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Abstract

Two-dimensional unsteady fluid mechanics and heat transfer in liquid-solid phase changes
are traditionally described by a system of five strongly coupled non-linear PDEs in the
classical mathematical models. The use of the Darcy-Brinkman-Forchheimer porous
model is presented in this talk to describe the fluid flow in the mushy zone. Temper-
ature variable porosity and permeability in the mushy zone are incorporated into the
macroscopic model to include relevant physical information found at the micro-scale
level. We consider the solidification of an aluminum-silica alloy inside a thick walled
mold. Unsteady heat conduction in the graphite mold coupled to diffusion in the solid-
ified alloy and to the transient fluid mechanics and heat transport by convection and
diffusion in the liquid phase and in the mushy region is described. Phase-change for
binary Al-1.7Si alloy occurs between 650 and 550°C. Initial temperature of the melted
alloy is 860°C while the mold is initially a 300°C, with convective cooling to the external
air at 25°C. Boundary conditions of the third class (Robin type) are imposed on three
mold walls and one of the Neumann type for the adiabatic bottom. The solution is
obtained by using the PSIMPLER algorithm and the Finite Volume Method. Numer-
ical experiments are performed to assess the effect of the convection in solidification
processes with Rayleigh numbers Ra = 102, 103, 10* and 10°. Results for the history of
streamlines and isotherms calculated by the DBF model are compared with the solution
obtained with the classical non-porous model. The DBF model incorporates new phys-
ical information by the additional terms, contributes to stabilize the numerical solution
and reduces the CPU time needed to solve the problem.
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