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Abstract. The well-known kinematic sedimentation model by Kynch states
that the settling velocity of small equal-sized particles in a viscous fluid is a
function of the local solids volume fraction. This assumption converts the one-
dimensional solids continuity equation into a scalar, nonlinear conservation law
with a non-convex and local flux. The present work deals with a modification
of this model, and is based on the assumption that either the solids phase ve-
locity or the solid-fluid relative velocity at a given position and time depends
on the concentration in a neighborhood via convolution with a symmetric ker-
nel function with finite support. This assumption is justified by theoretical
arguments arising from stochastic sedimentation models, and leads to a con-
servation law with a nonlocal flux. The alternatives of velocities for which the
nonlocality assumption can be stated lead to different algebraic expressions for
the factor that multiplies the nonlocal flux term. In all cases, solutions are in
general discontinuous and need to be defined as entropy solutions. An entropy
solution concept is introduced, jump conditions are derived and uniqueness of
entropy solutions in shown. Existence of entropy solutions is established by
proving convergence of a difference-quadrature scheme. It turns out that only
for the assumption of nonlocality for the relative velocity it is ensured that
solutions of the nonlocal equation assume physically relevant solution values
between zero and one. Numerical examples illustrate the behaviour of entropy
solutions of the nonlocal equation.

1. Introduction

1.1. Scope. We study a family of conservation laws with nonlocal flux defined by

ut +
(

u(1 − u)αV (Ka ∗ u)
)

x
= 0, x ∈ R, t ∈ (0, T ], (1.1)

together with the initial datum

u(0, x) = u0(x), 0 ≤ u0(x) ≤ 1, x ∈ R. (1.2)

Under idealizing assumptions, (1.1) represents a one-dimensional model for the
sedimentation of small equal-sized spherical solid particles dispersed in a viscous
fluid, where the local solids volume fraction u = u(x, t) as a function of depth x and

Date: November 1, 2010.
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y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile. E-Mail:
rburger@ing-mat.udec.cl.

CCentre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern,
N–0316 Oslo, Norway. E-Mail: kennethk@math.uio.no.

DProfessor Emeritus, Mount Allison University, Sackville, NB E4L 1E8, Canada.
E-Mail: sherpa@nbnet.nb.ca.

1
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time t is sought. The parameter α satisfies either α = 0 or α ≥ 1; for both choices
there is justification from literature, and we study both in parallel. The function
V is a hindered settling factor that can be chosen, for example, as

V (w) = (1 − w)n, n ≥ 1, (1.3)

according to Richardson and Zaki [43], and which is herein supposed to depend on

(Ka ∗ u)(x, t) =

∫ 2a

−2a

Ka(y)u(x + y, t) dy,

where Ka is a symmetric, non-negative piecewise smooth kernel function with sup-
port on [−2a, 2a] for a parameter a > 0 and

∫

R
Ka(x) dx = 1. Usually, one defines a

kernel K = K(x) with support on [−2, 2] and sets Ka(x) := a−1K(a−1x). Clearly,
(1.1) can be considered as a nonlocal version of the kinematic sedimentation model
due to Kynch [30], which gives rise to the local scalar conservation law

ut +
(

uV (u)
)

x
= 0, x ∈ R, t ∈ (0, T ]. (1.4)

In this paper we study the well-posedness of (1.1), (1.2). We establish uniqueness
of solutions by an entropy solution concept, and existence by proving convergence
of a difference-quadrature scheme based on the standard Lax-Friedrichs scheme. It
turns out that for α = 0, solutions are bounded by a constant that depends on the
final time T , and are Lipschitz continuous if u0 is Lipschitz continuous. In contrast,
for α ≥ 1 solutions are in general discontinuous even if u0 is smooth, but assume
values within the interval [0, 1] for all times. Some numerical examples illustrate
the solution behaviour, in particular the so-called effect of layering in sedimenting
suspensions and the differences between the cases α = 0 and α ≥ 1.

1.2. Motivation of the nonlocal flux. Kynch [30] carried out an analysis of
sedimentation in which the suspension was approximated by a continuum. When
diffusion is negligible, the one-dimensional continuity equation is [13]

ut(x, t) +
(

u(x, t)vs(x, t)
)

x
= 0, (1.5)

where vs(x, t) is the solids phase velocity, or settling velocity, at position x at
time t, and (1.4) corresponds to the assumption that vs is an explicit function of u,
vs = vStV (u), where vSt is the Stokes velocity, i.e., the settling velocity of a single
sphere in an unbounded fluid. If V is given by (1.3), that is, we employ

vs(x0, t) = vSt

(

1 − u(x0, t)
)n

, (1.6)

and assume that V depends on Ka ∗ u instead of u (detailed justification of this
assumption will be provided in Section 2), then (1.5) takes the form

ut + vSt

(

u(1 − Ka ∗ u)n
)

x
= 0. (1.7)

A different approach consists in considering the solid and fluid mass conservation
equations (1.5) and −ut + ((1 − u)vf)x = 0, where vf is the fluid phase velocity.
For batch settling we have the relation vs = (1 − u)vr, where vr := vs − vf is the
solid-fluid relative velocity or slip velocity. This leads to the governing equation

ut +
(

u(1 − u)vr

)

x
= 0. (1.8)

Assuming now that vr (instead of vs) has a nonlocal behaviour and requiring that
the local versions based on constitutive assumptions for either vs or vr should co-
incide, we state the constitutive assumption for vr as vr = V (Ka ∗ u)/(1 − u). For
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instance, if we employ (1.3), then the exponent n should be reduced by one, so
using the properly adapted Richardson-Zaki equation leads us to

vs(x0, t)/vSt =
(

1 − u(x0, t)
)(

1 − (Ka ∗ u)(x0, t)
)n−1

,

from which we obtain the conservation law

ut + vSt

(

u(1 − u)(1 − K ∗ u)n−1
)

x
= 0. (1.9)

Equations (1.7) and (1.9) represent the respective cases α = 0 and α = 1. It
is relevant to write the exponent in (1.9) as “n − 1” only if predictions made by
the two versions are to be compared; since n can be chosen arbitrarily, for the
mathematical analysis it is sufficient to consider the generic model (1.1)–(1.3). As
we prove in this paper, the basic difference in solution behaviour between (1.8)
and (1.9) is that solutions of (1.8) may assume values larger than one, while those
of (1.9) are strictly limited to [0, 1]. It seems to us that only (1.9) is suitable for
the simulation of the complete sedimentation process from the dilute limit to the
densely packed bed. Moreover, formulating a constitutive assumption for vr rather
than for vs is consistent with one consequence of the principle of material objectivity
(see e.g. [35]) stating that a constitutive relation should only be formulated for an
objective quantity: not a single velocity (such as vs), but only the difference between
two velocities (such as vr) is objective. In fact, already Richardson and Zaki [43]
recognized that the functional relationship was between vr and 1 − u (Vs and ǫ in
their notation). Equation (1.9) is the nonlocal approach that is analogous to theirs.

1.3. Approximate dispersive local PDE and invariant region. Insight into
qualitative properties of the nonlocal PDE (1.1) can be gained by analyzing an
approximate local PDE (the “effective” local PDE [52]) obtained by Taylor ex-
pansion of Ka ∗ u. In a formal calculation, since Ka is even, we have Ka ∗ u =
u + M2a

2uxx + O(a4), where 2M2 is the second moment of Ka, i.e.

2M2 =
1

a2

∫ 2a

−2a

Ka(x)x2 dx.

Thus, we can write

V (Ka ∗ u) = V
(

u + M2a
2uxx + O(a4)

)

≈ V (u) + a2V ′(u)
(

M2uxx + O(a2)
)

≈ V (u) + a2M2V
′(u)uxx.

Assuming that the length scale of the solution is much larger than a, we replace
V (Ka ∗ u) in (1.1) by V (u) + a2M2V

′(u)uxx and obtain the approximate diffusive-
dispersive local PDE

ut +
(

u(1 − u)αV (u)
)

x
= −a2M2

(

V ′(u)u(1 − u)αuxx

)

x
. (1.10)

Note that (1.10) depends on the choices of α and V independently; one cannot
simply “absorb” (1 − u)α into the choice of V . Thus, for example, we expect
qualitatively different solutions in the respective cases α = 0 and α = 1 with V
given by (1.3) with exponents n and n− 1, although both assumptions lead to the
same PDE if V depends locally on u. Specifically, (1.10) reveals why we should
expect bounded solutions for α ≥ 1. In fact, dispersive equations do, in general,
not have invariant regions, i.e., one cannot guarantee that the solution takes values
in a bounded u-interval for all times. However, for α ≥ 1 the term sitting inside the
derivative on the right-hand side of (1.10) is multiplied by u(1 − u), regardless of
the algebraic form of V , so for u = 0 and u = 1 (1.10) degenerates to the first-order
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conservation law ut +(u(1−u)αV (u))x = 0. The factor u(1−u) has a “saturating”
effect; it prevents solution values from leaving the interval [0, 1]. Thus, we should
expect that also the nonlocal PDE (1.1) satisfies an invariant region principle for
α ≥ 1. This is indeed the case, as will be proved in Lemma 5.2 of Section 5.

1.4. Related work. Zumbrun [52] studied an equation equivalent to (1.1) in the
case α = 0 and V (w) = vSt(1 − βw). This model for the sedimentation of a dilute
particle in a viscous fluid was advanced by Rubinstein [44], and arises as the limiting
case for d → 0 from the more general equation

ut + vst

(

u(1 − βKa ∗ u)
)

x
= duxx, vSt, β, d > 0, (1.11)

derived from a kinetic theory by Rubinstein and Keller [45, 46] (see also our Sec-
tion 2). For β = 6.55 [5], this model had been proposed earlier by Caflisch and
Papanicolaou [14]. In coordinates x′ = x− vStt and for β = 1 (equivalent to rescal-
ing u) and d = 0, (1.11) reduces to the equation actually studied in [52], namely

ut +
(

uKa ∗ u
)

x
= 0, (1.12)

where Ka(x) := a−1K(a−1x) and K is the truncated parabola given by

K(x) =
3

8

(

1 −
x2

4

)

for |x| < 2; K(x) = 0 otherwise. (1.13)

Zumbrun [52] showed global existence of weak solutions for the initial value problem
(1.2), (1.12) in L∞ and uniqueness in the class BV . Furthermore, he derived the
effective local, dispersive, KdV-like PDE

ut + (u2)x = −M2a
2(uuxx)x, (1.14)

and showed by analyzing (1.14) that (1.12) supports travelling waves, but not
viscous shocks. This result is based on the symmetry of K, which makes (1.12)
completely dispersive. Moreover, an L2 stability argument is invoked to conclude
that smooth solutions of the Burgers-like first-order conservation law ut+(u2)x = 0
arise from smooth solutions of (1.12) as a → 0. Zumbrun [52] (see also [27]) also
studied the effect of artificial diffusion added to (1.12), corresponding to d > 0, and
showed that for the corresponding effective local PDE, i.e. (1.14) with duxx added
to the right-hand side, solutions of shock initial data converge to a stable, oscillatory
travelling wave. He then discussed whether the resulting model is possibly sufficient
to explain the phenomenon of layering in sedimentation. Much of his analysis is
for a more general, but symmetric kernel K. Whatever the exact form of K(x), it
is clear that the interval over which it applies scales with the sphere radius a. We
will compare our findings with those of Zumbrun in Section 5.4, see also Section 7.

Another spatially one-dimensional, nonlocal sedimentation model was studied
by Sjögreen et al. [48]. Starting from a more involved model, they consider a
hyperbolic-elliptic model problem given by (1.5) coupled with −η(vs)xx + vs = u,
where η > 0 is a viscosity parameter. Clearly, at any fixed position x0, vs(x0, t) will
depend on u(·, t) as a whole; the nonlocal dependence is not limited to a neighbor-
hood, as in [52] and herein. They prove that their model has a smooth solution,
and present numerical solutions obtained by a high-order difference scheme.

The (local) kinematic model of sedimentation (1.4) is similar to the well-known
Lighthill-Whitham-Richards (LWR) model of vehicular traffic. Sopasakis and Kat-
soulakis [49] extended the LWR model to a nonlocal version by a “look-ahead”
rule, i.e. drivers choose their velocity taking account the density on a stretch
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of road ahead of them. Kurganov and Polizzi [29] showed that an extension of
the well-known Nesshayu-Tadmor (NT) central nonoscillatory scheme [39] is suit-
able for the nonlocal model of [49], which can be written as (1.1) for α = 1 and
V (w) = exp(−w), and if we replace Ka by K(y) = H(y)γ−1ϕ(y/γ), where H is the
Heaviside function, γ > 0 is a constant proportional to the look-ahead distance,
and either ϕ = 1 (according to [49]) or ϕ(z) = 2 − 2z (as proposed in [29]) for
0 ≤ z ≤ 1, and ϕ = 0 elsewhere. As pointed out in [29], the basic methods for
conservation laws with local flux that should be adapted for (1.1) are central rather
than upwind schemes for conservation laws, since the latter usually involve the (ap-
proximate) solution of Riemann problems, and no Riemann solver is available for
(1.1). Though the second-order NT scheme produces better resolution, we herein
rely on the Lax-Friedrichs scheme to be consistent with the entropy analysis.

Related models with a nonlocal convective flux that have been analyzed within an
entropy solution framework include the continuum model for the flow of pedestrians
by Hughes [22], which gives rise to a multi-dimensional conservation law with a
nonlocal flux; see also [16, 17]. However, in contrast to (1.1) the nonlocality in
that model is not introduced by explicit convolution but via the solution of an
eikonal equation. An entropy solution framework is employed in [18] to establish
well-posedness for a hyperbolic-elliptic approximation of the original model of [22].

Another equation that can formally be expressed in the form (1.1), namely for
α = 0, V (w) = w and with Ka replaced by the Cauchy kernel so that Ka∗u becomes
the Hilbert transform Hu, is studied in [15]. This equation arises from several
applications, including a one-dimensional model of the two-dimensional vortex sheet
problem [3], and is analyzed in [15] with respect to existence of smooth solutions
for smooth initial data. Equations that can formally be written as a first-order
conservation law with nonlocal flux also arise from models of opinion formation [2].

1.5. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2 we motivate the assumption of nonlocal dependence of settling veloci-
ties and argue that it may describe the layering phenomenon in sedimentation. In
Section 3 we describe the numerical scheme, which involves the approximate com-
putation of Ka ∗ u by a quadrature formula. We state some assumptions on the
functions u0 and V and on the mesh for the numerical scheme, and derive some esti-
mates on differences of the discrete convolution. In Section 4 we state the definition
of entropy solutions of (1.1), (1.2), the jump conditions, and prove that entropy
solutions are L1 contractive with respect to initial data, and in particular unique.
Section 5 is devoted to the proof of convergence of approximate solutions gener-
ated by the numerical scheme to entropy solutions, which is achieved by standard
compactness bounds (Sect. 5.1), a cell entropy inequality, and Lax-Wendroff-type
arguments (Sect. 5.2). In Section 5.3 we prove that for the case α = 0, solutions
are actually Lipschitz continuous provided that u0 is Lipschitz continuous. In Sec-
tion 6 we present numerical examples, paying particular attention to the layering
phenomenon. Conclusions, limitations and possible extensions are addressed in
Section 7.

2. Motivation of the nonlocal sedimentation model

2.1. Nonlocal dependence of settling velocities. The solution of the one-
dimensional continuity equation (1.5) requires an initial condition, possibly bound-
ary conditions, and an equation relating vs to u = u(x, t). Theoretical studies
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of this relationship in dilute, uniformly mixed suspensions of identical spheres are
numerous. Those by Kermack et al. [26] and Batchelor [5] are especially notable.
When u(x, t) is not constant, the relationship between vs and u is no longer obvious.
The key assumption of Kynch’s theory [30] is that vs is determined by the “local
solids concentration”, which is the concentration u(x, t) at a specified height and
time. This relationship is expressed as vs = vStV (u). This treatment is analyzed
in detail by Bustos et al. [13]. In the three-dimensional reality approximated by
the one-dimensional theory, u(x, t) is the solids concentration at a horizontal plane
[11, 41]. Though this is an excellent approximation (for the dependence of vs on u),
we may still improve it by a nonlocal dependence, as will be argued in this section.

The locality of the dependence in Kynch’s theory contrasts sharply with the
theoretical result that the velocity of each particle is determined by the size, position
and orientation of all particles and the nature of the boundaries, if any [19]. (Of
course, the orientation is irrelevant for spheres.) As a compromise between this
result and the assumption by Kynch, Pickard and Tory [40] postulated that the
settling velocity, vs(x0, t), of a test particle at x0 is governed by a parameter

c(x0, t) =

∫

I

w(x)u(x0 + x, t) dx, I ⊆ R, (2.1)

that is the convolution of local solids concentration with a weighting function.
This parameter was introduced in the context of a stochastic model for which the
smoothing effect was important [42] and later generalized to polydisperse suspen-
sions [50]. The function w(x) was specified to be positive in a neighborhood of
zero, unimodal, and uniformly bounded with uniformly bounded mean, mode, and
variance. When u is constant, we require that c(x0, t) = u(x0, t). This implies that
∫

I
w(x) dx = 1, see [20]. This means that the velocity of a sphere at x0 is governed

by the concentration in a contiguous region of finite width. In the limiting case,
w(x) is replaced by δ(x) and the sifting property of the Dirac delta function equates
the parametric and local solids concentrations [41].

Beenakker and Mazur [9, 10] calculated the mean velocity of a test sphere in
a dilute suspension of identical spheres settling toward an infinite horizontal flat
plate. Assuming that all the spheres were placed according to a uniform distribution
subject only to the condition that they do not overlap the test sphere or the solid
boundary [51], they obtained an explicit expression for the mean velocity of a sphere
at a given height. Neglecting terms of O(a/h), where a is the radius of the test
sphere and h is its distance from the boundary, this can be written as [44]

vs(x0, t) = vSt

(

1 +

∫ 2a

−2a

Ha(x)u(x0 + x, t) dx

)

, (2.2)

where

Ha(x) =
15

8a

(

1

4

(x

a

)2

− 1

)

. (2.3)

Note that only spheres in the interval [x0−2a, x0+2a] affect the mean velocity of the
test sphere [9, 51]. This results from an exact cancellation, before taking the limit,
of large terms in the regions above and below this interval [51]. Taking the limits
first yields a divergent sedimentation velocity upon integration [9]. Equation (2.2)
does not contradict the result that the velocity of the test sphere is affected by all
the spheres in a suspension [8, 19, 36] because the variance of velocity is determined
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by the positions of all the spheres [51]. Velocity fluctuations in sedimentation, which
account for hydrodynamic diffusion, are still being studied intensively [37].

When u is constant, insertion of (2.3) into (2.2) yields

vs(x0, t) = vSt

(

1 − 5u(x0, t)
)

, i.e., V (u) = 1 − 5u. (2.4)

This result also holds in a linear concentration gradient because the additional
term in the integrand is an odd function (since Ha(x) is even), and the integral
is between symmetric limits. Apart from discontinuities, concentration normally
varies smoothly over distances much greater than 4a. Hence, this equation is a
good approximation in nonlinear gradients, but only in very dilute suspensions.
Higher-order two-sphere interactions can be added [9] to yield Batchelor’s result
for identical spheres [5], which is

vs(x0, t) = vSt

(

1 − 6.55u(x0, t)
)

, i.e., V (u) = 1 − 6.55u. (2.5)

This equation works well for colloidal dispersions in which Brownian motion main-
tains an essentially uniform distribution of sphere centers. However, experiments
with non-Brownian spheres suggest that (2.4) is more accurate. Though the velocity
of the spheres relative to the fluid is independent of the shape of the container [10],
equation (2.3) applies only to dilute suspensions settling towards an infinite flat
plate. Nevertheless, it seems likely, given the success of Kynch’s theory, that a gen-
eralization of (2.3) should be a reasonable approximation at higher concentrations
and for suspensions in finite containers.

Three-sphere and higher interactions are important at higher concentrations
[6, 7, 23]. Special treatments involving intensive computation are necessary for
concentrated suspensions [21, 31, 32, 33, 34, 38]. At higher concentrations, the
dependence of vs on u is nonlinear. The Richardson-Zaki [43] equation (1.6), cor-
responding to V (u) given by (1.3), is widely used to predict the position of the
interface and the propagation of concentration changes.

In the Pickard-Tory model, the dependence of the settling velocity, vs(x0, t), on
c(x0, t) rather than u(x0, t) is similar to the dependence in [8], but not as specific.
If we combine their model with the Richardson-Zaki equation, we obtain

vs(x0, t)

vSt
=
(

1 − c(x0, t)
)n

= 1 − n

∫

I

w(x)u(x0 + x, t) dx +
n(n − 1)

2

[
∫

I

w(x)u(x0 + x, t) dx

]2

− . . . .

(2.6)

We can choose w to be an even function. Then (2.6) implies that c(x0, t) = u(x0, t)
in a linear concentration gradient. When u is small and constant or linear, we obtain
the approximation vs(x0, t) ≈ vSt(1 − nu(x0, t)), which agrees with (2.4) and (2.5).

Again, we choose w to be an even function and require that
∫

I w(x) dx = 1. Then
(2.6) can be written as vs(x0, t) = vSt(1 − K ∗ u)n, which yields (1.7), where K ∗ u
is the convolution of K with u and

∫

I K(x) dx = 1.

2.2. Layered sedimentation in suspensions. Initially homogeneous suspen-
sions of hydrophobic colloidal particles do not always sediment in smooth continuous
fashion. Instead, layers of different concentrations are often observed after settling
has proceeded for a time [47]. This phenomenon is accentuated when a very dilute
suspension has an initial concentration gradient [47]. The upward propagation of a
concentration gradient from the bottom of the container will eventually obliterate
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the layered form if we study this phenomenon in a closed vessel rather than just
focussing on the zone slightly below the suspension-supernate interface.

The weighting functions Ha(x), K(x), w(x), and W (x) have an important in-
fluence near discontinuities in concentration. When the interval I overlaps the
packed bed, these weighting functions introduce a concentration gradient [4]. Where
Kynch’s theory predicts a jump in u from u0 to umax, which correponds to a so-
called mode of sedimentation MS-1 [12, 13], weighting functions produce the same
increase over a finite distance [4]. However, this gradient does not expand.

Our assumption of nonlocal dependence of the settling velocity provides an ex-
planation of the layering phenomenon. In fact, when I overlaps the suspension-
supernatant interface, the spheres near that interface settle faster than those below.
For example, according to (2.2), a particle at the interface of a uniform suspension
has an initial velocity of v(x0, t) = vSt(1 − 2.5u(x0, t)) compared to that given by
(2.4) for a sphere that is 2a or more below the interface. This causes an increase in
concentration from u0 to u0 + ∆u in a small region just below the interface. How-
ever, spheres near the bottom of this region settle faster than those in its middle
because I includes a sub-region with u = u0 as well as one with u = u0 + ∆u. This
concentration disturbance should propagate down the settling column. If equation
(1.5) applies, the result would seem to be a gradual increase in concentration and
perhaps some instability if the concentration near the top remains higher than that
near the bottom. Since concentrated suspensions settle much more slowly than
dilute ones, it would seem that layering would occur only in very dilute suspensions
where slight increases in concentration cause only slight changes in settling velocity.

3. Preliminaries

3.1. Assumptions and numerical scheme. We discretize (1.1) on a fixed grid
given by xj = j∆x for j ∈ Z and tn = n∆t for n ≤ N := T/∆t, where T is the
finite final time. As usual, un

j approximates the cell average

un
j ≈

1

∆x

∫ xj+1/2

xj−1/2

u(y, tn) dy, (3.1)

and we define Un := (. . . , un
j−1, u

n
j , un

j+1, . . .)
T. The initial datum u0 is discretized

accordingly. We use the standard spatial difference operators ∆+un
j := un

j+1 − un
j ,

∆−un
j := un

j − un
j−1, and ∆2un

j := ∆+∆−un
j = un

j+1 − 2un
j + un

j−1. The obvious dif-
ficulty in defining a numerical scheme for (1.1) arises from the discretization of the
integral. We approximate it by a quadrature formula given by

(Ka ∗u)n
j ≈ ũn

a,j :=

l
∑

i=−l

γiu
n
j−i, where γi =

∫ xi+1/2

xi−1/2

Ka(y) dy and l =

⌈

2a

∆x

⌉

+ 1,

i.e., l is the smallest integer larger or equal to (2a/∆x) + 1.
Due to the properties of K (Eq. (1.13)), γ−l + · · · + γl = 1. The computations

and the numerical analysis are based on the Lax-Friedrichs scheme for a standard
non-linear scalar conservation law. We summarize all assumptions on the initial
datum u0, the velocity function V and the mesh.

Assumption 3.1. We assume that u0 has compact support, u0(x) ≥ 0 for x ∈ R

and u0 ∈ BV (R). The function u 7→ V (u) and its derivatives are locally Lipschitz
continuous for u ≥ 0 (which occurs, for example, if V (·) is a polynomial). When
we send ∆x, ∆t ↓ 0 then it is understood that λ := ∆t/∆x is kept constant.
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In addition to Assumption 3.1 for the case α ≥ 1 we suppose the following.

Assumption 3.2. The inital datum satisfies u0(x) ≤ 1 for all x ∈ R.

Remark 3.1. The same analysis remains valid for any smooth, positive and not
necessarily compactly supported kernel with ‖K‖1 = 1 and ‖∂xKa‖1 < ∞.

From now on we let the function u∆ be defined by

u∆(x, t) = Un
j for (x, t) ∈ [j∆x, (j + 1)∆x) × [n∆t, (n + 1)∆t).

We now prove two lemmas that will be used for the convergence analysis.
Although Ka (Eq. (1.13)) is just Lipschitz continuous on R, on its support it is

a smooth function. Having this in mind we can prove the following lemma.

Lemma 3.1. Suppose that u∆(·, tn) ∈ L1
loc(R). Then

∣

∣∆+ũn
a,j

∣

∣ ≤ ‖∂xKa‖∞
∥

∥u∆(·, tn)
∥

∥

1
∆x for j ∈ Z. (3.2)

Proof. We compute

∆−ũn
a,j =

l
∑

i=−l

γi∆+un
j−i =

l−1
∑

i=−l

un
j−i(γi+1 − γi) + γl

(

un
j+1+l − un

j−l

)

. (3.3)

Since Ka(2a) = 0, we have

γl =

∫ 2a

2a−∆x/2

Ka(x) dx =

∫ 2a

2a−∆x/2

∣

∣Ka(x) − Ka(2a)
∣

∣ dx ≤ ‖∂xKa‖∞
∆x2

4
.

For −l ≤ i ≤ l − 1 we find

γi+1 − γi =

∫ xi+3/2

xi+1/2

(

Ka(x) − Ka(x − ∆x)
)

dx =

∫ xi+3/2

xi+1/2

∂xKa(ξi+1)∆xdx

≤ ‖∂xKa‖∞∆x2,

where ξi+1 ∈ [xi−1/2, xi+3/2]. Applying the last two inequalities to the right-hand

side of (3.3) and using that u∆(·, tn) ∈ L1
loc(R), we obtain

∣

∣∆+ũn
a,j

∣

∣ ≤ ‖∂xKa‖∞

(

l−1
∑

i=−l

|un
j−i| +

|un
j+1+l| + |un

j−l|

4

)

∆x2,

which implies (3.2). �

In what follows, Ca always denotes a constant that is independent of ∆ :=
(∆x, ∆t), but depends on a, and that may change from one line to the next.

Lemma 3.2. Suppose that u∆(·, tn) ∈ L1
loc(R) ∩ L∞(R). Then

∣

∣∆2ũn
a,j

∣

∣ ≤ Ca∆x2 for j ∈ Z. (3.4)

Proof. We calculate

∆2ũn
a,j =

l
∑

i=−l

(

γiu
n
j+1−i − 2γiu

n
j−i + γiu

n
j−1−i

)

=

l−1
∑

i=−l+1

un
j−i∆

2γi + un
j+l∆+γ−l − un

j−l∆−γl + γl

(

∆+un
j+l − ∆−un

j−l

)

.

(3.5)
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Lemma 3.1 implies that there exists a constant Ca such that γl ≤ Ca∆x2, and there-
fore ∆+γ−l ≤ Ca∆x2 and ∆−γl ≤ Ca∆x2. Using the Taylor Theorem we get for
i ∈ {−l + 1, . . . , l − 1}

∣

∣∆2γi

∣

∣ =

∣

∣

∣

∣

∣

∫ xi+1/2

xi−1/2

(

Ka(x + ∆x) − 2Ka(x) + Ka(x − ∆x)
)

dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ xi+1/2

xi−1/2

(

∂2
xKa(ξ+

i )
∆x2

2
+ ∂2

xKa(ξ
−
i )

∆x2

2

)

dx

∣

∣

∣

∣

∣

≤ ‖∂2
xKa‖∞∆x3,

where ξ+
i ∈ [xi−1/2, xi+3/2] and ξ−i ∈ [xi−3/2, xi+1/2]. Consequently, using that

u∆(·, tn) ∈ L1
loc(R) ∩ L∞(R), we obtain from (3.5) the desired estimate (3.4). �

4. Definition and uniquenss of entropy solutions

4.1. Definition of an entropy solution and jump conditions. It is well known
that solutions to a standard nonlinear conservation law like (1.4) are in general
discontinuous even if the initial datum u0 is smooth. The same will occur with
the nonlocal equation (1.1), so we need to define solutions as weak solutions. Since
weak solutions of conservation laws are, in general, not unique, a selection criterion
must be imposed in order to single out the physically relevant solution. We select
the solution through an entropy criterion, and the sought solutions are entropy
solutions defined as follows. To facilitate notation we define f(u) := u(1 − u)α.

Definition 4.1. A measurable, non-negative function u is an entropy solution of
the initial value problem (1.1), (1.2) if it satisfies the following conditions:

(1) We have u ∈ L∞(ΠT ) ∩ L1(ΠT ) ∩ BV (ΠT ).
(2) The initial condition (1.2) is satisfied in the following sense:

lim
t↓0

∫

R

∣

∣u(x, t) − u0(x)
∣

∣ dx = 0. (4.1)

(3) For all non-negative test functions ϕ ∈ C∞
0 (ΠT ), the following entropy

inequality is satisfied:

∀k ∈ R :

∫∫

ΠT

{

|u − k|ϕt + sgn(u − k)
(

f(u) − f(k)
)

V (Ka ∗ u)ϕx

− sgn(u − k)f(k)V ′(Ka ∗ u)(∂xKa ∗ u)ϕ
}

dxdt ≥ 0.

(4.2)

The Kružkov-type [28] entropy inequality (4.2) follows from a standard vanish-
ing viscosity argument. It is also standard to deduce that an entropy solution is,
in particular, a weak solution of (1.1), (1.2), which is defined by (1) and (2) of
Definition 4.1, and the following equality, which must hold for all ϕ ∈ C∞

0 (ΠT ):
∫∫

ΠT

{

u ϕt + f(u)V (Ka ∗ u)ϕx − f(u)V ′(Ka ∗ u)(∂xKa ∗ u)ϕ
}

dxdt = 0. (4.3)

Assume that u is an entropy solution having a discontinuity at a point (x0, t0) ∈ ΠT

between the approximate limits u+ and u− of u taken with respect to x > x0 and
x < x0, respectively. The propagation velocity s of the jump is given by the
Rankine-Hugoniot condition, which is derived in a standard way from (4.3):

s = σ(u+, u−)V (Ka ∗ u), σ(u, v) :=
f(u) − f(v)

u − v
, (4.4)
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where we utilize that (Ka ∗ u)(·, t) is a Lipschitz continuous function of x. In
addition, a discontinuity between two solution values needs to satisfy the following
jump entropy condition, which is a consequence of (4.2):

∀k ∈
(

min{u−, u+}, max{u−, u+}
)

: σ(u+, k)V (Ka ∗ u) ≤ s ≤ σ(u−, k)V (Ka ∗ u).

4.2. Uniqueness of entropy solutions. The uniqueness of entropy solutions is a
consequence of a result proved in [24] regarding continuous dependence of entropy
solutions with respect to the flux function. Precisely, we have the following theorem.

Theorem 4.1. Assume that u and v are entropy solutions of (1.1), (1.2) with
initial data u0 and v0, respectively. Then there exists a constant C1 such that

∥

∥u(·, t) − v(·, t)
∥

∥

L1(R)
≤ C1 ‖u0 − v0‖L1(R) ∀t ∈ (0, T ].

In particular, an entropy solution of (1.1), (1.2) is unique.

Proof. Let u and v be entropy solutions of the respective initial value problems

ut +
(

V (x, t)f(u)
)

x
= 0, V (x, t) := V

(

(Ka ∗ u)(x, t)
)

; u(x, 0) = u0(x),

vt +
(

Ṽ (x, t)f(v)
)

x
= 0, Ṽ (x, t) := V

(

(Ka ∗ v)(x, t)
)

; v(x, 0) = v0(x).

Following the proof of Theorem 1.3 of [24] and keeping in mind that u and v are of
bounded variation, we obtain the following inequality, where J := [0, ‖u‖∞]:
∥

∥u(·, t) − v(·, t)
∥

∥

L1(R)
≤ ‖u0 − v0‖L1(R)

+ ‖f‖L∞(J)

∫ t

0

∫

R

∣

∣Vx(x, s) − Ṽx(x, s)
∣

∣ dxds

+ ‖f‖Lip(J)

∫ t

0

∫

R

∣

∣V (x, s) − Ṽ (x, s)
∣

∣

∣

∣vx(x, t)
∣

∣ dxds,

(4.5)

where vx must be understood in the sense of measures. Now we observe that
∣

∣V (x, s) − Ṽ (x, s)
∣

∣ =
∣

∣V
(

(Ka ∗ u)(x, s)
)

− V
(

(Ka ∗ v)(x, s)
)∣

∣

≤ ‖V ′‖∞
∣

∣

(

Ka ∗ (u − v)
)

(x, s)
∣

∣

≤ ‖V ′‖∞ ‖Ka‖∞
∥

∥u(·, s) − v(·, s)
∥

∥

L1(R)
,

∣

∣Vx(x, s) − Ṽx(x, s)
∣

∣ =
∣

∣V ′
(

Ka ∗ u(x, s)
)

(∂xKa ∗ u)(x, s)

− V ′
(

Ka ∗ v(x, s)
)

(∂xKa ∗ v)(x, s)
∣

∣

≤ ‖V ′‖∞
∣

∣

(

∂xKa ∗ (u − v)
)

(x, s)
∣

∣

+ ‖∂xKa ∗ v‖∞‖V ′′‖∞
∣

∣

(

Ka ∗ (u − v)
)

(x, s)
∣

∣.

Inserting the last expressions into the integrands in (4.5), using the properties of
the kernel Ka and the fact that v has bounded variation we arrive at

∥

∥u(·, t) − v(·, t)
∥

∥

L1(R)
≤ ‖u0 − v0‖L1(R) + C2

∫ t

0

∥

∥u(·, s) − v(·, s)
∥

∥

L1(R)
ds.

Applying the integral form of the Gronwall inequality we finally obtain
∥

∥u(·, t) − v(·, t)
∥

∥

L1(R)
≤ ‖u0 − v0‖L1(R)

(

1 + C2t exp(C2t)
)

.

The second statement of the lemma follows by taking u0 = v0. �
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5. Convergence analysis and existence of entropy solutions

5.1. Compactness estimates. We define V n
j := V (ũn

a,j). Then the marching for-
mula for the approximation of solutions of (1.1), (1.2) reads

un+1
j =

un
j−1 + un

j+1

2
−

λ

2
un

j+1

(

1 − un
j+1

)α
V n

j+1 +
λ

2
un

j−1

(

1 − un
j−1

)α
V n

j−1. (5.1)

We assume that λ = ∆t/∆x satisfies the following CFL condition:

λ max
u≤u∗

∣

∣V (u)
∣

∣ < 1 for α = 0, u∗ := ‖Ka‖∞‖u0‖1; (5.2)

λ max
0≤u≤1

∣

∣V (u)
∣

∣ < 1 for α ≥ 1. (5.3)

By the conservativity of the scheme (5.1) and the CFL condition, we immediately
obtain the following lemma.

Lemma 5.1. Under Assumption 3.1, the numerical approximation generated by
(5.1) in the case α = 0 satisfies

‖Un‖1 ≤ ‖U0‖1 for 0 ≤ n ≤ N .

The next step in the numerical analysis is to prove the L∞ stability. Appealing
to Lemma 3.1, we are in a position to prove the following lemma.

Lemma 5.2. The numerical approximation generated by (5.1) satisfies

0 ≤ un
j ≤

{

C3 if α = 0,

1 if α ≥ 1,
for j ∈ Z and 0 ≤ n ≤ N, (5.4)

where the constant C3 is independent of ∆ but depends on T .

Proof. We can rewrite (5.1) as

un+1
j =

un
j−1

2

(

1 + λ
(

1 − un
j−1

)α
V n

j−1

)

+
un

j+1

2

(

1 − λ
(

1 − un
j+1

)α
V n

j+1

)

. (5.5)

We consider first the case α = 0. Using Assumption 3.1 we have

ũn
a,j =

l
∑

i=−l

(

∫ xi+1/2

xi−1/2

Ka(y) dy

)

un
j−i ≤ ‖Ka‖∞

l
∑

i=−l

un
j−i∆x ≤ ‖Ka‖∞‖u0‖1,

and thanks to the local Lipschitz continuity of V we can bound |V (ũn
a,j)| as a

function of ‖Ka‖∞ and ‖u0‖1. Moreover, |V ′(ũn
a,j)| and |V ′′(ũn

a,j)| can be bounded
thanks to the assumptions on V and its derivatives. We can write

un+1
j = un

j+1

(

1

2
−

λ

2
V n

j+1

)

+ un
j−1

(

1

2
+

λ

2
V n

j+1

)

−
λ

2
un

j−1

(

∆+V n
j + ∆−V n

j

)

.

With Lemma 3.1 and the CFL condition we get

∣

∣un+1
j

∣

∣ ≤
∣

∣un
j+1

∣

∣

(

1

2
−

λ

2
V n

j+1

)

+
∣

∣un
j−1

∣

∣

(

1

2
+

λ

2
V n

j+1

)

+ λ
∣

∣un
j−1

∣

∣‖V ′‖∞‖∂xKa‖∞‖u0‖1∆x

≤ ‖Un‖∞(1 + C4∆t),

which means that
∣

∣un+1
j

∣

∣ ≤ ‖U0‖∞(1 + C4∆t)n = ‖U0‖∞

(

1 + C4
T

n

)n

≤ ‖u0‖∞ exp(C4T ). (5.6)
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To handle the case α ≥ 1, we assume that un
j ≤ 1 for all j ∈ Z (Assumption 3.2)

and rewrite (5.1) as

un+1
j =

un
j+1

2

(

1 + λun
j+1

(

1 − un
j+1

)α−1
V n

j+1

)

−
λ

2
un

j+1

(

1 − un
j+1

)α−1
V n

j+1

+
un

j−1

2

(

1 − λun
j−1(1 − un

j−1)
α−1V n

j−1

)

+
λ

2
un

j−1(1 − un
j−1)

α−1V n
j−1

≤
un

j+1

2

(

1 + λun
j+1

(

1 − un
j+1

)α−1
V n

j+1

)

−
λ

2

(

un
j+1

)2(
1 − un

j+1

)α−1
V n

j+1

+
un

j−1

2

(

1 − λun
j−1(1 − un

j−1)
α−1V n

j−1

)

+
λ

2
un

j−1(1 − un
j−1)

α−1V n
j−1

=
un

j+1

2
+ un

j−1

(

1

2
−

λ

2
un

j−1(1 − un
j−1)

α−1V n
j−1

)

+
λ

2
un

j−1(1 − un
j−1)

α−1V n
j−1.

Because of the CFL condition, the last right-hand side is a convex combination of
un

j+1, un
j−1 and one. We therefore conclude that un+1

j ≤ 1. The other inequality,
un+1

j ≥ 0 provided that un
j ≥ 0 for all j ∈ Z, follows in both cases α = 0 and α ≥ 1

from the CFL condition. �

Remark 5.1. Lemma 5.2 represents the most important estimate of this paper.
Based on the discussion of the (local) effective PDE (1.10) we argued in Section 1.3
that one should expect an “invariant region” principle, namely that solutions assume
values in [0, 1], to hold for (1.1), (1.2) with α ≥ 1. The estimate (5.4) shows that
this property indeed holds. This is an exceptional feature, since an invariant region
principle does not hold for dispersive equations in general, and is not valid for
(1.1) with α = 0. In fact, from (5.6) we deduce that for α = 0, one can guarantee
that the model (1.1), (1.2) produces physically relevant results only if ‖u0‖∞ and
the final time T are sufficiently small. The requirement of smallness for ‖u0‖∞ is
consistent with the observation that the model development in Section 2.1 for α = 0
is rigorously valid for dilute suspensions only.

Since uj ≥ 0, we readily obtain the following corollary.

Corollary 5.1. Under Assumption 3.1, the numerical solution generated by (5.1)
in the case α ≥ 1 satisfies

‖Un‖1 ≤ ‖U0‖1 for 0 ≤ n ≤ N .

With the help of Lemma 3.2 we may prove the following uniform bound of total
variation of the numerical approximation generated by (5.1).

Lemma 5.3. The numerical approximation generated by (5.1) satisfies the follow-
ing total variation bound, where C5 does not depend on ∆:

∑

j∈Z

∣

∣un
j − un

j−1

∣

∣ ≤ C5 for 0 ≤ n ≤ N.

Proof. Defining wn
j−1/2 := un

j − un
j−1 we get from the marching formula (5.1)

wn+1
j−1/2 = wn

j+1/2

(

1

2
−

λ

2
f ′
(

ξn
j+1/2

)

V n
j+1

)

+ wn
j−3/2

(

1

2
+

λ

2
f ′
(

ξn
j−3/2

)

V n
j−1

)

−
λ

2

(

∆+V n
j

)(

f ′
(

ξn
j−1/2

)

wn
j−1/2 + f ′

(

ξn
j−3/2

)

wn
j−3/2

)

+
λ

2
f
(

un
j−2

)(

−∆2V n
j − ∆2V n

j−1

)

,
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where ξn
j−1/2 ∈ [un

j , un
j−1]. Using the Taylor theorem we obtain

∆2V n
j = V ′

(

ũn
a,j

)

∆2ũn
a,j +

1

2
V ′′
(

αn
j+1/2

)(

∆+ũn
a,j

)2
+

1

2
V ′′
(

αn
j−1/2

) (

∆−ũn
a,j

)2
,

where

αn
j+1/2 ∈ [ũn

a,j ∧ ũn
a,j+1, ũ

n
a,j ∨ ũn

a,j+1]

(where we define, as usual, a ∧ b = min{a, b} and a ∨ b = max{a, b}). Thus,
Lemmas 3.1 and 3.2 imply that

∆2V n
j = O(∆x2).

Due to the CFL condition and using that f(0) = 0, we obtain that there exists a
constant Ca such that

∣

∣wn+1
j−1/2

∣

∣ ≤
∣

∣wn
j+1/2

∣

∣

(

1

2
−

λ

2
f ′
(

ξn
j+1/2

)

V n
j+1

)

+
∣

∣wn
j−3/2

∣

∣

(

1

2
+

λ

2
f ′(ξn

j−3/2)V
n
j−1

)

+ Ca∆t
(
∣

∣wn
j−1/2

∣

∣+
∣

∣wn
j−3/2

∣

∣+
∣

∣un
j−2

∣

∣∆x
)

.

Summing over j and using Lemma 5.1 we find that there exist constants C6 and
C7, which depend on a but not on ∆, such that

TV(Un+1) ≤ TV(Un)(1 + C6∆t) + C7∆t.

Finally, summing over n we obtain

TV(Un+1) ≤ TV(U0)(1 + C6∆t)n+1 + C7∆t

n
∑

p=0

(1 + C6∆t)p

≤ TV(u0) exp(C6T )

(

1 +
C7

C6

)

.

�

We also need that u∆ satisfies the uniform L1-Lipschitz continuity property with
respect to time. This follows directly from the previous results.

Lemma 5.4. The numerical approximation generated by (5.1) satisfies the follow-
ing inequality, where C8 depends on a, but not on ∆:

∑

j∈Z

∣

∣un+1
j − un

j

∣

∣ ≤ C8λ for 0 ≤ n < N .

Proof. Using the marching formula (5.1) we write

un+1
j − un

j =
1

2
∆+un

j −
1

2
∆−un

j −
λ

2

(

f
(

un
j+1

)

− f
(

un
j−1

))

V n
j+1

−
λ

2
f
(

un
j−1

) (

V n
j+1 − V n

j−1

)

=
1

2
∆+un

j −
1

2
∆−un

j −
λ

2

(

f ′
(

ξn
j+1/2

)

(un
j+1 − un

j )

+ f ′
(

ξn
j−1/2

)(

un
j − un

j−1

)

V n
j+1

)

− f ′(ξ)un
j−1∆+V n

j .

In the last expression we used that f(0) = 0. We conclude the proof by appealing
to Lemma 5.3 and the fact that ∆t = O(∆x). �
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5.2. Satisfaction of the entropy condition and existence result. From Helly’s
theorem we have that u∆ converges to a function u ∈ L∞(ΠT )∩L1(ΠT )∩BV (ΠT )
as ∆ → 0. It remains to prove that u satisfies the entropy inequality (4.2).

Theorem 5.1. Assume that Assumptions 3.1 and 3.2 hold. Then the numerical
solution generated by (5.1) converges to the unique entropy solution of (1.1), (1.2).

Proof. We define the function

Gn
j (u, v, Un) :=

1

2

(

u − λf(u)V n
j+1 + v + λf(v)V n

j−1

)

.

We can rewrite the scheme (5.1) as un+1
j = Gn

j (un
j+1, u

n
j−1, U

n). Under the CFL
condition, Gn

j is monotone its first two arguments for all j ∈ Z, 0 ≤ n < N . Using
this property and omitting the third argument, which is always Un, we obtain
∣

∣un+1
j − Gn

j (k, k)
∣

∣ =
∣

∣Gn
j

(

un
j+1, u

n
j−1

)

− Gn
j (k, k)

∣

∣

≤
∣

∣Gn
j

(

un
j+1 ∨ k, un

j−1 ∨ k
)

− Gn
j

(

un
j+1 ∧ k, un

j−1 ∧ k
)∣

∣

=
∣

∣un
j − k

∣

∣−
(

Gn
j+ − Gn

j−

)

,

(5.7)

where we define

Gn
j± :=

λ

2

[

(

f
(

un
j±1 ∨ k

)

− f
(

un
j±1 ∧ k

))

V n
j±1 −

1

λ
∆±

(∣

∣un
j − k

∣

∣

)

]

.

On the other hand,
∣

∣

∣

∣

un+1
j − k +

λ

2
f(k)

(

V n
j+1 − V n

j−1

)

∣

∣

∣

∣

≥
∣

∣un+1
j − k

∣

∣+ sgn
(

un+1
j − k

)λ

2
f(k)

(

V n
j+1 − V n

j−1

)

.

(5.8)

Combining (5.7) and (5.8) we arrive at the “cell entropy inequality”

∣

∣un+1
j − k

∣

∣−
∣

∣un
j − k

∣

∣+ Gn
j+ − Gn

j− + sgn
(

un+1
j − k

)λ

2
f(k)

(

V n
j+1 − V n

j−1

)

≤ 0.

(5.9)

We now establish convergence to a solution that satisfies (4.2) by a Lax-Wendroff-
type argument. Multiplying the j-th inequality in (5.9) by

∫

Ij
ϕ(x, tn) dx, where ϕ is

a non-negative test function, and summing the results over j ∈ Z and 0 ≤ n ≤ N−1
we obtain the inequality E1 + E2 + E3 ≤ 0, where we define

E1 :=

N−1
∑

n=0

∑

j∈Z

(∣

∣un+1
j − k

∣

∣−
∣

∣un
j − k

∣

∣

)

∫

Ij

ϕ(x, tn) dx,

E2 :=
λ

2
f(k)

N−1
∑

n=0

∑

j∈Z

sgn(un+1
j − k)

(

V n
j+1 − V n

j−1

)

∫

Ij

ϕ(x, tn) dx,

E3 :=

N−1
∑

n=0

∑

j∈Z

(

Gn
j+ − Gn

j−

)

∫

Ij

ϕ(x, tn) dx.

By a standard summation by parts and using that ϕ has compact support, we get

E1 = −∆t
N−1
∑

n=0

∑

j∈Z

∣

∣un+1
j − k

∣

∣

∫

Ij

ϕ(x, tn+1) − ϕ(x, tn)

∆t
dx.
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For E2, we write E2 = Ea
2 + Eb

2 where

Ea
2 :=

λ

2
f(k)

N−1
∑

n=0

∑

j∈Z

(

sgn
(

un+1
j − k

)

− sgn
(

un
j − k

)) (

V n
j+1 − V n

j−1

)

∫

Ij

ϕ(x, tn) dx,

Eb
2 :=

λ

2
f(k)

N−1
∑

n=0

∑

j∈Z

sgn
(

un
j − k

)(

V n
j+1 − V n

j−1

)

∫

Ij

ϕ(x, tn) dx.

Again summing by parts yields

Ea
2 = −

λ

2
f(k)

N−1
∑

n=0

∑

j∈Z

sgn
(

un+1
j − k

)

∫

Ij

ϕ(x, tn) dx

×
[

V n+1
j+1 − V n+1

j−1 −
{

V n
j+1 − V n

j−1

}]

−
λ

2
f(k)

N−1
∑

n=0

∑

j∈Z

sgn
(

un+1
j − k

)(

V n
j+1 − V n

j−1

)

×

∫

Ij

(

ϕ(x, tn+1) − ϕ(x, tn)
)

dx.

Lemmas 5.4 and 3.1 and the fact that γi+1 − γi = O(∆x2), γl = O(∆x2) yield

V n
j+1 − V n

j−1 = V ′
(

Ũn
a,j

)(

ũn
a,j+1 − ũn

a,j−1

)

+ O(∆x2) = O(∆x),

and

ũn+1
a,j+1 − ũn+1

a,j−1 −
{

ũn
a,j+1 − ũn

a,j−1

}

=
l−1
∑

i=−l

(

un+1
j−i + un+1

j−i−1

)

(γi+1 − γi) + γl

(

un+1
j+1+l + un+1

j+l − un+1
j−l − un+1

j−l−1

)

−

{

l−1
∑

i=−l

(

un
j−i + un

j−i−1

)

(γi+1 − γi) + γl

(

un
j+1+l + un

j+l − un
j−l − un

j−l−1

)

}

=

l−1
∑

i=−l

(

un+1
j−i − un

j−i + un+1
j−i−1 − un

j−i−1

)

(γi+1 − γi)

+ γl

(

un+1
j+1+l + un+1

j+l − un+1
j−l − un+1

j−l−1 −
[

un
j+1+l + un

j+l − un
j−l − un

j−l−1

])

= O(∆x2).

Then, we can write

Ea
2 = −

λ

2
f(k)

N−1
∑

n=0

∑

j∈Z

sgn(un+1
j − k)

∫

Ij

ϕ(x, tn) dx×

×
[

(

V ′
(

ũn+1
a,j

)

− V ′
(

ũn
a,j

))(

ũn+1
a,j+1 − ũn+1

a,j−1

)

+ V ′
(

ũn
a,j

)(

ũn+1
a,j+1 − ũn+1

a,j−1 − ũn
a,j+1 + ũn

a,j−1

)

]

+ O(∆x).

Noting that γi = O(∆x) we have

ũn+1
a,j − ũn

a,j =
l
∑

i=−l

γi

(

un+1
j−i − un

j−i

)

= O(∆x),
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and we conclude that Ea
2 = O(∆x). Analogously, we obtain

Eb
2 = ∆tf(k)

N−1
∑

n=0

∑

j∈Z

sgn
(

un
j − k

)

V ′
(

ũn
a,j

) ũn
a,j+1 − ũn

a,j−1

2∆x

∫

Ij

ϕ(x, tn) dx + O(∆x).

It remains to analyze E3. Another summation by parts gives us

E3 = −
λ

2

N−1
∑

n=0

∑

j∈Z

{

(

f
(

un
j ∨ k

)

− f
(

un
j ∧ k

))

V n
j

×

∫

Ij

(

ϕ(x + ∆x, tn) − ϕ(x − ∆x, tn)
)

dx

}

+
1

2

N−1
∑

n=0

∑

j∈Z

∣

∣un
j − k

∣

∣

∫

Ij

(

ϕ(x + ∆x, tn) − 2ϕ(x, tn) + ϕ(x − ∆x, tn)
)

dx

= −∆t

N−1
∑

n=0

∑

j∈Z

{

sgn
(

un
j − k

)(

f
(

un
j

)

− f(k)
)

V n
j

×

∫

Ij

ϕ(x + ∆x, tn) − ϕ(x − ∆x, tn)

2∆x
dx

}

+ O(∆x).

To conclude we must show that

A := ∆t

N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

ũn
a,j∆x −

∫

Ij

Ka ∗ u(x, tn) dx

∣

∣

∣

∣

∣

→ 0 as ∆ → 0,

B := ∆t

N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

ũn
a,j+1 − ũn

a,j −

∫

Ij

(∂xKa ∗ u)(x, tn) dx

∣

∣

∣

∣

∣

→ 0 as ∆ → 0.

First, we proceed for A. Using the definitions of ũn
a,j and γ, we find that

A = ∆t

N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

l
∑

i=−l

∫

Ii

Ka(y)un
j−i∆xdy −

∫

Ij

l
∑

i=−l

∫

Ii

Ka(y)u(x − y, tn) dy dx

∣

∣

∣

∣

∣

= ∆t
N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

l
∑

i=−l

∫

Ii

∫

Ij

Ka(y)un
j−i dxdy −

l
∑

i=−l

∫

Ii

∫

Ij

Ka(y)u(x − y, tn) dxdy

∣

∣

∣

∣

∣

= ∆t

N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

l
∑

i=−l

∫

Ii

∫

Ij

Ka(y)
(

un
j−i − u(x − y, tn)

)

dxdy

∣

∣

∣

∣

∣

≤ ∆t

N−1
∑

n=1

l
∑

i=−l

∫

Ii

Ka(y)
∑

j∈Z

∫

Ij

∣

∣un
j−i − u(x − y, tn)

∣

∣ dxdy.

Using the convergence of u∆ and the bound of Ka we get the result. Now, we
continue with B. Proceeding as above, we find that

B = ∆t

N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

l
∑

i=−l

∫

Ii

Ka(y)
(

un
j+1−i − un

j−i

)

dy

−

∫

Ij

l
∑

i=−l

∫

Ii

∂yKa(y)u(x − y) dy dx

∣

∣

∣

∣

∣
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≤ ∆t

N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

l−1
∑

i=−l+1

∫

Ii

(

Ka(y + ∆x) − Ka(y)
)

un
j−i dy

−

∫

Ij

l−1
∑

i=−l+1

∫

Ii

∂yKa(y)u(x − y) dy dx

∣

∣

∣

∣

∣

+ ∆t
N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

∫

I−l

Ka(y)un
j+l+1 dy −

∫

Ij

∫

I−l

∂yKa(y)u(x − y) dy dx

∣

∣

∣

∣

∣

+ ∆t

N−1
∑

n=1

∑

j∈Z

∣

∣

∣

∣

∣

−

∫

Il

Ka(y)un
j−l dy −

∫

Ij

∫

Il

∂yKa(y)u(x − y) dy dx

∣

∣

∣

∣

∣

.

The last two terms of the last inequality are O(∆x) since ∂xKa is bounded and
Ka(2a) = 0. Finally, we use a Taylor expansion and the convergence of u∆ to get
the result for almost all k ∈ R. Proceeding as in Lemmas 4.3 and 4.4 of [25] we
may extend the analysis to all k ∈ R. �

5.3. An additional regularity result for α = 0.

Lemma 5.5. Assume that α = 0. Then the numerical solution generated by (5.1)
converges to a Lipschitz continuous function u provided u0 is also Lipschitz contin-
uous.

Proof. Defining wn
j+1/2 := (un

j+1 − un
j )/∆x we obtain from (5.1)

wn+1
j−1/2 = wn

j+1/2

(

1

2
−

λ

2
V n

j+1

)

+ wn
j−3/2

(

1

2
+

λ

2
V n

j+1

)

− wn
j−1/2

λ

2
∆+V n

j

− wn
j−3/2

λ

2

(

V n
j+1 − V n

j−2

)

− un
j−1

λ

2∆x

(

∆2V n
j + ∆2V n

j−1

)

.

Using the CFL condition we have

∣

∣wn+1
j−1/2

∣

∣ ≤
∣

∣wn
j+1/2

∣

∣

(

1

2
−

λ

2
V n

j+1

)

+
∣

∣wn
j−3/2

∣

∣

(

1

2
+

λ

2
V n

j+1

)

+
λ

2

∣

∣wn
j−1/2

∣

∣

∣

∣∆+V n
j

∣

∣

+
λ

2

∣

∣wn
j−3/2

∣

∣

∣

∣V n
j+1 − V n

j−2

∣

∣+
∣

∣un
j−1

∣

∣

λ

2∆x

∣

∣∆2V n
j + ∆2V n

j−1

∣

∣ .

Lemmas 3.1, 3.2 and 5.2 imply that there exist constants C9 and C10 such that
∣

∣wn+1
j−1/2

∣

∣ ≤ ‖Wn‖∞(1 + C9∆t) + C10∆t.

Following the same steps as in the proof of Lemma 5.3 we obtain

∣

∣wn+1
j−1/2

∣

∣ ≤ ‖W 0‖∞ exp(C9T )

(

1 +
C10

C9

)

.

To conclude we notice that

w0
j+1/2 =

u0
j+1 − u0

j

∆x
=

1

∆x2

(

∫ xj+3/2

xj+1/2

u0(y) dy −

∫ xj+1/2

xj−1/2

u0(y) dy

)

=
1

∆x2

(

∫ xj+1/2

xj−1/2

(

u0(y + ∆x) − u0(y)
)

dy

)

≤ ‖u0‖Lip.
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The next step is to prove an analogous estimate for the discrete time derivative.
Using (5.1) we can write

un+1
j − un

j =
un

j+1 − un
j

2
−

un
j − un

j−1

2
−

λ

2
V n

j+1

(

un
j+1 − un

j−1

)

−
λ

2
un

j−1

(

V n
j+1 − V n

j−1

)

.

Multiplying this by ∆t−1 and using that ∆t = O(∆x) we find that there exists a
constant C11, which is independent of ∆, such that

un+1
j − un

j

∆t
=

un
j+1 − un

j

2∆t
−

un
j − un

j−1

2∆t
−

V n
j+1

2∆x

(

un
j+1 − un

j−1

)

−
un

j−1

2∆x

(

V n
j+1 − V n

j−1

)

≤ C11

(
∣

∣un
j+1 − un

j

∣

∣

2∆x
+

∣

∣un
j − un

j−1

∣

∣

2∆x

)

−
V n

j+1

2∆x

(

un
j+1 − un

j−1

)

−
un

j−1

2∆x

(

V n
j+1 − V n

j−1

)

Then, using that u∆ is Lipschitz continuous respect to the space variable and
Lemma 3.1, we get that the solution generated by the numerical method converges
to a Lipschitz continuous function. �

Remark 5.2. Lemma 5.5 is not a surprise since in the simplest case, V constant,
the conservation law becomes a linear advection equation, whose solution has a
regularity that is the same as that of the initial data. Moreover, the limit function
u will be a Lipschitz continuous weak solution of (1.1), (1.2) will automatically be
an entropy solution, and stability and uniqueness are immediate from Theorem 4.1.

5.4. Comparison with the analysis by Zumbrun [52]. The equation studied
by Zumbrun, (1.12), is equivalent (up to a coordinate transformation) to (1.1) with
α = 0 and V (w) = w. The local existence of a bounded solution u with bounded
spatial derivative ux (provided that u0 has corresponding properties) is proved in
[52] by a fixed-point argument applied to the transport equation ut + (uKa ∗ v)x =
0 with given v. In general, global solutions inherit their regularity from u0; in
particular, if TV(u0) is bounded, then (1.12) will have a BV solution u, which is
unique following an L1 argument with a discussion of entropy production terms
at isolated discontinuities. In the present work, existence of a solution of (1.1),
(1.2) is shown by the convergence of a difference scheme, covering a wider range of
cases of α and V . Moreover, our Lemma 5.5 is a rough equivalent of Zumbrun’s
result concerning the regularity of u in terms of that of u0. Both the analysis
of [52] and ours rely on estimates on u or u∆ that blow up when a → 0. This
holds, in particular, for the L∞-stability estimates of [52, Sect. 2]. However, as
is shown in [52, Sect. 4], an L2-stability argument can be invoked to prove that
smooth solutions of (1.12) converge in L∞ at an O(a2) rate to smooth solutions of
ut + (u2)x = 0. (Of course, this result holds for smooth u0 and a sufficiently small
final time T .) The proof of this result in [52] depends on the linearity of V , and
does not carry over to more general functions V or to α = 1.

A detailed discussion is devoted in [52] to the existence of travelling wave so-
lutions to (1.12) and (1.14), that is, of solutions of the form u(x, t) = ϕ(x − st)
with ϕ(ξ) → ϕ(±∞) as ξ → ∞ with either ϕ(∞) 6= ϕ(−∞), as for a “viscous
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shock”, or ϕ(∞) = ϕ(−∞) corresponding to a solitary wave solution. (The “vis-
cous shock”-type solution is of particular interest in the context of the sedimentation
model, since it corresponds to the evolution of the suspension-supernate interface.)
Roughly speaking, the result of [52] is that neither (1.12) nor (1.14) admit viscous
shocks, but that both equations do admit solitary wave solutions. However, as men-
tioned in Section 1.4, solutions of (1.14) with an additional diffusion term duxx,
d > 0 with Riemann-like initial data do converge to a stable oscillatory travelling
wave of “viscous shock” type. The analysis of travelling waves for (1.1) is outside
the scope of this paper, but the numerical results presented in Section 6 suggest
that (1.1) for all values of α with a nonlinear function V equally supports oscillatory
travelling waves of “viscous shock” type.

6. Numerical Examples

The numerical examples illustrate the qualitative behaviour of the solutions of
(1.1), (1.2), with α = 0 and α ≥ 1, and demostrate the convergence properties of
the numerical scheme. For the first purpose, we select a relatively fine discretization
and present the corresponding numerical solution as profiles at selected times, while
the convergence properties of the scheme are illustrated by partly including error
histories in some examples.

6.1. Example 1. We calculate the numerical solution of (1.1), (1.2) with α =
0 for the hindered settling factor (1.3) with n = 5, and the kernel K given by
(1.13) with a = 0.2. We are especially interested in phenomena produced at the
suspension-supernate interface of a sedimenting suspension, and therefore employ
the following Riemann initial data corresponding to the initial state of this interface
for a concentrated and a dilute suspension, respectively:

u0(x) =

{

0.0 for x ≤ 0.2,

0.6 for x > 0.2,
and u0(x) =

{

0.0 for x ≤ 0.2,

0.01 for x > 0.2.
(6.1)

In both cases we use ∆x = 0.0005 and λ = 0.2. The results are shown in Figures 1
and 2 for the respective cases of an initially concentrated and dilute suspension.
As predicted in Section 2.2, we obtain the formation of layers of mass due to the
non-constancy of the initial data. We also plot the corresponding solution for the
local equation (1.4), which we call the “Kynch solution.”

We can conjecture from these simulations, that even though u0 is not smooth,
the presence of the kernel has a regularizating effect since we do not observe the
formation of discontinuities. Moreover, we see that the numerical solution is not in
[0, 1] for the concentrated suspension accordingly with Lemma 5.2 even though u0

assumes values from that interval. In Table 1 we show the error at t1 = 1 and t2 = 3
in the L1 norm for u (denoted by eti

c/d, i = 1, 2) where we take as a reference the
solution calculated with ∆x = 0.0005. As expected for the Lax-Friedrichs method,
we obtain an experimental order of convergence one. In addition to Table 1 we
show in Figure 3 the “graphical” approximation.

6.2. Example 2. We study now the behaviour of the numerical solution to (1.1),
(1.2) with α = 1. We use V as given by (1.3) with n = 4 and K given by (1.13) with
a = 0.2. We again utilize the initial datum (6.1) with ∆x = 0.0005 and λ = 0.2.
The results are plotted in Figures 4 and 5.
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Figure 1. Example 1: Numerical solution of (1.1), (1.2) with
α = 0 and a = 0.2 for the hindered settling factor (1.3) with
n = 5, for an initially concentrated suspension at t = 2.5, 5, 10
and 20.

∆x et1
c

conv.
rate et2

c
conv.
rate et1

d
conv.
rate et2

d
conv.
rate

1.00E-2 8.62E-3 - 1.33E-2 - 1.29E-4 - 2.25E-4 -
5.00E-3 6.24E-3 0.47 1.07E-2 0.31 8.34E-5 0.63 1.53E-4 0.56
4.00E-3 5.45E-3 0.60 9.07E-3 0.46 7.10E-5 0.72 1.33E-4 0.61
2.00E-3 3.26E-3 0.74 6.37E-3 0.61 3.91E-5 0.86 7.89E-5 0.75
1.25E-3 1.99E-4 1.05 4.11E-3 0.93 2.27E-5 1.16 4.73E-5 1.09

Table 1. Example 1: Numerical error for u at t1 = 1 and t2 = 3.

We observe the presence of layers but of smaller amplitude than those observed in
Example 6.1. We explain this by the different flux function. We also observe more
pronounced gradients in the solution, which is in agreement with results proved
in Section 5. In Table 2 we show the error at t1 = 1 and t2 = 3 in the L1 norm
for u where we take as a reference the solution calculated with ∆x = 0.0005 as in
Example 6.1. We again get an experimental order of convergence one. Figure 6
shows the graphical approximation.

6.3. Example 3. We now examine how changes in the parameter a affect quali-
tatively the numerical solution of (1.1), (1.2) for α = 0 and α = 1. We use (1.3)
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Figure 2. Example 1: Numerical solution of (1.1), (1.2) with
α = 0 and a = 0.2 for the hindered settling factor (1.3) with
n = 5, for an initially dilute suspension at t = 1, 2, 3 and 7.

Figure 3. Example 1: Numerical solution of (1.1), (1.2) with
α = 0 and a = 0.2 for the hindered settling factor (1.3) with n = 5
for ∆x = 0.01, ∆x = 0.002 and ∆x = 0.0005.

with n = 5 for α = 0 and correspondingly, (1.3) with n = 4 for α = 1. In both
cases, K is given by (1.13) with the parameter a = 0.4, 0.2, 0.1 and 0.01. The
initial datum is (6.1) for the two cases of a concentrated and a dilute suspension
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Figure 4. Example 2: Numerical solution of (1.1), (1.2) with
α = 1 and a = 0.2 for the hindered settling factor (1.3) with n = 4
for an initially concentrated suspension at t = 2.5, 5, 10 and 20.

∆x et1
c

conv.
rate et2

c
conv.
rate et1

d
conv.
rate et2

d
conv.
rate

1.00E-2 7.06E-3 - 9.66E-3 - 1.28E-4 - 2.22E-4 -
5.00E-3 4.67E-3 0.59 6.93E-3 0.48 8.18E-5 0.64 1.46E-4 0.60
4.00E-3 3.95E-3 0.76 5.97E-3 0.67 6.96E-5 0.73 1.27E-4 0.63
2.00E-3 2.08E-3 0.92 3.30E-3 0.86 3.83E-5 0.86 7.43E-5 0.77
1.25E-3 1.15E-3 1.26 1.84E-4 1.24 2.22E-5 1.16 4.43E-5 1.10

Table 2. Example 2: Numerical error for u at t1 = 1 and t2 = 3.

with ∆x = 0.0005 and λ = 0.2. Figure 7 shows the results at t = 10 and t = 7 in
the concentrated and dilute case, respectively.

The case a = 0.01 was calculated with ∆x = 0.0002 since if we consider the
parameter a “close” to ∆x we get the Kynch result because the stencil of the
convolution includes just a few points, and the numerical scheme can be viewed as
a mollification scheme [1]. We observe a more strongly oscillatory behaviour with
a = 0.2 and a = 0.1, and that the period of the oscillation is proportional to the
value of a for both cases. The peak in the case α = 0 occurs for a = 0.4 and in the
case α = 1 there is no difference between the peak with a = 0.2 and a = 0.4. We
explain this by the dispersive behaviour of the formulation.
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Figure 5. Example 2: Numerical solution of (1.1), (1.2) with
α = 1 and a = 0.2 for the hindered settling factor (1.3) with n = 4
for an initially dilute suspension at t = 1, 2, 3 and 7.

Figure 6. Example 2: Numerical solution of (1.1), (1.2) with
α = 1 and a = 0.2 for the hindered settling factor (1.3) with n = 4
for an initially concentrated (left) and dilute (right) suspension for
∆x = 0.01, ∆x = 0.002 and ∆x = 0.0005.

6.4. Example 4. The idea of the present example is try to reproduce the layered
sedimentation observed by Siano [47] in a batch process. The obvious difficulty
appears when we are “close” to the boundary since in a batch process we have
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Figure 7. Example 3: Numerical solution of (1.1), (1.2) for the
indicated values of α with a = 0.4, 0.2, 0.1 and 0.01 (top) for an
initially concentrated suspension, at t = 10 and (bottom) for an
initially dilute suspension, at t = 7.

a zero flux condition and for the numerical computations we have to extrapolate
values in order to compute the numerical fluxes. To solve this problem, we assume
that outside the volume control we have initial concentration values, 0 to the left
and 1 to the right. In Figures 8 and 9 we show the numerical results for α = 1,
with V (u) = (1 − u)4, K as in (1.13), a = 0.025, ∆x = 0.00025, λ = 0.5 and the
respective initial datum for concentrated and dilute suspensions given by

u0(x) =











0 for x < 0,

0.5 for 0 ≤ x < 1,

1 for x ≥ 1

and u0(x) =











0 for x < 0,

0.05 for 0 ≤ x < 1,

1 for x ≥ 1.

(6.2)

In each figure we also plot the solution obtained by the local model (Kynch solution).
We observe that the layers smooth after a while.

6.5. Example 5. In Figures 10–12 we plot the solution for u∆ for α = 1, with
V (u) = (1 − u)4, K as in (1.13), a = 0.025 and a = 0.5 and we consider two
different initial data. For the first one we take u0 as in Example 4 and u0 given by

u0(x) =











0 for x < 0,

0.4 + 0.2x for 0 ≤ x < 1,

1 for x ≥ 1

(6.3)
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Figure 8. Example 4: Numerical solution of (1.1), (1.2) with α =
1 for the hindered settling factor (1.3) with n = 4 and a = 0.025
for an initially concentrated suspension.

for the concentrated case and

u0(x) =











0 for x < 0,

0.04 + 0.02x for 0 ≤ x < 1,

1 for x ≥ 1,

(6.4)

for the dilute case. We also use a nonlinear scale in color in order to highlight the
layering phenomenon, which is supposed to appear in the range of concentrations
close to the initial concentration. We observe the presence of layers in the case
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Figure 9. Example 4: Numerical solution of (1.1), (1.2) with α =
1 for the hindered settling factor (1.3) with n = 4 and a = 0.025
for an initially dilute suspension.

with u0 given by the Riemann data (6.2) in a more pronounced form than for the
linear initial data (6.3) and (6.4). As we explain in Section 2.2, the presence of
layers occurs only if the initial concentration exhibits strong variation, e.g. a jump
between zero and a positive constant. We also see, comparing Figures 10 and 12,
that the “width” of the layer is proportional to the parameter a.
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Figure 10. Example 5: Numerical solution of (1.1), (1.2) with
α = 1 for the hindered settling factor (1.3) with n = 4 and
a = 0.025 for an initially concentrated (above) and dilute (below)
suspension with u0 constant.

7. Conclusions

We study a greater variety of models than the one proposed in [52], which cor-
responds to α = 0 and a linear function V . The model corresponding to α = 1
is consistent with (2.4) and (2.5) in the dilute limit φ → 0, but assumes values
in [0, 1] only and therefore can be applied to the whole range of concentrations.
The treatment of the boundary conditions can possibly be improved. Our analysis
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Figure 11. Example 5: Numerical solution of (1.1), (1.2) with
α = 1 for the hindered settling factor (1.3) with n = 4 and a = 0.05
for an initially concentrated (above) and dilute (below) suspension
with u0 constant.

shows that a reasonably simple difference-quadrature schemes converges to the en-
tropy solution. However, since it is based on the Lax-Friedrichs scheme, high-order
versions should be used for practical computations.

We have conducted numerical experiments aiming at assessing whether (1.1)
can possibly explain the phenomenon of layering in sedimentation. The numer-
ical experiments, and especially the plots of Figures 10–12, illustrate that (1.1)
indeed produces patterns that are similar to layering, namely vertical fluctuations
of concentration of O(a) with beneath the suspension-supernate interface. These
oscillatory travelling waves of “viscous shock” type disappear when they start to
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Figure 12. Example 5: Numerical solution of (1.1), (1.2) with
α = 1 for the hindered settling factor (1.3) with n = 4 and
a = 0.025 for an initially concentrated (above) and dilute (below)
suspension with a linear initial concentration u0.

interfere with solution information propagating upwards (in the direction of de-
creasing x). One should mention, however, that this phenomenon differs from
“layering” as observed by Siano [47] in that the solution exhibits oscillations rather
than staircasing. As mentioned in [52] it would be interesting to explore further
whether (1.1) produces solutions more similar to the staircasing phenomenon if this
equation were equipped with additional standard or nonstandard diffusion terms.

Finally, a systematic travelling wave analysis of (1.1), which would extend the
results of [52], is still lacking. Such an analysis could explain whether new phenom-
ena, e.g. nonclassical shocks, should be expected when one considers the formal
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limit a → 0 of entropy solutions of (1.1), especially in the case α ≥ 1. Unfortu-
nately, most of the constants appearing in the compactness estimates of Section 5.1
are not uniform with respect to a, i.e. they blow up when a → 0. It is therefore
not clear at the moment whether a sequence of entropy solutions converges to a
meaningful limit as a → 0.
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[15] A. Castro and D. Córdoba. Global existence, singularities and ill-posedness for a nonlocal
flux. Adv. Math., 219:1916–1936, 2008.

[16] R.M. Colombo, G. Facchi, G. Maternini, and M.D. Rosini. On the continuum modelling of
crowds. In: E. Tadmor, J.-G. Liu and A. Tzavaras (Eds.), Hyperbolic Problems: Theory,
Numerics and Applications. Proc. Sympos. Appl. Math., 67, Part 2, Amer. Math. Soc.,
Providence, RI, 517–526, 2009.

[17] R.M. Colombo, M. Herty, and M. Mercier. Control of the continuity equation with a non
local flow. ESAIM: Contr. Opt. Calc. Var., to appear.

[18] M. Di Francesco, P.A. Markowich, J.-F. Pietschmann, M.-T. Wolfram. On the Hughes’ model
for pedestrian flow: The one-dimensional case. Preprint; submitted.
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