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Abstract. This paper deals with the approximation of the buckling coefficients and modes of
a clamped plate modeled by the Reissner-Mindlin equations. These coefficients are related with the
eigenvalues of a non-compact operator. We give a spectral characterization of this operator and
show that the relevant buckling coefficients correspond to isolated nondefective eigenvalues. Then
we consider the numerical solution of the buckling problem. For the finite element approximation
of Reissner-Mindlin equations, it is well known that some kind of reduced integration or mixed
interpolation has to be used to avoid locking. In particular we consider Duran-Liberman elements,
which have been already proved to be locking-free for load and vibration problems. We adapt the
classical approximation theory for non-compact operators to obtain optimal order error estimates for
the eigenfunctions and a double order for the eigenvalues. These estimates are valid with constants
independent of the plate thickness. We report some numerical experiments confirming the theoretical
results. Finally, we refine the analysis in the case of a uniformly compressed plate.
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1. Introduction. This paper deals with the analysis of the elastic stability of
plates, in particular the so-called buckling problem. This problem has attracted much
interest, since it is frequently encountered in engineering applications, such as bridge,
ship, and aircraft design. It can be formulated as a spectral problem whose solution
is related with the limit elastic stability of the plate (i.e., eigenvalues-critical loads
and eigenfunctions-buckling modes).

This problem has been studied for years by many researchers, being the Kirchhoff-
Love and Reissner-Mindlin plate theories the most used. For the Kirchhoff-Love
theory, there exists a thorough mathematical analysis; let us mention, for instance,
[5, 13, 16, 17, 18]. This is not the case for the Reissner-Mindlin theory, for which only
numerical experiments (cf. [15, 22]) or analytical solutions in particular cases (cf.
[23]) have been reported so far. Recently, Dauge and Suri gave in [7] a mathematical
spectral analysis of a problem of this kind based on three-dimensional elasticity which
we will adapt to our case.

The Reissner-Mindlin theory is the most used model to approximate the defor-
mation of an elastic thin or moderately thick plate. It is very well understood that
standard finite element methods applied to this model lead to wrong results when the
thickness is small with respect to the other dimensions of the plate, due to the locking
phenomenon. Several families of methods have been rigorously shown to be free from
locking and optimally convergent. We mention the recent monograph by Falk [12] for
a thorough description of the state of the art and further references.

The aim of this paper is to analyze one of these methods applied to compute
the critical load and buckling modes of a clamped plate. We choose the low-order,
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†Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Concepción,
Chile (david@ing-mat.udec.cl). Supported by a CONICYT fellowship (Chile).
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nonconforming finite elements introduced by Duran and Liberman in [11] (see also
[10] for the analysis of this method applied to the plate vibration problem). However,
the developed framework could be useful to analyze other methods, as well.

One disadvantage of the Reissner-Mindlin formulation for plate buckling is the
fact that the corresponding resolvent operator is non-compact. This is the reason
why the essential spectrum no longer reduces to zero (as is the case for compact
operators). This means that the spectrum may now contain nonzero eigenvalues of
infinite multiplicity, accumulation points, continuous spectrum, etc. Thus, our first
task is to prove that the eigenvalue corresponding to the critical load can be isolated
from the essential spectrum, at least for sufficiently thin plates.

On the other hand, the abstract spectral theory for non-compact operators in-
troduced by Descloux, Nassif, and Rappaz in [8, 9] cannot be directly applied to
analyze the numerical method, because we look for error estimates valid uniformly in
the plate thickness. However, using the optimal order of convergence for the Duran-
Liberman elements (cf. [10, 11]), the standard theory used to prove regularity results
for Reissner-Mindlin equations (cf. [1]), and assuming that the family of meshes is
quasi-uniform, we can adapt the theory from [8, 9] to obtain optimal order error esti-
mates for the approximation of the buckling modes and a double order for the critical
load. Moreover, these estimates are shown to be valid with constants independent of
the plate thickness.

An outline of the paper is as follows. In the next section we recall the buckling
problem and introduce the non-compact linear operator whose spectrum is related
with the solution of this problem. In Section 3 we provide a thorough spectral char-
acterization of this operator. In Section 4 we introduce a finite element discretization
of the problem based on Duran-Liberman elements. In Section 5 we prove that the
proposed numerical scheme is free of spurious modes and that optimal order error
estimates hold true. In Section 6 we report some numerical tests which confirm the
theoretical results. We include in this section a benchmark with a known analytical
solution for a simply supported plate, which shows the efficiency of the method under
other kind of boundary conditions, as well. Finally, in an appendix, we show that the
results of Sections 3, 4, and 5 can be refined when considering a uniformly compressed
plate.

Throughout the paper we will use standard notations for Sobolev norms and semi-
norms. Moreover, we will denote with C a generic constant independent of the mesh
parameter h and the plate thickness t, which may take different values in different
occurrences.

2. The buckling problem. Consider an elastic plate of thickness t with refer-
ence configuration Ω×

(
− t

2 ,
t
2

)
, where Ω is a convex polygonal domain of R

2 occupied
by the midsection of the plate. The deformation of the plate is described by means of
the Reissner-Mindlin model in terms of the rotations β = (β1, β2) of the fibers initially
normal to the plate midsurface and the transverse displacement w. Assuming that
the plate is clamped on its whole boundary ∂Ω and subjected to a plane stress tensor
field σ : Ω → R

2×2, the buckling problem reads as follows (see for instance [15, 22]):

Find λ ∈ R and 0 6= (β,w) ∈ H1
0(Ω)

2
× H1

0(Ω) such that
(2.1)

a(β, η) +
κ

t2
(∇w − β,∇v − η)0,Ω = λ (σ∇w,∇v)0,Ω ∀(η, v) ∈ H1

0(Ω)
2
× H1

0(Ω).

Above, κ := Ek/(2 (1 + ν)) is the shear modulus, with E being the Young modulus,
ν the Poisson ratio, and k a correction factor usually taken as 5/6 for clamped plates.
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The applied stress tensor field is assumed to satisfy

σ = σt in Ω,(2.2)

σ ∈ W1,∞(Ω)2×2.(2.3)

Finally, a is the H1
0(Ω)

2
elliptic bilinear form defined by

a(β, η) :=
E

12 (1 − ν2)

∫

Ω

[(1 − ν) ε(β) : ε(η) + ν div(β) div(η)] ,

with ε = (εij)1≤i,j≤2 being the standard strain tensor with components εij(β) :=
1
2 (∂iβj + ∂jβi), 1 ≤ i, j ≤ 2. Moreover, (·, ·)0,Ω denotes the usual L2 inner product.

Remark 2.1. Problem (2.1) is obtained by scaling the physical buckling problem:

t3a(β, η)+tκ (∇w − β,∇v − η)0,Ω = λbt (σ∇w,∇v)0,Ω ∀(η, v) ∈ H1
0(Ω)

2
×H1

0(Ω).

Accordingly, the buckling coefficients are related with the eigenvalues of problem (2.1)
by λb = t2λ, while the eigenfunctions (β,w) are exactly the same.

Introducing the shear strain γ :=
κ

t2
(∇w − β), problem (2.1) can be written as

follows:
Find λ ∈ R and 0 6= (β,w) ∈ H1

0(Ω)
2
× H1

0(Ω) such that
(2.4)




a(β, η) + (γ,∇v − η)0,Ω = λ (σ∇w,∇v)0,Ω ∀(η, v) ∈ H1
0(Ω)

2
× H1

0(Ω),

γ =
κ

t2
(∇w − β).

The source problem associated with the problem above reads:

Given f ∈ H1
0(Ω), find (β,w) ∈ H1

0(Ω)
2
× H1

0(Ω) such that

(2.5)





a(β, η) + (γ,∇v − η)0,Ω = (σ∇f,∇v)0,Ω ∀(η, v) ∈ H1
0(Ω)

2
× H1

0(Ω),

γ =
κ

t2
(∇w − β).

Using the Helmholtz decomposition

(2.6) γ = ∇ψ + curl p,

with ψ ∈ H1
0(Ω) and p ∈ H1(Ω)/R, we have that problem (2.5) is equivalent to the

following one (see [1]):

Given f ∈ H1
0(Ω), find (ψ, β, p, w) ∈ H1

0(Ω) × H1
0(Ω)

2
× H1(Ω)/R × H1

0(Ω) such
that

(2.7)





(∇ψ,∇v)0,Ω = (σ∇f,∇v)0,Ω ∀v ∈ H1
0(Ω),

a(β, η) − (curl p, η)0,Ω = (∇ψ, η)0,Ω ∀η ∈ H1
0(Ω)

2
,

− (β, curl q)0,Ω − κ−1t2 (curl p, curl q)0,Ω = 0 ∀q ∈ H1(Ω)/R,

(∇w,∇ξ)0,Ω = (β,∇ξ)0,Ω + κ−1t2 (∇ψ,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

We recall the following result for the solution of problem (2.7) (see [1]):
Theorem 2.1. Let Ω be a convex polygon or a smoothly bounded domain in the

plane. For any t ∈ (0, 1], σ ∈ L∞(Ω)2×2, and f ∈ H1
0(Ω), there exists a unique
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solution of problem (2.7). Moreover, β ∈ H2(Ω)
2
, p ∈ H2(Ω) and there exists a

constant C, independent of t and f , such that

‖ψ‖1,Ω + ‖β‖2,Ω + ‖p‖1,Ω + t ‖p‖2,Ω + ‖w‖1,Ω ≤ C ‖f‖1,Ω .

As a consequence of Theorem 2.1, by virtue of (2.6) and the equivalence between
problems (2.5) and (2.7), we have that problem (2.5) is well-posed and there exists a
constant C, independent of t and f , such that

(2.8) ‖β‖2,Ω + ‖w‖1,Ω + ‖γ‖0,Ω ≤ C ‖f‖1,Ω .

Let Tt be the following bounded linear operator:

(2.9)
Tt : H1

0(Ω) → H1
0(Ω),

f 7→ w,

where (β,w) is the solution of problem (2.5). It is easy to see that (µ,w), with µ 6= 0,
is an eigenpair of Tt (i.e. Ttw = µw, w 6= 0) if and only if (λ, β, w) is a solution of

problem (2.4), with λ = 1/µ and a suitable β ∈ H1
0(Ω)

2
.

3. Spectral properties. The aim of this section is to prove a spectral charac-
terization for the operator Tt defined above, to study the convergence of Tt and the
behavior of its spectrum as t goes to zero, and to prove additional regularity for the
eigenfunctions of Tt.

3.1. Spectral characterization. Given a generic linear bounded operator T :
X → X, defined on a Hilbert space X, we denote the spectrum of T by Sp(T ) :=
{z ∈ C : (zI − T ) is not invertible} and by ρ(T ) := C \ Sp(T ) the resolvent set of T .

Moreover, for any z ∈ ρ(T ), Rz(T ) := (zI − T )
−1

: X → X denotes the resolvent
operator of T corresponding to z.

We recall the definitions of the following components of the spectrum.
• Discrete spectrum:

Spd(T ) := {z ∈ C : Ker(zI − T ) 6= {0} and (zI − T ) : X → X is Fredholm} .

• Essential spectrum:

Spe(T ) := {z ∈ C : (zI − T ) : X → X is not Fredholm} .

The main result of this section is the following theorem which provides a suitable
spectral characterization for the operator Tt defined in (2.9).

Theorem 3.1. The spectrum Sp(Tt) decomposes into:
• Spd(Tt), which consists of real isolated eigenvalues of finite multiplicity and

ascent one,
• Spe(Tt), essential spectrum.

Moreover, Spe(Tt) ⊂
{
z ∈ C : |z| ≤ κ−1t2 ‖σ‖∞,Ω

}
.

Here and thereafter, we denote ‖σ‖∞,Ω := maxx∈Ω̄ |σ(x)|, with | · | being the ma-

trix norm induced by the standard Euclidean norm in R
2. Notice that the maximum

above is well defined because of (2.3) and the fact that W1,∞(Ω) ⊂ C(Ω̄).
As a consequence of this theorem we know that, although Tt may have essential

spectrum, all the points of Sp(Tt) outside a ball centered at the origin of the complex
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plane are nondefective isolated eigenvalues. Moreover, the thinner the plate, the
smaller the ball containing the essential spectrum.

The proof of Theorem 3.1 will be an immediate consequence of the results that

follow. Consider the continuous bilinear forms defined in H1
0(Ω)

2
× H1

0(Ω)

A((β,w), (η, v)) := a(β, η) +
κ

t2
(∇w − β,∇v − η)0,Ω ,(3.1)

B((g, f), (η, v)) := (σ∇f,∇v)0,Ω .(3.2)

We notice that A(·, ·) is symmetric and elliptic (cf. [4]). Moreover, from the symmetry
of σ (cf. (2.2)), it follows that B(·, ·) is symmetric too. Consider the bounded linear
operator

(3.3)
T̃t : H1

0(Ω)
2
× H1

0(Ω) → H1
0(Ω)

2
× H1

0(Ω),

(g, f) 7→ (β,w),

where (β,w) ∈ H1
0(Ω)

2
× H1

0(Ω) is the solution of

A((β,w), (η, v)) = B((g, f), (η, v)) ∀(η, v) ∈ H1
0(Ω)

2
× H1

0(Ω).

By virtue of the symmetry of A(·, ·) and B(·, ·), we have

A(T̃t(g, f), (η, v)) = B((g, f), (η, v)) = B((η, v), (g, f)) = A((g, f), T̃t(η, v)),

for every (g, f), (η, v) ∈ H1
0(Ω)

2
× H1

0(Ω). Therefore, T̃t is self-adjoint with respect to
the inner product A(·, ·). As a consequence, we have the following theorem (see, for
instance, [7, Theorem 3.3]).

Theorem 3.2. There holds Sp(T̃t) ⊂ R. Moreover, the spectrum of T̃t decom-

poses as follows: Sp(T̃t) = Spd(T̃t) ∪ Spe(T̃t). Finally, if µ ∈ Spd(T̃t), then µ is an
isolated eigenvalue of finite multiplicity.

The following result shows that the essential spectrum of T̃t is confined in a
neighborhood of the origin of diameter proportional to t2.

Proposition 3.3. Let µ ∈ R be such that µ ∈ Sp(T̃t) and |µ| > κ−1t2 ‖σ‖∞,Ω.

Then µ ∈ Spd(T̃t).

Proof. Let µ ∈ R be such that µ ∈ Sp(T̃t) and |µ| > κ−1t2 ‖σ‖∞,Ω. By virtue of

Theorem 3.2, we only have to prove that (µĨ−T̃t) is a Fredholm operator. To this end,

it is enough to show that there exists a compact operator G̃ such that (µĨ − T̃t + G̃)
is invertible. Let us introduce the operator S as follows:

S : H1
0(Ω) → H1

0(Ω)
2
,

f 7→ β,

where (β,w) is the unique solution of problem (2.5). Notice that

(3.4) T̃t(g, f) = (Sf, Ttf).

According to (2.8), we have that β ∈ H2(Ω)
2

and hence S is compact. Let us now
define the operator G as follows:

(3.5)
G : H1

0(Ω) → H1
0(Ω),

f 7→ u,
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where u ∈ H1
0(Ω) is the unique solution of

(∇u,∇ξ)0,Ω = (Sf,∇ξ)0,Ω = (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

The operator G is compact as a consequence of the compactness of S. Next, we define
G̃ as follows:

G̃ : H1
0(Ω)

2
× H1

0(Ω) → H1
0(Ω)

2
× H1

0(Ω),

(g, f) 7→ (Sf,Gf).

Since S and G are compact, G̃ is compact, too. In addition,

(µĨ − T̃t + G̃)(g, f) = ((µg − Sf + Sf) , (µI − Tt +G) f) = (µg, (µI − Tt +G) f).

From the fourth equation in (2.7), we notice that v := (µI − Tt +G) f satisfies

(∇v,∇ξ)0,Ω = µ (∇f,∇ξ)0,Ω − (∇w,∇ξ)0,Ω + (β,∇ξ)0,Ω

=
((
µI − κ−1t2σ

)
∇f,∇ξ

)
0,Ω

∀ξ ∈ H1
0(Ω).

Consequently, the operator (µI − Tt +G) will be invertible if and only if, given v ∈
H1

0(Ω), there exists a unique f ∈ H1
0(Ω) solution of

(3.6)
((
µI − κ−1t2σ

)
∇f,∇ξ

)
0,Ω

= (∇v,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

Now, because of the symmetry of σ(x), there exists an orthogonal tensor P (x)
such that σ(x) = P (x)D(x)P t(x), where

D(x) :=

[
ω(x) 0

0 ω(x)

]
,

with ω(x) ≤ ω(x) being the eigenvalues of σ(x). Hence, we write

(
µI − κ−1t2σ

)
= P (x)

[
µ− κ−1t2ω(x) 0

0 µ− κ−1t2ω(x)

]
P (x)t.

Let us denote ωmax := maxx∈Ω̄ ω(x) and ωmin := minx∈Ω̄ ω(x). Since ‖σ‖∞,Ω =

maxx∈Ω̄ |σ(x)| = max {|ωmax| , |ωmin|}, if |µ| > κ−1t2 ‖σ‖∞,Ω, then there holds either

µ > κ−1t2ωmax or µ < κ−1t2ωmin. Hence,
(
µI − κ−1t2σ

)
is uniformly positive definite

in the first case or uniformly negative definite in the second one. Therefore, in both
cases, there exists a unique solution f ∈ H1

0(Ω) of (3.6). Consequently, (µI − Tt +G)

is invertible. Consequently, (µĨ − T̃t) is Fredholm and µ ∈ Spd(T̃t).

The following result shows that Tt and T̃t have the same spectrum.
Lemma 3.4. If Tt and T̃t are the operators defined in (2.9) and (3.3), respectively,

then Sp(T̃t) = Sp(Tt).

Proof. We will prove that ρ(T̃t) = ρ(Tt). Let z be such that (zĨ− T̃t) is invertible.
We will prove that (zI − Tt) is invertible, too. By hypothesis, for every (β,w) ∈

H1
0(Ω)

2
× H1

0(Ω) there exists a unique (g, f) ∈ H1
0(Ω)

2
× H1

0(Ω) such that

(3.7) (zĨ − T̃t)(g, f) = (β,w).

Recalling (3.4), we infer that there is a unique (g, f) such that zg − Sf = β and
(zI − Tt) f = w. Hence, we deduce that the operator (zI − Tt) : H1

0(Ω) → H1
0(Ω)
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is onto. Now, let us assume that there exists another f̂ such that (zI − Tt) f̂ = w.

Taking ĝ = 1
z
(Sf̂ + β), we see that (zĨ − T̃t)(ĝ, f̂) = (β,w). Since, by assumption,

(zĨ − T̃t) is invertible, from (3.7) it follows that f = f̂ . Therefore, (zI − Tt) is also
one-to-one and thus it is invertible.

Conversely, let z be such that (zI − Tt) is invertible. We will prove that (zĨ− T̃t)
is invertible, too. Recalling (3.4) again, we have to show that for every (β,w) ∈

H1
0(Ω)

2
× H1

0(Ω), there exists a unique (g, f) ∈ H1
0(Ω)

2
× H1

0(Ω) such that

{
zg − Sf = β,

zf − Ttf = w.

Let (β,w) ∈ H1
0(Ω)

2
× H1

0(Ω) be given. There exists a unique f ∈ H1
0(Ω) such that

(zI − Tt) f = w. Therefore, taking g := 1
z

(Sf + β), we obtain (zĨ − T̃t)(g, f) =
(β,w). The uniqueness of g follows immediately from the uniqueness of f and the
first equation of the system above. The proof is complete.

The following result shows that the eigenvalues of Tt are nondefective.

Lemma 3.5. Suppose that µ 6= 0 is an isolated eigenvalue of Tt. Then its ascent
is one.

Proof. By contradiction. Let (µ,w) be an eigenpair of Tt, µ 6= 0, and let us
assume that Tt has a corresponding generalized eigenfunction, namely, ∃ŵ 6= 0 such

that Ttŵ = µŵ + w. Since (µ,w) is an eigenpair of Tt, there exists β ∈ H1
0(Ω)

2
such

that (cf. (2.9) and (2.4))
(3.8)

a(β, η) +
κ

t2
(∇w − β,∇v − η)0,Ω =

1

µ
(σ∇w,∇v)0,Ω ∀(η, v) ∈ H1

0(Ω)
2
× H1

0(Ω).

On the other hand, since Ttŵ = µŵ + w, the definition of Tt implies the existence of

β̂ ∈ H1
0(Ω)

2
such that

a(β̂, η) +
κ

t2
(∇ (w + µŵ) − β̂,∇v − η)0,Ω = (σ∇ŵ,∇v)0,Ω

∀(η, v) ∈ H1
0(Ω)

2
× H1

0(Ω).

Defining β̄ := (β̂ − β)/µ, the equation above can be written as follows:

µa(β̄, η)+a(β, η)+
κµ

t2
(∇ŵ − β̄,∇v − η)0,Ω+

κ

t2
(∇w − β,∇v − η)0,Ω = (σ∇ŵ,∇v)0,Ω.

We now take (η, v) = µ(β̄, ŵ) in (3.8) and (η, v) = (β,w) in the equation above and
we subtract the resulting equations. Using also the symmetry of a(·, ·) and σ, we
obtain

a(β, β) +
κ

t2
‖∇w − β‖2

0,Ω = 0.

Thus, from the ellipticity of a(·, ·), we infer β = 0 and hence w = 0, which is a
contradiction since w is an eigenfunction of Tt. The proof is complete.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. The proof follows easily by combining Lemma 3.4 with
Theorem 3.2, Proposition 3.3, and Lemma 3.5.
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3.2. Limit problem. In this section we study the convergence properties of the
operator Tt as t goes to zero. First, let us recall that it is well-known (see [4]) that,
when t goes to zero, the solution (β,w, γ) of problem (2.5) converges to the solution

(β0, w0, γ0) ∈ H1
0(Ω)

2
× H1

0(Ω) × H0(rot; Ω)′ of

(3.9)

{
a(β0, η) + 〈γ0,∇v − η〉 = (σ∇f,∇v)0,Ω ∀(η, v) ∈ H1

0(Ω)
2
× H1

0(Ω),

∇w0 − β0 = 0,

where, 〈·, ·〉 stands for the duality pairing in H0(rot; Ω). Problem (3.9) is a mixed
formulation for the following well-posed problem:

Find w0 ∈ H2
0(Ω) such that

E

12 (1 − ν2)
(∆w0,∆v)0,Ω = (σ∇f,∇v)0,Ω ∀v ∈ H2

0(Ω).

Let T0 be the bounded linear operator defined by

T0 : H1
0(Ω) → H1

0(Ω),

f 7→ w0,

where (β0, w0, γ0) is the solution of problem (3.9). Since w0 ∈ H2
0(Ω), the operator

T0 is compact. Hence, apart from µ0 = 0, the spectrum of T0 consists of a sequence
of finite multiplicity isolated eigenvalues converging to zero. The following lemma,
which yields the convergence in norm of Tt to T0 has been essentially proved in [10,
Lemma 3.1].

Lemma 3.6. There exists a constant C, independent of t, such that

‖(Tt − T0) f‖1,Ω ≤ Ct ‖f‖1,Ω ∀f ∈ H1
0(Ω).

As a consequence of this lemma, standard properties about the separation of
isolated parts of the spectrum (see [14], for instance) yield the following result.

Lemma 3.7. Let µ0 be an eigenvalue of T0 of multiplicity m. Let D be any disc
in the complex plane centered at µ0 and containing no other element of the spectrum
of T0. Then there exists t0 > 0 such that, ∀t < t0, D contains exactly m isolated
eigenvalues of Tt (repeated according to their respective multiplicities). Consequently,
each eigenvalue µ0 of T0 is a limit of isolated eigenvalues µt of Tt, as t goes to zero.

Our next goal is to show that the largest eigenvalues of Tt converge to the largest
eigenvalues of T0 as t goes to zero. With this aim, we prove first the following lemma.
Here and thereafter, we will use ‖ · ‖ to denote the operator norm induced by the
H1(Ω) norm.

Lemma 3.8. Let F ⊂ C be a closed set such that F ∩ Sp(T0) = ∅. Then there
exist strictly positive constants t0 and C such that, ∀t < t0, F ∩ Sp(Tt) = ∅ and

‖Rz(Tt)‖ := sup
w∈H1

0
(Ω)

w 6=0

‖Rz(Tt)w‖1,Ω

‖w‖1,Ω

≤ C ∀z ∈ F.

Proof. The mapping z 7→ ‖ (zI − T0)
−1 ‖ is continuous for all z ∈ ρ(T0) and

goes to zero as |z| → ∞. Consequently, it attains its maximum on any closed subset

F ⊂ ρ(T0). Let C1 := 1/maxz∈F ‖ (zI − T0)
−1 ‖; there holds

‖(zI − T0)w‖1,Ω ≥
1

C1
‖w‖1,Ω ∀w ∈ H1

0(Ω) ∀z ∈ F.
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Now, according to Lemma 3.6, there exists t1 > 0 such that, for all t < t1,

‖(Tt − T0)w‖1,Ω ≤
1

2C1
‖w‖1,Ω ∀w ∈ H1

0(Ω).

Therefore, for all w ∈ H1
0(Ω), for all z ∈ F , and for all t < t1,

(3.10) ‖(zI − Tt)w‖1,Ω ≥ ‖(zI − T0)w‖1,Ω − ‖(Tt − T0)w‖1,Ω ≥
1

2C1
‖w‖1,Ω

and, consequently, z /∈ Spd(Tt).
On the other hand, since Sp(T0) ∋ 0, F ∩ Sp(T0) = ∅, and F is closed, we have

that d := minz∈F |z| is strictly positive. Let t2 > 0 be such κ−1t22 ‖σ‖∞,Ω < d. Hence,

for all z ∈ F and for all t < t2, |z| > κ−1t2 ‖σ‖∞,Ω and, by virtue of Theorem 3.1,
either z ∈ Spd(Tt) or z /∈ Sp(Tt).

Altogether, if t0 := min {t1, t2}, then (zI − Tt) is invertible for all t < t0 and all
z ∈ F . Moreover, because of (3.10),

‖Rz(Tt)‖ = ‖ (zI − Tt)
−1 ‖ ≤ 2C1

and we conclude the proof.
Since T0 is a compact operator, its nonzero eigenvalues are isolated and we can

order them as follows:

|µ
(1)
0 | ≥ |µ

(2)
0 | ≥ · · · ≥ |µ

(k)
0 | ≥ · · ·

where each eigenvalue is repeated as many times as its corresponding multiplicity.
According to Lemma 3.7, for t sufficiently small there exist eigenvalues of Tt close to

each µ
(k)
0 . On the other hand, according to Theorem 3.1, the essential spectrum of Tt is

confined in a ball centered at the origin of the complex plane with radius proportional
to t2. Therefore, at least for t sufficiently small, the points of the spectrum of Tt

largest in modulus have to be isolated eigenvalues. Hence we order them as we did
with those of T0:

|µ
(1)
t | ≥ |µ

(2)
t | ≥ · · · ≥ |µ

(k)
t | ≥ · · ·

The following theorem shows that the k-th eigenvalue of Tt converge to the k-th
eigenvalue of T0 as t goes to zero.

Theorem 3.9. Let µ
(k)
t , k ∈ N, t ≥ 0, be as defined above. For all k ∈ N,

µ
(k)
t → µ

(k)
0 as t→ 0.

Proof. We will prove the result for the first eigenvalue µ
(1)
t . The proof for the

others is a straightforward modification of this one.

Let D0 be an open disk in the complex plane centered at µ
(1)
0 with radius r0 <

(|µ
(1)
0 | − |µ

(k)
0 |)/2, where µ

(k)
0 is the first eigenvalue of T0 such that |µ

(1)
0 | > |µ

(k)
0 |.

Let D1 be another open disk in the complex plane centered at the origin with

radius r1 := |µ
(1)
0 | − r0. Therefore Sp(T0) ⊂ D0 ∪D1. Let F := C \ (D0 ∪D1). F is

a closed set and F ∩ Sp(T0) = ∅. Hence, according to Lemma 3.8, there exists t0 > 0
such that, for all t < t0, F ∩ Sp(Tt) = ∅, too, and hence Sp(Tt) ⊂ D0 ∪D1, as well.

On the other hand, because of Lemma 3.7, there exists t1 > 0 such that, for all
t < t1, D0 contains eigenvalues of Tt. Therefore, for all t < min {t0, t1}, the eigenvalue

of Tt largest in modulus, µ
(1)
t , has to lie in D0. Since D0 can be taken arbitrarily

small, we conclude that µ
(1)
t converges to µ

(1)
0 as t goes to zero. Thus, we conclude

the proof.
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3.3. Additional regularity of the eigenfunctions. The aim of this section
is to prove a regularity result for the eigenfunctions of problem (2.4). More precisely,
we have the following proposition.

Proposition 3.10. Let µ
(k)
t , k ∈ N, t ≥ 0, be as in Theorem 3.9. Let (λ, β, w, γ)

be a solution of problem (2.4) with λ = 1/µ
(k)
t . Then there exists t0 > 0 such that,

for all t < t0, β ∈ H2(Ω)
2
, w ∈ H2(Ω), div γ ∈ L2(Ω), and there holds

‖β‖2,Ω ≤ C |λ| ‖w‖1,Ω ,(3.11)

‖w‖2,Ω ≤ C |λ| ‖w‖1,Ω ,(3.12)

‖div γ‖0,Ω ≤ C |λ| ‖w‖2,Ω ,(3.13)

with C a positive constant independent of t.
Proof. Using the Helmholtz decomposition (2.6), problem (2.4) is equivalent to

the following one:

Find λ ∈ R and 0 6= (ψ, β, p, w) ∈ H1
0(Ω)×H1

0(Ω)
2
×H1(Ω)/R ×H1

0(Ω) such that




(∇ψ,∇v)0,Ω = λ (σ∇w,∇v)0,Ω ∀v ∈ H1
0(Ω),

a(β, η) − (curl p, η)0,Ω = (∇ψ, η)0,Ω ∀η ∈ H1
0(Ω)

2
,

− (β, curl q)0,Ω − κ−1t2 (curl p, curl q)0,Ω = 0 ∀q ∈ H1(Ω)/R,

(∇w,∇ξ)0,Ω = (β,∇ξ)0,Ω + κ−1t2 (∇ψ,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

From Theorem 2.1 applied to the problem above, we immediately obtain that

β ∈ H2(Ω)
2

and the estimate (3.11).
On the other hand, the first and the last equations from the system above lead to

((
I − λκ−1t2σ

)
∇w,∇ξ

)
0,Ω

= (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

Since µ
(k)
t → µ

(k)
0 6= 0 as t→ 0, there exists t1 > 0 such that |µ

(k)
t | > |µ

(k)
0 |/2 ∀t < t1.

Hence λ = 1/µ
(k)
t < 2/|µ

(k)
0 |. We take t0 < t1 such that κ−1t20 ‖σ‖∞,Ω < |µ

(k)
0 |/2.

Therefore, for all t < t0,
(
I − λκ−1t2σ

)
is uniformly positive definite. Thus, since w

is the solution of the problem
{

div
[(

I − λκ−1t2σ
)
∇w

]
= div β in Ω,

w = 0 on ∂Ω,

using a standard regularity result (see [21]), we have that w ∈ H2(Ω) and

‖w‖2,Ω ≤ C ‖div β‖0,Ω ≤ C ‖β‖1,Ω ≤ C |λ| ‖w‖1,Ω ,

the last inequality because of (3.11).
Furthermore, taking η = 0 in (2.4), using the estimate above and (2.3), it follows

that

div γ = λdiv(σ∇w) ∈ L2(Ω).

and

‖div γ‖0,Ω ≤ C |λ| ‖w‖2,Ω .

The proof is complete.
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4. Spectral approximation. For the numerical approximation, we focus on
the finite element method proposed and studied in [11]. In what follows we introduce
briefly this method (see this reference for further details). Let {Th}h>0 be a regular
family of triangular meshes of Ω̄. We will define finite element spaces Hh, Wh, and
Γh for the rotations, the transverse displacement, and the shear strain, respectively.

For K ∈ Th, let α1, α2, α3 be its barycentric coordinates. We denote by τi a unit
vector tangent to the edge αi = 0 and define

pK
1 = α2α3τ1, pK

2 = α1α3τ2, pK
3 = α1α2τ3.

The finite element space for the rotations is defined by

Hh :=
{
ηh ∈ H1

0(Ω)
2

: ηh|K ∈ P
2
1 ⊕ 〈pK

1 , p
K
2 , p

K
3 〉 ∀K ∈ Th

}
.

To approximate the transverse displacements, we use the usual piecewise-linear con-
tinuous finite element space:

Wh :=
{
vh ∈ H1

0(Ω) : vh|K ∈ P1(K) ∀K ∈ Th

}
.

Finally, for the shear strain, we use the lowest-order rotated Raviart-Thomas space:

Γh :=
{
φ ∈ H0(rot; Ω) : φ|K ∈ P

2
0 ⊕ (x2,−x1)P0 ∀K ∈ Th

}
.

We consider the reduction operator

R : H1(Ω)
2
∩ H0(rot; Ω) → Γh,

which is uniquely determined by
∫

ℓ

Rφ · τℓ =

∫

ℓ

φ · τℓ,

for every edge ℓ of the triangulation. Above, τℓ denotes a unit vector tangent to ℓ. It
is well-known that

‖Rφ‖0,Ω ≤ C ‖φ‖1,Ω ∀φ ∈ H1(Ω)
2
,(4.1)

‖φ−Rφ‖0,Ω ≤ Ch ‖φ‖1,Ω ∀φ ∈ H1(Ω)
2
.(4.2)

Moreover, the operator R can be extended continuously to Hs(Ω)
2 ∩ H0(rot; Ω) for

any s > 0 and it is also well known that, for all v ∈ H1+s(Ω) ∩ H1
0(Ω),

(4.3) R(∇v) = ∇vI,

where vI ∈ Wh is the standard piecewise-linear Lagrange interpolant of v (which is
well defined because H1+s(Ω) ⊂ C(Ω̄) for all s > 0).

The discretization of problem (2.4) is as follows:
Find λh ∈ R and 0 6= (βh, wh) ∈ Hh ×Wh such that

(4.4){
a(βh, ηh) + (γh,∇vh −Rηh)0,Ω = λh (σ∇wh,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh) .

The corresponding discrete source problem reads:
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Given f ∈ H1
0(Ω), find (βh, wh) ∈ Hh ×Wh such that

(4.5){
a(βh, ηh) + (γh,∇vh −Rηh)0,Ω = (σ∇f,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh) .

The method is nonconforming, since consistency terms arise because of the re-
duction operator R. Existence and uniqueness of the solution to problem (4.5) follow
easily (see [11]).

Remark 4.1. Given a generic f ∈ H1
0(Ω), the usual convergence rate in terms of

positive powers of the mesh-size h does not hold for problems (2.5) and (4.5). Indeed,
the right-hand sides of both problems are not regular enough, since div(σ∇f) /∈ L2(Ω).
However, whenever f is more regular, for instance assuming f ∈ H2(Ω) and taking
into account the regularity of σ (cf. (2.3)), the convergence results of [11] can be
applied, to obtain

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω + ‖w − wh‖1,Ω ≤ Ch ‖f‖2,Ω .

As for the continuous case, we introduce the operator

Tth : H1
0(Ω) →Wh →֒ H1

0(Ω),

f 7→ wh,

where (βh, wh) is the solution of problem (4.5). The following lemma shows that this
operator is bounded uniformly in t and h.

Lemma 4.1. There exists C > 0 such that ‖Tth‖ ≤ C for all t > 0 and all h > 0.
Proof. Let f ∈ H1

0(Ω) and (βh, wh) be the solution of problem (4.5). Taking
(ηh, vh) = (βh, wh) as test function in (4.5), we obtain

a(βh, βh) + κ−1t2 ‖γh‖
2
0,Ω ≤ ‖σ‖∞,Ω ‖∇f‖0,Ω ‖∇wh‖0,Ω ,

where γh =
κ

t2
(∇wh −Rβh) as in (4.5). Hence, from the ellipticity of a(·, ·),

‖βh‖
2
1,Ω + κ−1t2 ‖γh‖

2
0,Ω ≤ C ‖σ‖∞,Ω ‖∇f‖0,Ω ‖∇wh‖0,Ω .

Therefore, using (4.1),

‖∇wh‖
2
0,Ω =

∥∥κ−1t2γh +Rβh

∥∥2

0,Ω
≤ C ‖σ‖∞,Ω ‖∇f‖0,Ω ‖∇wh‖0,Ω ,

which allows us to conclude the proof.
Clearly, the nonzero eigenvalues of Tth are given by µh := 1/λh, with λh being the

eigenvalues of (4.4), and the corresponding eigenfunctions coincide. In what follows,
we will prove a characterization of the discrete spectral problem (4.4).

Lemma 4.2. Let Yh :=
{
wh ∈Wh : (σ∇wh,∇vh)0,Ω = 0 ∀vh ∈Wh

}
. Then

problem (4.4) has exactly dimWh − dimYh eigenvalues, repeated according to their
respective multiplicities. All of them are real and nonzero.

Proof. We eliminate γh in problem (4.4) to write it as follows:

(4.6)
a(βh, ηh) +

κ

t2
(∇wh −Rβh,∇vh −Rηh)0,Ω = λh (σ∇wh,∇vh)0,Ω

∀(ηh, vh) ∈ Hh ×Wh.
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Taking particular bases of Hh and Wh, this problem can be written in matrix form
as follows:

(4.7) A

[
βh

wh

]
= λh

[
0 0

0 E

] [
βh

wh

]
,

where βh and wh denote the vectors whose entries are the components in those basis
of βh and wh, respectively. The matrix A is symmetric and positive definite because

the bilinear form on the left-hand side of (4.6) is elliptic on H1
0(Ω)

2
×H1

0(Ω) (cf. [11]).
Consequently, λh 6= 0 and, since E is also symmetric, λh ∈ R. Now, (4.7) holds true
if and only if

[
0 0

0 E

] [
βh

wh

]
= µhA

[
βh

wh

]

with λh = 1/µh and µh 6= 0. The latter is a well-posed generalized eigenvalue problem
with dimWh − dim Ker(E) nonzero eigenvalues. Thus, we conclude the lemma by
noting that Ewh = 0 if and only if wh ∈ Yh.

Remark 4.2. If (λh, βh, wh) is a solution of problem (4.4), then

wT
h Ewh = (σ∇wh,∇wh)0,Ω 6= 0.

In fact, this follows by left multiplying both sides of (4.7) by (βh,wh) and using the
positive definiteness of A.

We will adapt the theory in [8, 9] to prove convergence of our spectral approxima-
tion and to obtain error estimates. To this end, we will use the following properties:

P1. ‖T0 − Tth‖h := sup
fh∈Wh

fh 6=0

‖(T0 − Tth) fh‖1,Ω

‖fh‖1,Ω

→ 0, as (h, t) → (0, 0);

P2. ∀u ∈ H1
0(Ω), inf

vh∈Wh

‖u− vh‖1,Ω → 0, as h→ 0.

From now on, we will use the operator norm ‖·‖h as defined in property P1.
Since property P2 follows from standard approximation results, in the sequel we

focus on property P1. We first notice that

(4.8) ‖T0 − Tth‖h ≤ ‖T0 − Tt‖h + ‖Tt − Tth‖h ,

where Tt is the operator defined in (2.9). Since Wh ⊂ H1
0(Ω), from Lemma 3.6 we

deduce that for all h > 0

(4.9) ‖T0 − Tt‖h ≤ Ct.

Regarding the other term in the right-hand side of (4.8), we aim at proving the
following result.

Proposition 4.3. Suppose that the family {Th}h>0 is quasi-uniform. Then we
have

‖Tt − Tth‖h ≤ C (h+ t) .

To give the proof of Proposition 4.3, we consider problems (2.5) and (4.5) with
source term in Wh, namely:
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Given fh ∈Wh, find (β,w) ∈ H1
0(Ω)

2
× H1

0(Ω) such that
(4.10)




a(β, η) + (γ,∇v − η)0,Ω = (σ∇fh,∇v)0,Ω ∀(η, v) ∈ H1
0(Ω)

2
× H1

0(Ω),

γ =
κ

t2
(∇w − β) .

Given fh ∈Wh, find (βh, wh) ∈ Hh ×Wh such that
(4.11){

a(βh, ηh) + (γh,∇vh −Rηh)0,Ω = (σ∇fh,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh) .

We need some results concerning the solutions of problems (4.10) and (4.11).
First, we apply the Helmholtz decomposition (2.6) to the term γ from (4.10):

(4.12) γ = ∇ψ + curl p, ψ ∈ H1
0(Ω), p ∈ H1(Ω)/R.

Then we apply Theorem 2.1 and (2.8), to obtain the following a priori estimate for
the solution to problem (4.10):

(4.13) ‖ψ‖1,Ω + ‖β‖2,Ω + ‖w‖1,Ω + ‖p‖1,Ω + t ‖p‖2,Ω + ‖γ‖0,Ω ≤ C ‖fh‖1,Ω .

The following result shows that w and ψ are actually smoother, because fh ∈ Wh,
and an inverse estimate which will be used to prove Proposition 4.3.

Lemma 4.4. Let w be defined by problem (4.10) and ψ as in (4.12). Then
w,ψ ∈ H1+s(Ω) for all s ∈ (0, 1

2 ). Moreover, if the family {Th}h>0 is quasi-uniform,
then

‖ψ‖1+s,Ω ≤ Ch−s ‖fh‖1,Ω .

Proof. Recalling the equivalence between problems (4.10) and (2.7), the latter
with source term fh instead of f , from the first equation of (2.7) we have that ψ is
the weak solution of

(4.14)

{
∆ψ = div(σ∇fh),

ψ = 0 on ∂Ω.

Since fh is a continuous piecewise linear function, we have that fh ∈ H1+s(Ω) ∀s ∈

(0, 1
2 ). Therefore, the assumption (2.3) implies σ∇fh ∈ Hs(Ω)

2
. Hence, div(σ∇fh) ∈

Hs−1(Ω). Then, from standard regularity results for problem (4.14), ψ ∈ H1+s(Ω)
∀s ∈ (0, 1

2 ) and

‖ψ‖1+s,Ω ≤ C ‖div(σ∇fh)‖s−1,Ω ≤ C ‖fh‖1+s,Ω .

If the family of meshes is quasi-uniform, then the inverse inequality ‖fh‖1+s,Ω ≤

Ch−s ‖fh‖1,Ω holds true and from this and the estimate above we obtain

‖ψ‖1+s,Ω ≤ Ch−s ‖fh‖1,Ω .

On the other hand, from the last equation of (2.7) we have that

(
∇

(
w − κ−1t2ψ

)
,∇ξ

)
0,Ω

= (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).
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Therefore,
(
w − κ−1t2ψ

)
is the weak solution to the problem

{
∆

(
w − κ−1t2ψ

)
= div β ∈ L2(Ω),(

w − κ−1t2ψ
)

= 0 on ∂Ω.

Hence,
(
w − κ−1t2ψ

)
∈ H2(Ω) (recall Ω is convex) and w =

(
w − κ−1t2ψ

)
+κ−1t2ψ ∈

H1+s(Ω) for all s ∈ (0, 1
2 ). Thus the proof is complete.

The following lemma is the key point to prove Proposition 4.3.
Lemma 4.5. If (β,w) and (βh, wh) are the solutions of (4.10) and (4.11), re-

spectively, then

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C (h+ t) ‖fh‖1,Ω .

Proof. It has been proved in [11] (see Example 4.1 from this reference) that there

exists β̃ ∈ Hh such that

Rβ̃ = Rβ,

‖β − β̃‖1,Ω ≤ Ch ‖β‖2,Ω .

Let

γ̃ :=
κ

t2
(∇wI −Rβ̃),

where the Lagrange interpolant wI ∈ Wh is well defined because of Lemma 4.4. Be-
cause of (4.3) and the equation above,

γ̃ = Rγ.

It has also been proved in [11] that

‖β̃ − βh‖1,Ω + t ‖γ̃ − γh‖0,Ω ≤ C
(
‖β̃ − β‖1,Ω + t ‖γ̃ − γ‖0,Ω + h ‖γ‖0,Ω

)
.

Hence, by adding and subtracting β̃ and γ̃ = Rγ, we obtain

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C
(
‖β − β̃‖1,Ω + t ‖γ −Rγ‖0,Ω + h ‖γ‖0,Ω

)
.

The first and last term in the right-hand side above are already bounded. To
estimate the second one, we use (4.12), Lemma 4.4, and (4.3), to obtain

(4.15) ‖γ −Rγ‖0,Ω ≤ ‖∇ψ −∇ψI‖0,Ω + ‖curl p−R(curl p)‖0,Ω .

Next, from standard error estimates for the Lagrange interpolant, we have

‖∇ψ −∇ψI‖0,Ω ≤ Chs ‖ψ‖1+s,Ω ,

whereas from (4.2) and the fact that p ∈ H2(Ω) (cf. (4.13))

‖curl p−R(curl p)‖0,Ω ≤ Ch ‖p‖2,Ω .
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Thus, by using Lemma 4.4, we conclude

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C
(
h ‖β‖2,Ω + t ‖fh‖1,Ω + th ‖p‖2,Ω + h ‖γ‖0,Ω

)

≤ C (h+ t) ‖fh‖1,Ω ,

where we have used (4.13) for the last inequality. The proof is complete.
We are now in a position to prove Proposition 4.3.
Proof of Proposition 4.3. Under the same assumptions of Lemma 4.5, we need to

prove that

‖w − wh‖1,Ω ≤ C (h+ t) ‖fh‖1,Ω .

From problems (4.10) and (4.11), we have

∇w −∇wh = κ−1t2 (γ − γh) + (β −Rβh) .

Adding and subtracting Rβ, we obtain

(4.16) ‖∇w −∇wh‖0,Ω ≤ κ−1t2 ‖γ − γh‖0,Ω + ‖β −Rβ‖0,Ω + ‖R(β − βh)‖0,Ω .

Hence, using Poincaré inequality, (4.1), Lemma 4.5, (4.2), and (4.13), we have

‖w − wh‖1,Ω ≤ C (h+ t) ‖fh‖1,Ω .

The proof is complete.
We end this section by proving property P1.
Lemma 4.6. Suppose that the family {Th}h>0 is quasi-uniform. Then we have

‖T0 − Tth‖h ≤ C (h+ t) .

Proof. The assertion follows immediately from estimate (4.8), by using (4.9) and
Proposition 4.3.

5. Error estimates. In this section we will adapt the arguments from [9] to
prove error estimates for the approximate eigenvalues and eigenfunctions. Throughout
this section, we will assume that the family of meshes {Th}h>0 is quasi-uniform, so
that property P1 holds true, although such assumption is not actually necessary in
some particular cases (see the appendix below).

Our first goal is to prove that, provided the plate is sufficiently thin, the numerical
method does not introduce spurious modes with eigenvalues interspersed among the

relevant ones of Tt (namely, around µ
(k)
t for small k). Let us remark that such a

spectral pollution could be in principle expected from the fact that Tt has a nontrivial
essential spectrum. However, that this is not the case is an immediate consequence
of the following theorem, which is essentially identical to Lemma 1 from [8].

Theorem 5.1. Let F ⊂ C be a closed set such that F ∩ Sp(T0) = ∅. There exist
strictly positive constants h0, t0, and C such that, ∀h < h0 and ∀t < t0, there holds
F ∩ Sp(Tth) = ∅ and

‖Rz(Tth)‖h ≤ C ∀z ∈ F.
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Proof. The same arguments used to prove Lemma 3.8 (but using Lemma 4.6
instead of Lemma 3.6) allow us to show an estimate analogous to (3.10), namely, for
all wh ∈Wh and all z ∈ F ,

‖(zI − Tth)wh‖1,Ω ≥ ‖(zI − T0)wh‖1,Ω − ‖(T0 − Tth)wh‖1,Ω ≥
1

2C1
‖wh‖1,Ω ,

provided h and t are small enough. Since Wh is finite dimensional, we deduce from
above that (zI − Tth) |Wh

is invertible and, hence, z /∈ Sp(Tth|Wh
). Now, Sp(Tth) =

Sp(Tth|Wh
) ∪ {0} (see, for instance, [3, Lemma 4.1]) and, for z ∈ F , z 6= 0. Thus,

z /∈ Sp(Tth) either. Then (zI − Tth) is invertible too and

‖Rz(Tth)‖h = ‖ (zI − Tth)
−1 ‖h ≤ 2C1 ∀z ∈ F.

The proof is complete.
We have already proved in Theorem 3.1 that the essential spectrum of Tt is con-

fined to the real interval
(
−κ−1t2‖σ‖∞,Ω, κ

−1t2‖σ‖∞,Ω

)
. The spectrum of Tt outside

this interval consists of finite multiplicity isolated eigenvalues of ascent one, which
converge to eigenvalues of T0, as t goes to zero (cf. Theorem 3.9). The eigenvalue

of Tt with physical significance is the largest in modulus, µ
(1)
t , which corresponds to

the critical load that leads to buckling effects. This eigenvalue is typically simple
and converges to a simple eigenvalue of T0, as t tends to zero. Because of this, for
simplicity, from now on we restrict our analysis to simple eigenvalues.

Let µ0 6= 0 be an eigenvalue of T0 with multiplicity m = 1. Let D be a closed
disk centered at µ0 with boundary Γ such that 0 /∈ D and D ∩ Sp(T0) = {µ0}. Let
t0 > 0 be small enough, so that for all t < t0:

• D contains only one eigenvalue of Tt, which we already know is simple (cf.
Lemma 3.7) and

• D does not intersect the real interval
(
−κ−1t2‖σ‖∞,Ω, κ

−1t2‖σ‖∞,Ω

)
, which

contains the essential spectrum of Tt.
According to Theorem 5.1 there exist t0 > 0 and h0 > 0 such that ∀t < t0 and

∀h < h0, Γ ⊂ ρ(Tth). Moreover, proceeding as in [8, Section 2], from properties P1
and P2 it follows that, for h small enough, Tth has exactly one eigenvalue µth ∈ D.
The theory in [9] could be adapted too, to prove error estimates for the eigenvalues
and eigenfunctions of Tth to those of T0 as h and t go to zero. However, our goal is
not this, but to prove that µth converges to µt as h goes to zero, with t < t0 fixed,
and to provide the corresponding error estimates for eigenvalues and eigenfunctions.
With this aim, we will modify accordingly the theory from [9].

Let Πh : H1
0(Ω) → H1

0(Ω) be the projector with rangeWh defined for all u ∈ H1
0(Ω)

by

(∇ (Πhu− u) ,∇vh)0,Ω = 0 ∀vh ∈Wh.

The projector Πh is bounded uniformly on h, namely, ‖Πhu‖1,Ω ≤ ‖u‖1,Ω, and the
following error estimate is well known:

(5.1) ‖Πhu− u‖1,Ω ≤ Ch ‖u‖2,Ω ∀u ∈ H2(Ω).

Let us define

Bth := TthΠh : H1
0(Ω) →Wh →֒ H1

0(Ω).
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It is clear that Tth and Bth have the same nonzero eigenvalues and corresponding
eigenfunctions. Furthermore, we have the following result (cf. [9, Lemma 1]).

Lemma 5.2. There exist h0, t0, and C such that

‖Rz(Bth)‖ ≤ C ∀h < h0, ∀t < t0, ∀z ∈ Γ.

Proof. Since Bth is compact it suffices to verify that ‖(zI −Bth)u‖1,Ω ≥ C ‖u‖1,Ω

for all u ∈ H1
0(Ω) and z ∈ Γ. Taking into account that 0 /∈ Γ and using Theorem 5.1,

we have

‖u‖1,Ω ≤ ‖Πhu‖1,Ω+‖u− Πhu‖1,Ω ≤ C ‖(zI − Tth) Πhu‖1,Ω+|z|−1 ‖z (u− Πhu)‖1,Ω .

By using properties of the projector Πh, we obtain

‖u‖1,Ω ≤ C ‖(zI −Bth) Πhu‖1,Ω + |z|−1 ‖z (u− Πhu) −Bth(u− Πhu)‖1,Ω

= C ‖Πh(zI −Bth)u‖1,Ω + |z|−1 ‖(I − Πh) (zI −Bth)u‖1,Ω

≤ C ‖(zI −Bth)u‖1,Ω .

Thus we end the proof.
Next, we introduce:
• Et : H1

0(Ω) → H1
0(Ω), the spectral projector of Tt corresponding to the iso-

lated eigenvalue µt, namely,

Et :=
1

2πi

∫

Γ

Rz(Tt) dz;

• Fth : H1
0(Ω) → H1

0(Ω), the spectral projector of Bth corresponding to the
eigenvalue µth, namely,

Fth :=
1

2πi

∫

Γ

Rz(Bth) dz.

As a consequence of Lemma 5.2, the spectral projectors Fth are bounded uniformly
in h and t, for h and t small enough. Notice that, under our assumptions, Et(H

1
0(Ω))

and Fth(H1
0(Ω)) are both one dimensional. We have the following error estimate (cf.

[9, Lemma 3]).
Lemma 5.3. There exist positive constants h0, t1, and C, such that for all h < h0

and for all t < t1,

‖ (Et − Fth) |Et(H1

0
(Ω))‖ ≤ C‖ (Tt −Bth) |Et(H1

0
(Ω))‖ ≤ Ch.

Proof. The first inequality is proved using the same arguments of [9, Lemma 3]
and Lemmas 3.8 and 5.2. For the other estimate, fix w ∈ Et(H

1
0(Ω)). From Proposi-

tion 3.10, Remark 4.1, Lemma 4.1, and (5.1), we have

‖(Tt −Bth)w‖1,Ω ≤ ‖(Tt − Tth)w‖1,Ω + ‖(Tth −Bth)w‖1,Ω

≤ ‖(Tt − Tth)w‖1,Ω + ‖Tth‖ ‖(I − Πh)w‖1,Ω

≤ Ch ‖w‖2,Ω .
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Therefore, by using (3.12), we conclude the proof.
Our next goal is to prove an optimal order error estimate for the eigenfunctions.

With this aim, we first need a preliminary result.
Lemma 5.4. Let

Λth := Fth|Et(H1

0
(Ω)) : Et(H

1
0(Ω)) → Fth(H1

0(Ω)).

For h and t small enough, the operator Λth is invertible and

∥∥Λ−1
th

∥∥ ≤ C,

with C independent of h and t.
Proof. See the proof of Theorem 1 in [9].

We recall the definition of the gap δ̂ between two closed subspaces Y and Z of
H1

0(Ω):

δ̂(Y,Z) := max {δ(Y,Z), δ(Z, Y )} ,

where

δ(Y,Z) := sup
y∈Y

‖y‖
1,Ω

=1

(
inf
z∈Z

‖y − z‖1,Ω

)
.

Theorem 5.5. There exist constants h0, t1, and C, such that, for all h < h0 and
for all t < t1, there holds

δ̂
(
Fth(H1

0(Ω)), Et(H
1
0(Ω))

)
≤ Ch.

Proof. It follows by arguing exactly as in the proof of Theorem 1 from [9], and
using Lemmas 5.3 and 5.4.

Next, we prove a preliminary sub-optimal error estimate for |µt − µth|, which will
be improved below (cf. Theorem 5.8).

Lemma 5.6. There exists a positive constant C such that, for h and t small
enough,

|µt − µth| ≤ Ch.

Proof. We define the following operators:

T̂t := Tt|Et(H1

0
(Ω)) : Et(H

1
0(Ω)) → Et(H

1
0(Ω)),

B̂th := Λ−1
th BthΛth : Et(H

1
0(Ω)) → Et(H

1
0(Ω)).

The operator T̂t has a unique eigenvalue µt of multiplicity m = 1, while the unique
eigenvalue of B̂th is µth.

Let v ∈ Et(H
1
0(Ω)). Since

(
Λ−1

th Fth − I
)
Tt|Et(H1

0
(Ω)) = 0 and Bth commutes with

its spectral projector Fth, we have

(T̂t − B̂th)v = (Tt −Bth) v +
(
Λ−1

th Fth − I
)
(Tt −Bth) v.
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Therefore, using Lemmas 5.3 and 5.4 and the fact that ‖Fth‖ is bounded uniformly
in h and t, for h and t small enough, we obtain

‖(T̂t − B̂th)v‖1,Ω ≤ ‖(Tt −Bth) v‖1,Ω +
∥∥(

Λ−1
th Fth − I

)
(Tt −Bth) v

∥∥
1,Ω

≤ Ch ‖v‖1,Ω .

Hence, the lemma follows from the fact that T̂t = µtI and B̂th = µthI.
Since the eigenvalue µt 6= 0 of Tt corresponds to an eigenvalue λ = 1/µt of

problem (2.4), Lemma 5.6 leads to a sub-optimal error estimate for the approximation
of λ as well. We now aim at improving that result. Let λh := 1/µth, wh, βh and γh be
such that (λh, wh, βh, γh) is a solution of problem (4.4), with ‖wh‖1,Ω = 1. According
to Theorem 5.5, there exists a solution (λ,w, β, γ) of problem (2.4), with ‖w‖1,Ω = 1,
such that

‖w − wh‖1,Ω ≤ Ch.

The following lemma will be used to prove a double order of convergence for the
corresponding eigenvalues.

Lemma 5.7. Let (λ,w, β, γ) be a solution of (2.4), with ‖w‖1,Ω = 1, and let
(λh, wh, βh, γh) be a solution of (4.4), with ‖wh‖1,Ω = 1, such that

(5.2) ‖w − wh‖1,Ω ≤ Ch.

Then for h and t small enough there holds

(5.3) ‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ Ch.

Proof. Let ŵh ∈Wh, β̂h ∈ Hh and γ̂h be the solution of the auxiliary problem:



a(β̂h, ηh) + (γ̂h,∇vh −Rηh)0,Ω = λ (σ∇w,∇vh)0,Ω ∀(ηh, vh) ∈ Hh ×Wh,

γ̂h =
κ

t2
(∇ŵh −Rβ̂h).

This problem is the finite element discretization of (2.4), with source term f =
λw ∈ H2(Ω) ∩ H1

0(Ω). Then from Remark 4.1, (3.12), and the fact that ‖wh‖1,Ω = 1,
we obtain the following error estimate:

(5.4) ‖β − β̂h‖1,Ω + t ‖γ − γ̂h‖0,Ω + ‖w − ŵh‖1,Ω ≤ Ch |λ| ‖w‖2,Ω ≤ Ch |λ| .

On the other hand, from (4.4), we have that (βh − β̂h, wh − ŵh) ∈ Hh × Wh

satisfies




a(βh − β̂h, ηh) + (γh − γ̂h,∇vh −Rηh)0,Ω = (σ∇ (λhwh − λw) ,∇vh)0,Ω

∀(ηh, vh) ∈ Hh ×Wh,
γh − γ̂h =

κ

t2
(∇ (wh − ŵh) −R(βh − β̂h)).

Taking ηh = βh − β̂h and vh = wh − ŵh in the system above, from the ellipticity of
a(·, ·), we obtain

‖βh − β̂h‖
2

1,Ω + κ−1t2 ‖γh − γ̂h‖
2
0,Ω

≤ C ‖λhwh − λw‖1,Ω ‖wh − ŵh‖1,Ω

≤ C
(
|λh| ‖w − wh‖1,Ω + |λ− λh| ‖w‖1,Ω

)(
‖w − wh‖1,Ω + ‖w − ŵh‖1,Ω

)

≤ Ch2,
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where we have used Lemma 5.6 and estimates (5.2) and (5.4) for the last inequality.
Therefore, we have

‖βh − β̂h‖1,Ω + t ‖γh − γ̂h‖0,Ω ≤ Ch.

Thus, the lemma follows from this estimate and (5.4).
We are now in a position to prove an optimal double-order error estimate for the

eigenvalues.
Theorem 5.8. There exist positive constants h0, t1, and C such that, ∀h < h0

and ∀t < t1,

|λ− λh| ≤ Ch2.

Proof. We adapt to our case a standard argument for eigenvalue problems (see
[2, Lemma 9.1]). Let (λ, β, w, γ) and (λh, βh, wh, γh) be as in Lemma 5.7. We will
use the bilinear forms A and B defined in (3.1) and (3.2), respectively, as well as the
bilinear form Ah defined in Hh ×Wh as follows:

Ah((βh, wh), (ηh, vh)) := a(βh, ηh) +
κ

t2
(∇wh −Rβh,∇vh −Rηh)0,Ω .

With this notation, problems (2.4) and (4.4) can be written as follows:

A((β,w), (η, v)) = λB((β,w), (η, v)),

Ah((βh, wh), (ηh, vh)) = λhB((βh, wh), (ηh, vh)).

From these equations, straightforward computations lead to
(5.5)

(λh − λ)B((βh, wh), (βh, wh)) = A((β − βh, w − wh), (β − βh, w − wh))

− λB((β − βh, w − wh), (β − βh, w − wh))

+ [Ah((βh, wh), (βh, wh)) −A((βh, wh), (βh, wh))] .

Next, we define γ̄h :=
κ

t2
(∇wh − βh). Recalling that R∇wh = ∇wh (cf. (4.3)),

from the definition of γh (cf. (4.4)) we have that γh = Rγ̄h. On the other hand, from
the definition of A and Ah we write

A((β − βh, w − wh), (β − βh, w − wh)) = a(β − βh, β − βh) + κ−1t2 ‖γ − γ̄h‖
2
0,Ω ,

Ah((βh, wh), (βh, wh)) −A((βh, wh), (βh, wh)) = κ−1t2
(
‖Rγ̄h‖

2
0,Ω − ‖γ̄h‖

2
0,Ω

)
.

Therefore,

(λh − λ)B((βh, wh), (βh, wh)) = a(β − βh, β − βh)

+ κ−1t2
(
‖γ − γ̄h‖

2
0,Ω + ‖Rγ̄h‖

2
0,Ω − ‖γ̄h‖

2
0,Ω

)

− λB((β − βh, w − wh), (β − βh, w − wh)).

The first and the third term in the right-hand side above are easily bounded by virtue
of (5.2) and (5.3). For the second term, we write

(5.6)
‖γ − γ̄h‖

2
0,Ω + ‖Rγ̄h‖

2
0,Ω − ‖γ̄h‖

2
0,Ω = ‖γ −Rγ̄h‖

2
0,Ω − 2 (γ, γ̄h −Rγ̄h)0,Ω

= ‖γ − γh‖
2
0,Ω +

2κ

t2
(γ, βh −Rβh)0,Ω .
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For β ∈ H2(Ω)
2
∩H1

0(Ω), we denote by βI ∈ Hh the standard Clément interpolant
of β, which satisfies

(5.7)
∥∥βI

∥∥
1,Ω

≤ C ‖β‖1,Ω and
∥∥β − βI

∥∥
1,Ω

≤ Ch ‖β‖2,Ω .

It follows that

(γ, βh −Rβh)0,Ω =
(
γ,

(
βh − βI

)
−R(βh − βI)

)
0,Ω

+
(
γ, βI −RβI

)
0,Ω

≤ ‖γ‖0,Ω

∥∥(
βh − βI

)
−R(βh − βI)

∥∥
0,Ω

+
(
γ, βI −RβI

)
0,Ω

.

Thus, using (4.2) and Lemma 3.3 from [10], we obtain

(γ, βh −Rβh)0,Ω ≤ Ch ‖γ‖0,Ω

∥∥βh − βI
∥∥

1,Ω
+ Ch2 ‖div γ‖0,Ω ‖β‖1,Ω

≤ Ch ‖γ‖0,Ω

(
‖β − βh‖1,Ω +

∥∥β − βI
∥∥

1,Ω

)
+ Ch2 ‖div γ‖0,Ω ‖β‖1,Ω ,

and from Lemma 5.7, (5.7), and Proposition 3.10, we have

(γ, βh −Rβh)0,Ω ≤ Ch ‖γ‖0,Ω

(
Ch+ Ch ‖β‖2,Ω

)
+ Ch2 |λ| ‖w‖2,Ω ‖β‖1,Ω ≤ Ch2 |λ| .

Finally, we use this estimate, (5.5), (5.6), and the fact thatB((βh, wh), (βh, wh)) =
(σ∇wh,∇wh)0,Ω 6= 0 (cf. Remark 4.2) to obtain

|λ− λh| ≤ C
‖β − βh‖

2
1,Ω + ‖w − wh‖

2
1,Ω + κ−1t2 ‖γ − γh‖

2
0,Ω + Ch2 |λ|

|B((βh, wh), (βh, wh))|
.

Consequently, from Lemma 5.7,

|λ− λh| ≤ Ch2

and we conclude the proof.

6. Numerical results. In this section we report some numerical experiments
carried out with our method applied to problem (2.4).

For all the computations we have taken Ω := (0, 6)×(0, 4) and typical parameters
of steel: the Young modulus has been chosen E = 1.44 × 1011 Pa and the Poisson
ratio ν = 0.30. All the lengths are measured in meters and the shear correction factor
has been taken k = 5/6. We recall that the buckling coefficients λb may be easily
computed from the eigenvalues of (2.4) (cf. Remark 2.1).

We have used uniform meshes as shown in Fig. 6.1; the meaning of the refinement
parameter N can be easily deduced from this figure. Notice that h ∼ N−1.

N = 1 N = 2 N = 3

Fig. 6.1. Rectangular plate. Uniform meshes.
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6.1. Uniformly compressed rectangular plate. For this test we have used
σ = I, which corresponds to a uniformly compressed plate.

6.1.1. Simply supported plate. First, we have considered a simply supported
plate, since analytical solutions are available in that case (see [19, 20]). Even though
our theoretical analysis has been developed only for clamped plates, we think that the
results of Sections 4 and 5 should hold true for more general boundary conditions, as
well. The results that follow give some numerical evidence of this.

In Table 6.1 we report the four lowest eigenvalues (λi, i = 1, 2, 3, 4) for a thickness
t = 0.001, computed by our method with four different meshes (N = 2, 4, 8, 16).
The table includes computed orders of convergence, as well as more accurate values
extrapolated by means of a least-squares fitting. Furthermore, the last column shows
the exact eigenvalues.

Table 6.1

Lowest eigenvalues λi (multiplied by 10−10) of a uniformly compressed simply supported plate
with thickness t = 0.001.

Eigenvalue N = 2 N = 4 N = 8 N = 16 Order Extrapolated Exact
λ1 1.1793 1.1759 1.1752 1.1750 2.14 1.1750 1.1749
λ2 2.2638 2.2602 2.2596 2.2595 2.68 2.2595 2.2595
λ3 3.7293 3.6441 3.6224 3.6170 1.98 3.6151 3.6152
λ4 4.1573 4.0892 4.0726 4.0685 2.03 4.0672 4.0671

It can be seen from Table 6.1 that the method converges to the exact values with
an optimal quadratic order.

Figure 6.2 shows the transverse displacements for the principal buckling mode
computed with the finest mesh (N = 16).

Fig. 6.2. Uniformly compressed simply supported plate; principal buckling mode.

6.1.2. Clamped plate. In Table 6.2 we present the results for the lowest eigen-
value of a uniformly compressed clamped rectangular plate, with varying thickness.
We have used the same meshes as in the previous test. Again, we have computed the
orders of convergence, and more accurate values obtained by a least-squares proce-
dure. Furthermore, in the last row we also report for each mesh the limit values as t
goes to zero obtained by extrapolation.
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Table 6.2

Lowest eigenvalue λ1 (multiplied by 10−10) of uniformly compressed clamped plates with varying
thickness.

Thickness N = 2 N = 4 N = 8 N = 16 Order Extrapolated
t = 0.1 3.4031 3.3440 3.3293 3.3258 2.02 3.3246
t = 0.01 3.4324 3.3723 3.3571 3.3533 1.99 3.3520
t = 0.001 3.4327 3.3726 3.3574 3.3536 1.99 3.3522
t = 0.0001 3.4327 3.3726 3.3574 3.3536 1.98 3.3522
t = 0 (extrap.) 3.4327 3.3726 3.3574 3.3536 1.99 3.3523

Figure 6.3 shows the transverse displacements for the principal buckling mode,
for t = 0.1, and the finest mesh (N = 16).

Fig. 6.3. Uniformly compressed clamped plate; principal buckling mode.

According to Lemma 3.7, the values on the last row of Table 6.2 should correspond
to the lowest eigenvalues of a Kirchhoff-Love uniformly compressed clamped plate with
thickness t = 1. As a further test, we have also computed the latter, by using the
methods analyzed in [6] and [17]. We show the obtained results in Table 6.3, where
an excellent agreement with the last row of Table 6.2 can be appreciated.

Table 6.3

Lowest eigenvalue λ1 (multiplied by 10−10) of a uniformly compressed clamped thin plate
(Kirchhoff-Love model) computed with the methods from [6] and [17].

Method N = 8 N = 12 N = 16 N = 20 Order Extrapolated
[6] 3.3718 3.3611 3.3573 3.3555 1.97 3.3523
[17] 3.3514 3.3519 3.3521 3.3522 1.95 3.3523

It is clear that the results from the Reissner-Mindlin model do not deteriorate as
the plate thickness become smaller, which confirms that our method is locking-free.

6.2. Clamped plate uniformly compressed in one direction. We have
used for this test

σ =

[
1 0
0 0

]
,
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which corresponds to a plate uniformly compressed in one direction. Notice that in
this test σ is only positive semi-definite. Table 6.4 shows the same quantities as
Table 6.2 in this case.

Table 6.4

Lowest eigenvalue λ1 (multiplied by 10−10) of clamped plates with varying thickness, uniformly
compressed in one direction.

Thickness N = 2 N = 4 N = 8 N = 16 Order Extrapolated
t = 0.1 6.7969 6.7274 6.7104 6.7066 2.05 6.7052
t = 0.01 6.8825 6.8143 6.7971 6.7930 2.00 6.7915
t = 0.001 6.8834 6.8151 6.7980 6.7939 2.00 6.7924
t = 0.0001 6.8834 6.8152 6.7980 6.7939 2.00 6.7924
t = 0 (extrap.) 6.8834 6.8152 6.7980 6.7939 2.00 6.7924

Figure 6.4 shows the principal buckling mode for t = 0.1 and the finest mesh
(N = 16).

Fig. 6.4. Clamped plate uniformly compressed in one direction; principal buckling mode.

Finally, Table 6.5 shows the same quantities as Table 6.3 in this case. Once more,
an excellent agreement with the values extrapolated from the Reissner-Mindlin model
(last row of Table 6.4) can be clearly appreciated.

Table 6.5

Lowest eigenvalue λ1 (multiplied by 10−10) of a clamped thin plate (Kirchhoff-Love model)
uniformly compressed in one direction, computed with the methods from [6] and [17].

Method N = 8 N = 12 N = 16 N = 20 Order Extrapolated
[6] 6.8450 6.8158 6.8056 6.8009 2.00 6.7925
[17] 6.7904 6.7913 6.7917 6.7920 1.92 6.7926

6.3. Shear loaded clamped plate. In this case we have used

σ =

[
0 1
1 0

]
,

which corresponds to a uniform shear load. Notice that σ is indefinite in this test.
The numerical results are reported in Table 6.6, Figure 6.5, and Table 6.7, using the



26 C. LOVADINA, D. MORA, AND R. RODRÍGUEZ

same pattern as the previous tests.

Table 6.6

Lowest eigenvalue λ1 (multiplied by 10−10) of shear loaded clamped plates with varying thickness.

Thickness N = 4 N = 8 N = 12 N = 16 Order Extrapolated
t = 0.1 9.4306 9.2179 9.1783 9.1645 1.99 9.1464
t = 0.01 9.6098 9.3923 9.3514 9.3371 1.98 9.3184
t = 0.001 9.6116 9.3942 9.3533 9.3389 1.98 9.3202
t = 0.0001 9.6117 9.3942 9.3533 9.3389 1.98 9.3202
t = 0 (extrap.) 9.6117 9.3942 9.3533 9.3389 1.98 9.3202

Fig. 6.5. Shear loaded clamped plate; principal buckling mode.

Table 6.7

Lowest eigenvalue λ1 (multiplied by 10−10) of a shear loaded clamped thin plate (Kirchhoff-Love
model) computed with the methods from [6] and [17].

Method N = 8 N = 12 N = 16 N = 20 Order Extrapolated
[6] 9.4625 9.3840 9.3563 9.3435 1.98 9.3203
[17] 9.3660 9.3408 9.3319 9.3278 1.99 9.3204

In all cases, an excellent agreement between the numerical experiments and the
theoretical results detailed in Section 5 can be noticed and the method appears thor-
oughly locking-free.
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Appendix. Uniformly compressed plates.

The aim of this appendix is to show that the results of Sections 3, 4, and 5 can be
refined when σ = I, which corresponds to a uniformly compressed plate. In this case,
we are able to give a better characterization of the spectrum of Tt and to prove the
spectral approximation without assuming that the family of meshes is quasi-uniform.

A.1. Spectral characterization. We have the following counterpart of The-
orem 3.1, showing that the spectrum of Tt is simply a shift of the spectrum of a
compact operator.

Theorem A.1. Suppose that σ = I. For all t > 0, the spectrum of Tt satisfies

Sp(Tt) = Sp(G) + κ−1t2,

where G is the compact operator defined in (3.5).
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Proof. The first equation of (2.7) leads in this case to ψ = f , due to the fact that
σ = I. Therefore, (2.7) reduces to

(A.1)





a(β, η) − (curl p, η)0,Ω = (∇f, η)0,Ω ∀η ∈ H1
0(Ω)

2
,

− (β, curl q)0,Ω − κ−1t2 (curl p, curl q)0,Ω = 0 ∀q ∈ H1(Ω)/R,

(∇w,∇ξ)0,Ω = (β,∇ξ)0,Ω + κ−1t2 (∇f,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω).

Next, recall that G is defined in (3.5) as the operator mapping f 7→ u, with
u ∈ H1

0(Ω) such that

(∇u,∇ξ)0,Ω = (β,∇ξ)0,Ω ∀ξ ∈ H1
0(Ω),

where β ∈ H1
0(Ω)

2
is determined in this case by the first two equations from (A.1).

Therefore, the third equation from (A.1) yields Tt = G + κ−1t2I. Since G has been
already shown to be compact, this allows us to conclude the theorem.

As a consequence of this theorem, Sp(Tt) =
{
κ−1t2

}
∪ {µn : n ∈ N}, with µn

being a sequence of finite-multiplicity eigenvalues converging to κ−1t2. Therefore, in
this particular case, the essential spectrum of Tt reduces to a unique point: κ−1t2.

A.2. Spectral approximation. In this particular case, we will improve the
error estimate shown in Section 4 in that we will not need to assume quasi-uniformity
of the meshes. Indeed, this property was used above only to prove Proposition 4.3.
Instead, we have now the following result.

Proposition A.2. Suppose that σ = I. Then for any regular family of triangular
meshes {Th}h>0, there exists C > 0 such that, for all t > 0,

‖Tt − Tth‖h ≤ Ch.

Proof. We will simply sketch the proof, since it follows exactly the same steps
as that of Proposition 4.3. First, we notice that in the decomposition (4.12) we have
ψ = fh ∈Wh (cf. problem (4.14) with σ = I).

As a consequence, we infer that the term ‖∇ψ −∇ψI‖0,Ω in (4.15) vanishes.
Hence, the last estimate in the proof of Lemma 4.5 changes into

‖β − βh‖1,Ω + t ‖γ − γh‖0,Ω ≤ C
(
h ‖β‖2,Ω + th ‖p‖2,Ω + h ‖γ‖0,Ω

)
≤ Ch ‖fh‖1,Ω .

By using the above estimate in the proof of Proposition 4.3 (in particular in (4.16)),
we obtain

‖(Tt − Tth) fh‖1,Ω = ‖w − wh‖1,Ω ≤ Ch ‖fh‖1,Ω ,

from which we conclude the proof.
As a consequence of Proposition A.2, we can improve Lemma 4.6. In fact, now

for t small enough there holds directly

‖Tt − Tth‖h ≤ Ch,

with a constant C independent of h and t. By using this instead of property P1, we
could give somewhat simpler proofs for the error estimates from Section 5. However
the final results, Theorems 5.1, 5.5, and 5.8 are the same, although now valid for any
regular family of triangular meshes, without the need of being quasi-uniform.


