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Abstract

In this work we propose and analyze a new augmented mixed finite element method for
the Navier-Stokes problem. Our approach is based on the introduction of a “nonlinear-
pseudostress” tensor linking the pseudostress tensor with the convective term, which
leads to a mixed formulation with the nonlinear-pseudostress tensor and the velocity as
the main unknowns of the system. Further variables of interest, such as the fluid pres-
sure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as
a simple postprocess of the finite element solutions with the same rate of convergence.
The resulting mixed formulation is augmented by introducing Galerkin least-squares
type terms arising from the constitutive and equilibrium equations of the Navier-Stokes
equations and from the Dirichlet boundary condition, which are multiplied by stabi-
lization parameters that are chosen in such a way that the resulting continuous for-
mulation becomes well-posed. Then, the classical Banach’s fixed point Theorem and
Lax-Milgram’s Lemma are applied to prove well-posedness of the continuous problem.
Similarly, we establish well-posedness and the corresponding Cea’s estimate of the as-
sociated Galerkin scheme considering any conforming finite element subspace for each
unknown. In particular, the associated Galerkin scheme can be defined by employing
Raviart-Thomas elements of degree k for the nonlinear-pseudostress tensor, and contin-
uous piecewise polynomial elements of degree k + 1 for the velocity, which leads to an
optimal convergent scheme. In addition, we provide two iterative methods to solve the
corresponding nonlinear system of equations and analyze their convergence. Finally,
several numerical results illustrating the good performance of the method are provided.
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Casilla 297, Concepción, Chile, and CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile,
email: jecamano@ucsc.cl
‡Departamento de Matemática, Universidad del B́ıo-B́ıo, Casilla 5-C, Concepción, Chile, and CI2MA,

Universidad de Concepción, Casilla 160-C, Concepción, Chile, e-mail: royarzua@ubiobio.cl
§Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Prague 8, 186 75,

Czech Republic, e-mail: gtierra@karlin.mff.cuni.cz.

1



Mathematics subject classifications (1991): 65N15, 65N30, 76D05, 76M10

References

[1] Z. Cai and S. Zhang. Mixed methods for stationary Navier-Stokes equations based on
pseudostress-pressure-velocity formulation. Mathematics of Computation, vol. 81 , no.
280, 1903–1927, (2012).
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