > 2 ||7'3||3,QS + 2 ”leTsH%,QS

. I 1 . 1 .
> win{g g b {IT8a, + Idivla,} + 5 I TR,

1 .
(2),QS + 53 HleTSH%,QS

> T
> alraolio, + 5
1 2
S + 2
> win{a 5 b ImaolBive, > o 17 e
S
e~ . 11 n (.1 )
with ¢ := ¢1 min{ ——, 5 ¢ and ag := ¢ minq é1, 5— ¢, which completes the proof.
2p° 2Kz 2K%
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We are now in a position to prove that A and Ay satisfy the continuous inf-sup conditions required
by the Babuska-Brezzi theory. To this end, we need to introduce the operators

Es = (I — 2Py) : H(div; Qs) — H(div; ;) (3.40)
and
Er = (I - 2Py) : H(div; Q) — H(div; Qy), (3.41)

which, recalling that P and P are projectors, are certainly bounded and satisfy
P,=, = —P,, (I-Py)E; = 1 - Py, (3.42)

P;Zy = —Py, and (I-Py)=Ef = 1- Py. (3.43)
Then, we can establish the following lemmas.

Lemma 3.4 There exist oy, Cs > 0 such that

AS(CS7ES(CS)) Z A HCSH(21iV;QS v Cs € H(diV;QS>7 (344)

and

As s3Ts
sup ATl S o e, Ve, € Vi (3.45)

r.evafoy [ITslldivio,
In addition, there holds

sup  |As(¢,,Ts)] >0 VTseV,, T, #0. (3.46)
CSEVS\{O}

Proof. We first observe, thanks to the definitions of V, and H(div;Q,) (cf. (3.33), (3.38)), and the
properties of Py (cf. (3.4), (3.5)), that V, C H(div; Q) and P4(¢,) € V. for each ¢, € H(div; Q),
and hence, in particular both P,(¢,) and (I — P,)(¢,) belong to H(div; Q) for each ¢, € H(div; Q).
It follows, according to the definition of As (cf. (3.23)), the properties of Z; (cf. (3.42)), and the
ellipticity of A (cf. (3.39)), that for each ¢, € H(div; ) there holds

As (Cs?ES(Es)) = AJ(PS(Cs%PS(Es)) + A:((I - Ps)(Cs)v (I - Ps)(zs))

o { PS¢ Aivie, + 1T~ P)C v, |

v

Y

[0
75 ”Cs”giv;ﬂs’

which shows (3.44) with o := o /2. Next, given {; € V\ {0}, it is clear from the above analysis
that Z5(¢,) € Vs\0, and therefore, applying (3.44), we deduce that

- (= 2
sup |A5(C577-s)‘ Z ‘Aj(ij ‘:'S(Cs))‘ Z o ’—HCiniv;QS ’
roeva{or [7slldivio, 1Z5(Cs)llaiv;e. 1Z5(C)llaiv;e,

which yields (3.45) with Cs := a;/||Es||. Finally, (3.46) is a straightforward consequence of (3.45)
and the symmetry of As.
|
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Lemma 3.5 There exist ay, Cy > 0 such that

Ap (€ Er(Cp) = arllsldive, V¢ € H(div;Qy), (3.47)

and
|Ar(Cys7y)]
revioy Trllaivie;

In addition, there holds

> Crll¢sllaivie, — VEf € Vy. (3.48)

sup ’Af((_,'f,rf)} >0 VT e Vy, T4 #0. (3.49)
Crevy\{o}

Proof. We proceed analogously to the proof of the previous lemma. In fact, according to the definition
of Ay (cf. (3.24)) and the properties of =y (cf. (3.43)), and applying the ellipticity of A}F (cf. (3.16)),
we find that for each ¢, € H(div;{y) there holds

Ap (€ Er(Cy)) = AF(P(Cp) Pr(Cy)) + AF((T=Py)(Cp), (T-Py)(Cp))

o {IPs (e, + IT=PCle, |

«
f 2
> > 1€ Givie; »

v

+

which proves (3.47) with ay := a;[/2. Next, it is clear from (3.47) that Z({;) # O for each
¢r € H(div;Qy)\ {0}. In addition, thanks to the properties of Py (cf. (3.11)) and the definition of

Vi (cf. (3.34)), we deduce that Zf({;) belong to Vs \ {0} for each {; € V;\ {0}, and hence

|Af(cf»7'f)‘ > ‘Af(cfaEf(Zf))‘ > a HCfH?iiv;Qf

sup > —— — ,
1E7(Cp)llaivie, 127 (Co)llaivie,

T;eV\{0} ||Tf||div;Qf

which implies (3.48) with C¢ := ayf/||Z¢||. Finally, the inequality (3.49) follows directly from (3.48)
and the symmetry of A;.
a

As a consequence of Lemmas 3.1, 3.2, 3.4, and 3.5, and having in mind the identity (3.28) and
the classical Babuska-Brezzi theory (cf. [4, Theorem 1.1, Chapter II]), we conclude that the ma-
Ay, B*

tri t
rix operator < B 0

> : Hx Q — H x Q is an isomorphism. In turn, the compactness of

( If)o I(; > : Hx Q — H x Q is proved by the following lemma.

Lemma 3.6 The operators Ko : H— H and K : Q — Q are compact.

Proof. We first recall from Section 3.1 (cf. (3.7) and (3.13)) that there exists e > 0 such that
P, (rs) € H(Qy) for each 74 € H(div;Qs), and Ps(Ty) € H(Qy) for each 7y € H(div;Qy),
which, thanks to the compact imbeddings H(Q) < L%*(€) and HY(Qy) — L%*(Qy), imply the
compactness of Py : H(div; Q) — L?(£2,) and Py : H(div; Q) — L2(£2y). It follows that the adjoints
P: : L%(Q,) — H(div; ) and P L%(Qf) — H(div;Qy), and hence the operators P:C~! Py,
(I-Py)*C P, P:CH(I-Py), PPy, (I-Pf)" Py, and P} (I - Py) are all compact. This shows
that the first three terms defining the bilinear forms K, (cf. (3.25)) and Ky (cf. (3.26)) induce
compact operators. In addition, it is clear from the second identity in (3.4) and the first identity in
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(3.11) that the fourth terms of K, and K yield finite rank operators, and therefore Ko : H — H
becomes compact.

Furthermore, the three terms defining K (cf. (2.15)), that is (§, v,%,)s, prw? (g v, €,)s, and
vif (&, )T also yield compact operators because of the compactness of the composition defined by
the following diagram

HI/Q(Z) comzct LQ(Z) con@)ous L2(E) comzct H71/2(2>
11[}2 E— sz)z E— d)z v — d}z v,

and thanks to the compact imbedding H'/?(I') < H~'/2(T"). This completes the proof.

We are able now to provide the main result of this section.

Theorem 3.1 Assume that the homogeneous problem associated to (2.10) has only the trivial solution.
Then, given £ € L*(Qs) and g € H-Y2(T), there exists a unique solution (,7) € H x Q to (2.10)
(equivalently (3.27)). In addition, there exists C' > 0 such that

1@ A lxa < C{Ifloo, + lgll-1/r }-

Proof. It suffices to notice, according to our previous analysis, that the left hand side of (3.27)
constitutes a Fredholm operator of index zero. O

4 Analysis of the Galerkin scheme

In this section we introduce a Galerkin approximation of (2.10) and show, under the same assumption
of Theorem 3.1, that it is well-posed.

4.1 Preliminaries

We first let 7,7 and 77{ be triangulations, belonging to shape-regular families, of the polygonal regions
Q, and , respectively, by triangles T" of diameter A7, with global mesh size

h = max{max{hT: TEﬁ};max{hT: TEEf}}v

and such that the vertices of 7;’ and 7;Lf coincide on Y. In what follows, given an integer £ > 0
and a subset S of R?, Py(S) denotes the space of polynomials defined in S of total degree < /.
In addition, following the same terminology described at the end of the introduction, we denote
P(S) = [Py(9)]?. Furthermore, given T € T,* U 771f and x := (z1,72)* a generic vector of R?, we let
RTo(T) := span {(17 0),(0,1), (x1, 1:2)} be the local Raviart-Thomas space of order 0 (cf. [4], [18]),

and set curl® by = (g%, — ngTl), where by is the usual cubic bubble function on T". Then we define

s = {vs,h € H(div: ) vVeplr € RTo(T) & By(T)curlt by VT € Tf }
s = {7’57}1 € H(div;Q,): c*7,, € Hi Vee RQ}, (4.1)
ul = {Tf,h € H(div;Qf): Typlr € RTo(T) VT eT! } (4.2)
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QZ = {nh = < 0 781 ) oMy € C(Qs), 77h|T S Pl(T) VT € 7715} ) (4.3)

Qj, = An(E) x Ap(2), (4.4)
Qf = Au(E) x Au(D), (4.5)

where Aj(X) and Ay (T) are finite dimensional subspaces (to be specified later on) of H'/?(X) and
H'2(T), respectively, and introduce the finite element subspaces Hy, C H and Q;, C Q, given by

H), = H, x Hl and Q,:=Q x Q} x QJ. (4.6)
In addition, our analysis below will also require the subspaces

~i = {Vs,h e H(div; Q) : veu|r € RTo(T) VYT €Ty } ,
~Z = {TSJL € H(div; Q) : c* 71y € I;I?L Ve e R2},

U = {vh € L) : valr € Po(T) VT e Th}

and
Ul = {vh € L2(Qy): wlr € R(T) VT € Thf}.

We recall here that H7 x Uj x Qj constitutes the well known PEERS space introduced in [1] for

a mixed finite element aproximation of the linear elasticity problem in the plane. In turn, Hi x U, ,{
is the lowest order Raviart-Thomas mixed finite element approximation of the Poisson problem for
the Laplace equation (see [4], [18]). Also, it is important to notice, which will be used below, that
H; C Hj and hence H;j C H.

The Galerkin scheme associated to our continuous problem (2.10) is then defined as follows: Find
on = (osp0pn) € Hy and 4y == (Y3, @ - @pn) € Qn such that

Alon,Th) + B(Th,vn) = F(Thn) VTh = (Tsh, Trn) € Hy,

B(on,ny) + KR, n,) = G[@y) V0, = MpsYspsVrn) € Qs

(4.7)

We collect next the approximation properties of the finite element subspaces introduced above.
4.2 Approximation properties of the subspaces
We begin with the subspaces Hj and Hi Indeed, given 0 € (0, 1], we let
& T H(Q,) NH(div; Q) —» H] C Hf  and & :H(Q)) N H(div; Q) — HI

be the usual Raviart-Thomas interpolation operators (see [4], [18]), which, given 74 € H%(Q) N
H(div; Q) and 7p € H?(Qf) N H(div; ), are characterized by the identities

/Eﬁ(TS)V-q = /Tsy-q Vq € Pg(e), Vedgeeof T, (4.8)
and
/S,{(Tf)‘l/q—/rfuq Vq € Pye), Vedgeeof’ﬁlf. (4.9)
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In addition, the corresponding conmuting diagram properties yield
div(&(Ts)) = Pi(divr,) V7, € H(Q,) NH(div; Q,), (4.10)

and
div(&l (r4)) = Pl(divry)  Vrp e HY(Qp) NH(div; Qy), (4.11)

where P : L*(Q) — Uj and 73,{ 1 L2(Qy) = U, ,{ are the corresponding orthogonal projectors, which
satisfy the following error estimates (see, e.g. [4])

(AP$) For each ¢ € (0,1] and for each v € H(€),), there holds

IV =Pi()log, < Ch' |V, -

(APi) For each ¢t € (0,1] and for each v € H'(€2), there holds

lo =P @)log, < OB vl -

Furthermore, it is easy to show, using the well-known Bramble-Hilbert Lemma and the bounded-
ness of the local interpolation operators on the reference element T' (see, e.g. [14, equation (3.39)]),
that there exist 65, @f > 0, independent of h, such that for each 7, € H°(Q,) N H(div; ) and for
each ¢ € H?(Qy) N H(div; Qy), there hold

Ims = &irollor < Cond {Imlsr + Idivr,or} YT €Ty, (4.12)

and
Iy =&l )lor < Cohd{Irslsz + Idivrslor} VT e (4.13)

Hence, as a consequence of (4.10), (4.12), and (AP7) (respectively, (4.11), (4.13), and (AP%)), one can
derive the following two statements

(AP7*) For each § € (0,1] and for each 7, € H°(f), with div T, € H?(), there holds

s = & (r e, < 1 {lITslls, + Idivrylsa, }.

(AP,?f) For each & € (0,1] and for each 7y € H?(Qy), with divr; € H°(Qy), there holds
Ims = &l v, < C1{Imsllsg, + ldivslso, |-

2
asym

Finally, the orthogonal projector Ry, : Lz, (2s) — Qf satisfies the following property (see [4])

(APZ) For each t € (0,1] and for each p € H'(Qg) N L2, (), there holds

asym

In—=Rum o, < Ch'|nlq. -

The approximation properties of Q; and Q£ will be provided once we specify the finite element
subspaces Ap(2) and Ay (T"). Actually, the choice of these discrete spaces will be indicated throughout
the analysis of well-posedness of our Galerkin scheme (4.7) (see Section 4.5 below). We previously
define stable discrete liftings towards 25 and €y of normal traces on ¥ and I' and show its connection
with the discrete inf-sup conditions for By and By, and then introduce suitable discrete approximations
of the operators Ps|g; and Pf‘Hg‘"
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4.3 Stable discrete liftings of normal traces on > and I’

In what follows we proceed as in [10, Sections 4.3 and 5.2] and assume from now on that {7,°}x~0
and {7;{ >0 are quasi-uniform around ¥ and I'. This means that there exist Lipschitz-continuous

neighborhoods Oy, and Qr of ¥ and I', respectively, such that the elements of 7;” and 771f intersecting
those regions are more or less of the same size. Equivalently, we define

Ton = {TeﬁfuThf; TﬁQg7é®}, (4.14)
Trp = {TeThf: TOQF;A(Z)}, (4.15)
and assume that there exist ¢ > 0, independent of h, such that
hr; h < i in hr; min h Vh>0. 4.16
ma {mT TR } < cmin {mT T, } (4.16)

Note that the above assumption and the shape-regularity property of the meshes imply that >j, the
partition on ¥ inherited from 7;° (or from 771f ), and Iy, the partition on I' inherited from Ef , are also
quasi-uniform, which means that there exist C,, C.. > 0, independent of h, such that

hy = max{ le] - e edge of Eh} < C min{ le] - e edge of Eh}

and
hr = max{ le] : e edge of Fh} < C, min{ le| : e edge of Fh}.

Also, it is easy to see that there exist ¢, C' > 0, independent of h, such that
chy < hr < Chy. (4.17)
In addition, the quasi-uniformity of >, and I'j, guarantees the inverse inequality on the spaces
Pp(X) = {¢h € L*(%): ¢nle € Pole) Ve edge of Zh}

and
o, (T) = {¢>h € L3): ¢nle € Pole) Ve edge of rh},

which means that
lonll—1/or6m < Chsllonll12x Voén € u(T), Vie(0,1/2] (4.18)

and
Ionll—1/215r < Chp®llénll_1/2r Yén € ®u(T), V3e€[0,1/2]. (4.19)

The following two lemmas establish our results on the existence of stable discrete liftings.

Lemma 4.1 There exist uniformly bounded linear operators Ei s Py (X) X Pp(T) — H£ such that
L) v=¢,5 onS  and  LL(¢p) v=—¢,. onD (4.20)
Jor each d)h = (QZ)}L,X;’ gbh,l“) € (ph(z) X q)h(r)
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Proof. Given ¢y, := (¢, 5, ¢, ) € Pr(X) x ®p(T), we let z € H () be the unique solution (up to a
constant) of the Neumann boundary value problem

1

Az = — |Qf| {<¢h,271>2 + <¢h,r71>1"} in Qf»

(4.21)
Vz-v=2¢,, on ¥, Vz-v=-¢, . on I,

which can be seen as a discrete version of (3.32), and whose corresponding continuous dependence
result says that

lela, < Cllnl-rzon, = C {16,125 + I9nclorjor b (4.22)

Furthermore, since the Neumann datum ¢,, belongs to H°(X) x H(T") for any 6 € [~1/2,1/2), the
classical regularity result for mixed boundary value problems on polygonal domains (see, e.g. [13])
implies that z € H*/4(Q) and

lellszagy < Clldnl-yjaon, = C{lBuslojaz + I6url-tyar }. (4.23)

In addition, since Q}nt = Q f\(Qg U Qp) is strictly contained in {2y, the interior elliptic regularity
estimate (see, e.g. [16, Theorem 4.16]) yields

12ll2,000 < Clldnll-1/2,00; - (4.24)

According to the above, we now let ¢y := Vz in {f, whence ¢, belongs to H1/4(Qf), and notice
from the first equation in (4.21) that

1

e == €|

{<d)h,2’ 1>E + <d)h,r7 1>F} in Qf 5 (425)
thus showing that ¢, € H(div; Q). Then we can define

cl(#y) = &) € HY,

which, in virtue of the conmuting diagram property (4.11) and the characterization (4.9), and having
in mind (4.25) and the boundary conditions in (4.21), clearly satisfies

1

div £ (¢p,) = — o

{<¢}L,27 1>E + <¢h,1" 1>F} in Qfa (426)

and the identities required by (4.20).

It remains to show that ££ is uniformly bounded. We first deduce, using (4.26), that there exists
C > 0, independent of h, such that

1£f(@nllasva, < C{Ionll-1200, + 1E5(@0)log, |- (4.27)
Next, in order to estimate ]]££(¢h) 0,2, we divide Q into three regions by defining (cf. (4.14), (4.15))
ngh = U{T: T e ﬁlfﬂTE,h}a
Qry = U{Ti TETF,h},
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and

Qi = Qf\(Qgh U Qry)-

It follows, using the stability of 5}{ in Hl(Q}n,f), the fact that ¢
QFy C O, and the estimate (4.24), that

iy € Hl(Q}n}f), the inclusion

I£h(@n)loe, = IE1C 00, < IE1CA 0w + IE1CN N0y, + 1€ o0,
< Clalbor + 16/ ar + IELC 00w (4.28)
< Clnll-roon, + IELCHNo0r  + IENC) 000 -

Now, adding and substracting ¢; = Vz in Qgh C Qy, noting that [|Csll,qr < [2ll1,0;, and
’ Ll N %

employing the estimates (4.22), (4.13) (with § = 1/4) and (4.23), together with the identity (4.26),
the quasi-uniformity bound (4.16), the inverse inequalities (4.18) and (4.19), and the equivalence
between hy, and hr (cf. (4.17)), we arrive at

f 2 f 2 2
IE1CHNE o < C{ICr ~El€AR o, + 16 0r }

C{ Z th/Q ”ZH§/4,T + H¢h||2_1/2,a§zf}

TeTd,

IN

(4.29)
< C { hlz/2 H¢h||2_1/4,aszf + ||¢h||2_1/2,aﬂf }
< C\’¢h’\z1/z,aﬂf~

The estimate for ||€,JIc < f)HaQF . broceeds similarly and yields the same upper bound. In this way,

(4.27), (4.28), and (4.29) provide the uniform boundedness of £, which completes the proof.
g

Lemma 4.2 There exist uniformly bounded linear operators L3 : ®p(X) x ®(X) — HJ such that
Cidmv =dn onS Yy € Bu(%) x By(%). (4:30)
Proof. Given ¢, € ®,,(X) x ®,(X) we let z € H'(£2;) be the unique solution (up to a constant vector)

of the Neumann boundary value problem (in vectorial form)

1
Az:/th in Qg, Vzv = ¢, on X,
2] Js
whose corresponding continuous dependence result states that

I1zl[10, < Clignll-1/2,5 -
Since the Neumann datum ¢,, belongs to H?(X) for any § € [0,1/2), we know that we have at least
H?/2(,)-regularity for z and

I12ll3/2.0. < Cll@pllos-

In addition, noting that QI** := Q,\ Qy is an interior region of €2, the interior elliptic regularity
estimate again (see, e.g. [16, Theorem 4.16]) yields

[Z]l2,0m < Cllépll—1/25 -
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Next, we set ¢, := Vz in {5, which belongs to H'/2(Qy) N H(div; Qs), define L3 (¢y,) := & (¢,), and
proceed analogously to the proof of the previous lemma, by using now the conmuting diagram property
(4.10), the characterization (4.8), the error estimate (4.12), the quasi-uniformity bound (4.16), and
the inverse inequality (4.18). We omit further details.

O

As a first consequence of Lemmas 4.1 and 4.2, and noting from the definitions of H£ (cf. (4.2))
and HJ (cf. (4.1)) that

Tfjh'l/‘agf = (Tf7h'V‘z,Tf7h-V|F) € CI)h(Z) X cI)h(F) VTﬁh € Hi,

and
Ts,h V|z) € <I>h(2) X <I>h(2) VTS,h € Hz,

we deduce that actually there hold
B, (2) x Pp(0) = {Tﬁh.umf LTy € Hg}, (4.31)
and

0, () X O (%) = {rs,hyyz: Ton € H;}. (4.32)

Hence, the stable discrete liftings ££ and £, and the identities (4.31) and (4.32) allow to show
equivalence results concerning the discrete inf-sup conditions for By (cf. (2.14)) and for the second
term defining By (cf. (2.13)). More precisely, we have the following lemmas.

Lemma 4.3 Let us define, for each ), = (¥, 5, ¥, ) € Q£ = Ap(X) x Ap(D),

| B(Tphs ¥ rn) |

Shyp) = sup .
T ;n €HJ\{0} 7 £.n div;Q
and
S ; + :
S(’pf,h) = sup |<¢’“Z ¢h72>2 <¢h,r wh,r>r‘ .
¢h::(¢h,2’¢hr‘) ||¢h”-1/2,agf
€ 05 (2)x @y () \{0}
Then there exist Cp, Cy > 0, independent of h, such that
Cy §(1/’f,h) < S(Wyp) < Co §(1/)f7h) Vb, € Qﬁ. (4.33)

Proof. Let ¢y > 0, independent of h, whose existence is provided by Lemma 4.1, such that

1Eh (@) laiv, < crllnll-1jpo0, Yo = (D br) € Pa(E) x By(T).

Then, for each ¢y, := (¢, ., P, ) € Pu(X) x @4(T") \ {0} there holds, using (4.20),

’ <¢h,2’¢h,2>2 + <¢h,rvwh,r>l“ | < | <¢h,z’ ¢h,2>2 + <¢h,1“7wh,r‘>r |
S ¢y 7
| Pnll-1/2.00; 125 () llaivie,

[(L(S) vt o) — (L(84) vt |
— : ’ < crS(yy),
! ||£{L(¢h)||div;ﬂf f fh
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which implies the left-hand side of (4.33) with C; = 0;1. Similarly, for each 7 € H£ we find,

using that (|77 - vl|-1/200, == [Trh- V1252 + ITrn Vo120 < CllTplldvie, and (4.31), that
’Bf(Tﬁhvd’f,h)’ _ ‘<Tf7h'y>wh,2>2 - <Tf,h'y?wh,F>F‘
17 £,nllaivie2, 17 #.1lldivs;

|<Tf7h : V’¢h,2>2 - (Tf,h : V’¢h,r>f‘|

|7 ¢n V\|—1/2,an

which yields the right-hand side of (4.33) with Cy = C.

<C < CS(y),

O
Lemma 4.4 Let us define for each ) € Qj = Ap(X) x Ap(X)
[{Tsn v, Y p)s |
T(psp) == sup :
T, €H3\{0} HTs,h div;Qs
and
T = s LEPuls]
b, cvp()x@p(5) hll—=1/2,2
¢, #0
Then there exist Cs, Cy > 0, independent of h, such that
CsT(en) < T(p) < CaT(hep)  Vpon € Qf- (4.34)

Proof. Tt follows analogously to the proof of Lemma 4.3 by using now, thanks to Lemma 4.2, that there
exists ¢; > 0, independent of h, such that |[£}(¢p)|ldivie. < ¢sll@nll—1/2n YV, € Pr(E) x (%),
and noting that ||[7ssv|_1/252 < C|Tsnldiv.o.. We omit further details.

a

The previous two lemmas, more precisely the left-hand sides of the equivalences (4.33) and (4.34),
will be employed below in Section 4.5 to show that the bilinear forms By and B satisfy the discrete
inf-sup conditions on the corresponding finite element subspaces.

4.4 Discrete approximations of Py: and Pylyr
h

In what follows we introduce uniformly bounded linear operators P, j, : Hf — HJ and Pyy, : H£ — Hfl
approximating Pglgs : Hj — H(div; () and Pf|H£ :H - H(div; Qy), respectively, and estimate
the associated errors given by |P(744) = Psn(Ts.n)|laivio, and ||Py(Trpn) — Pf’h(Tf,h)Hdiv;Qf for each
(TopsTrn) € Hy = H x H.

Indeed, given (754, Tfn) € Hy, we first recall from (3.3) and (3.1) that P(7,) := &5, where
0s; = Ce(u) and 1 is the unique solution of

s =Ce(u) in Q, dive, = (I-M)(divr,,) in Q,
(4.35)
;v =0 on X, uc (I-M)(L*Q,)),

In turn, we know from (3.10) and (3.8) that P¢(7¢y) := &y, where 6y := Vp and p is the
unique solution of
6y =Vp in Qp, divey = (I-J)(divrys) in Qp,

(4.36)
Grrv=0 on SUL, pe I-I)(L*Q)).
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We now let (65 p,0p,7,) € Hy x (I—M)(U;) x QF be the mixed finite element approximation
of (4.35), which was introduced and analyzed in [6, Section 5.2], and define

Ps,h(Ts,h) = &s h- (437)
Hence, we know from [6, Section 5.2] that there hold

IPsh(Tsn)ldivio. < CllTsnllaivias (4.38)

Pop(tsp)v =0 on X and / Pon(tsp):m, =0 Vi, € Qf. (4.39)
Qs

The uniform boundedness of P, is obvious from (4.38), whereas the first equation of (4.39) says
that P, (T,) belongs to H(div; Q) (cf. (3.38)). Furthermore, in virtue of [6, Lemma 5.4], whose
proof makes use of the definition (4.37), the conmuting diagram identity (4.10), the approximation
properties (4.12), (AP3), and (AP;LY), and the regularity estimate for (4.35) (cf. (3.2), (3.7)), we have
the following error estimate.

Lemma 4.5 Let € > 0 be the parameter defining the regularity of the solution of (4.35). Then, there
exists C' > 0, independent of h, such that for each 7,5 € Hj there holds

IPs(Ts,n) — Psn(Tsp)llaivio, < Che[[divTyy

0,06 - (4.40)

We now turn to the definition and properties of Py ;. According to the regularity estimates given
by (3.9) and (3.13), we know that P (7 ;) belongs to H(Q) and

IPs(Trn)llen, < Clldivrynlog; (4.41)

which suggests to consider the Raviart-Thomas interpolation operator 5,{ and define

Pf’h(Tﬁh) = 5}]: (Pf(Tﬁh)) . (4.42)

It follows, employing the conmuting diagram property (4.11), the second equation in (4.36) (which
says that divPy(7ys,) = (I—J)(divTyy)), and the fact that div Ty is piecewise constant, that

divPysp(Ten) = P,{(diva(Tf,h)) = P,{((I—J)(diVTﬁh)) = divPys(7sp). (4.43)

Also, it is easy to see that the uniform boundedness of 8}{ :HE(Qp) N H(div; Q) — H£ (which follows
from (4.13) and (4.11)), together with the estimate (4.41) and the identity (4.43), imply that Py,
is uniformly bounded as well. In addition, using the characterization property (4.9) and the third
equation in (4.36) (which says that Py(7sp)-v = 0 on X UT), we easily deduce that

Prp(tep)-v =0 on XUT. (4.44)
We are now in a position to establish our second error estimate.

Lemma 4.6 Let € > 0 be the parameter defining the regularity of the solution of (4.36). Then, there
exists C' > 0, independent of h, such that for each 77 € H£ there holds

1Pr(Trn) — Pra(men)lavie, < Chodivrenlogq; - (4.45)
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Proof. We proceed as in the proof of [6, Lemma 5.4], though the present one becomes simpler. Let us
first notice, in virtue of (4.42) and (4.43), that

IPs(Ts1) = Pra(mrn)lave, = IPr(Trn) — Pra(mrnlllog, = 1X—EDPrrsn)log, -

Hence, applying the approximation property (4.13) and the identity (4.43), we find that

T Prrri)lBa, = D TN Prren) s

TeT,
< 0> W {IPrrpn) e + IdivP () i)
TeT,!
= hQE{”Pf(Tfh)Hle + ||(I—J)(div7'f7h)||aﬂf}’

which, together with the estimate (4.41) and the fact that ||[I — J|| < 1, completes the proof.

4.5 Well-posedness of the Galerkin scheme

We now aim to show the well-posedness of the mixed finite element scheme (4.7). For this purpose, as
established by a classical result on projection methods for Fredholm operators of index zero (see, e.g.
[15, Theorem 13.7]), one just needs to prove that the Galerkin scheme associated to the isomorphism

( %0 ]?] ) is well-posed. Equivalently, in virtue of the identity (3.28), it suffices to apply the

discrete Babuska-Brezzi theory to each one of the blocks ( gs ]?)S ) and < Bf Of > According
s f
to the above, in what follows we show that the bilinear forms Ay, By, Af, and By (not necessarily in

this order) satisfy the discrete inf-sup conditions on the corresponding finite element subspaces.

We begin our analysis with the derivation of the discrete inf-sup condition for By. To this end,

and in order to apply Lemma 4.3, we first notice that for each v, = (¥, 5, ¢,) € Q£ =
Ap(X) x Ap(T") there holds

| <¢h,z’ ¢h,2>2 + <¢h,1"wh,r‘>r |

Stn) = sw 6al
(:bh:(%,z*d’h,r) hll=1/2,00;
€ ®),(3)x @, (1) \{0}
> 1 ‘<¢h27wh2>2’ ‘<¢h,r7wh,1‘>r‘
> — sup T T sup B s T S
2 Lo, petnmnioy 9nsll-r2n o, ceanmnioy nrll-1/2r

It follows, in virtue also of the left-hand side of (4.33), that a sufficient condition for the required
inequality concerning By is the existence of 3 [o8 B ¢rr > 0, independent of h, such that

|<¢h z?wh2>2|

o > Bf,E 19, s ll1/2.s Vs € Ap(X), (4.46)
LIS € ®n(2)\{0} "¢h b H 1/2,2
" | (@05 )T |
) T ~
sup LR PRET Brr ||1/1h,p||1/2,r Vi, € Ap(T). (4.47)

bpr€n@NO} |Pnrll-1/2r

Note that (4.46) and (4.47) constitute two independent discrete inf-sup conditions holding between
subspaces living in ¥ and I', respectively. Then, we recall from [10, Lemma 5.2] that a suitable choice
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of the subspaces Ap(X) and Ap(I') guarantees the ocurrence of the above. More precisely, let us
assume, without loss of generality, that the number of edges of ¥;, and I'j, are even numbers. Then,
we let Yop, (resp. I'gp) be the partition of 3 (resp. I') arising by joining pairs of adjacent elements,
and define

Ap(S) = {m € C(X): Ynle € Pile) Ve edge of zgh}, (4.48)
Ap(T) := {@bh € C(T'): ple € Pi(e) Ve edge of th}, (4.49)

and
Ql == AL(Z) x Au(T). (4.50)

In this way, we are in a position to establish the following result.

Lemma 4.7 Let Qi be given by (4.50). Then there ezists Bf > 0, independent of h, such that

B(Trn,
sup | f( Ik lbf,h)\

Tf,heHi\{O} ||Tf,h”diV;Qf

> B 1Y s nll1/2.00, Vs € Q{L = Ap(2) <X Ap(T).

Proof. A straightforward application of [10, Lemma 5.2] to the pairs of subspaces (®,(X), An(X)) and
(®,(I"), Ap(T)) imply (4.46) and (4.47), and hence the previous discussion completes the proof with

the constant 3y = El min { Br.s. Brr }

a

Before continuing the analysis, we let TI,, : H'/2(X) — Ax(¥) and M. : HY/2(T') — A, (T) be the
orthogonal projectors, and recall from [2] that the approximation properties of Ap(X) and A, (T) are
given as follows:

(APyx ) For each § € (0,1] and for each ¢ € H'/2T9(X), there holds

[ — Oy () 12, < C'h, 1911 /2465 -

(APr ) For each & € (0,1] and for each ¢ € H'Y/2+9(T), there holds
[ — M ()]l12r < C hi 1911 /2+46,r -
Note that (APy ) and (APr ) yield the approximation properties of Q; and Q£ (cf. (4.4), (4.5)).

We now turn to the connection between Lemma 4.4 and the discrete inf-sup condition for the
bilinear form By (cf. (2.13)) with Qj := Ap(X) x Ap(E) and Ay (X) given by (4.48). We first notice
that for each ), = (¢, 5, ¢, z) € Qj there holds, denoting ¢, := (¢, 5, b, 5) € Pa(X) x Pu(2),

r | (s Yon)s |
T(sp) = sup W
@), € 3y () x @ () hll—=1/2,%
¢, #0
- sup Hens Yslnl [z Yun)s
i ¢h’2€¢)h(2)\{0} H¢h$”71/2’2 %,z € o, (X)\{0} ||¢h,z||—1/2,2

Hence, since [10, Lemma 5.2] guarantees (4.46), we deduce from the above inequality that
T(un) = Brs{lnslios + 1Buslips}t Vb = @5 t,5) € Qi
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which, combined with the left-hand side of (4.34), yields

[{Tsnv, s )|
T(’lps,h) = sup s ) S,
ronemNoy  Tsnllaivio,

> C3Brs snlijos Y,, € Q- (4.51)

Consequently, we are now able to prove the following lemma.

Lemma 4.8 Let Q; := Ap(X) x Ap(E) with Ap(X) given by (4.48). Then there exists Bs > 0,
independent of h, such that

| BS(TS,h7 (nhv 'lnbs,h)) |
sup
T.n€H;\{0} 175, |l div;2.

> Bs H(nha'lzbs,h)n v(nhﬂvbs,h) € @i X QZ :

Proof. Given (n,%;,) € Qf x Qj, we have, according to the definition of B (cf. (2.13)), that

’ BS(TSJH (nh7 Q/)s,h)) ’ ’ <Ts,h v, ¢s,h>2 ’

sup > sup = llmnllo.e,
T €H:\{0} 75,1 ldiv;o, ronem\f0}  |ITsnllaivio,
which, thanks to (4.51), implies that
| Bs(T 5,1y (Mhs ¥s ) | =
sup A = > C3 815 s pllijes — Innlloq. - (4.52)
Ts,n €H;\{0} 1751 ldiv;o,

Furthermore, we know from [17, Theorem 4.5] (see also [1, Lemma 4.4]) that there exists (), € Hj
such that ¢, v =0 on X, div(,;, = 0 in £, and

‘BS(Cs,hﬂ (Tlh7¢s,h)) ’ > C ”Cs,h”o,ﬂs ||TI”0795 =C ||Cs,h”diV;Qs HnHO,Qs )

which yields

| Bs(TsJM (nh7 d)s,h)) |
sup

= Cllnullog, - (4.53)
Ton €H:\{0} 75,1 lldivies

Finally, a suitable linear combination of (4.52) and (4.53) gives the required inequality.
O

We now let V5, and V¢ be the discrete kernels of By (cf. (2.13) ) and By (cf. (2.14)), that is,

Vn = {Ts,h € Hj : /Q Tsh:N,=0 Vg, €Q, (TsaV,Ysp)s=0 Vb, € QZ} , (4.54)

Vin = {rmme Lt vt s = (T vt e =0 V50,0 €QLF, (455)

and aim to prove that the bilinear forms Ay and A satisfy the discrete inf-sup conditions on V , x V3,
and V¢ X V¢, respectively.

We begin by observing that V, j is certainly contained in

Vep = {Ts € H(div; Q) : (75 Va"»bs,h>2 =0 V’l,bs’h € QZ} )

which is not a subspace of H(div; ) (cf. (3.38)) but on the contrary contains it. While this latter
fact prevent us of applying directly (3.37) (and hence the ellipticity estimates (3.39) and (3.44)) to the
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whole V&h’ we show next that actually (3.37) does also hold in this bigger space. In fact, let us first
pick one corner point of ¥ and define a function v that is continuous, linear on each side of X, equal
to one in the chosen vertex and zero on all other ones. Then, it is easy to check that, if 1 and vq
are the normal vectors on the two sides of ¥ that meet at the corner point, the function ¢ € H/ 2(®)
given by 1 := v (v + v2) belongs to Qj := Ap(X) x Ap(X) for each h > 0, and satisfies

(v, 9)s #0.
This function 9 in Qj is employed next to prove the validity of (3.37) in \757;1.
Lemma 4.9 There exists ¢a > 0, independent of h, such that
HTS,OH?HV;QS > Cy HTSH?HV;QS VT, € VS,h7 (4.56)
where Ts = T50 + dI, with 750 € Hy(div;Qs) (¢f. (3.35)) and d € C.
Proof. Given 745 € V&h we clearly have, using that 1 € Q7 for each h > 0, that

0 = (Tsv, )y = (TsoV,¥)s + d(V,¥)s,

which gives

g - _ (Tsov.¥)s
v.y)s
and hence
19¥1/2,5
d < C—F=—=||r v -
| | — ‘<V7’¢>Z‘ || S,OHle,Qs
This inequality and the fact that [|74(|3;.0. = (75030, + 2d%[Qs] imply (4.56).

a

As a consequence of Lemma 4.9, and following basically the same arguments employed in the
proofs of Lemmas 3.3 and 3.4, we deduce that the inequalities (3.39) and (3.44) also hold in V. In
particular, the latter says that there exists &g > 0, independent of h, such that

Ag(T5,55(Ts)) = b 176l divicr, V7s € V. (4.57)

We are now ready to prove the discrete analogues of (3.45) (cf. Lemma 3.4) and (3.48) (cf. Lemma
3.5), which constitute the required discrete inf-sup conditions for A and Ay.

Lemma 4.10 There exist 55, C~'f, ho > 0, independent of h, such that for each h < hqg there holds

A (C T ,h) =~
sup M > Cs ||Cs,h||diV;Qs \V/Cs,h € Vs,h- (4-58)
Ts,nE€Vs,n\{0} HTs,thiV;Qs

and

A (ST
sup
Trr€Vyr\{0} HTf,thiV;Qf

AV

C~1f ”Cf,h”div;ﬂf va,h € Vf,h- (459)
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Proof. In order to prove (4.58) we introduce the natural discrete approximation of the operator =
(cf. (3.40)) given by = = (I — 2Ps,h> : Hy — Hj, with P defined by (4.37). In this way, it
follows directly from (4.40) (cf. Lemma 4.5) that

1Es(Csn) — EsnlCop)llaivio, < ChOICs

div:Q, V¢, € Hy .

Hence, taking in particular ¢, ; € Vjj;, adding and substracting =g (Es,h)’ using the boundedness of
A, and applying the inequality (4.57) (having in mind that Vg, C sth), we find that

‘AS(Cs,quS,h(Zs,h))} > ‘AS(Cs,hvzs(Es,h)‘ - éh€ Hcs,huaiv;ﬂs > {&S - éhe} HCs,h

2
div;Q;s
from which we deduce the existence of ¢, hg > 0, independent of h, such that

} As(Cs,ha Es,h(zs,h)) ’ >c HCs,h

Note from this inequality that =,({s ) # 0 for each (), # 0. Also, it is clear from (4.39) and
the characterization of Vi (cf. (4.54)) that P (), and hence Zg (€ ), belong to V5, for each
Cs.n € Vi . Consequently, we employ (4.60) to bound the supremum on V ;\{0} as follows

Giveo,  YCn €Ven, Yh<ho. (4.60)

}AS(CS,MTSJL)} > ‘AS(CS,I'HESJL(ESJL))‘ > ¢ ||Cs,hH¢2:liv;Qs

sup
ToneVo\foy I Tsn

diviQs HES,h(Es,h) ”div;ﬂs ||ES,h(Zs,h)Hdiv;Qs

for each ¢, 5, € V5, and for each h < hg, which, thanks to the uniform boundedness of =, ||, say by
a constant C' > 0, imply (4.58) with Cy = ¢/C.

The proof of (4.59) proceeds analogously by considering now Zjyj := (I — 2Py,) : Hi — Hi,
with Py, defined by (4.42), applying the inequality (3.47) (cf. Lemma 3.5), using, thanks to (4.45)
(cf. Lemma 4.6), that

I1Z4(Csn) — EpnlCrmllamo, < ChElIC nllave, Vs € HL,

and noting, in virtue of (4.44), that Z7 (¢ ) € Vi (cf. (4.55)) for each () € V.
O

The following theorem establishes the well-posedness and convergence of the discrete scheme (4.7)
with the finite element subspaces HJ, H! , QF, Q7 Qi, Ap(X), and Ap(T), given, respectively, by
(4.1), (4.2), (4.3), (4.4), (4.5), (4.48), and (4.49).

Theorem 4.1 Assume that the homogeneous problem associated to (2.10) has only the trivial solution,
and let hg > 0 be the constant provided by Lemma 4.10. Then there exists hy €0, ho] such that
for each h €]0,h1], the fully-mized finite element scheme (4.7) has a unique solution (&p,7,) =
(sh:01n) (Yns Psps Prp)) € Hup X Qp. In addition, there exist C1, C2 > 0, independent of h,
such that for each h €10, hi] there hold

o~ F(T G(n
1(Gh,An)lHxQ < C1 { sup F(72)] +  sup | (nh”} < C1{Hf\o,95 + Hngl/2,F}

T € Hy\{0} 17nlla M, €Qn\{0} 174 ]lq
and
1(@,7) = (@ An)llaxq < C2 __inf 1(@,7) — (Tr.nn)lHxq (4.61)
(Tr,M,)EHRLX QR
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where (0,7) = ((0s,07), (7, ¢s Pf) € H x Q is the unique solution of (2.10). Furthermore, if
there exists § € (0,1] such that o5 € H(Qy), dive, € H(Qy), oy € H(Qy), divey € H°(Sy),
v € HO(Qs), @, € HY2H(S), and @ € HY*T0(9y), then for each h €]0,hi] there holds

1(@,7) = (@r7n)lHxq < C3 hé{HUsHé,szs + [|divosllso, + llofllse,
+ |diveyllso, + [[Vllsa. + [l@slliyoess + ||‘PfH1/2+6,8Qf}7

with a constant Cg > 0, independent of h.

Proof. Because of Lemmas 4.7, 4.8, and 4.10, the proof of the first part is a straightforward application
of [15, Theorem 13.7]. In turn, the rate of convergence follows directly from the Cea estimate (4.61) and
the approximation properties of the finite element subspaces involved (see (AP7*), (AP,?-f ), (APZ)

in Section 4.2, and (APy ;) and (APr ) above in the present section).
O

5 Numerical results

In this section we present two examples illustrating the performance of our fully-mixed finite element
scheme (4.7). We begin by introducing additional notations. The variable N stands for the total
number of degrees of freedom defining the finite element subspaces Hj, and Qj (cf. (4.6)), and the
individual errors are denoted by

e(0s) == [los — ospllaivia., eloy) == lloy—ornllaivie,, e(v) = v —ullog.
e(gos) = ”('ps_sos,hHl/ZEv e(goz) = H‘pz —<Pz,hH1/2,Z and e((pr) = ngr _Spr,h”1/2,Fﬂ

where ¢ 1= (pg,¢p) € HY?(2) x H'?(T) and Crp = (PspsPrn) € Q{L = Ap(X) x Ap(T). Also,
we let (o), r(oy), 7(7), r(@s), 7(ps) and r(¢,.) be the experimental rates of convergence given by

o) = log (e(os)/e/(0s)) rog) = log ((e(oys)/e'(ay))
VU leg(r/iy T T T eg(h/ly
_ log (e(v)/¢'(7)) _log (e(,)/€ (p,))
0= gy T T T gy
log (e(ps)/e (¢y)) log (e(er)/€ (1))
’I"((,OE) T log(h/h’) and T(SOF) T log(h/h/) )

where h and h' denote two consecutive meshsizes with corresponding errors e and e’.

We consider €5 :=] — 0.2,0.2[ x] — 0.4,0.4] and let the artificial boundary I" be the ellipse
centered at the origin with minor and major semiaxis given by 0.4 and 0.6, respectively, that is

Qp = {(l‘l,xg)t € R2: %4—% < 1}\53. We take p; = pf = A = p = 1, and the rest of

parameters are given by the sets
{vozl;w:5; Ks = 9; nf:5} and {voz().?;w:?; ks =T, ;z.;leo},

which define Examples 1 and 2, respectively. Furthermore, let Ky, K1 and Ky be the modified Bessel
functions of the second kind and order 0, 1, and 2, respectively, and let H(()l) be the Hankel function
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of the first kind and order zero. Then, we choose the data in such a way that the exact solution of
(2.1) (or (2.10)) is determined by

1 —1)?
v — P
u(x) = ! Vx = (z1,72)" € Qs, and p(x) = H(gl)(w Ix|) Vx € Qy,
(l’l — 1) X9
- T‘% X(X)

where 7y = /(z1 —1)2 + 23, (x) = Ko(rwry) + Wln {Kl(zwrl) - %Kl (“‘\’/gl>}, and

X(x) == Ka(twry) — 1 Ko (“\J/gl). Actually, u is the fundamental solution, centered at (1,0)*, of the

elastodynamic equation, which yields f = 0 in {2, and p is the fundamental solution, centered at the
origin, of the Helmholtz equation in 2.

In Tables 5.1 to 5.4 we present the convergence history of these examples for finite sequences
of quasi-uniform triangulations of the computational domain Q4 U ﬁf. We remark that the rate of
convergence O(h) predicted by Theorem 4.1 (when 6 = 1) is attained for all the unknowns in both
cases. In particular, we observe that the errors e(p,), e(p,,), and e(p.) converge a bit faster than
expected. Finally, in Figures 5.1 to 5.8 we display real and imaginary parts of some components of
the approximate and exact solutions for N = 13666. The fact that they do not distinguish from each
other illustrates the accurateness of the proposed fully-mixed method. Note that in the case of the
unknowns on the boundaries, they are depicted along straight lines beginning at the points (0.2,0.4)
and (0.4,0.0) for ¥ and I, respectively, and then continuing counterclockwise.

Acknowledgements. The authors are thankful to Antonio Marquez for performing the computa-
tional code and running the numerical examples.

h N | elod [re)| elop |rep | et | r(w)
27/64 1117 6.150E—02 — 8.865E—01 — 6.642E—03 —
27 /96 2090 4.264E—02 | 0.903 || 5.996E—01 | 0.964 || 3.975E—03 | 1.266
27T/128 3686 3.112E—-02 | 1.095 || 4.414E—-01 | 1.065 || 2.570E—-03 | 1.516
27 /192 7869 2.10TE—02 | 0.962 || 3.044E—01 | 0.917 || 1.530E—03 | 1.279
27 /256 13666 1.586E—02 | 0.987 || 2.249E—01 | 1.053 | 1.018E—03 | 1.415
27 /384 31282 1.038E—02 | 1.046 || 1.489E—01 | 1.017 || 6.623E—04 | 1.061
27 /512 55438 || 7.784E—03 | 1.000 || 1.106E—01 | 1.035 || 4.324E—04 | 1.482
27 /768 | 125069 || 5.152E—03 | 1.017 || 7.397TE—02 | 0.991 | 2.745E—04 | 1.121

27?/1024 221848 || 3.871E—03 | 0.994 || 5.540E—02 | 1.005 | 2.034E—04 | 1.041
27 /1536 | 498545 || 2.579E—03 | 1.001 || 3.670E—02 | 1.016 || 1.298E—04 | 1.109
27/2048 | 887629 || 1.927E—03 | 1.014 || 2.770E—02 | 0.978 | 9.678E—05 | 1.019

Table 5.1: Convergence history for o, o, and v (EXAMPLE 1)
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B N | elp) | rled) | eles) | res) | ele) | rigy)

27 /64 1117 9.684E—-03 — 1.689E—01 — 4.819E—-02 —
27/96 2090 4.899E—03 | 1.681 || 7.439E—02 | 2.022 || 2.030E—-02 | 2.133
27 /128 3686 2.727TE—-03 | 2.037 || 4.415E—-02 | 1.813 | 1.226E—02 | 1.752
27 /192 7869 1.427E—03 | 1.598 || 2.362E—02 | 1.542 | 5.610E—03 | 1.928
27/256 | 13666 | 8.446E—04 | 1.822 || 1.348E—02 | 1.951 || 3.850E—03 | 1.308
27/384 | 31282 | 4.023E—04 | 1.829 || 6.741E—03 | 1.708 || 1.834E—03 | 1.830
2 /512 | 55438 || 2.521E—04 | 1.625 || 3.849E—03 | 1.948 || 1.187TE—03 | 1.511
27/768 | 125069 | 1.266E—04 | 1.699 || 1.896E—03 | 1.746 | 6.280E—04 | 1.571
27/1024 | 221848 || 8.236E—05 | 1.494 || 1.290E—03 | 1.339 | 4.437E—04 | 1.208
27 /1536 | 498545 || 4.112E—05 | 1.713 || 6.765E—04 | 1.592 | 2.231E—04 | 1.695
27 /2048 | 887629 || 2.633E—05 | 1.550 || 4.455E—04 | 1.452 || 1.533E—04 | 1.305

Table 5.2: Convergence history for ¢, ¢, and ¢, (EXAMPLE 1)

h N | ele) [rle) | elep) [ren | e | r(

27 /64 1117 1.260E—01 — 9.166E—01 — 1.166E—02 —
27/96 2090 7.827TE—-02 | 1.174 || 6.046E—01 | 1.026 | 5.671E—03 | 1.777
27 /128 3686 5.687TE—02 | 1.111 || 4.434E—01 | 1.077 || 3.591E—03 | 1.588
27/192 7869 3.851E—02 | 0.962 || 3.052E—01 | 0.921 || 2.119E—-03 | 1.301
27w /256 | 13666 | 2.880E—02 | 1.009 || 2.252E—01 | 1.057 || 1.414E—03 | 1.406
27 /384 | 31282 || 1.880E—02 | 1.052 || 1.490E—01 | 1.019 || 8.978E—04 | 1.121
2w /512 | 55438 | 1.410E—02 | 1.001 || 1.106E—01 | 1.036 || 5.736E—04 | 1.557
27 /768 | 125069 || 9.319E—03 | 1.021 || 7.398E—02 | 0.992 | 3.624E—04 | 1.133
27/1024 | 221848 || 6.999E—03 | 0.995 || 5.541E—02 | 1.005 || 2.665E—04 | 1.069
27 /1536 | 498545 || 4.662E—03 | 1.002 || 3.670E—02 | 1.016 || 1.682E—04 | 1.135
27/2048 | 887629 || 3.485E—03 | 1.012 || 2.770E—02 | 0.978 || 1.247E—04 | 1.040

Table 5.3: Convergence history for o, o, and v (EXAMPLE 2)

h N elps) | rlps) || eles) |rley) | eler) | rler)

27 /64 1117 2.051E—-02 — 2.498E—-01 — 7.683E—-02 —
27 /96 2090 8.132E—-03 | 2.281 || 9.442E—-02 | 2.399 || 2.670E—02 | 2.607
27 /128 3686 4.515E—03 | 2.045 || 5.483E—02 | 1.890 || 1.581E—02 | 1.820
27/192 7869 2.478E—-03 | 1.480 || 2.897TE—-02 | 1.573 | 7.554E—03 | 1.822
27 /256 13666 | 1.438E—03 | 1.892 || 1.611E—02 | 2.041 | 4.685E—03 | 1.660
27 /384 | 31282 | 7.075E—04 | 1.749 || 7.925E—03 | 1.749 || 2.200E—03 | 1.865
27 /512 | 55438 || 4.504E—04 | 1.570 || 4.488E—03 | 1.976 || 1.393E—03 | 1.587
27 /768 | 125069 || 2.114E—04 | 1.865 || 2.162E—03 | 1.802 || 7.204E—04 | 1.627
27/1024 | 221848 || 1.435E—04 | 1.346 || 1.448E—03 | 1.393 || 5.041E—04 | 1.241
27 /1536 | 498545 || 7.019E—05 | 1.764 || 7.478E—04 | 1.629 | 2.517E—04 | 1.713
27 /2048 | 887629 || 4.461E—05 | 1.575 || 4.897TE—04 | 1.472 || 1.728E—04 | 1.307

Table 5.4: Convergence history for ¢, ¢, and ¢, (EXAMPLE 2)
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Figure 5.1: Approximate and exact imaginary part of o512 (EXAMPLE 1)
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Figure 5.2: Approximate and exact real part of o521 (EXAMPLE 1)
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Figure 5.3: Approximate and exact imaginary part of of; (EXAMPLE 1)

Figure 5.4: Approximate (red) and exact (blue) real and imaginary parts of ¢, (EXAMPLE 1)
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Figure 5.5: Approximate and exact imaginary part of 511 (EXAMPLE 2)
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Figure 5.6: Approximate and exact real part of o¢; (EXAMPLE 2)
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Figure 5.7: Approximate and exact real part of oo (EXAMPLE 2)

Figure 5.8: Approximate (red) and exact (blue) real and imaginary parts of ¢. (EXAMPLE 2)
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