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RESUMEN

El objetivo principal de esta tesis es aproximar un problema de acoplamiento de fluido

con medio poroso utilizando Métodos de Elementos Finitos Mixtos. El modelo acoplado está

determinado por las ecuaciones de Stokes y Darcy, respectivamente, y las condiciones de interfase

correspondientes están dadas por conservación de masa, balance de fuerzas normales y la ley de

Beavers-Joseph-Saffman.

Primero se desarrolla un análisis a priori de una formulación primal en el fluido y mixta en

el medio poroso, y se demuestra que cualquier par de espacios de elementos finitos estables para

Stokes y Darcy implican la estabilidad del esquema de Galerkin correspondiente. Lo anterior

extiende resultados previos que demuestran existencia y unicidad de un esquema de Galerkin

definido por elementos de Bernardi-Raugel y de Raviart-Thomas de bajo orden.

Posteriormente, se realiza un análisis a priori y a posteriori de una formulación variacional

mixta en ambos dominios, del problema acoplado de Stokes-Darcy. Las incógnitas principales

consideradas son el pseudo-esfuerzo y la velocidad en el fluido, junto con la velocidad y la

presión en el medio poroso. Además, las condiciones de transmisión se convierten en esenciales,

lo cual induce la introducción de los valores de la presión del medio poroso y de la velocidad

del fluido en la interfase como incógnitas adicionales que cumplen el rol de multiplicadores de

Lagrange. Se demuestra existencia y unicidad a nivel continuo, y a nivel discreto se introducen

condiciones suficientes para que el esquema de Galerkin asociado sea estable. En particular se

pueden utilizar elementos de Raviart-Thomas de bajo orden y elementos constantes a trozo para

las velocidades y presiones en ambos dominios, junto con elementos continuos lineales a trozo

para los multiplicadores de Lagrange. Además, se obtiene un estimador de error a posteriori,

confiable y eficiente para el problema acoplado.

Finalmente, se generalizan los resultados anteriores y se estudia un acoplamiento de un

fluido viscoso incompresible con un medio poroso matemáticamente determinado por una ley

no lineal. El modelo acoplado no lineal está definido por la ecuación de Stokes y un sistema de

Darcy no lineal. En este último la permeabilidad está representada por un operador no lineal,

fuertemente monótono y Lipschitz continuo. Se introduce un esquema mixto en ambos dominios

y se demuestra existencia y unicidad de solución a nivel continuo y discreto, con su estimación a

priori correspondiente. Además se obtiene un estimador de error a posteriori eficiente y confiable

para el problema acoplado no lineal.

Para todas las situaciones descritas anteriormente se presentan ensayos numéricos que con-

firman los resultados teóricos obtenidos.



ABSTRACT

The main purpose of this thesis is to approximate a coupling of fluid flow with porous

medium flow by using Mixed Finite Element Methods. Flows are governed by the Stokes and

Darcy equations, respectively, and the corresponding interface conditions are given by mass

conservation, balance of normal forces, and the Beavers-Joseph-Saffman law.

First, we analyze the well-posedness of a mixed formulation, primal in the Stokes domain and

dual-mixed in the Darcy region, and we show that use of any pair of stable Stokes and Darcy

elements implies the well-posedness of the corresponding Stokes-Darcy Galerkin scheme. This

extends previous results showing well-posedness only for Bernardi-Raugel and Raviart-Thomas

elements of the lowest order.

Afterwards, we develop the a priori and a posteriori error analysis of a new fully mixed

finite element method for the coupled problem. We consider dual-mixed formulations in both

domains, which yields the pseudostress and the velocity in the fluid, as well as the velocity and

the pressure in the porous medium, as the main unknowns. In addition, since the transmission

conditions become essential, we impose them weakly and introduce the values of the porous

medium pressure and the fluid velocity on the interface as new unknowns, that play the role of

Lagrange multipliers. We prove the unique solvability of the continuous formulation and derive

sufficient conditions on the finite element subspaces ensuring that the associated Galerkin scheme

is well posed. A practicable choice of subspaces is given by the Raviart-Thomas elements of lowest

order and piecewise constants for the velocities and pressures, respectively, in both domains,

together with continuous piecewise linear elements for the Lagrange multipliers. We also derive

a reliable and efficient residual-based a posteriori error estimator for the coupled problem.

Finally, we generalize the above results and we analyze a mixed finite element method for the

coupling of viscous incompressible fluid flow with a state law mathematically corresponding to a

nonlinear porous medium flow. Flows are governed by the Stokes and nonlinear Darcy equations

respetively. In the latter permeability is given by a strongly monotone and Lipschitz-continuous

nonlinear operator. We consider dual-mixed approaches in both the Stokes and Darcy regions.

This yields a twofold saddle point operator equation as the resulting variational formulation.

A well known generalization of the classical Babuška-Brezzi theory is applied to show the well-

posedness of the continuous and discrete formulations and to derive the corresponding a priori

error estimate. Furthermore, a reliable and efficient residual based a posteriori error estimator

is provided.

For all the situations described above, several numerical results illustrating the correct per-

formance of the method, and confirming the theoretical results, are reported.
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Chapter 1

Introducción

En la naturaleza existe una gran cantidad de fenómenos que obedecen al acoplamiento f́ısico

entre sólidos y fluidos, sea por la interacción entre desplazamientos de un medio sólido continuo

con un medio fluido o bien por la existencia de un flujo que transcurre, en parte libremente y en

parte dentro de los poros de un sólido. Fenómenos fisiológicos como el movimiento de la sangre

en los vasos sangúıneos y la penetración del aire en los pulmones, y fenómenos hidrológicos como

la filtración de aguas superficiales a través de rocas y arena, encajan en esta amplia gama de

fenómenos, modelados y estudiados por distintas ramas de la ciencia.

En general las ecuaciones que describen estos modelos son dif́ıciles de resolver anaĺıticamente,

por lo cual, la resolución y simulación computacional se hace indispensable. Es por esto que una

parte importante de la comunidad cient́ıfica dedicada al área del análisis numérico se ha centrado

a desarrollar nuevas herramientas que permitan modelar eficientemente sistemas de interacción

donde se combinan sólidos y fluidos.

En particular, el análisis numérico para el acoplamiento de fluidos viscosos incompresibles

(modelados por la ecuación de Stokes) con flujo en medio poroso (modelado por la ecuación de

Darcy) se ha convertido en un área de investigación muy activa durante las últimas dos decadas.

Esto se debe, por una parte, a la creciente necesidad de resolver este problema de la forma más

eficiente y precisa posible, y por otra parte, a la amplia variedad de aplicaciones que emplean

este modelo, como por ejemplo los diversos procesos industriales que involucran filtración. En

la literatura se puede encontrar una cantidad importante de trabajos relacionados a este tema

(ver [2], [24], [20], [21], [26], [34], [32], [33], [35], [39], [45], [48], [61], [63], [67], [71], [74], [75],

[78] y sus referencias). Los últimos resultados disponibles además incluyen medios porosos con

grietas, problemas no lineales, y la incorporación de la ecuación de Brinkman en el modelo (ver

[17], [37] y [83]).

Uno de los primeros trabajos relacionado a este tema es [63], en el cual se desarrolla la

2
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teoŕıa matemática y el análisis numérico de una formulación variacional mixta para el problema

acoplado. En ella se emplea un método primal en el fluido y un método dual-mixto en el medio

poroso, esto es, la velocidad y la presión se consideran como las incógnitas en la región gobernada

por la ecuación de Stokes, mientras que la velocidad se introduce como una incógnita adicional en

la región porosa. Las condiciones de interfase estan dadas por la conservación de masa, el balance

de fuerzas normales y por la ley de Beavers-Joseph-Saffman. Dado que una de estas se transforma

en una condición esencial, es necesario introducir la traza de la presión del medio poroso como

un multiplicador de Lagrange para mantener las discretizaciones por separado. Además, en este

trabajo se prueba la existencia y unicidad de solución de la formulación continua correspondiente

y se proporciona un detallado análisis de un método de elementos finitos mixtos no conforme.

Es importante mencionar que dicha no conformidad se debe a que el multiplicador de Lagrange

es aproximado por funciones constantes a trozos, las cuales no están contenidas en el espacio de

Sobolev de las trazas en la interfase.

Recientemente, en [45], se ha introducido y analizado una nueva discretización por elementos

finitos para la formulación mixta propuesta en [63], la primera en ser conforme, cuya estabilidad

se demuestra utilizando un esquema de Galerkin espećıfico. Este esquema se define usando

elementos de Bernardi-Raugel para la velocidad en la región del fluido, elementos de Raviart-

Thomas de bajo orden para la velocidad de filtración en el medio poroso, elementos constantes

a trozos para las presiones, y elementos continuos lineales a trozos para el multiplicador de

Lagrange en la interfase. Esta discretización resulta ser el primer método de elementos finitos

mixtos conforme para la formulación primal/dual-mixta introducida en [63].

El propósito de esta tesis es ampliar la gama de discretizaciones existentes para el problema

acoplado. Lo anterior se realiza, por una parte, generalizando los resultados obtenidos en [45],

permitiendo una libre elección de elementos finitos para el esquema de Galerkin asociado a

la formulación variacional del problema acoplado. Por otra parte, se proponen nuevos métodos

numéricos que permiten la introducción de incógnitas adicionales de interés f́ısico y la utilización

de la misma familia de elementos finitos en ambos medios. Además, extendemos el estudio a

casos más generales, desarrollando un análisis a priori y a posteriori para un acoplamiento de

Stokes-Darcy no lineal.

Este trabajo se organiza de la siguiente manera. En el Caṕıtulo 2, se modifican los resultados

obtenidos en [45], proporcionando condiciones generales suficientes sobre los subespacios de

elementos finitos, para garantizar unicidad, estabilidad y convergencia del método de elementos

finitos mixtos asociado. Más precisamente, se mejoran los resultados obtenidos en [45] y se

demuestra que la utilización de cualquier par de elementos finitos estables para los sistemas de

Stokes y Darcy implican la estabilidad del esquema de Galerkin para el problema acoplado. En
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particular, para la ecuación de Stokes se pueden utilizar los elementos de Taylor-Hood, Bernardi-

Raugel y el elemento MINI, mientras que en el dominio de Darcy se pueden utilizar elementos

de Raviart-Thomas de cualquier orden. El análisis se fundamenta en el hecho de que el operador

que define la formulación variacional continua está dado por una perturbación compacta de un

operador que mantiene los dominios desacoplados. Este caṕıtulo esta constituido por el siguiente

art́ıculo:

G.N. Gatica, R. Oyarzúa and F.-J. Sayas, Convergence of a family of Galerkin

discretizations for the Stokes-Darcy coupled problem. Numerical Methods for Partial Dif-

ferential Equations DOI 10.1002/num, to appear.

En el Caṕıtulo 3 se introduce una nueva formulación variacional, dual-mixta en ambos

dominios, para el problema acoplado de Stokes-Darcy, cuya estructura se obtiene introduciendo

el pseudo-esfuerzo y la velocidad en el fluido, junto con la velocidad y la presión en el medio

poroso, como incógnitas principales del modelo. Lo anterior hace que las ecuaciones de trans-

misión se conviertan en condiciones esenciales, lo que nos induce a imponerlas de forma débil

introduciendo, la traza de la velocidad del fluido y de la presión del medio poroso como incógnitas

adicionales, las cuales también tienen interés f́ısico. Entonces, se ordenan las ecuaciones varia-

cionales resultantes de forma tal que se obtiene una estructura mixta doble con formas bili-

neales diagonales, cuyas condicciones inf-sup sean fácilmente verificables, y se aplican las teoŕıas

de Fredholm y Babuška-Brezzi para demostrar existencia y unicidad de solución del esquema

propuesto. Es importante mencionar que, sin ningún tipo de error adicional, es posible recu-

perar la presión y el gradiente de velocidad en el fluido, realizando un postproceso simple de las

incógnitas involucradas, y sin la utilización de diferenciación numérica. Por otro lado, a nivel

discreto se define un esquema de Galerkin y se introducen hipótesis generales sobre los espacios

de elementos finitos para asegurar su estabilidad. Este caṕıtulo esta constituido por el siguiente

art́ıculo:

G.N. Gatica, R. Oyarzúa and F.-J. Sayas, Analysis of fully-mixed finite element

methods for the Stokes-Darcy coupled problem. Mathematics of Computation, to appear.

En el Caṕıtulo 4 se desarrolla un análisis de error a posteriori para la formulación variacional

descrita en el Caṕıtulo 3, en donde se obtiene un estimador de error a posteriori residual,

confiable y eficiente, para el problema acoplado. Los elementos finitos considerados son elementos

de Raviart-Thomas para el pseudo-esfuerzo en el fluido y la velocidad de filtración en el medio

poroso, elementos constantes a trozos para la velocidad del fluido y la presión en el medio poroso,

y elementos continuos lineales a trozos y continuos para los multiplicadores de Lagrange definidos
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en la interfase. En la demostración de confiabilidad del estimador se utilizan descomposiciones

de Helmholtz en ambos dominios y propiedades de aproximación local de los interpolantes de

Clément y Raviart-Thomas. Por otro lado, algunas de las principales herramientas utilizadas

para demostrar la eficiencia del estimador son desigualdades inversas y técnicas de localización

basadas en funciones burbuja sobre lados y triángulos. Este caṕıtulo esta constituido por el

siguiente art́ıculo:

G.N. Gatica, R. Oyarzúa and F.-J. Sayas, A residual-based a posteriori error estima-

tor for a fully-mixed formulation of the Stokes-Darcy coupled problem. Preprint 2010-12,

Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Chile, (2010).

Finalmente, en el Caṕıtulo 5 se extienden los resultados obtenidos en los caṕıtulos an-

teriores, desarrollando un análisis a priori y a posteriori para una formulación variacional de

un acoplamiento de Stokes-Darcy no lineal, cuya no linealidad queda definida al considerar la

permeabilidad del medio poroso como un operador no lineal, fuertemente monótono y Lipschitz-

continuo, que depende de la norma del gradiente de presión. En el modelo se consideran el

pseudo-esfuerzo y la velocidad en el fluido, junto a la velocidad, la presión y el gradiente de

presión en el medio poroso, como las incógnitas principales del modelo, y se obtiene una estruc-

tura dual-mixta en el fluido y dual-dual-mixta en el medio poroso. Al igual que en el Caṕıtulo

3, las condiciones de interfase resultan ser esenciales, lo que nos conduce a imponerlas de forma

débil introduciendo las trazas de la velocidad del fluido y de la presión del medio poroso como

multiplicadores de Lagrange. Aśı, aplicando una conocida generalización de la teoŕıa de Babuška-

Brezzi, se demuestran existencia y unicidad de solución de las formulaciones continua y discreta

y la estimación de error a priori correspondiente. Por otro lado, utilizando argumentos similares

a los empleados en el Caṕıtulo 4, se obtiene un estimador de error a posteriori, confiable y

eficiente, para el problema no lineal. Este caṕıtulo esta constituido por el siguiente art́ıculo:

G.N. Gatica, R. Oyarzúa and F.-J. Sayas, A twofold saddle point approach for the

coupling of fluid flow with nonlinear porous media flow. Preprint 2010-19, Departamento

de Ingenieŕıa Matemática, Universidad de Concepción, Chile, (2010).

A continuación se introduce de forma detallada cada una de las ecuaciones del problema

acoplado Stokes-Darcy, junto con la geometŕıa a considerar. Además, se hace un resumen de los

resultados obtenidos en [45], el cual corresponde a la memoria de t́ıtulo de Ingeniero Matemático

del autor de esta tesis (ver [68]), a nivel continuo y discreto, describiendo lo mejor posible las

razones que motivaron el presente trabajo.
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1.1 El problema acoplado de Stokes-Darcy

El problema acoplado de Stokes-Darcy modela el movimiento de un fluido viscoso incompre-

sible que ocupa una región Ω1, el cual fluye desde y hacia un medio poroso Ω2, saturado por

el mismo fluido, a través de una interfase común Γ2. Para simplificar el análisis, consideramos

un modelo donde la región Ω2 está rodeada por Ω1 y por lo tanto ∂Ω2 = Γ2 (ver Figura 1.1).

Como interpretación f́ısica de este modelo, se podŕıa pensar en Ω2 como la sección transversal

de un medio poroso tridimensional, por ejemplo un cilindro paralelo al eje x3, inmerso en un

fluido viscoso. En particular, este tipo de modelos tiene aplicaciones en procesos de percolación

de diversos materiales que se utilizan en la industria qúımica y farmacéutica (ver [57], [60], [82]

y sus referencias).

Ω

Ω

Γ
Γ

1

2

2

1

ν

ν

t

Figura 1.1: Geometŕıa del problema.

Para describir las ecuaciones que gobiernan el problema, comenzamos con algunas defini-

ciones. Sean µ > 0 la viscosidad de fluido y K un tensor simétrico y uniformemente definido

positivo en Ω2 que representa la permeabilidad del medio poroso, y supongamos que existe C > 0

tal que ‖K(x) z‖ ≤ C ‖z‖ para todo x ∈ Ω2, y para todo z ∈ R
2. Entonces, las ecuaciones cons-

titutivas están dadas por las leyes de Stokes y de Fick, respectivamente, esto es:

σ1(u1, p1) = − p1 I + 2µ e(u1) en Ω1 , y u2 = −K∇ p2 en Ω2 ,

donde (u1,u2) y (p1, p2) denotan las velocidades y presiones en los dominios correspondientes,

I es la matriz identidad de 2 × 2, σ1(u1, p1) es el tensor de esfuerzos, y

e(u1) :=
1

2

(
∇u1 + (∇u1)

t

)
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es el tensor de deformaciones. De aqúı en adelante, dado cualquier espacio normado U , U2

y U2×2 denotan el espacio de vectores y matrices cuadradas de orden 2 con coeficientes en U ,

respectivamente. También, el supeŕındice t representará la transpuesta de una matriz. Aśı, dados

f1 ∈ [L2(Ω1)]
2 y f2 ∈ L2(Ω2) tal que

∫

Ω2

f2 = 0, el problema acoplado es: Encontrar (u1,u2) y

(p1, p2) tales que





−div σ1(u1, p1) = f1 en Ω1 (conservación de momento) ,

div u1 = 0 en Ω1 (conservación de masa) ,

u1 = 0 sobre Γ1 (deslizamiento nulo) ,

div u2 = f2 en Ω2 (conservación de masa) ,

u1 · ν = u2 · ν en Γ2 (conservación de masa) ,
(
σ1(u1, p1)ν

)
· ν = − p2 sobre Γ2 (balance de fuerzas normales) ,

− κ

µ

(
σ1(u1, p1)ν) · t = u1 · t sobre Γ2 (ley de B-J-S),

(1.1)

donde ν es el vector normal unitario exterior a Ω1, t es el vector tangencial a Γ2, κ :=

√
(νKt)·t

α

es la constante de fricción y α es un parámetro positivo que se determina experimentalmente.

La condición de Beavers-Joseph-Saffman (B-J-S) establece que la velocidad de deslizamiento

en Γ2 es proporcional al esfuerzo cortante en Γ2, bajo el supuesto experimental que u2 · t es

despreciable (ver [16], [59], y [76] para mayores detalles de esta condición de interfase).

Para finalizar esta sección, es importante observar que aunque la geometŕıa descrita por la

Figura 1.1 es elegida para simplificar el análisis del problema, el caso de un fluido filtrándose

a través de una sola parte de la frontera del medio poroso no produce mayores complicaciones

para el análisis matemático. Por ejemplo, si consideramos un fluido sobre un medio poroso,

obtenemos una nueva frontera no vaćıa Γ := ∂Ω2\Γ̄2, sobre la cual es necesario incorporar una

condición de frontera adicional. Siguiendo las ideas de [39] y [63] (ver también [37]), usualmente

se considera la condición de Neumann homogénea:

u2 · ν = 0 sobre Γ, (1.2)

lo cual significa que no hay flujo a través de Γ. En la Sección 2.2.3 del Caṕıtulo 2 se explica con

mayor detalle este tipo de modelos.

1.2 Formulación primal-mixta

Definamos el conjunto Ω := Ω1 ∪ Γ2 ∪ Ω2 y los espacios:

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫

Ω
q = 0

}
,
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[H1
Γ1

(Ω1)]
2 :=

{
v1 ∈ [H1(Ω1)]

2 : v1 = 0 sobre Γ1

}

y

H(div ; Ω2) :=
{
v2 ∈ [L2(Ω2)]

2 : div v2 ∈ L2(Ω2)
}

.

A su vez, introduzcamos los espacios producto

H := [H1
Γ1

(Ω1)]
2 × H(div ; Ω2) y Q := L2

0(Ω) × H1/2(Γ2),

dotados con las normas ‖v‖H := ‖v1‖2
[H1(Ω1)]2 + ‖v2‖2

H(div ;Ω2) para todo v := (v1,v2) ∈ H, y

‖(q, ξ)‖Q := ‖q‖2
L2(Ω) + ‖ξ‖2

H1/2(Γ2)
para todo (q, ξ) ∈ Q. Entonces, definiendo las incógnitas

globales u := (u1,u2), p := p1χ|Ω1 + p2χ|Ω2 , y el multiplicador de Lagrange

λ := p2 = −
(
σ1(u1, p1)ν

)
· ν = p1 − 2µν · e(u1)ν sobre Γ2 ,

procedemos como en [63] y obtenemos la formulación variacional mixta: Encontrar (u, (p, λ)) ∈
H × Q tal que

a(u,v) + b(v, (p, λ)) = F(v) ∀v := (v1,v2) ∈ H ,

b(u, (q, ξ)) = G(q, ξ) ∀ (q, ξ) ∈ Q ,
(1.3)

donde las formas bilineales a : H × H → R y b : H × Q → R, y los funcionales F : H → R y

G : Q → R, están definidos por

a(u,v) := 2µ

∫

Ω1

e(u1) : e(v1) +
µ

κ

∫

Γ2

(u1 · t) (v1 · t) +

∫

Ω2

K−1u2 · v2 ,

b(v, (q, ξ)) := −
∫

Ω1

q div v1 −
∫

Ω2

q div v2 + 〈v1 · ν − v2 · ν, ξ〉Γ2 ,

(1.4)

F(v) =

∫

Ω1

f1 · v1 y G(q, ξ) := −
∫

Ω2

f2 q,

y 〈·, ·〉Γ2 denota la paridad dual de H−1/2(Γ2) y H1/2(Γ2) con respecto al producto interior de

L2(Γ2).

En [45] se utiliza la teoŕıa clásica de Babuška-Brezzi para demostrar existencia y unicidad

de solución de (1.3). En efecto, es fácil ver que a y b son continuas, lo cual se sigue de la

desigualdad de Cauchy-Schwarz y la estimación de trazas en [H1
Γ1

(Ω1)]
2 y H(div ; Ω2) (para los

detalles, ver [63, Lemas 2.1 y 3.1]). Además, no es dif́ıcil demostrar que b satisface la condición

inf-sup continua y que a es fuertemente coerciva en el espacio nulo de b (ver [45, Lemas 2.1 y

2.2]). Por otro lado, es claro que F y G también son acotadas, con

‖F‖H′ ≤ ‖f1‖0,Ω1 y ‖G‖Q′ ≤ ‖f2‖0,Ω2 .

Entonces, aplicando [54, Teorema I.4.1] se obtiene la existencia y unicidad del problema.
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Teorema 1.2.1 ([45, Teorema 2.3], [63, Teorema 3.1]) El problema (1.3) tiene única solución.

Además, existe C > 0, que depende de la constante de la condición inf-sup de b, de la constante

de coercividad de a, y de las constantes de acotamiento de a y b, tal que

‖u‖H + ‖(p, λ)‖Q ≤ C
{
‖F‖H′ + ‖G‖Q′

}
.

1.3 Una formulación de Galerkin conforme

A continuación introducimos el esquema de Galerkin propuesto en [45], el cual resulta ser el

primer método de elementos finitos conforme para el problema continuo (1.3).

Sean T1 y T2 triangulaciones regulares de Ω̄1 y Ω̄2, respectivamente, formadas por triángulos

T de diámetro hT . Sea también h := max{h1, h2}, donde para cada i ∈ {1, 2}, hi := max{hT :

T ∈ Ti }. Para cada T ∈ T2, RT0(T ) es el espacio local de Raviart-Thomas de orden cero, esto

es

RT0(T ) :=

〈{(
1

0

)
,

(
0

1

)
,

(
x1

x2

) }〉
,

donde x :=

(
x1

x2

)
en un vector genérico de R

2.

En lo que sigue, dado un entero no negativo k y un subconjunto S de R
2, Pk(S) denotará

al espacio de polinomios definidos sobre S, de grado menor o igual que k. Para cada T ∈ T1,

BR(T ) es el espacio local de Bernardi-Raugel (ver [22], [54]), definido por

BR(T ) := [P1(T )]2 ⊕ span { η2 η3 n1, η1 η3 n2, η1 η2 n3 } ,

donde {η1, η2, η3} son las coordenadas baricéntricas de T y {n1,n2,n3} son los vectores normales

unitarios exteriores a los lados opuestos de los correspondientes vértices de T .

Definamos aśı los siguientes subespacios de elementos finitos para las velocidades y la presión:

Hh1 :=
{

v ∈ [C(Ω̄1)]
2 : v|T ∈ BR(T ) ∀T ∈ T1 , v = 0 sobre Γ1

}
,

Hh2 :=
{

v ∈ H(div ; Ω2) : v|T ∈ RT0(T ) ∀T ∈ T2

}
,

Qh :=
{

q ∈ L2(Ω) : q|T ∈ P0(T ) ∀T ∈ T1 ∪ T2

}
,

y Qh,0 := Qh ∩ L2
0(Ω) .

(1.5)

Para definir el subespacio de elementos finitos para λ ∈ H1/2(Γ2), asumamos que los vértices

de T1 y T2 coinciden en la interfase Γ2 y que T2 es uniformemente regular cerca de Γ2, es decir,
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que existe C > 0 tal que |γi| ≥ Ch2 para cada i ∈ {1, ..., n}, donde {γ1, ..., γn} es la partición de

Γ2 heredada de las triangulaciones T1 y T2. Introduciendo una segunda partición independiente

{γ̃1, γ̃2, ..., γ̃m} de Γ2 casi uniformemente regular, es decir que satisfaga la desigualdad |γ̃j | ≥ Ch̃

para cada j ∈ {1, 2, ..., m}, con h̃ := max{|γ̃j | : j ∈ {1, 2, ..., m}} y C > 0 independiente de h

y h̃, se define el espacio de elementos finitos para λ

Qh̃ :=
{

ξ ∈ C(Γ2) : ξ|γ̃j ∈ P1(γ̃j) ∀ j ∈ {1, ..., m}
}

. (1.6)

Bajo las hipótesis anteriores, es posible demostrar la existencia de constantes C0 ∈ (0, 1)

y C1 > 0, independientes de h2 y h̃, tales que para cada h2 ≤ C0h̃ y ξ ∈ Qh̃, se satisface la

condición inf-sup

sup
ψ∈Ψ0
ψ 6=0

〈ψ, ξ〉Σ
‖ψ‖H−1/2(Σ)

≥ C1‖ξ‖H1/2(Σ), (1.7)

donde

Ψ0 :=
{

ξ ∈ L2(Γ2) : ξ|γj ∈ P0(γj) ∀ j ∈ {1, ..., n}
}

.

Aśı, introduciendo los espacios discretos Hh := Hh1 ×Hh2 y Qh,h̃ := Qh,0×Qh̃, el esquema

de Galerkin conforme para (1.3) queda definido por: Encontrar (uh, (ph, λh̃)) ∈ Hh × Qh,h̃ tal

que

a(uh,v) + b(v, (ph, λh̃)) =

∫

Ω1

f1 · v1 ∀v := (v1,v2) ∈ Hh ,

b(uh, (q, ξ)) = −
∫

Ω2

f2 q ∀ (q, ξ) ∈ Qh,h̃ .
(1.8)

Utilizando la teoŕıa clásica de Babuška-Brezzi, en [45] se establece la existencia y unicidad de

solución y estabilidad del esquema de Galerkin (1.8), junto con su estimación de error a priori

correspondiente. A continuación se resumen estos resultados.

Teorema 1.3.1 Existen constantes C0 ∈ (0, 1) y h0 > 0 tales que para cada h2 ≤ min{h0, C0h̃},
el problema (1.8) tiene una única solución (uh, (ph, λh̃)) ∈ Hh×Qh,h̃. Además, existen constantes

C, C̄ > 0, independientes de h y h̃, tales que

‖(u, (p, λ)) − (uh, (ph, λh̃))‖H×Q ≤ C{‖f1‖[L2(Ω1)]2 + ‖f2‖L2(Ω2)}

y

‖(u, (p, λ)) − (uh, (ph, λh̃))‖H×Q ≤ C̄ inf
(vh,(qh,ξh̃))∈Hh×Qh,h̃

‖(u, (p, λ)) − (vh, (qh, ξh̃))‖H×Q.
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Es importante mencionar que la elección de Hh1 como subespacio de elementos finitos para

[H1
Γ1

(Ω1)]
2 se debe a que el operador de interpolación de Bernardi-Raugel Π1 : [H1

Γ1
(Ω1)]

2 → Hh1

(ver [22] y [54]), satisface la propiedad

∫

e
Π1(v1) · ν =

∫

e
v1 · ν (1.9)

para cada lado e de T1 y para cada v1 ∈ [H1
Γ1

(Ω1)]
2. Esto nos permite controlar el término

〈v1 · ν, ξ〉Γ2
en la demostración de la condición inf-sup discreta de b (ver [45, Lema 4.2] para los

detalles). Este subespacio es el único conjunto estable para el problema de Stokes que satisface

una condición de esta naturaleza, por lo que la generalización de los resultados de [45] al caso

de otros subespacios estables para Stokes se hace imposible. Ahora bien, debido a la inclusión

compacta de L2(Γ2) en H−1/2(Γ2), podemos observar que el término 〈v1 · ν, ξ〉Γ2
, es compacto.

Esto sugiere la eventual eliminación de este término de la formulación v́ıa una perturbación

compacta, y aśı utilizar los resultados de Fredholm discreto para demostrar convergencia de

otros esquemas de Galerkin para el problema acoplado. Esta idea da origen a los resultados

desarrollados en el Caṕıtulo 2.

Por otro lado, el resultado técnico (1.7) tiene un papel importante en la demostración de

la condición inf-sup discreta de b, por lo que la desigualdad h2 ≤ C0h̃ se transforma en una

condición fundamental para el análisis de existencia y unicidad del problema discreto. No obs-

tante, una de las dificultades técnicas al definir el subespacio de elementos finitos para λ de la

forma descrita anteriormente, es que la constante C0 ∈ (0, 1), que determina la elección de h̃,

y por lo tanto la elección de la partición independiente, no está expĺıcitamente determinada. Lo

anterior obliga a elegir una costante C0 de forma arbitraria al momento de elaborar ejemplos

numéricos que corroboren el buen funcionamiento del método propuesto. En [45] (ver también

[14], [46]) se elegió definir la partición independiente {γ̃1, γ̃2, ..., γ̃m} tomando sus vértices cada

dos vértices de la partición inducida por la triangulacón T2 sobre Γ2, lo cual asegura que h2 ≤
0.5h̃. Esta elección ha arrojado buenos resultados, pero en su momento no hab́ıan resultados

teóricos que la avalaran. En el Caṕıtulo 3 daremos una solución satisfactoria a este problema.



Chapter 2

Convergence of a family of Galerkin

discretizations

for the Stokes–Darcy coupled

problem

2.1 Introduction

The development of appropriate numerical methods for the coupling of fluid flow (modelled

by the Stokes equation) with porous media flow (modelled by the Darcy equation) has become

a very active research area lately (see, e.g. [17], [34], [35], [37], [39], [45], [61], [63], [74], [78],

[83] and the references therein). In particular, the analysis in [39] is based on mortar finite

element techniques, and Hood-Taylor and lowest order Raviart-Thomas spaces are employed

for the Stokes and Darcy regions, respectively. On the other hand, a priori error estimates for

the matching case are developed in [63], whereas discontinuous Galerkin schemes for the non-

matching case are considered in [21] and [74]. More recently, a conforming mixed finite element

discretization has been introduced and analyzed in [45]. The model from [45] consists of a porous

medium entirely enclosed within a fluid region, which constitutes a slight simplification of the

problem considered in [35] and [63]. The variational formulation in [45] follows the approach from

[63] and employs the primal method in the fluid and the dual-mixed one in the porous medium.

This means that only the original velocity and pressure unknowns are considered in the Stokes

domain, whereas a further unknown (velocity) is added in the Darcy region. Interface conditions

are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law,

12
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which yields the introduction of the trace of the porous medium pressure as another Lagrange

multiplier. Stability of a specific Galerkin scheme is the main result in [45]. This scheme is defined

by using Bernardi-Raugel elements for the velocity in the fluid region, Raviart-Thomas elements

of lowest order for the filtration velocity in the porous media, piecewise constants with null mean

value for the pressures, and continuous piecewise linear elements for the additional Lagrange

multiplier. The resulting mixed finite element method is the first one which is conforming for

the original variational formulation proposed in [63]. On the other hand, it is important to

remark that the interpolation properties of the Raviart-Thomas and Bernardi-Raugel operators,

mainly those holding on the edges of the triangulations (see eqs. (3.11), (4.2), and (4.7) in [45]),

play a key role in the proof of one of the required discrete inf-sup conditions (see Lemma 4.2 in

[45]). However, these particular properties are not satisfied in general, and hence the analysis in

[45] can not be extended to arbitrary finite element subspaces. This drawback of the approach

in [45] has motivated the present contribution.

In the present paper we modify the approach from [45] and provide general sufficient condi-

tions on the finite element subspaces guaranteeing unique solvability, stability, and convergence

of the associated mixed finite element method. More precisely, we improve the results from [45]

and show that the use of any pair of stable Stokes and Darcy elements implies the well-posedness

of the Stokes-Darcy Galerkin scheme. In particular, this includes Hood-Taylor, Bernardi-Raugel

and MINI element for the Stokes region, and Raviart-Thomas of any order for the Darcy domain.

Our analysis hinges on the fact that the operator defining the continuous variational formulation

is given by a compact perturbation of an invertible mapping. However, we also show that un-

der somewhat more demanding hypotheses, these compactness arguments are not needed. The

rest of this work is organized as follows. In Section 2.2 we recall the model problem from [45],

the continuous variational formulation, and the theorem establishing its well-posedness (unique

solvability and continuous dependence). In addition, we observe here that a different geometry

of the problem, namely the fluid over the porous medium, does not yield further difficulties to

the analysis. Then, in Section 2.3 we consider a compact perturbation of this formulation and

apply the well known Babuška-Brezzi theory to show that it is also well-posed. Next, in Section

2.4 we employ a classical result on projection methods for Fredholm operators of index zero to

conclude the well-posedness of the Stokes-Darcy Galerkin scheme for any pair of stable Stokes

and Darcy elements. In Section 2.5 we give a slightly different set of hypotheses on the discrete

spaces allowing an alternative proof of stability of the Galerkin scheme, without identifying any

compact perturbation. Finally, in Section 2.6 we present several numerical results illustrating

the good performance of the method for different geometries of the coupled problem when the

MINI element and the Raviart-Thomas subspace of order 0 are employed.
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First of all, some comments concerning notations. In any product of Hilbert spaces that we

find in the sequel we will implicitly understand that we are using the product topology. Given any

function space U , U2 and U2×2 will denote the spaces of vectors and square matrices of order 2,

respectively, with entries in U . Throughout the rest of the paper we use the standard terminology

for Sobolev spaces. In particular, if S is an open set, its closure, or a Lipschitz continuous curve,

and r ∈ R, then | · |r,S and ‖·‖r,S stand for the seminorm and norm in the Sobolev spaces Hr(S).

The norm and seminorms for [Hr(S)]2 and [Hr(S)]2×2 will be equally denoted. Also, we employ

0 as a generic null vector, and use C and c, with or without subscripts, bars, tildes or hats, to

mean generic positive constants independent of the discretization parameters, which may take

different values at different occurrences. Finally, χS will denote the characteristic function of the

set S.

2.2 The Stokes-Darcy coupled problem

2.2.1 The model problem

Let Ω2 be a bounded and simply connected domain in R
2 with polygonal boundary Γ2,

and let Ω1 be the annular region bounded by Γ2 and another closed polygonal curve Γ1 whose

interior contains Ω2. The unit normal vector field on Γ2, pointing inwards in Ω2, is denoted ν.

The tangential vector field on the same interface, obtained by a π/2 clockwise rotation of ν, will

be denoted t.

Figure 2.1: A sketch of the geometry of the problem.

The coupled problem models an incompressible viscous fluid occupying Ω1, which flows back

and forth across Γ2 into a porous medium living in Ω2 and saturated with the same fluid.

Physically, we may think of Ω2 as the cross section of a three-dimensional porous medium, given
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for instance by a long cylinder parallel to the x3-axis, which is immersed in a viscous fluid. In

what follows, µ > 0 denotes the viscosity of the fluid and K ∈ [L∞(Ω2)]
2×2 is a symmetric

and uniformly positive definite tensor in Ω2 representing the permeability of the porous media

divided by the viscosity. We assume that there exists C > 0 such that

ξ · K(x) ξ ≥ C ‖ξ‖2

for almost all x ∈ Ω2, and for all ξ ∈ R
2. The constitutive equations are given by the Stokes and

Darcy laws, respectively, that is

σ1(u1, p1) = − p1 I + 2µ e(u1) in Ω1 , and u2 = −K∇ p2 in Ω2 ,

where (u1,u2) and (p1, p2) denote the velocities and pressures in the corresponding domains, I

is the identity matrix of R
2×2, σ1(u1, p1) is the stress tensor, and

e(u1) := 1
2

(
∇u1 + (∇u1)

t

)

is the strain tensor. Hereafter, the superscript t denotes transposition. Given f1 ∈ [L2(Ω1)]
2 and

f2 ∈ L2(Ω2) such that

∫

Ω2

f2 = 0, the Stokes-Darcy coupled problem reads: Find (u1,u2) and

(p1, p2) such that

−div σ1(u1, p1) = f1 in Ω1 ,

div u1 = 0 in Ω1 ,

u1 = 0 on Γ1 ,

div u2 = f2 in Ω2 ,

u1 · ν = u2 · ν on Γ2 ,

σ1(u1, p1)ν + p2 ν = − µ

κ
(u1 · t) t on Γ2 ,

(2.1)

where κ > 0 is the friction constant. Note that the second transmission condition on Γ2 can be

decomposed, at least formally, into its normal and tangential components as follows:

(σ1(u1, p1)ν) · ν = − p2 and (σ1(u1, p1)ν) · t = − µ

κ
(u1 · t) on Γ2 . (2.2)

The first equation in (2.2) corresponds to the balance of normal forces, whereas the second one

is known as the Beavers-Joseph-Saffman law, which establishes that the slip velocity along Γ2 is

proportional to the shear stress along Γ2 (assuming also, based on experimental evidences, that

u2 · t is negligible). We refer to [16], [59], and [76] for further details on this interface condition.
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2.2.2 The variational formulation

We now write Ω := Ω1 ∪ Γ2 ∪ Ω2 and define the spaces

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫

Ω
q = 0

}
,

[H1
Γ1

(Ω1)]
2 :=

{
v1 ∈ [H1(Ω1)]

2 : v1 = 0 on Γ1

}
,

and

H(div ; Ω2) :=
{
v2 ∈ [L2(Ω2)]

2 : div v2 ∈ L2(Ω2)
}

.

In addition, we let

H := [H1
Γ1

(Ω1)]
2 × H(div ; Ω2) and Q := L2

0(Ω) × H1/2(Γ2) (2.3)

endowed with the product norms. The global unknowns will be u := (u1,u2), p := p1χΩ1 +

p2χΩ2 , as well as the Lagrange multiplier λ := p2 on Γ2 . We then proceed as in [63] to

obtain the weak formulation of this problem. In order to do that, we will need the bilinear forms

a : H × H → R

a(u,v) := 2µ

∫

Ω1

e(u1) : e(v1) +
µ

κ

∫

Γ2

(u1 · t) (v1 · t) +

∫

Ω2

K−1u2 · v2, (2.4)

and b : H × Q → R

b(v, (q, ξ)) := −
∫

Ω1

q div v1 −
∫

Ω2

q div v2 + 〈v1 · ν − v2 · ν, ξ〉Γ2 , (2.5)

〈·, ·〉Γ2 being the duality pairing of H−1/2(Γ2) and H1/2(Γ2) with respect to the L2(Γ2)-inner

product. We also consider the functionals F : H → R

F(v) =

∫

Ω1

f1 · v1 ∀v ∈ H (2.6)

and G : Q → R

G(q, ξ) = −
∫

Ω2

f2 q ∀ (q, ξ) ∈ Q . (2.7)

The mixed variational formulation of (2.1) is: Find (u, (p, λ)) ∈ H × Q such that

a(u,v) + b(v, (p, λ)) = F(v) ∀v ∈ H ,

b(u, (q, ξ)) = G(q, ξ) ∀ (q, ξ) ∈ Q .
(2.8)

The classical Babuška-Brezzi theory is applied in [45] to prove that (2.8) is well-posed. In fact, it

is easy to see that a and b are bounded, which follows from simple applications of the Cauchy-

Schwarz inequality and the trace estimates in [H1(Ω1)]
2 and H(div ; Ω2) (see [63, Lemmas 2.1
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and 3.1] for details). In addition, it is not difficult to show that b satisfies the continuous inf-sup

condition and a is strongly coercive on the null space of b (see [45, Lemmas 2.1 and 2.2]). On

the other hand, it is clear that F and G are also bounded with

‖F‖H′ ≤ ‖f1‖0,Ω1 and ‖G‖Q′ ≤ ‖f2‖0,Ω2 .

Consequently, the well-posedness of the continuous formulation (2.8), which follows from a

straightforward application of [54, Theorem I.4.1], and which constitutes also one of the main

results provided in [63], is established as follows.

Theorem 2.2.1 ([45, Theorem 2.3], [63, Theorem 3.1]) There exists a unique (u, (p, λ)) ∈
H × Q solution to (2.8). In addition, there exists C̃ > 0, depending on the inf-sup constant for

b, the coerciveness constant for a, and the boundedness constants of a and b, such that

‖u‖H + ‖(p, λ)‖Q ≤ C̃

{
‖F‖H′ + ‖G‖Q′

}
.

2.2.3 Remarks on the geometry

It is important to remark that, though the geometry described by Figure 2.1 was choosen to

simplify the presentation, the case of a fluid flowing only across a part of the boundary of the

porous medium does not really yield further complications neither for the analysis in [45] nor

for the one in the present paper. In fact, let us assume now a geometry like the one despicted

in Figure 2.2 below where Γ2 := ∂Ω1 ∩ ∂Ω2, Γ1 := ∂Ω1\Γ̄2, and Γ := ∂Ω2\Γ̄2. In this case,

besides the equations given in (2.1) (which hold now with the notations introduced here), one

needs to add a boundary condition on Γ. Following [39] and [63] (see also [37]), one usually

considers the homogeneous Neumann condition:

u2 · ν = 0 on Γ , (2.9)

which constitutes a no flow assumption through Γ. In this way, and having in mind the new

geometry, the space H becomes now [H1
Γ1

(Ω1)]
2 × H0(div ; Ω2), where

H0(div ; Ω2) :=
{
v2 ∈ H(div ; Ω2) : v2 · ν = 0 on Γ

}
, (2.10)

and Q, a, and b remain the same as before (cf. (2.3), (2.4), and (2.5)). In particular, the reason

for keeping H1/2(Γ2) as the right space for the Lagrange multiplier λ, which differs from the

choice of H
1/2
00 (Γ2) adopted in [63], is that λ represents the trace of the porous pressure on Γ2,

and hence there is no physical reason to assume that λ vanishes in Γ. Recall that H
1/2
00 (Γ2) is the

subspace of H1/2(Γ2) whose extensions by zero in Γ belong to H1/2(∂Ω2). The present choice of

H1/2(Γ2) is also justified in Section 4.1 of [39].
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Figure 2.2: A sketch of the geometry of the problem with the fluid over the porous medium.

In connection with the above, we now recall that, given v2 ∈ H0(div ; Ω2), the boundary

condition v2 · ν = 0 on Γ means:

〈
v2 · ν, E00(ξ)

〉
∂Ω2

= 0 ∀ ξ ∈ H
1/2
00 (Γ) , (2.11)

where E00(ξ) denotes the extension by zero in Γ2 of each ξ ∈ H1/2(Γ), and 〈 ·, · 〉∂Ω2 stands for

the duality pairing of H−1/2(∂Ω2) and H1/2(∂Ω2) with respect to the L2(∂Ω2)-inner product.

As a consequence, it is not difficult to show (see e.g. Section 2 in [39]) that the restriction of

v2 · ν to Γ2 can be identified with an element of H−1/2(Γ2):

〈v2 · ν, ξ 〉Γ2 := 〈v2 · ν, E(ξ) 〉∂Ω2 ∀ ξ ∈ H1/2(Γ2) , (2.12)

where E : H1/2(Γ2) → H1/2(∂Ω2) is the bounded linear operator defined by E(ξ) := γ(z) for

each ξ ∈ H1/2(Γ2), γ : H1(Ω2) → H1/2(∂Ω2) is the usual trace operator, and z ∈ H1(Ω2) is the

unique solution of:

∆z = 0 in Ω2 , z = ξ on Γ2 , ∇z · ν = 0 on Γ .

Moreover, thanks to (2.11) and (2.12), we may also write 〈v2 · ν, ξ 〉Γ2 := 〈v2 · ν, ξ̃ 〉∂Ω2 with

any ξ̃ ∈ H1/2(∂Ω2) such that ξ̃ = ξ on Γ2.

From the above analysis, and since v1 ·ν|Γ2 ∈ L2(Γ2) ⊆ H−1/2(Γ2) for each v1 ∈ [H1
Γ1

(Ω1)]
2,

it becomes clear that the boundary term in the definition of b must again be understood as the

duality pairing between H−1/2(Γ2) and H1/2(Γ2). Consequently, the proofs of the corresponding

inf-sup conditions for a and b (see Section 4.2 in [39] for details) follow basically the same
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techniques applied in [45] and [63], thus confirming that no additional difficulties arise. This is

also valid for the corresponding discrete analysis, which is illustrated by two numerical examples

reported below in Section 2.6.

2.3 A compact perturbation of the variational formulation

In order to define below a suitable compact perturbation of (2.8), we first observe that this

formulation is equivalent to: Find ((u, ϕ), (p, λ)) ∈ (H × R) × Q such that

â((u, ϕ), (v, ψ)) + b(v, (p, λ)) = F̂(v, ψ) ∀ (v, ψ) ∈ H × R ,

b(u, (q, ξ)) = Ĝ(q, ξ) ∀ (q, ξ) ∈ Q ,
(2.13)

where F̂(v, ψ) = F(v), Ĝ = G, and â : (H × R) × (H × R) → R is the bounded bilinear form

defined by

â((u, ϕ), (v, ψ)) := a(u,v) + ϕ ψ . (2.14)

In fact, it is easy to see that ((u, ϕ), (p, λ)) ∈ (H × R) × Q is a solution of (2.13) if and only

if ϕ = 0 and (u, (p, λ)) ∈ H × Q is a solution of (2.8). In other words, ϕ ∈ R is an artificial

unknown, known a priori to vanish, which is introduced here only for convenience.

We now consider the following variational problem: Find ((u, ϕ), (p, λ)) ∈ (H×R)×Q such

that

â((u, ϕ), (v, ψ)) + b̂((v, ψ), (p, λ)) = F̂(v, ψ) ∀ (v, ψ) ∈ H × R ,

b̂((u, ϕ), (q, ξ)) = Ĝ(q, ξ) ∀ (q, ξ) ∈ Q ,
(2.15)

where b̂ : (H × R) × Q → R is the bounded bilinear form defined by

b̂((v, ψ), (q, ξ)) := b(v, (q, ξ)) − 〈v1 · ν, ξ〉Γ2 + ψ

∫

Ω2

q

= −
∫

Ω1

q div v1 −
∫

Ω2

q div v2 − 〈v2 · ν, ξ〉Γ2 + ψ

∫

Ω2

q ,
(2.16)

for each ((v, ψ), (q, ξ)) ∈ (H × R) × Q. Since v1 · ν ∈ L2(Γ2) for each v := (v1,v2) ∈ H, and

L2(Γ2) is compactly imbedded into H−1/2(Γ2), we easily verify that the operator induced by the

left-hand side of (2.15) is a compact perturbation of the corresponding operator from (2.13). We

now proceed to apply the Babuška-Brezzi theory to prove that (2.15) is well-posed, as well. We

begin with the inf-sup condition for b̂.

Lemma 2.3.1 There exists β̂ > 0 such that

sup
(v,ψ)∈H×R

(v,ψ) 6=0

b̂((v, ψ), (q, ξ))

‖(v, ψ)‖H×R

≥ β̂ ‖(q, ξ)‖Q ∀ (q, ξ) ∈ Q . (2.17)
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Proof. It reduces to a slight modification of the proof for the inf-sup condition of b (cf. [45,

Lemma 2.1]). We begin with an arbitrary η ∈ H−1/2(Γ2) and let z ∈ H1(Ω2) be the unique weak

solution of the boundary value problem:

−∆z =
1

|Ω2|
〈η, 1〉Γ2 in Ω2 ,

∂z

∂ν
= − η on Γ2 ,

∫

Ω2

z = 0 .

The continuous dependence estimate for the above problem yields

‖z‖1,Ω2 ≤ c ‖η‖−1/2,Γ2
.

Then, we define v̂2 := ∇z and ψ̂ := − 1
|Ω2|

〈η, 1〉Γ2 ∈ R, so that we have

div v̂2 − ψ̂ = 0, in Ω2, v̂2 · ν = − η, on Γ2,

as well as the bound

‖v̂2‖H(div ;Ω2) + |ψ̂| ≤ C ‖η‖−1/2,Γ2
.

Next, we set v̂ := (0, v̂2) ∈ H and notice that

sup
(v,ψ)∈H×R

(v,ψ) 6=0

b̂((v, ψ), (q, ξ))

‖(v, ψ)‖H×R

≥ | b̂((v̂, ψ̂), (q, ξ)) |
‖(v̂, ψ̂)‖H×R

=
| 〈η, ξ〉Γ2 |

‖(v̂, ψ̂)‖H×R

≥ c1
| 〈η, ξ〉Γ2 |
‖η‖−1/2,Γ2

,

which, using that η ∈ H−1/2(Γ2) is arbitrary, yields

sup
(v,ψ)∈H×R

(v,ψ) 6=0

b̂((v, ψ), (q, ξ))

‖(v, ψ)‖H×R

≥ c1 ‖ξ‖1/2,Γ2
. (2.18)

On the other hand, since q ∈ L2
0(Ω), a well known result on the surjectivity of the divergence

operator (see for instance [54, Corollary I.2.4]) yields the existence of z ∈ [H1
0 (Ω)]2 such that

div z = − q in Ω and ‖z‖1,Ω ≤ c ‖q‖0,Ω. Thus, defining v̂ := (z|Ω1 , z|Ω2) ∈ H, we find that

div v̂i = −q in Ωi, and ‖v̂‖H ≤ C ‖q‖0,Ω, whence

sup
(v,ψ)∈H×R

(v,ψ) 6=0

b̂((v, ψ), (q, ξ))

‖(v, ψ)‖H×R

≥ | b̂((v̂, 0), (q, ξ)) |
‖(v̂, 0)‖H×R

=
| ‖q‖2

0,Ω − 〈v̂2 · ν, ξ〉Γ2 |
‖v̂‖H

≥ c2 ‖q‖0,Ω − c3 ‖ξ‖1/2,Γ2
.

(2.19)

Finally, it is easy to see that (2.17) follows from (2.18) and (2.19).

The strong coerciveness of â on the null space of b̂,

V̂ :=
{

(v, ψ) ∈ H × R : b̂((v, ψ), (q, ξ)) = 0 ∀ (q, ξ) ∈ Q
}

,

is shown next as a consequence of some properties concerning this set.
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Lemma 2.3.2 Given (v, ψ) ∈ H × R,

∫

Ω1

q div v1 +

∫

Ω2

q div v2 − ψ

∫

Ω2

q = 0 ∀q ∈ L2
0(Ω), (2.20)

if and only if

div v1 =
1

|Ω1|
〈v1 · ν, 1〉Γ2 in Ω1,

div v2 = − 1

|Ω2|
〈v2 · ν, 1〉Γ2 in Ω2,

ψ = − 1

|Ω1|
〈v1 · ν, 1〉Γ2 −

1

|Ω2|
〈v2 · ν, 1〉Γ2 .

(2.21)

Proof. It is simple to see, using that q −
(

1
|Ω2|

∫
Ω q

)
χΩ2 belongs to L2

0(Ω) for each q ∈ L2(Ω),

that (2.20) is equivalent to

∫

Ω1

q div v1 +

∫

Ω2

q div v2 − ψ

∫

Ω2

q +

(
1

|Ω2|
〈v2 · ν, 1〉Γ2 + ψ

) ∫

Ω
q = 0 ∀q ∈ L2(Ω),

which can be easily broken as the pair of conditions

∫

Ω1

q

(
div v1 +

1

|Ω2|
〈v2 · ν, 1〉Γ2 + ψ

)
= 0 ∀q ∈ L2(Ω1),

∫

Ω2

q

(
div v2 +

1

|Ω2|
〈v2 · ν, 1〉Γ2

)
= 0 ∀q ∈ L2(Ω2).

That these two conditions are equivalent to (2.21) is straightforward to verify.

Lemma 2.3.3 If (v, ψ) ∈ V̂, then div v2 = 0 in Ω2. Therefore there exists α̂ > 0 such that

â((v, ψ), (v, ψ)) ≥ α̂ ‖(v, ψ)‖2
H×R ∀ (v, ψ) ∈ V̂ . (2.22)

Proof. It is clear that (v, ψ) ∈ V̂ is equivalent to (2.20) together with the boundary condition

v2 · ν = 0 on Γ2, (2.23)

which thanks to the characterization (2.21) proves the first part of the result. Hence, Korn’s and

Poincaré’s inequalities and the fact that K−1 is symmetric and positive definite yield (2.22),

completing the proof.

In this way, applying again [54, Theorem I.4.1], we conclude the well-posedness of the vari-

ational formulation (2.15).
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2.4 A class of Galerkin schemes and their convergence

In this section we provide sufficient conditions guaranteeing unique solvability, stability, and

Céa’s estimate for the Galerkin scheme of (2.8). To this end, we make use of the equivalence

between the Galerkin schemes of (2.8) and (2.13), and apply the following classical result on

projection methods for Fredholm operators of index zero.

Theorem 2.4.1 Let (X, 〈·, ·〉X) be a Hilbert space, let A, K : X → X be bounded linear opera-

tors, and let {Xn}n∈N be a sequence of finite dimensional subspaces of X. Assume that:

i) A is bijective, K is compact, and A + K is injective,

ii) for each x ∈ X: lim
n→+∞

{
inf

zn∈Xn

‖x − zn‖X

}
= 0,

iii) the Galerkin scheme associated to the pair (A, Xn) is convergent, that is

– there exists N ∈ N such that for each x ∈ X and for each n ≥ N there exists a unique

xn ∈ Xn satisfying

〈A(xn), zn〉X = 〈A(x), zn〉X ∀ zn ∈ Xn , (2.24)

– for each x ∈ X there holds lim
n→+∞

xn = x.

Then, the Galerkin scheme associated to the pair (A + K, Xn) is also convergent.

Proof. See [62, Theorem 13.7]).

We complement Theorem 2.4.1 with some useful remarks. We first recall that the operator

Gn : X → Xn mapping x into the unique solution xn of (2.24) is called the Galerkin projector

associated to the pair (A, Xn). The Galerkin scheme (2.24) is said to be stable if the projectors

{Gn}n≥N are uniformly bounded. A simple application of the Banach-Steinhaus Theorem shows

that the convergence of xn to x implies the stability of (2.24). Conversely, the stability of (2.24)

together with the assumption ii) yield convergence. In fact, to see the latter let M > 0 such

that ‖Gn‖ ≤ M ∀n ≥ N . Then, since Gn coincides with the identity operator I on Xn, it

follows that ‖x− xn‖X = ‖(I −Gn)(x− zn)‖X ≤ (1 + M) ‖x− zn‖X ∀ zn ∈ Xn , and hence

‖x − xn‖X ≤ (1 + M) inf
zn∈Xn

‖x − zn‖X → 0 as n → +∞.

Now, since the operators induced by the left-hand sides of (2.13) and (2.15) are bijective, and

the difference between them is a compact operator, a straightforward application of Theorem

2.4.1 establishes that the convergence of a Galerkin method applied to (2.13) is equivalent to the

convergence of the Galerkin scheme of (2.15), when the same subspaces are employed. According

to this, it suffices to analyze the Galerkin scheme of (2.15) (see Section 2.4.2 below).
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2.4.1 Preliminaries

We first let Hh(Ω1), Hh(Ω2), Qh(Ω1), Qh(Ω2), and Qh(Γ2) be finite dimensional subspaces

of [H1
Γ1

(Ω1)]
2, HΓD

(div; ΩD), L2(Ω1), L2(Ω2), and H1/2(Γ2), respectively. Then, we define

Qh,0(Ω1) := Qh(Ω1) ∩ L2
0(Ω1) , Qh,0(Ω2) := Qh(Ω2) ∩ L2

0(Ω2) ,

Qh(Ω) := {q ∈ L2(Ω) : q|Ωi ∈ Qh(Ωi) ∀ i ∈ {1, 2} } , Qh,0(Ω) := Qh(Ω) ∩ L2
0(Ω) ,

Hh := Hh(Ω1) × Hh(Ω2) , and Qh := Qh,0(Ω) × Qh(Γ2) . (2.25)

In this way, the Galerkin schemes of (2.8), (2.13), and (2.15) are given, respectively, by:

Find (uh, (ph, λh)) ∈ Hh × Qh such that

a(uh,vh) + b(vh, (ph, λh)) = F(vh) ∀vh ∈ Hh ,

b(uh, (qh, ξh)) = G(qh, ξh) ∀ (qh, ξh) ∈ Qh ,
(2.26)

Find ((uh, ϕh), (ph, λh)) ∈ (Hh × R) × Qh such that

â((uh, ϕh), (vh, ψh)) + b(vh, (ph, λh)) = F̂(vh, ψh) ∀ (vh, ψh) ∈ Hh × R ,

b(uh, (qh, ξh)) = Ĝ(qh, ξh) ∀ (qh, ξh) ∈ Qh ,
(2.27)

and

Find ((uh, ϕh), (ph, λh)) ∈ (Hh × R) × Qh such that

â((uh, ϕh), (vh, ψh)) + b̂((vh, ψh), (ph, λh)) = F̂(vh, ψh) ∀ (vh, ψh) ∈ Hh × R ,

b̂((uh, ϕh), (qh, ξh)) = Ĝ(qh, ξh) ∀ (qh, ξh) ∈ Qh .
(2.28)

Similarly as for the continuous case, it is easy to see that (2.26) and (2.27) are equivalent. More

precisely, ((uh, ϕh), (ph, λh)) ∈ (Hh × R) × Qh is a solution of (2.27) if and only if ϕh = 0 and

(uh, (ph, λh)) ∈ Hh × Qh is a solution of (2.26).

Throughout the rest of Section 2.4 we assume the following hypotheses on the subspaces:

(H.1) The pair (Hh(Ω1), Qh(Ω1)) is stable for the Stokes problem, that is, there exists β1 > 0,

independent of h, such that for each q1,h ∈ Qh,0(Ω1) there holds

sup
v1,h∈Hh(Ω1)

v1,h 6=0

∫

Ω1

q1,h div v1,h

‖v1,h‖1,Ω1

≥ β1 ‖q1,h‖0,Ω1 . (2.29)

In addition, the space of constant functions on Ω1 is contained in Qh(Ω1).
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(H.2) The triple (Hh(Ω2), Qh(Ω2), Qh(Γ2)) is stable for the Darcy problem, that is, there exists

β2 > 0, independent of h, such that for each (q2,h, ξh) ∈ Qh,0(Ω2) × Qh(Γ2) there holds

sup
v2,h∈Hh(Ω2)

v2,h 6=0

∫

Ω2

q2,h div v2,h + 〈v2,h · ν, ξh〉Γ2

‖v2,h‖div,Ω2

≥ β2

{
‖q2,h‖0,Ω2 + ‖ξh‖1/2,Γ2

}
. (2.30)

Here we have used the symbol ‖ · ‖div,Ω2 for the norm of HΓD
(div; ΩD). In addition,

div v2,h ∈ Qh(Ω2), for all v2,h ∈ Hh(Ω2), and the spaces of constant functions on Ω2

and Γ2 are contained in Qh(Ω2) and Qh(Γ2), respectively.

(H.3) The discrete spaces satisfy the approximation properties

lim
h→0

{
inf

vh∈Hh

‖v − vh‖H

}
= 0 ∀v ∈ H , (2.31)

lim
h→0

{
inf

(qh,ξh)∈Qh

‖(q, ξ) − (qh, ξh)‖Q

}
= 0 ∀ (q, ξ) ∈ Q . (2.32)

It is important to remark here that, in the case of the geometry described in Subsection

2.2.3, Hh(Ω2) is a finite dimensional subspace of H0(div ; Ω2) (cf. (2.10)) throughout the whole

Section 2.4.

2.4.2 The main result

As already announced, we now analyze the Galerkin scheme (2.28). We begin with the

following lemma establishing the discrete inf-sup condition for b̂.

Lemma 2.4.1 There exists β > 0, independent of h, such that

Sh(qh, ξh) := sup
(vh,ψh)∈Hh×R

(vh,ψh) 6=0

b̂((vh, ψh), (qh, ξh))

‖(vh, ψh)‖H×R

≥ β ‖(qh, ξh)‖Q ∀ (qh, ξh) ∈ Qh . (2.33)

Proof. Limiting the set where the supremum is taken to elements of the form (0, ψh), we obtain

Sh(qh, ξh) ≥ sup
ψh∈R

ψh 6=0

ψh

∫

Ω2

qh

|ψh|
=

∣∣∣
∫

Ω2

qh

∣∣∣ =
∣∣∣
∫

Ω1

qh

∣∣∣, ∀(qh, ξh) ∈ Qh. (2.34)

Restricting now the supremum to the set of elements ((−v1,h,0), 0) and using (2.29), we obtain

Sh(qh, ξh) ≥ sup
v1,h∈Hh(Ω1)

v1,h 6=0

∫

Ω1

(div v1,h) qh

‖v1,h‖1,Ω1

≥ β1

∥∥∥qh − 1

|Ω1|

∫

Ω1

qh

∥∥∥
0,Ω1

− c1

∣∣∣
∫

Ω1

qh

∣∣∣

≥ β1‖qh‖0,Ω1 − c2

∣∣∣
∫

Ω1

qh

∣∣∣, ∀(qh, ξh) ∈ Qh.

(2.35)
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Finally, considering now elements ((0,−v2,h), 0) and using (2.30), we obtain

Sh(qh, ξh) ≥ sup
v2,h∈Hh(Ω2)

v2,h 6=0

∫

Ω2

(div v2,h) qh + 〈v2,h · ν, ξh〉Γ2

‖v2,h‖div,Ω2

≥ β2

(∥∥∥qh − 1

|Ω2|

∫

Ω2

qh

∥∥∥
0,Ω2

+ ‖ξh‖1/2,Γ2

)
− c3

∣∣∣
∫

Ω2

qh

∣∣∣

≥ β2

(
‖qh‖0,Ω2 + ‖ξh‖1/2,Γ2

)
− c4

∣∣∣
∫

Ω2

qh

∣∣∣, ∀(qh, ξh) ∈ Qh.

(2.36)

Adding inequalities (2.35) and (2.36) to (c2 + c4) times (2.34), we obtain an inequality that is

equivalent to the one in the statement of the lemma.

The strong coerciveness of â on the discrete null space of b̂

V̂h :=
{

(vh, ψh) ∈ Hh × R : b̂((vh, ψh), (qh, ξh)) = 0 ∀ (qh, ξh) ∈ Qh

}
,

is shown next.

Lemma 2.4.2 If (vh, ψh) ∈ V̂h, then div v2,h = 0 in Ω2 and

â((vh, ψh), (vh, ψh)) ≥ α̂ ‖(vh, ψh)‖2
Hh×R ∀ (vh, ψh) ∈ V̂h , (2.37)

with the same constant as in Lemma 2.3.3.

Proof. We first observe, according to the definition of b̂ (cf. (2.16)), that

−
∫

Ω1

qh div v1,h −
∫

Ω2

qh div v2,h + ψh

∫

Ω2

qh = 0 ∀ qh ∈ Qh,0(Ω) (2.38)

and

〈v2,h · ν, ξh〉Γ2 = 0 ∀ ξh ∈ Qh(Γ2) . (2.39)

Since by Hypotheses (H.1) and (H.2), we have constant functions in Qh(Ω1), Qh(Ω2) and Qh(Γ2),

we can test (2.38) with qh := − 1
|Ω1|

χΩ1 + 1
|Ω2|

χΩ2 , and (2.39) with ξh = 1 to deduce that

ψh = − 1

|Ω1|

∫

Γ2

v1,h · ν . (2.40)

Next, given an arbitrary q2,h ∈ Qh(Ω2), we define q̃h := −
(

1
|Ω1|

∫
Ω2

q2,h

)
χΩ1 +q2,hχΩ2 ∈ Qh,0(Ω)

and test (2.38) with this function. Using (2.40), we find that
∫

Ω2

q2,h div v2,h = 0 ∀ q2,h ∈ Qh(Ω2) ,

which, using that by (H.2) div v2,h ∈ Qh(Ω2), proves the first statement of the result. The

second one follows as in Lemma 2.3.3.
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Consequently, stability of the Galerkin scheme (2.28) follows from the previous lemmas and

the discrete Babuška-Brezzi theory (see, [54, Theorem II.1.1] for instance). Hence, as shown right

after Theorem 2.4.1, stability and the approximation hypothesis (H.3) imply convergence of the

method. Having established this, Theorem 2.4.1 implies that the Galerkin scheme (2.27) is also

convergent and therefore stable, which means that we have the Céa quasioptimality estimate for

h small enough. In this way, since (2.27) and (2.26) are equivalent, we have shown the following

main result.

Theorem 2.4.2 Assume that the hypotheses (H.1), (H.2), and (H.3) hold. Then, there ex-

ists h0 > 0 such that for each h ≤ h0 the Galerkin scheme (2.26) has a unique solution

(uh, (ph, λh)) ∈ Hh ×Qh. Moreover, there exist positive constants C1 and C2, independent of h,

such that

‖uh‖H + ‖(ph, λh))‖Q ≤ C1

{
‖F‖H′

h
+ ‖G‖Q′

h

}
∀h ≤ h0 , (2.41)

and

‖u − uh‖H + ‖(p, λ) − (ph, λh)‖Q

≤ C2

{
inf

vh∈Hh

‖u − vh‖H + inf
(qh,ξh)∈Qh

‖(p, λ) − (qh, ξh)‖Q

}
∀h ≤ h0 .

(2.42)

We end this subsection by remarking that, as usual, the approximation properties of the finite

element subspaces Hh and Qh together with the Céa estimate (2.42) yield the corresponding

rates of convergence of the Galerkin scheme (2.26).

2.4.3 Examples of subspaces satisfying the hypotheses

There is a large variety of stable Stokes elements available in the literature: the MINI element,

Bernardi-Raugel, Hood-Taylor, conforming Crouzeix-Raviart, and others (see, e.g. [19] and [54]).

Similarly, stable Darcy elements are usually defined in terms of Raviart-Thomas, Brezzi-Douglas-

Marini, and related subspaces (see, e.g [19]). In order to specify some subspaces satisfying (H.1),

(H.2) and (H.3), we now let T1 and T2 be members of regular families of triangulations, satisfying

the angle condition, of Ω̄1 and Ω̄2, respectively, by triangles T of diameter hT , and let h :=

max{h1, h2}, where hi := max{hT : T ∈ Ti } for each i ∈ {1, 2}. Also, given S, an open set,

its closure, or a Lipschitz continuous curve of R
2, and a non-negative integer k, we denote by

Pk(S) the space of polynomials defined on S of degree ≤ k.

The Bernardi-Raugel space

For each T ∈ T1 we let BR(T ) be the local Bernardi-Raugel space (see [22], [54]), that is

BR(T ) := [P1(T )]2 ⊕ span { θ2 θ3 ν1, θ1 θ3 ν2, θ1 θ2 ν3 } , (2.43)
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where {θ1, θ2, θ3} are the barycentric coordinates of T , and {ν1, ν2, ν3} are the unit outward

normals to the opposite sides of the corresponding vertices of T . Then, the Bernardi-Raugel

element is the pair (Hh(Ω1), Qh(Ω1)), where

Hh(Ω1) :=
{
v1,h ∈ [C(Ω̄1)]

2 : v1,h|T ∈ BR(T ) ∀T ∈ T1 , v1,h = 0 on Γ1

}
(2.44)

and

Qh(Ω1) :=
{

q1,h ∈ L2(Ω1) : q1,h|T ∈ P0(T ) ∀T ∈ T1

}
. (2.45)

The proof of the corresponding inf-sup condition (2.29) follows straighforwardly from the analysis

in Section 2.1 of Chapter II of [54]. In addition, it is clear that P0(Ω1) is contained in Qh(Ω1),

and hence (Hh(Ω1), Qh(Ω1)) satisfies the hypothesis (H.1).

The MINI element

For each T ∈ T1 we let M(T ) be the space (see [6], [54])

M(T ) := [P1(T ) ⊕ span {bT }]2 , (2.46)

where bT := θ1 θ2 θ3 is a P3 bubble function in T . Then, the MINI element subspace is the pair

(Hh(Ω1), Qh(Ω1)), where

Hh(Ω1) :=
{
v1,h ∈ [C(Ω̄1)]

2 : v1,h|T ∈ M(T ) ∀T ∈ T1 , v1,h = 0 on Γ1

}
(2.47)

and

Qh(Ω1) :=
{

q1,h ∈ C(Ω̄1) : q1,h|T ∈ P1(T ) ∀T ∈ T1

}
. (2.48)

In this case, the proof of the corresponding inf-sup condition (2.29) follows from the analysis

in Section 4.1 of Chapter II of [54]. In particular, we refer to Lemma 4.1 in there. In addition,

it is also clear that P0(Ω1) is contained in Qh(Ω1), and hence (Hh(Ω1), Qh(Ω1)) satisfies the

hypothesis (H.1), as well.

The Raviart-Thomas element

For each T ∈ T2 we let RT 0(T ) be the local Raviart-Thomas space of lowest order, that is

RT 0(T ) := [P0(T )]2 ⊕ P0(T )m,

where m(x) := (x1, x2)
t. Then, we define the pair (Hh(Ω2), Qh(Ω2)) as

Hh(Ω2) :=
{
v2,h ∈ HΓD

(div; ΩD) : v2,h|T ∈ RT 0(T ) ∀T ∈ T2

}
(2.49)

and

Qh(Ω2) :=
{

q2,h ∈ L2(Ω2) : q2,h|T ∈ P0(T ) ∀T ∈ T2

}
. (2.50)
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It is easy to see that div v2,h ∈ Qh(Ω2) ∀v2,h ∈ Hh(Ω2), and P0(Ω2) ⊆ Qh(Ω2). Next, in

order to define the subspace Qh(Γ2), we let {γ1, γ2, ..., γn} be the partition of Γ2 inherited from

the triangulation T2, and introduce a second partition {γ̃1, γ̃2, ..., γ̃m} of Γ2, also made of line

segments, such that {γ̃1, γ̃2, ..., γ̃m} is a derefinement of {γ1, γ2, ..., γn}. In other words, for each

j ∈ {1, 2, ..., n} there exists i ∈ {1, 2, ..., m} such that γj ⊆ γ̃i. Then, we set h̃ := max{|γ̃j | :

j ∈ {1, ..., m}}, redefine h := max{h1, h2, h̃}, and introduce

Qh(Γ2) :=
{

ξh ∈ C(Γ2) : ξh|γ̃j ∈ P1(γ̃j) ∀ j ∈ {1, ..., m}
}

. (2.51)

It is clear that P0(Γ2) ⊆ Qh(Γ2). In addition, from the analysis provided in [45] we deduce the

existence of a constant C0 ∈ (0, 1] such that (2.30) holds for each h2 ≤ C0 h̃. This technical

requirement explains the need of defining Qh(Γ2) on the second partition {γ̃1, γ̃2, ..., γ̃m} instead

of {γ1, γ2, ..., γn}. We omit further details here and refer to Sections 3 and 4 in [45]. In particular,

it is not difficult to see that the same arguments apply for the case of the geometry described

in Subsection 2.2.3 with Hh(Ω2) redefined as a subspace of H0(div ; Ω2), that is

Hh(Ω2) :=
{
v2,h ∈ H0(div ; Ω2) : v2,h|T ∈ RT 0(T ) ∀T ∈ T2

}
. (2.52)

According to the above, we conclude that the triple (Hh(Ω2), Qh(Ω2), Qh(Γ2)) satisfies the hy-

pothesis (H.2).

Finally, the satisfaction of the hypothesis (H.3) follows in each case from standard density

arguments and the approximation properties of the subspaces Hh and Qh involved (see, e.g.

[19], [54], and [73]).

2.5 An alternative approach

In this section we present a slightly different (and somewhat more demanding) set of hy-

potheses of the discrete spaces allowing a proof of stability of a Galerkin scheme for all h > 0,

without having to recur to the asymptotic limit (cf. constant h0 in Theorem 2.4.2). This means

in particular that we will not eliminate compact terms from the equation. However, we will still

impose conditions on the discrete spaces separately for the Stokes and Darcy domains, with no

coupling hypothesis whatsoever. For technical reasons, we will have to change the determination

of the pressure, requesting now that ∫

Ω2

p = 0 .

Hence, throughout this section we replace the original definition of the space Q (cf. (2.3)) by

Q := [L2(Ω1)×L2
0(Ω2)]×H1/2(Γ2), keep H as in (2.3), and consider the bilinear and linear forms

of formulas (2.4), (2.5), (2.6), and (2.7) defined on the present space H×Q. Having this in mind,
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our aim is the numerical solution of the following well posed problem: Find (u, (p, λ)) ∈ H×Q

such that
a(u,v) + b(v, (p, λ)) = F(v) ∀v ∈ H ,

b(u, (q, ξ)) = G(q, ξ) ∀(q, ξ) ∈ Q .
(2.53)

For this purpose, we take Hh as in (2.25), let Qh := [Qh(Ω1)×Qh,0(Ω2)]×Qh(Γ2), and define

the corresponding Galerkin equations as in (2.26).

Next, we let Hh,0(Ω1) := Hh(Ω1) ∩ [H1
0 (Ω1)]

2 and instead of (H.1) consider the following

more stringent assumptions:

(H.4) There exist β3, β4 > 0, independent of h, and u0
h ∈ Hh(Ω1), u0

h 6= 0, such that

sup
v1,h∈Hh,0(Ω1)

v1,h 6=0

∫

Ω1

q1,h div v1,h

‖v1,h‖1,Ω1

≥ β3 ‖q1,h‖0,Ω1 ∀ q1,h ∈ Qh,0(Ω1) , (2.54)

and ∫

Γ2

u0
h · ν ≥ β4 ‖u0

h‖1,Ω1 . (2.55)

In addition, the space of constant functions on Ω1 is contained in Qh(Ω1).

(H.5) There exists β5 > 0, independent of h, such that

sup
v1,h∈Hh(Ω1)

v1,h 6=0

∫

Ω1

q1,h div v1,h

‖v1,h‖1,Ω1

≥ β5 ‖q1,h‖0,Ω1 ∀ q1,h ∈ Qh(Ω1) . (2.56)

In addition, the space of constant functions on Ω1 is contained in Qh(Ω1).

It is not difficult to see that (2.29) in (H.1) follows straightforwardly from (2.54) as well as from

(2.56), and that (2.56) implies (2.55). Also, note that (2.54) is the necessary inf-sup condition

that the pair of spaces has to satisfy to be applicable to the Stokes problem with homogeneous

boundary conditions on the whole boundary, whereas (2.56) is related to using the space for the

Stokes problem with Dirichlet boundary conditions only on Γ1. In what follows we show that

(H.4) is sufficient for (H.5) and that (H.2) and (H.5) yield the discrete inf-sup condition for b.

Lemma 2.5.1 (H.4) =⇒ (H.5).

Proof. Given q1,h ∈ Qh(Ω1), we let q0 ∈ Qh,0(Ω1) and d ∈ R such that q1,h = q0 + d. Then,

using (2.54) it follows that

Sh(q1,h) := sup
v1,h∈Hh(Ω1)

v1,h 6=0

∫

Ω1

q1,h div v1,h

‖v1,h‖1,Ω1

≥ sup
v1,h∈Hh,0(Ω1)

v1,h 6=0

∫

Ω1

q0 div v1,h

‖v1,h‖1,Ω1

≥ β3 ‖q0‖0,Ω1 . (2.57)
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Next, bounding Sh(q1,h) from below with v1,h := du0
h ∈ Hh(Ω1) and using (2.55), we find that

Sh(q1,h) ≥ |d|

∫

Γ2

u0
h · ν

‖u0
h‖1,h

− C ‖q0‖0,Ω1 ≥ β4 |d| − C ‖q0‖0,Ω1 . (2.58)

In this way, adding (2.57) to β3

2 C times (2.58) we obtain the required estimate (2.56).

Lemma 2.5.2 Assume that (H.2) and (H.5) hold. Then there exists β > 0, independent of h,

such that

Sh(qh, ξh) := sup
vh∈Hh
vh 6=0

b(vh, (qh, ξh))

‖vh‖H

≥ β ‖(qh, ξh)‖Q ∀ (qh, ξh) ∈ Qh .

Proof. We proceed similarly as in the proof of Lemma 2.4.1. Restricting the supremum to the

set of elements (−v1,h,0) and using (2.56) (cf. (H.5)), we obtain

Sh(qh, ξh) ≥ sup
v1,h∈Hh(Ω1)

v1,h 6=0

∫

Ω1

q1,h div v1,h − 〈v1,h · ν, ξh〉Γ2

‖v1,h‖1,Ω1

≥ β5 ‖q1,h‖0,Ω1 − C ‖ξh‖1/2,Γ2
. (2.59)

Now, considering elements (0,−v2,h) and using (2.30) (cf. (H.2)), we find that

Sh(qh, ξh) ≥ sup
v2,h∈Hh(Ω2)

v2,h 6=0

∫

Ω2

q2,h div v2,h + 〈v2,h · ν, ξh〉Γ2

‖v2,h‖div,Ω2

≥ β2

{
‖q2,h‖0,Ω2 + ‖ξh‖1/2,Γ2

}
.

(2.60)

Finally, adding (2.60) to β2

2 C times (2.59) we conclude the discrete inf-sup condition for b.

The ellipticity of a in the discrete kernel of b is established next.

Lemma 2.5.3 Let

Vh :=
{
vh ∈ Hh : b(vh, (qh, ξh)) = 0 ∀ (qh, ξh) ∈ Qh

}
.

Then there exists α > 0, independent of h, such that

a(vh,vh) ≥ α ‖vh‖2
H ∀vh ∈ Vh .

Proof. It suffices to observe that

Vh ⊆ Ṽh :=
{
vh ∈ Hh : div v2,h ∈ P0(Ω2)

}
,

and that a is elliptic in Ṽh.

As a consequence of Lemmas 2.5.2 and 2.5.3 we have the following theorem (recall the

definitions of Q and Qh in this section).



2.6 Numerical results 31

Theorem 2.5.1 Assume that the hypotheses (H.2) and (H.5) hold. Then for each h > 0 the

Galerkin scheme of (2.53) has a unique solution (uh, (ph, λh)) ∈ Hh ×Qh. Moreover, there exist

positive constants C1 and C2, independent of h, such that

‖uh‖H + ‖(ph, λh))‖Q ≤ C1

{
‖F‖H′

h
+ ‖G‖Q′

h

}
, (2.61)

and
‖u − uh‖H + ‖(p, λ) − (ph, λh)‖Q

≤ C2

{
inf

vh∈Hh

‖u − vh‖H + inf
(qh,ξh)∈Qh

‖(p, λ) − (qh, ξh)‖Q

}
.

(2.62)

Note that, as announced at the beginning of this section, Theorem 2.5.1 does not recur to

the asymptotic limit. However, according to the logic connectivity of the inequalities in (H.1),

(H.4), and (H.5) (see Figure 5.1 below), the discrete inf-sup condition (2.29) in (H.1) is the less

restrictive of all.

+

(2.54)

(2.56)

(2.55)

(2.29)

Figure 5.1: Illustration of the logic connectivity of the main assumptions.

2.6 Numerical results

Numerical results showing the good performance of the mixed finite element scheme (2.26)

with the Bernardi-Raugel and Raviart-Thomas subspaces (cf. (2.44), (2.45), (2.49), (2.50), and

(2.51)) were provided in [45]. In order to confirm the same behaviour with other stable Stokes

elements, in this section we present three examples illustrating the performance of (2.26) with

the MINI element and Raviart-Thomas subspaces (cf. (2.47), (2.48), (2.49), (2.50), and (2.51))

for two different geometries of the coupled problem. In this case, similarly as established by [45,

Theorem 4.3], one can prove that, for sufficiently smooth continuous solutions, there also holds a
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rate of convergence of O(h). In particular, for the approximation properties of the MINI element

subspace we refer again to [54, Chapter II, Section 4.1].

We now introduce additional notations. The variable N stands for the number of degrees of

freedom defining Hh and Qh, and the individual errors are denoted by:

e(u1) := ‖u1 − u1,h‖1,Ω1 , e(u2) := ‖u2 − u2,h‖div,Ω2 ,

e(p) := ‖p1 − p1,h‖0,Ω1 + ‖p2 − p2,h‖0,Ω2 , and e(λ) := ‖λ − λh‖1/2,Γ2
,

where uh := (u1,h,u2,h) ∈ Hh, p1,h = ph|Ω1 , and p2,h = ph|Ω2 . Also, we let r(u1), r(u2), r(p),

and r(λ) be the experimental rates of convergence given by

r(u1) :=
log(e(u1)/e

′(u1))

log(h/h′)
, r(u2) :=

log(e(u2)/e
′(u2))

log(h/h′)
,

r(p) :=
log(e(p)/e′(p))

log(h/h′)
, and r(λ) :=

log(e(λ)/e′(λ))

log(h̃/h̃′)
,

where h and h′ (resp. h̃ and h̃′ ) denote two consecutive meshsizes with errors e and e
′.

In what follows we describe the data of the examples. In all cases we choose µ = 1, κ = 1,

and K = I, the identity matrix of R
2×2.

In Example 1 we take Ω2 := (−1/2, 1/2) × (−1/2, 1/2) and Ω1 := (−1, 1) × (−1, 1) \Ω2,

which represents a porous medium completely surrounded by a fluid. Then we choose the data

f1 and f2 so that the exact solution is given by

u1(x1, x2) =
1

100




sin(πx1)
2 cos(πx1)(x

2
2 − 1)(πx2

2 sin(πx2) − 4x2 cos(πx2) − π sin(πx2))

π cos(πx2) sin(πx1)(3 cos(πx1)
2 − 1)(x2 − 1)2(x2 + 1)2


 ,

u2(x1, x2) = −1

4




(54x2
1 − 27

2 ) sin(πx2)
3

18π(x3
1 − 3

4x1) sin(πx2)
2 cos(πx2)


 ,

and

p(x1, x2) =
1

4
(18x3

1 −
27

2
x1) sin(πx2)

3 .

In Example 2 we consider Ω1 := (−1, 1) × (0, 1) and Ω2 := (−1, 1) × (−1, 0), which

constitutes a particular case of the geometry analyzed in Subsection 2.2.3, and choose the data
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f1 and f2 so that the exact solution is given by

u1(x1, x2) =




−2 sin(πx1)
2(x2 − 1)

2π sin(πx1)(x2 − 1)2 cos(πx1)


 ,

u2(x1, x2) =




−3π sin(πx1)
2 cos(πx2) cos(πx1)

π sin(πx1)
3 sin(πx2)


 ,

and

p(x1, x2) :=





(x5
1 + x3

1)e
2x2 in Ω1 ,

sin(πx1)
3 cos(πx2) in Ω2 .

Finally, in Example 3 we consider the same geometry of Example 2, and take the data f1

and f2 given by

f1(x1, x2) =




−4 sin(x1x2)x1 + exp(x3
2)

4 exp(3x1) + 4x2




and

f2(x1, x2) = x3
1

(
exp(x2

2) − 0.5
)
.

We observe that the solutions of Examples 1 and 2 show very oscillating behavior, and that

Example 3 corresponds to a more realistic situation in which the exact solution is unknown.

The numerical results shown below were obtained using a MATLAB implementation. Ac-

cording to the technical requirement established by the inf-sup condition (2.30) for the Raviart-

Thomas subspace, namely h2 ≤ C0 h̃, and since the constant C0 ∈ (0, 1) is not explicitly known,

we simply put a vertex of the independent partition {γ̃1, γ̃2, · · · , γ̃m} every two vertices of T2

on Γ2, thus insuring that, locally on Γ2, h2 ≤ 1
2 h̃. As we will see below, this choice works out

well in both examples. In addition, there is no need of taking sufficiently small values of h (as

technically suggested by the inequality h ≤ h0 in Theorem 2.4.2) since the resulting discrete

schemes become all well posed for the degrees of freedom employed in the present examples.

In Tables 6.1 and 6.2 we present the convergence history of Examples 1 and 2, respectively, for

a set of uniform triangulations of the computational domain Ω̄. We see there that the dominant

error in both examples is given by e(u2), though this is more evident in Example 1. In addition,

we observe that the rate of convergence O(h) is attained by all the unknowns. Furthermore, the

rates of convergence of e(p) and e(λ) are a bit higher than O(h) in Example 2, which, however, is

just a special behavior of this particular solution. The experimental rates of convergence and the
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dominant components of the error can also be checked from Figures 6.1 and 6.9 below where we

display the meshsize h and the errors e(u1), e(u2), and e(p) vs. the degrees of freedom N . Next,

from Figure 6.2 throughout Figure 6.8 (resp. Figure 6.10 throughout Figure 6.16) we display

the approximate and exact solutions of Example 1 for N=106881 (resp. Example 2 for N =

98371). It is clear from these figures that the MINI element subspace provides very accurate

approximations of the velocity and pressure in the fluid Ω1. In particular, the quality of these

approximations are not affected at all by the strong oscillations of some solutions. Similarly, the

Raviart-Thomas subspace reconstructs quite accurately the velocity and pressure in the porous

media Ω2, and the trace λ of the pressure on the interface Γ2.

Next, in Table 6.3 we present the convergence history of Example 3 for a set of uniform

triangulations of the computational domain Ω̄. The errors and experimental rates of convergence

shown there are computed by considering the discrete solution obtained with the finest mesh

(N = 786563) as the exact solution. Similarly as for Examples 1 and 2 we observe that the

rate of convergence O(h) is attained by all the unknowns, and in this case the dominant error

is given by e(p). The experimental rates of convergence and the dominance of e(p) can also

be checked from Figure 6.17 where we display the meshsize h and the errors e(u1), e(u2), and

e(p) vs. the degrees of freedom N . Next, from Figure 6.18 throughout Figure 6.21 we show

the approximate solutions obtained for N=98371. Note that in this example the normal on the

interface Γ2 := (−1, 1)×{0} is given by ν = (0,−1)t, and hence the first transmission condition

becomes equality of the second components of u1 and u2. This can be verified at the discrete

level in Figure 6.20 where we display 3D and 2D joint pictures of the second components of u1,h

and u2,h.

Summarizing, the numerical results reported here confirm the good performance of the mixed

finite element scheme (2.26) for different geometries of the coupled problem and with any pair

of stable Stokes and Darcy subspaces.

N h e(u1) r(u1) e(u2) r(u2) e(p) r(p) h̃ e(λ) r(λ)

441 0.354 0.1006 – 8.0254 – 0.1317 – 0.707 1.3451 –

1713 0.177 0.0530 0.944 4.1266 0.980 0.0497 1.436 0.354 0.9517 0.510

6753 0.088 0.0254 1.076 2.0873 0.994 0.0200 1.327 0.177 0.5030 0.930

26817 0.044 0.0125 1.029 1.0467 1.001 0.0091 1.136 0.088 0.2213 1.191

106881 0.022 0.0062 1.010 0.5237 1.002 0.0044 1.059 0.044 0.0971 1.191

Table 6.1: degrees of freedom, meshsizes, errors, and rates of convergence (Example 1)



2.6 Numerical results 35

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06

N

h

3

3

3

3

3

3

e(u1)

+
+

+

+
+

+
e(u2)

2

2

2

2

2

2

e(p)

×
×

×
×

×

×

Figure 6.1: meshsize h and errors vs. degrees of freedom N (Example 1)

Figure 6.2: first components of u1,h and u1 (Example 1)

Figure 6.3: second components of u1,h and u1 (Example 1)
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Figure 6.4: first components of u2,h and u2 (Example 1)

Figure 6.5: second components of u2,h and u2 (Example 1)

Figure 6.6: p1,h and p1 (Example 1)
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Figure 6.7: p2,h and p2 (Example 1)

Figure 6.8: λh and λ (Example 1)

N h e(u1) r(u1) e(u2) r(u2) e(p) r(p) h̃ e(λ) r(λ)

101 0.707 10.3690 – 16.6390 – 5.4791 – 1.000 1.4761 –

391 0.353 5.9337 0.824 9.9808 0.731 2.3571 1.246 0.500 0.9826 0.601

1547 0.176 2.8182 1.082 5.2415 0.936 0.9442 1.330 0.250 0.4868 1.021

6163 0.088 1.4010 1.011 2.6517 0.985 0.3532 1.422 0.125 0.1584 1.624

24611 0.044 0.6959 1.010 1.3298 0.996 0.1298 1.445 0.062 0.0535 1.567

98371 0.022 0.3465 1.006 0.6654 0.999 0.0467 1.476 0.031 0.0187 1.517

Table 6.2: degrees of freedom, meshsizes, errors, and rates of convergence (Example 2)
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Figure 6.9: meshsize h and errors vs. degrees of freedom N (Example 2)

Figure 6.10: first components of u1,h and u1 (Example 2)
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Figure 6.11: second components of u1,h and u1 (Example 2)

Figure 6.12: first components of u2,h and u2 (Example 2)

Figure 6.13: second components of u2,h and u2 (Example 2)

Figure 6.14: p1,h and p1 (Example 2)
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Figure 6.15: p2,h and p2 (Example 2)

Figure 6.16: λh and λ (Example 2)

N h e(u1) r(u1) e(u2) r(u2) e(p) r(p) h̃ e(λ) r(λ)

101 0.707 1.8331 – 0.3848 – 6.3700 – 1.000 0.3869 –

391 0.353 1.1978 0.628 0.1890 1.050 3.3163 0.964 0.500 0.1501 1.399

1547 0.176 0.6544 0.879 0.0901 1.077 1.5455 1.110 0.250 0.0781 0.950

6163 0.088 0.3455 0.924 0.0445 1.020 0.6902 1.166 0.125 0.0372 1.073

24611 0.044 0.1806 0.937 0.0221 1.011 0.3242 1.091 0.062 0.0169 1.139

98371 0.022 0.0953 0.922 0.0110 1.007 0.1701 0.931 0.031 0.0074 1.192

Table 6.3: degrees of freedom, meshsizes, errors, and rates of convergence (Example 3)
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Figure 6.17: meshsize h and errors vs. degrees of freedom N (Example 3)

Figure 6.18: first and second components of u1,h (Example 3)
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Figure 6.19: first and second components of u2,h (Example 3)

Figure 6.20: second components of u1,h and u2,h (Example 3)

Figure 6.21: p1,h and p2,h (Example 3)



Chapter 3

Analysis of fully-mixed finite

element methods for the

Stokes-Darcy coupled problem

3.1 Introduction

The derivation of suitable numerical methods for the coupling of fluid flow (modelled by

the Stokes equations) with porous media flow (modelled by the Darcy equation) has become

a very active research area during the last decade (see, e.g. [2], [20], [21], [26], [34], [35], [39],

[45], [48], [61], [63], [67], [71], [74], [75], [78], and the references therein). This fact has been

motivated by the diverse applications of this coupled model (in petroleum engineering, hydrology,

and environmental sciences, to name a few), and also by the increasing need of simpler, more

accurate, and more efficient procedures to solve it. Moreover, the latest results available in the

literature also include porous media with cracks, nonlinear problems, and the incorporation of

the Brinkman equation in the model (see, e.g. [17], [37], and [83]).

In general, most of the finite element formulations developed for the Stokes-Darcy coupled

problem are based on appropriate combinations of stable elements for the free fluid flow and

for the porous medium flow. The first theoretical results in this direction go back to [35] and

[63]. An iterative subdomain method employing the primal variational formulation and standard

finite element subspaces in both domains is proposed in [35]. Alternatively, the approach from

[63] applies the primal method in the fluid and the dual-mixed one in the porous medium, which

means that only the original velocity and pressure unknowns are considered in the Stokes domain,

whereas a further unknown (velocity) is added in the Darcy region. The corresponding interface

conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-

43
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Saffman law. Since one of them becomes essential, the trace of the porous medium pressure

needs to be incorporated as an additional Lagrange multiplier.

More recently, new mixed finite element discretizations of the variational formulation from

[63] have been introduced and analyzed in [45] and [48]. The stability of a specific Galerkin

method is the main result in [45]. This scheme is defined by using Bernardi-Raugel elements

for the velocity in the fluid region, Raviart-Thomas elements of lowest order for the filtration

velocity in the porous media, piecewise constants with null mean value for the pressures, and

continuous piecewise linear elements for the Lagrange multiplier on the interface. The resulting

mixed finite element method is the first one which is conforming for the primal/dual-mixed

formulation proposed in [63]. The results from [45] are improved in [48] where it is shown that

the use of any pair of stable Stokes and Darcy elements implies the stability of the corresponding

Stokes-Darcy Galerkin scheme. In particular, this includes Hood-Taylor, Bernardi-Raugel and

MINI element for the Stokes region, and Raviart-Thomas of any order for the Darcy domain.

The analysis in [48] hinges on the fact that the operator defining the continuous variational

formulation is given by a compact perturbation of an invertible mapping.

On the other hand, mortar finite element techniques, discontinuous Galerkin (DG) schemes,

and stabilized formulations have also been applied to solve the Stokes-Darcy coupled problem.

We first refer to [39] where a non-matching approach is combined with Hood-Taylor and lowest

order Raviart-Thomas spaces in the Stokes and Darcy regions, respectively. Also, stabilized

formulations for the free fluid flow combined with stable elements for the Darcy equation are

considered in [2] and [74], while stabilized formulations for the porous medium flow combined

with stable elements for the Stokes equations are provided in [31] and [78]. Similarly, stabilized

formulations in the whole domain are presented in [26] and [71]. It is important to notice here

that the formulations in [2] and [26] are able to approximate the Stokes and Darcy flows with the

same finite element subpaces. Other stabilized formulations with this characteristic are developed

in [20], [21], [67], and [75]. In particular, a stabilized piecewise linear/piecewise constant method

with an added penalization of pressure jumps over the edges is proposed in [21]. In addition,

Crouzeix-Raviart elements for the velocities and piecewise constants for the pressures in both

regions, combined with a stabilization term penalizing the jumps of the discontinuous velocities

over the edges, are employed in [75]. This approach differs from the one in [20] where the

stabilization term depends on the normal vectors of the interior edges. In connection with these

references we remark that different finite element subspaces in each flow region may lead to

different approximation properties for each subproblem. For instance, one could obtain a more

accurate velocity field in the Stokes domain than in the Darcy region. On the contrary, employing

the same spaces guarantees the same accurateness along the entire domain and leads to simpler
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and more efficient computational codes.

The purpose of the present work is to contribute in the development of new numerical meth-

ods for the 2D Stokes-Darcy coupled problem, allowing on one hand the introduction of further

unknowns of physical interest, and on the other hand, the utilization of the same family of finite

element subspaces in both media, without requiring any stabilization term. To reach this aim

we consider dual-mixed formulations in both domains, which yields the pseudostress and the

velocity in the fluid, together with the velocity and the pressure in the porous medium, as the

main unknowns. The pressure and the gradient of the velocity in the fluid can then be computed

as a very simple postprocess of the above unknowns, in which no numerical differentiation is

applied, and hence no further sources of error arise. In addition, since the transmission condi-

tions become essential, we impose them weakly and introduce the traces of the porous media

pressure and the fluid velocity, which are also variables of importance from a physical point of

view, as the corresponding Lagrange multipliers. Then, we apply the well known Fredholm and

Babuška-Brezzi theories to prove the unique solvability of a suitably chosen continuous formula-

tion and derive sufficient conditions on the finite element subspaces ensuring that the associated

Galerkin scheme becomes well posed. In particular, among the several different ways in which

the equations and unknowns can be ordered, we choose the one yielding a doubly mixed struc-

ture for which the inf-sup conditions of the off-diagonal bilinear forms follow straightforwardly.

In this way, the arguments of the continuous analysis can be easily adapted to the discrete case.

The rest of this paper is organized as follows. In Section 3.2 we introduce the main aspects

of the continuous problem, which includes the coupled model, its weak formulation, and the cor-

responding variational system. The Fredholm theorems and the classical Babuška-Brezzi theory

are applied in Section 3.3 to analyze the continuous problem. Then, in Section 3.4 we define the

Galerkin scheme and derive general hypotheses on the finite element subspaces ensuring that

the discrete scheme becomes well posed. In addition, we show that the assumption of existence

of uniformly bounded discrete liftings of the normal traces on the interface simplifies the state-

ment of one of the hypotheses. Next, in Section 3.5 we describe a specific choice of finite element

subspaces, namely Raviart-Thomas of lowest order and piecewise constants on both domains,

and piecewise linears on the interface, and show that they satisfy all the required assumptions.

In particular, we prove that a quasiuniformity condition in a neighborhood of the interface im-

plies the existence of the above mentioned discrete liftings. Finally, several numerical examples

employing these spaces, illustrating the good performance of the method, and confirming the

theoretical order of convergence, are reported in Section 3.6.

We end this section by summarizing in advance, and according to the already mentioned

purpose of the paper, the main advantages of the present fully-mixed approach: it provides either
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direct finite element approximations or very simple postprocess formulae for several additional

quantities of physical interest; it yields, under a special ordering of the resulting equations and

unknowns, a unified and straightforward analysis of the continuous and discrete formulations;

it leads to independent but analogously structured stability assumptions on the finite element

subspaces for the Stokes and Darcy regions; and it allows the utilization of the same kind of

finite elements in both media, with the consequent simplification of the respective code.

3.2 The continuous problem

3.2.1 Statement of the model problem

The Stokes-Darcy coupled problem consists of an incompressible viscous fluid occupying a

region ΩS, which flows back and forth across the common interface into a porous medium living

in another region ΩD and saturated with the same fluid. Physically, we consider a simplified 2D

model where ΩD is surrounded by a bounded region ΩS (see Figure 3.1 below). Their common

interface is supposed to be a Lipschitz curve Σ and we assume that ∂ΩD = Σ. The remaining

part of the boundary of ΩS is also assumed to be a Lipschitz curve ΓS. For practical purposes,

we can assume that both ΓS and Σ are polygons, although this fact will not be used in the

general considerations about the formulation of the problem. The unit normal vector field on

the boundaries n is chosen pointing outwards from ΩS (and therefore inwards to ΩD when seen

on Σ). On Σ we also consider a unit tangent vector field t in any fixed orientation of this closed

curve.

Γ

t

n

n
ΩD

ΩS
S

Σ

Figure 3.1: The domains for our simplified 2D Stokes–Darcy model

The mathematical model is defined by two separate groups of equations and a set of coupling

terms. In ΩS, the governing equations are those of the Stokes problem, which are written in the
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following non-standard velocity-pressure-pseudostress formulation:

σS = − pS I + ν ∇uS in ΩS , div σS + fS = 0 in ΩS ,

div uS = 0 in ΩS , uS = 0 on ΓS ,

(3.1)

where ν > 0 is the viscosity of the fluid, uS is the fluid velocity, pS is the pressure, σS is the

pseudostress tensor, I is the 2 × 2 identity matrix, and fS are known source terms. Here, div is

the usual divergence operator acting on vector fields,

∇u =

(
∂ui

∂xj

)
, and div σ =

(
div (σi1, σi2)

)
,

i.e., the divergence operator applied to a matrix valued function (a tensor) is taken row-wise.

On the other hand, the flow equations in ΩD are those of the linearized Darcy model:

uD = −K∇pD in ΩD , div uD = fD in ΩD , (3.2)

where the unknowns are the pressure pD and the flow uD. The matrix valued function K, describ-

ing permeability of ΩD divided by the viscosity ν, satisfies Kt = K, has L∞(ΩD) components

and is uniformly elliptic. Finally, fD are source terms. We will see that a necessary and sufficient

condition for well posedness of the model equations is

∫

ΩD

fD = 0. (3.3)

Finally, the transmission conditions on Σ are given by

uS · n = uD · n on Σ ,

σS n + ν κ−1 (uS · t) t = − pD n on Σ ,
(3.4)

where κ :=

√
(ν K t) · t

α
is the friction coefficient, and α is a positive parameter to be determined

experimentally. The first equation in (3.4) corresponds to mass conservation on Σ, whereas the

second one can be decomposed into its normal and tangential components as follows:

(
σS n

)
· n = − pD and

(
σS n

)
· t = − ν κ−1 (uS · t) on Σ ,

which constitute the balance of normal forces and the Beavers-Joseph-Saffman law, respectively.

The latter establishes that the slip velocity along Σ is proportional to the shear stress along

Σ (assuming also, based on experimental evidences, that uD · t is negligible). We refer to [16],

[59], and [76] for further details on this interface condition. Throughout the rest of the paper we

assume, without loss of generality, that κ is a positive constant.
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The description of our model problem is completed by observing that the equations in the

Stokes domain (cf. (3.1)) can be rewritten equivalently as

ν−1 σd
S = ∇uS in ΩS , div σS + fS = 0 in ΩS ,

pS = − 1
2 trσS in ΩS , uS = 0 on ΓS ,

(3.5)

where tr stands for the usual trace of tensors, that is trτ := τ11 + τ22, and

τ d := τ − 1
2 (trτ ) I

is the deviatoric part of the tensor τ . The third equation in (3.5) allows us to eliminate pS from

the system and compute it as a simple postprocess of the solution. Similarly, the first equation

in (3.5) yields a straightforward postprocess formula for the gradient of the velocity in the fluid.

Note that a constant c added to both pS and pD is not perceived by the system: its only effect

is a correction in σS that has to be subtracted c times the identity matrix.

We end this section by remarking that, though the geometry described by Figure 3.1 was

choosen to simplify the presentation, the case of a fluid flowing only across a part of the boundary

of the porous medium does not really yield further complications for the analysis in the present

paper. For instance, if we consider a fluid over the porous medium, ∂ΩS stays given by ΓS ∪ Σ,

but now with both curves meeting at their end points, whereas a new piece of ∂ΩD, say Γ, such

that ∂ΩD = Σ ∪ Γ, needs to be identified. In this case, besides the equations given in the

present section (which hold now with the notations introduced here), a boundary condition on Γ

needs to be added. Following [39] and [63] (see also [37]), one usually considers the homogeneous

Neumann condition:

uD · n = 0 on Γ , (3.6)

which constitutes a no flow assumption through Γ. We refer to [39] for further details and

emphasize that only minor modifications will need to be incorporated into the forthcoming

analysis. In particular, this is certainly valid for the discrete analysis, which is illustrated by

two numerical examples reported below in Section 3.6. Alternatively, instead of (3.6) one can

consider the homogeneous Dirichlet condition:

pD = 0 on Γ , (3.7)

which, as will be explained at the end of Section 3.3 below, becomes a unique solvability condition

for the resulting variational formulation.
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3.2.2 The weak formulation

Let us first introduce some general functional spaces. If O is a domain, Γ is a closed Lipschitz

curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , H
r(O) := [Hr(O)]2×2 , and Hr(Γ) := [Hr(Γ)]2 .

In the particular case r = 0 we usually write L2(O), L
2(O), and L2(Γ) instead of H0(O), H

0(O),

and H0(Γ), respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O),

and H
r(O)) and ‖ · ‖r,Γ (for Hr(Γ) and Hr(Γ)).

Also, the Hilbert space

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [19] or [54] for instance). The space of matrix

valued functions whose rows belong to H(div ;O) will be denoted H(div ;O). The Hilbert norms

of H(div ;O) and H(div ;O) are denoted by ‖ · ‖div ;O and ‖ · ‖div ;O, respectively. Note that if

τ ∈ H(div ;O), then div τ ∈ L2(O). Note also that H(div ;O) can be characterized as the

space of matrix valued functions τ such that ctτ ∈ H(div ;O) for any constant column vector

c. In addition, it is easy to see that there holds:

H(div ;O) = H0(div ;O) ⊕ P0(O) I , (3.8)

where

H0(div ;O) :=

{
σ ∈ H(div ;O) :

∫

O
trσ = 0

}
(3.9)

and P0(O) is the space of constant polynomials on O. More precisely, each τ ∈ H(div ;O) can

be decomposed uniquely as:

τ = τ 0 + c I , with τ 0 ∈ H0(div ;O) and c :=
1

2 |O|

∫

O
tr τ ∈ R . (3.10)

This decomposition will be utilized below to analyze the weak formulation of our problem.

On the other hand, for simplicity of notations we will also denote, with ⋆ ∈ {S, D}

(u, v)⋆ :=

∫

Ω⋆

u v, (u,v)⋆ :=

∫

Ω⋆

u · v, (σ, τ )⋆ :=

∫

Ω⋆

σ : τ ,

where σ : τ = tr(σtτ ) =
2∑

ij=1

σijτij . Note the following simple and useful identity

σd : τ d = σd : τ = σ : τ − 1

2
(trσ) (trτ ) .
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The symbols for the L2(Σ) and L2(Σ) inner products

〈ξ, λ〉Σ :=

∫

Σ
ξ λ, 〈ξ, λ〉Σ :=

∫

Σ
ξ · λ ,

will also be employed for their extensions as the duality products H−1/2(Σ) × H1/2(Σ) and

H−1/2(Σ) × H1/2(Σ), respectively.

The unknowns in the weak (mixed) formulation will be the two unknowns in (3.2) and the

unknowns of (3.5) without the pressure pS. The corresponding spaces will be:

σS ∈ H(div ; ΩS), uS ∈ L2(ΩS), uD ∈ H(div ; ΩD), pD ∈ L2(ΩD). (3.11)

In addition, we will need to define two unknowns on the coupling boundary

ϕ := −uS ∈ H1/2(Σ), λ := pD ∈ H1/2(Σ). (3.12)

Note that in principle the spaces for uS and pD do not allow enough regularity for the traces

above to exist. However, solutions of (3.2) and (3.5) have these unknowns in H1(ΩS) and H1(ΩD)

respectively.

In order to obtain the weak formulation of (3.2)–(3.4)–(3.5), we apply the divergence theorem

to the first equation in both (3.2) and (3.5), that is to those equations relating σS and uD to

other magnitudes. Then, due to the mixed nature of the model, the Dirichlet condition in (3.5)

and the traces of pD and uS on Σ become natural and hence they are incorporated directly in

the weak formulation. On the contrary, both transmission conditions in (3.4) become essential,

whence they have to be imposed independently, thus yielding the introduction of the auxiliary

unknowns (3.12) as the corresponding Lagrange multipliers. According to the above, the weak

equations can be written as follows: we look for the unknowns

(σS,uS, ϕ) ∈ H(div ; ΩS) × L2(ΩS) × H1/2(Σ),

(uD, pD, λ) ∈ H(div ; ΩD) × L2(ΩD) × H1/2(Σ)
(3.13)

satisfying two variational equations

ν−1 (σd
S, τ

d
S)S + (div τ S,uS)S + 〈τ S n, ϕ〉Σ = 0 ∀ τ S ∈ H(div ; ΩS) , (3.14)

(K−1 uD,vD)D − (div vD, pD)D − 〈vD · n, λ〉Σ = 0 ∀vD ∈ H(div ; ΩD) , (3.15)

two differential equations

div σS + fS = 0 in ΩS ,

div uD = fD in ΩD ,
(3.16)
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with source terms fS ∈ L2(ΩS) and fD ∈ L2(ΩD), and two restrictions on the boundary

ϕ · n + uD · n = 0 in H−1/2(Σ) ,

σS n + λn − ν κ−1 (ϕ · t) t = 0 in H−1/2(Σ) .
(3.17)

The apparently wrong sign in the term where λ appears in the second equation of (3.17) is due

to the fact that the normal on Σ points inwards from the point of view of ΩD.

Different orderings of the equations and unknown will emphasize different structural proper-

ties of the system. We will show three possibilities shortly.

Theorem 3.2.1 Assume that we have a solution (3.13) of the system (3.14)–(3.15)–(3.16)–

(3.17) and that we define pS := −1
2 trσS. Then uS ∈ H1(ΩS), pD ∈ H1(ΩD), ϕ = −uS on Σ,

λ = pD on Σ and we have a solution of the system (3.1)–(3.2)–(3.4).

Proof. It is a simple application of well known results on distribution theory and Sobolev spaces

of H1(O) and H(div ;O) type.

3.2.3 The variational system

The weak system (3.14)–(3.15)–(3.16)–(3.17) can be described in purely variational form.

To do that, we now test the equations (3.16) and the first equation of (3.17) with arbitrary

v ∈ L2(ΩS), q ∈ L2(ΩD), and ξ ∈ H1/2(Σ), respectively, which give

(div σS,vS)S = − (fS,vS)S ∀vS ∈ L2(ΩS) , (3.18)

(div uD, qD)D = (fD, qD)D ∀ qD ∈ L2(ΩD) , (3.19)

and

〈ϕ · n, ξ〉Σ + 〈uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) . (3.20)

In addition, for convenience of the subsequent analysis we consider the decomposition (3.8)–(3.9)

with O = ΩS, and from now on redefine the fluid pseudostress as

σS + µ I with the new unknowns σS ∈ H0(div ; ΩS) and µ ∈ R . (3.21)

In this way, the variational formulation of the second transmission condition in (3.17) becomes

〈σS n, ψ〉Σ + 〈ψ ·n, λ〉Σ − ν κ−1 〈ϕ · t, ψ · t〉Σ + µ 〈ψ ·n, 1〉Σ = 0 ∀ψ ∈ H1/2(Σ) , (3.22)

and the equation (3.14) is rewritten, equivalently, as

ν−1 (σd
S, τ

d
S)S + (div τ S,uS)S + 〈τ S n, ϕ〉Σ = 0 ∀ τ S ∈ H0(div ; ΩS) , (3.23)
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and

η 〈ϕ · n, 1〉Σ = 0 ∀ η ∈ R . (3.24)

As a consequence of the above, we find that the resulting variational formulation reduces to a

system of seven equations ((3.15), (3.18) – (3.20), (3.22) – (3.24)) and seven unknowns, which

can be written in terms of the following nine bilinear forms:

A : ν−1 (σd
S, τ

d
S)S D : ν κ−1 〈ϕ · t, ψ · t〉Σ G : −(div uD, qD)D

B : (div σS,vS)S E : 〈ϕ · n, ξ〉Σ H : −〈uD · n, ξ〉Σ

C : 〈σS n, ψ〉Σ F : (K−1 uD,vD)D J : η 〈ϕ · n, 1〉Σ

(3.25)

On the left of each column of (3.25) we have added a key letter for the nine different bilinear

forms (or related operators). It is easy to see that all these bilinear forms are bounded. Also,

those with both arguments in the same space

A : ν−1 (σd
S, τ

d
S)S , D : ν κ−1 〈ϕ · t, ψ · t〉Σ , F : (K−1 uD,vD)D

are symmetric and positive semidefinite. In addition, the bilinear forms

D : ν κ−1 〈ϕ · t, ψ · t〉Σ , E : 〈ϕ · n, ξ〉Σ

are compact by the compact inclusion of H1/2(Σ) in L2(Σ).

Now, it is quite clear that there are many different ways of ordering the variational system.

In order to illustrate this fact and identify a suitable form, in Table 3.1 below we show three

options, emphasizing different structural properties of them. On the left of each row we indicate

the corresponding equation. Asides the row and the column involving the unknown µ, we observe

in ((1)) that the remaining equations show two blocks on the diagonal: the Stokes block in mixed

form with a penalization term and the Darcy block in mixed form. The coupling is limited to

E and Et. Changing the sign of the fourth equation we obtain a symmetric system, whereas

changing the sign of the second and third equations we see the sign of the underlying quadratic

form: off–diagonal terms compose a skew–symmetric matrix and diagonal terms are positive

semidefinite. Similarly, asides again the row and the column involving µ, we observe in ((2)) that

the variables are grouped by character and a different mixed structure, with a non–symmetric

and negative semidefinite penalization term, is recovered. Nevertheless, a good feature of this

system is the fact that D and E are compact, so taking away the penalization term, the remaining

system consists of a purely mixed problem, which can be decoupled in two mixed problems. On

the other hand, ((3)) shows a particular overlapping of the Stokes and Darcy blocks, which,

at first sight, seems to mix everything in an unconvenient way. However, a closer look to this
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ordering allows to identify a doubly-mixed structure in which the interior mixed formulation

contains the same penalization term observed in ((2)). Moreover, all the block bilinear forms,

except the one defining the penalization term, show a diagonal structure, which constitutes an

advantageous feature when proving the corresponding inf-sup conditions.

Throughout the rest of the paper we adopt the structure ((3)) for our analysis. This means

that we group unknowns and spaces as follows:

σ := (σS,uD, ϕ, λ) ∈ X0 := H0(div; ΩS) × H(div; ΩD) × H1/2(Σ) × H1/2(Σ) ,

u := (uS, pD, µ) ∈ M := L2(ΩS) × L2(ΩD) × R .

(3.26)

In this way, the variational system of our problem reads: Find (σ,u) ∈ X0 × M such that

A(σ, τ ) + B(τ ,u) = F(τ ) ∀ τ := (τ S,vD, ψ, ξ) ∈ X0 ,

B(σ,v) = G(v) ∀v := (vS, qD, η) ∈ M ,
(3.27)

where

F(τ ) := 0, G(v) = G((vS, qD, η)) := − (fS,vS)S − (fD, qD) , (3.28)

and A and B are the bounded bilinear forms defined by

A(σ, τ ) = a((σS,uD), (τ S,vD)) + b((τ S,vD), (ϕ, λ))

+ b((σS,uD), (ψ, ξ)) − c((ϕ, λ), (ψ, ξ)) ,

(3.29)

with
a((σS,uD), (τ S,vD)) := ν−1 (σd

S, τ
d
S)S + (K−1 uD,vD)D ,

[A + F]

b((τ S,vD), (ψ, ξ)) := 〈τ S n, ψ〉Σ − 〈vD · n, ξ〉Σ ,

[C + H]

c((ϕ, λ), (ψ, ξ)) := ν κ−1 〈ϕ · t, ψ · t〉Σ + 〈ϕ · n, ξ〉Σ − 〈ψ · n, λ〉Σ

[D + E − Et] ,

and

B(τ ,v) := (div τ S,vS)S − (div vD, qD)D + η 〈ψ · n, 1〉Σ [B + G + J] . (3.30)

It is quite evident from (3.29) that A has a mixed structure with penalization term given by

− c, which confirms the doubly-mixed character of (3.27). Note also that c is non–symmetric

and positive semidefinite (this fact will be emphasized and utilized in Section 3.3). In addition,

we remark again that the diagonal character of the bilinear forms a, b, and B will yield simpler

and more straightforward proofs of the corresponding inf-sup conditions.
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((1)) σS uS ϕ uD pD λ µ

(3.23) A Bt Ct

(3.18) B

(3.22) C −D Et Jt

(3.15) F Gt Ht

(3.19) −G

(3.20) E −H

(3.24) J

((2)) σS uD uS pD ϕ λ µ

(3.23) A Bt Ct

(3.15) F Gt Ht

(3.18) B

(3.19) G

(3.22) C −D Et Jt

(3.20) H −E

(3.24) − J

((3)) σS uD ϕ λ uS pD µ

(3.23) A Ct Bt

(3.15) F Ht Gt

(3.22) C −D Et Jt

(3.20) H −E

(3.18) B

(3.19) G

(3.24) J

Table 3.1: Three different forms of structuring the variational system.
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3.3 Analysis of the continuous problem

The approach that we will follow for the analysis of the continuous problem (3.27) is the one

of Fredholm theorems and Babuška-Brezzi theory for mixed problems.

3.3.1 Preliminaries

We group here some merely technical results and further notations that will serve for the

forthcoming analysis. For elementary results on Hilbert space theory, we refer to [38] for example.

The first of them is an abstract result on Hilbert spaces that can be read as follows: a symmetric

positive definite bilinear form in a Hilbert space that can be made elliptic by the addition of a

compact bilinear form, is necessarily elliptic.

Lemma 3.3.1 Let X be a Hilbert space, and let a : X ×X → R and k : X ×X → R be bounded

bilinear forms. Assume that a is symmetric and positive definite, k is compact, and there exists

α > 0 such that

a(x, x) + k(x, x) ≥ α ‖x‖2 ∀x ∈ X .

Then there exists β > 0 such that

a(x, x) ≥ β ‖x‖2 ∀x ∈ X .

Proof. Let A : X → X ′ and K : X → X ′ be the linear and bounded operators induced by a and

k, respectively, that is A(x) = a(x, ·) and K(x) = k(x, ·) for each x ∈ X. The hypotheses on a

and k imply that A is selfadjoint and injective, K is compact, and A+K is invertible, whence A

is Fredholm of index zero. It follows that A is an invertible selfadjoint positive definite operator,

and hence, by elementary spectral properties of bounded selfadjoint operators, A is necessarily

elliptic.

Lemma 3.3.2 There exists c > 0 such that

‖vD‖0,ΩD
≥ c ‖vD‖div ,ΩD

∀vD ∈ H(div ; ΩD) such that div vD ∈ P0(ΩD) .

Proof. Let vD ∈ H(div ; ΩD) such that div vD ∈ P0(ΩD). It is simple to see that

‖vD‖2
div ,ΩD

= ‖vD‖2
0,ΩD

+ k(vD,vD) ,

where k : H(div ; ΩD) × H(div ; ΩD) → R is the bounded bilinear form defined by

k(wD,vD) :=
1

|ΩD|

{∫

ΩD

div wD

} {∫

ΩD

div vD

}
∀wD, vD ∈ H(div ; ΩD) .

Since k is clearly compact, a direct application of Lemma 3.3.1 ends the proof.
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Lemma 3.3.3 There exists c1 > 0 such that

‖τ d
S‖2

0,ΩS
+ ‖div τ S‖2

0,ΩS
≥ c1 ‖τ S‖2

0,ΩS
∀ τ S ∈ H0(div ; ΩS) . (3.31)

Proof. See [12, Lemma 3.1] or [19, Proposition 3.1, Chapter IV].

Lemma 3.3.4 Let (X, 〈·, ·〉X) and Y, 〈·, ·〉Y ) be Hilbert spaces and let A : X → X, B : X → Y ,

and C : Y → Y be bounded linear operators. Assume that A is elliptic, B is surjective, and C is

positive semidefinite, that is, respectively

i) there exists α > 0 such that 〈A(x), x〉X ≥ α ‖x‖2
X ∀x ∈ X,

ii) there exists β > 0 such that ‖B∗(y)‖X ≥ β ‖y‖Y ∀ y ∈ Y ,

iii) 〈C(y), y〉Y ≥ 0 ∀ y ∈ Y .

Then the matrix operator T :=

[
A B∗

B −C

]
: X × Y → X × Y is bijective.

Proof. It suffices to observe that, being A invertible thanks to i), T is bijective if and only if

S := B A−1 B∗ + C : Y → Y is bijective, which follows from the fact that S becomes elliptic.

We omit further details and refer to [41, Lemma 2.1] for a nonlinear version of this result.

We end this section with some notations concerning our product spaces. In fact, we now let

X := H(div; ΩS) × H(div; ΩD) × H1/2(Σ) × H1/2(Σ) ,

recall that M := L2(ΩS) × L2(ΩD) × R (cf. (3.26)), and define

‖τ‖X := ‖τ S‖div ,ΩS
+ ‖vD‖div ,ΩD

+ ‖ψ‖1/2,Σ + ‖ξ‖1/2,Σ ∀ τ := (τ S,vD, ψ, ξ) ∈ X ,

and

‖v‖M := ‖vS‖0,ΩS
+ ‖qD‖0,ΩD

+ |η| ∀v := (vS, qD, η) ∈ M .

Note that ‖ · ‖X and ‖ · ‖M are equivalent to the product norms that make X and M (and hence

X0 and M0) Hilbert spaces. We will use them for all forthcoming estimates.

3.3.2 The main results

We begin by showing that (3.27) has a one dimensional kernel. More precisely, we have the

following result.

Lemma 3.3.5 Let (σ,u) := ((σS,uD, ϕ, λ), (uS, pD, µ)) ∈ X0×M be a solution of (3.27) with

homogeneous right hand side. Then there exists c ∈ R such that

σ = (0,0,0, c) and u = (0, c,−c)
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Proof. Testing the equations (3.27) with τ = (σS,uD,−ϕ,−λ) and v = (−uS,−pD, µ), and

then adding them, we find that

0 = ν−1 (σd
S, σ

d
S)S + (K−1uD,uD)D + ν κ−1 〈ϕ · t, ϕ · t〉Σ .

Note that this is equivalent to changing the sign of either the second and third rows in ((1)) or

all the rows but the first two in ((2)) or all the rows but the first two and the last one in ((3))

(see Table 3.1), and then adding all them. It is clear from the above equation that

σd
S = 0 in ΩS, uD = 0 in ΩD, and ϕ · t = 0 on Σ .

Using Theorem 3.2.1 it follows that ∇uS = ν−1 σd
S = 0 (cf . (3.5)) and −uS · t = 0, which

implies that uS = 0 in ΩS. Hence, again by Theorem 3.2.1 we have that ϕ = 0 and div σS = 0,

which, together with the fact that σS ∈ H0(div ; ΩS) and σd
S = 0, yields σS = 0 in ΩS. Next,

since ∇ pD = K−1 uD = 0, we deduce the existence of c ∈ R such that pD = c in ΩD, whence

λ = c on Σ. According to the above, the equation (3.22) reduces now to µn + cn = 0 on Σ,

which gives µ = − c.

Our next goal is to demonstrate that a simple restriction on the pressure in the Darcy domain

solves the indetermination generated by the non-null kernel of (3.27). To this end, we now let

M0 := L2(ΩS) × L2
0(ΩD) × R ,

where

L2
0(ΩD) :=

{
q ∈ L2(ΩD) :

∫

ΩD

q = 0

}
,

and consider the reduced problem: Find (σ,u) ∈ X0 × M0 such that

A(σ, τ ) + B(τ ,u) = F(τ ) ∀ τ := (τ S,vD, ψ, ξ) ∈ X0 ,

B(σ,v) = G(v) ∀v := (vS, qD, η) ∈ M0 .
(3.32)

Throughout the rest of the section we follow the analysis suggested by the Babuška-Brezzi theory

to conclude finally that (3.32) is well posed. This requires the inf-sup condition for B and the

invertibility of the operator induced by A in the kernel of B. We begin with the first.

Lemma 3.3.6 There exists β > 0 such that

sup
τ ∈X0\0

B(τ ,v)

‖τ‖X

≥ β ‖v‖M ∀v ∈ M0 . (3.33)

Proof. We first observe that the diagonal character of B (cf. (3.30)) guarantees that (3.33) is

equivalent to the following three independent inf-sup conditions:

sup
τS ∈H0(div;ΩS)\0

(div τ S,vS)S
‖τ S‖div,ΩS

≥ βS ‖vS‖0,ΩS
∀vS ∈ L2(ΩS) , (3.34)
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sup
vD ∈H(div;ΩD)\0

(div vD, qD)D
‖vD‖div,ΩD

≥ βD ‖qD‖0,ΩD
∀ qD ∈ L2

0(ΩD) , (3.35)

sup
ψ ∈H1/2(Σ)\0

η 〈ψ · n, 1〉Σ
‖ψ‖1/2,Σ

≥ βΣ |η| ∀ η ∈ R , (3.36)

with βS, βD, βΣ > 0. For instance, the above statement follows from a direct application of the

characterization result for the inf-sup condition on product spaces provided in [52, Theorem 5].

Now, given vS ∈ L2(ΩS) we define τ as the H0(div ; ΩS)–component of ∇z ∈ H(div ; ΩS),

where z ∈ H1(ΩS) is the unique solution of the boundary value problem:

∆z = vS in ΩS , z = 0 on ∂ΩS .

This proves the surjectivity of the operator div : H0(div ; ΩS) → L2(ΩS), which is (3.34).

Similarly, it is easy to see that div : H(div ; ΩD) → L2(ΩD) is also surjective, which yields

(3.35).

On the other hand, the inf-sup condition (3.36) is equivalent to the surjectivity of the operator

ψ → 〈ψ · n, 1〉Σ from H1/2(Σ) to R, which in turn is equivalent to showing the existence of

ψ0 ∈ H1/2(Σ) such that 〈ψ0 · n, 1〉Σ 6= 0. In fact, we pick one corner point of Σ and define a

function v that is continuous, linear on each side of Σ, equal to one in the chosen vertex and

zero on all other ones. If n1 and n2 are the normal vectors on the two sides of Σ that meet at

the corner point, then ψ0 := v (n1 + n2) satisfies the required property.

We now let V be the kernel of B, that is

V :=
{

τ ∈ X0 : B(τ ,v) = 0 ∀v ∈ M0

}
.

It is easy to see from the definition of B (cf. (3.30)) that V = V1 × V2, where

V1 = H̃0(div; ΩS) × H̃(div; ΩD) and V2 = H̃1/2(Σ) × H1/2(Σ) ,

with

H̃0(div; ΩS) :=
{

τ S ∈ H0(div; ΩS) : div τ S = 0
}

,

H̃(div; ΩD) :=
{

vD ∈ H(div; ΩD) : div vD ∈ P0(ΩD)
}

,

and

H̃1/2(Σ) :=
{

ψ ∈ H1/2(Σ) : 〈ψ · n, 1〉Σ = 0
}

.

Then, in what follows we apply Lemma 3.3.4 to prove that the operator induced by A (cf. (3.29))

is invertible in V. This means showing that a is elliptic on V1, b satisfies the inf-sup condition

on V1 × V2, and c is positive semidefinite on V2.
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As remarked in Section 3.2, the condition on c is pretty straightforward since

c((ϕ, λ), (ϕ, λ)) = ν κ−1 ‖ϕ · t‖2
0,Σ ≥ 0 ∀ (ϕ, λ) ∈ H1/2(Σ) × H1/2(Σ) . (3.37)

The remaining conditions for a and b are established in the following lemmas.

Lemma 3.3.7 There exists α1 > 0 such that for each (τ S,vD) ∈ V1 there holds

a((τ S,vD), (τ S,vD)) ≥ α1

{
‖τ S‖2

div ,ΩS
+ ‖vD‖2

div ,ΩD

}
.

Proof. It suffices to observe that

a((τ S,vD), (τ S,vD)) = ν−1 ‖τ d
S‖2

0,ΩS
+ (K−1 vD,vD)D

≥ c
{
‖τ d

S‖2
0,ΩS

+ ‖vD‖2
0,ΩD

}
,

and then apply Lemmas 3.3.3 and 3.3.2.

Lemma 3.3.8 There exists β̃ > 0 such that

sup
(τ S,vD)∈V1\0

b((τ S,vD), (ψ, ξ))

‖(τ S,vD)‖ ≥ β̃ ‖(ψ, ξ)‖ ∀ (ψ, ξ) ∈ V2 . (3.38)

Proof. Analogously to the proof of Lemma 3.3.6, and thanks to the diagonal character of b, we

find that (3.38) is equivalent to the following two independent inequalities:

sup
τS ∈ H̃0(div;ΩS)\0

〈τ S n, ψ〉Σ
‖τ S‖div,ΩS

≥ β̃S ‖ψ‖1/2,Σ ∀ψ ∈ H̃1/2(Σ) , (3.39)

sup
vD ∈ H̃(div;ΩD)\0

〈vD · n, ξ〉Σ
‖vD‖div,ΩD

≥ β̃D ‖ξ‖1/2,Σ ∀ ξ ∈ H1/2(Σ) , (3.40)

with β̃S, β̃D > 0.

Now, given χ ∈ H−1/2(Σ) we let τ be the H0(div ; ΩS)–component of ∇ z ∈ H(div ; ΩS),

where z ∈ H1(ΩS) is the unique solution of the boundary value problem:

∆z = 0 in ΩS , z = 0 on ΓS , ∇zn = χ on Σ . (3.41)

In other words, τ := ∇ z − c I, where c :=
1

2 |ΩS|

∫

ΩS

tr∇ z (cf. (3.10)), which implies that

τ ∈ H̃0(div; ΩS) and τ n = χ − cn on Σ. It follows that 〈τ n, ψ〉Σ = 〈χ, ψ〉Σ for each

ψ ∈ H̃1/2(Σ), which proves the surjectivity of the operator τ → τ n from H̃0(div; ΩS) to
(
H̃1/2(Σ)

)′
, that is (3.39).

Similarly, given χ ∈ H−1/2(Σ) we define v := ∇z ∈ H(div ; ΩD), where z ∈ H1(ΩD) is the

unique solution of the boundary value problem:

∆z =
1

|ΩD|
〈χ, 1〉Σ in ΩD , ∇z · n = χ on Σ ,

∫

ΩD

z = 0 . (3.42)
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It follows that v ∈ H̃(div; ΩD) and v · n = χ on Σ, which proves the surjectivity of the

operator v → v · n from H̃(div; ΩD) to H−1/2(Σ), that is (3.40).

As a consequence of the previous analysis we conclude that A is invertible in the kernel of

B. This result and the inf-sup condition for B (cf. Lemma 3.3.6) allow to establish the following

theorem.

Theorem 3.3.1 For each pair (F ,G) ∈ X
′
0 × M

′
0 there exists a unique (σ,u) ∈ X0 × M0

solution to (3.32), and there exists a constant C > 0, independent of the solution, such that

‖(σ,u)‖X×M ≤ C
{
‖F‖X′

0
+ ‖G‖M′

0

}
.

In particular, if (F ,G) is given by (3.28) and there holds

∫

ΩD

fD = 0 (cf. (3.3)), then the solution

of (3.32) is also a solution of the original variational formulation (3.27).

Proof. The well posedness of (3.32) follows from a straightforward application of the classical

Babuška-Brezzi theory for mixed problems (see, e.g. [54, Theorem I.4.1] or [19, Chapter II]).

Now, let (σ,u) ∈ X0 × M0 be the solution of (3.32) with (F ,G) given by (3.28). Since the

first equations of (3.27) and (3.32) coincide, it only remains to show that σ verifies the second

equation of (3.27) to conclude that (σ,u) also solves that problem. In fact, taking τ = (0,0,0, ξ)

in the first equation of (3.32) we deduce that uD · n + ϕ · n = 0 on Σ, and hence, according

to the definition of B (cf. (3.30)) and the second equation of (3.32), we obtain that

B(σ, (0, 1, 0)) = − (div uD, 1)D = 〈uD · n, 1〉Σ = −〈ϕ · n, 1〉Σ

= B(σ, (0, 0,−1)) = G((0, 0,−1)) = 0 .

Then, given v = (vS, qD, η) ∈ M, where qD = q0 + c, with (q0, c) ∈ L2
0(ΩD) × R, we use the

above identity and again the second equation of (3.32), to find that

B(σ,v) = B(σ, (vS, q0, η)) = G((vS, q0, η)) = − (fS,vS)S − (fD, q0)D

= − (fS,vS)S −
(

fD − 1

|ΩD|

∫

ΩD

fD, qD

)

D

,

which, thanks to the assumption (3.3), becomes B(σ,v) = G(v) ∀v ∈ M.

Note from the last identity in the previous proof that if we solve (3.32) with (F ,G) given by

(3.28) but (3.3) is not satisfied, then we are finding a solution of (3.27) for a slightly modified

right hand side, with fS unchanged but with fD − 1

|ΩD|

∫

ΩD

fD instead of fD. Moreover, we can

actually prove the following result characterizing the solvability of (3.27).

Theorem 3.3.2 Problem (3.27) with (F ,G) given by (3.28) is solvable if and only if (3.3) holds.

In that case, the solution is defined up to a multiple of the vector ((0,0,0, 1), (0, 1,−1)).
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Proof. It suffices to observe that the operator induced by the left hand side of (3.27), say L,

is Fredholm of index zero. In fact, using that L2(ΩD) = L2
0(ΩD) ⊕ P0(ΩD), we decompose the

pressure unknown pD in (3.27) as pD = p0 + c with p0 ∈ L2
0(ΩD) and c ∈ P0(ΩD), and

similarly for the corresponding test functions qD ∈ L2(ΩD). In this way, it is easy to realize that

(3.27) is equivalent to a compact perturbation of a problem equivalent to (3.32). Since the latter

is well posed, this proves the announced property of L. Now, the kernel of the adjoint operator

L∗ is the same as L because this operator is symmetric up to some sign changes of its rows (see

Table 3.1). Therefore, by the Fredholm alternative, the system (3.27) is solvable if and only if

the right hand side vanishes when applied to an element of the kernel of the adjoint. With the

right hand side (3.28) and the kernel given in Lemma 3.3.5 this is just condition (3.3).

At this point we remark that the above analysis also applies when the fluid lies over the

porous medium and the additional Neumann boundary condition (3.6) is incorporated into the

model (as described at the end of Section 3.2.1). In particular, it is easy to see that (3.3) and its

equivalence with the solvability of the original formulation (3.27) remain unchanged in this case.

On the other hand, if we assume (3.7) instead of (3.6), the condition (3.3) does not hold any more

and the solvability analysis of (3.27) becomes simpler. Indeed, following the same arguments of

the proof of Lemma 3.3.5, we find now, thanks to the fact that ∇pD = 0 in ΩD and pD = 0 on

Γ, that pD = 0 in ΩD, which leads to a trivial kernel for (3.27). In other words, there is no need

of incorporating any further restriction on the pressure pD and the subsequent reduced problem

(3.32) since the homogeneous Dirichlet boundary condition (3.7) already insures the uniqueness

of solution. Consequently, up to minor modifications, the solvability analysis of (3.27) becomes

very similar to the corresponding analysis of the present formulation (3.32).

3.4 The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of the reduced problem (3.32).

3.4.1 Preliminaries

Here we define the discrete system and establish suitable assumptions on the finite element

subspaces ensuring later on that it becomes well posed. For this purpose, we first select two

collections of discrete spaces:

Hh(ΩD) ⊆ H(div ; ΩD) , Lh(ΩD) ⊆ L2(ΩD) , ΛD
h (Σ) ⊆ H1/2(Σ) ,

Hh(ΩS) ⊆ H(div ; ΩS) , Lh(ΩS) ⊆ L2(ΩS) , ΛS
h(Σ) ⊆ H1/2(Σ) .

(3.43)
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However, the spaces for the Stokes domain will have to be doubled. In particular, in the case

of the matrix valued unknown σS we will consider the space of matrix valued functions whose

rows belong to Hh(ΩS). According to this we now define

Lh(ΩS) := Lh(ΩS) × Lh(ΩS) , ΛS
h(Σ) := ΛS

h(Σ) × ΛS
h(Σ) , (3.44)

Hh(ΩS) := { τ : ΩS → R
2×2 : ct τ ∈ Hh(ΩS) ∀ c ∈ R

2 } ⊆ H(div ; ΩS) , (3.45)

and

Hh,0(ΩS) := Hh(ΩS) ∩ H0(div ; ΩS) . (3.46)

In addition, in order to deal with the mean value condition of the Darcy pressure we define

Lh,0(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) . (3.47)

In this way, we define the global finite element subspaces as:

Xh,0 := Hh,0(ΩS) × Hh(ΩD) × ΛS
h(Σ) × ΛD

h (Σ) ,

Mh,0 := Lh(ΩS) × Lh,0(ΩD) × R ,

(3.48)

and consider the following Galerkin scheme for (3.32): Find (σh,uh) ∈ Xh,0 × Mh,0 such that

A(σh, τh) + B(τ h,uh) = F(τ h) ∀ τ h ∈ Xh,0 ,

B(σh,vh) = G(vh) ∀vh ∈ Mh,0 .
(3.49)

Note that the different structures shown in Table 3.1 are inherited by the linear system associated

to (3.49) once we have chosen bases for all the discrete spaces.

In what follows we derive general hypotheses on the spaces (3.43) that will allow us to

show in Section 3.4.2 below that (3.49) is well posed. Our approach consists of adapting to the

present discrete case the arguments employed in the analysis of the continuous problem, mainly

those from the proofs of Lemmas 3.3.6, 3.3.7, and 3.3.8. We begin by observing that in order

to have meaningful spaces Hh,0(ΩS) and Lh,0(ΩD) (cf. (3.46) and (3.47)), we need to be able to

eliminate multiples of the identity matrix from Hh(ΩS) and constants polynomials from Lh(ΩD).

This request is certainly satisfied if we assume that:

(H.0) [P0(ΩS)]
2 ⊆ Hh(ΩS) and P0(ΩD) ⊆ Lh(ΩD).

We remark that the above hypothesis is only related to the ability of the spaces to deal with

problems inherent to the kernel of (3.27). In particular, it follows that I ∈ Hh(ΩS) for all h, and

hence there holds the decomposition:

Hh(ΩS) = Hh,0(ΩS) ⊕ P0(ΩS) I . (3.50)
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Next, following the same diagonal argument utilized in the proof of Lemma 3.3.6, we deduce

that B satisfies the discrete inf-sup condition uniformly on Xh,0 ×Mh,0 if and only if there exist

βS , βD , βΣ > 0, independent of h, such that

sup
τh ∈Hh,0(ΩS)\0

(div τ h,vh)S
‖τh‖div,ΩS

≥ βS ‖vh‖0,ΩS
∀vh ∈ Lh(ΩS) , (3.51)

sup
vh ∈Hh(ΩD)\0

(div vh, qh)D
‖vh‖div,ΩD

≥ βD ‖qh‖0,ΩD
∀ qh ∈ Lh,0(ΩD) , (3.52)

sup
ψh ∈ΛS

h(Σ)\0

η 〈ψh · n, 1〉Σ
‖ψh‖1/2,Σ

≥ βΣ |η| ∀ η ∈ R . (3.53)

However, since div Hh(ΩS) = div Hh,0(ΩS) (cf. (3.50)), the supremum in (3.51) remains the

same if taken on Hh(ΩS) instead of Hh,0(ΩS), and hence this inequality turns out to be equivalent

to the following inf-sup condition:

sup
τh ∈Hh(ΩS)\0

(div τh, vh)S
‖τh‖div ,ΩS

≥ βS ‖vh‖0,ΩS
∀ vh ∈ Lh(ΩS) .

Notice also that a sufficient condition for (3.53) is the existence of ψ0 ∈ H1/2(Σ) such that ψ0 ∈
ΛS

h(Σ) ∀h and 〈ψ0 · n, 1〉Σ 6= 0. Consequently, we now introduce the following hypothesis

summarizing the above analysis:

(H.1) There exist βS , βD > 0, independent of h, and there exists ψ0 ∈ H1/2(Σ), such that

sup
τh ∈Hh(ΩS)\0

(div τh, vh)S
‖τh‖div ,ΩS

≥ βS ‖vh‖0,ΩS
∀ vh ∈ Lh(ΩS) , (3.54)

sup
vh ∈Hh(ΩD)\0

(div vh, qh)D
‖vh‖div,ΩD

≥ βD ‖qh‖0,ΩD
∀ qh ∈ Lh,0(ΩD) , (3.55)

ψ0 ∈ ΛS
h(Σ) ∀h and 〈ψ0 · n, 1〉Σ 6= 0 . (3.56)

On the other hand, we now look at the discrete kernel of B, which is defined by

Vh :=
{

τ h ∈ Xh,0 : B(τ h,vh) = 0 ∀vh ∈ Mh,0

}
.

In order to have a more explicit definition of Vh we introduce the following assumption:

(H.2) div Hh(ΩS) ⊆ Lh(ΩS) and div Hh(ΩD) ⊆ Lh(ΩD).

It follows from the definition of B (cf. (3.30)) and (H.2) that Vh = V1,h × V2,h, where

V1,h = H̃h,0(ΩS) × H̃h(ΩD) and V2,h = Λ̃
S
h(Σ) × ΛD

h (Σ) ,
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with

H̃h,0(ΩS) :=
{

τh ∈ Hh,0(ΩS) : div τh = 0
}

,

H̃h(ΩD) :=
{

vh ∈ Hh(ΩD) : divvh ∈ P0(ΩD)
}

,

and

Λ̃
S
h(Σ) :=

{
ψh ∈ ΛS

h(Σ) : 〈ψh · n, 1〉Σ = 0
}

.

Note that Vh ⊆ V, which yields in particular V1,h ⊆ V1.

Then, applying the same diagonal argument employed in the proof of Lemma 3.3.8, we find

that b satisfies the discrete inf-sup condition uniformly on V1,h × V2,h if and only if there exist

β̃S, β̃D > 0, independent of h, such that

sup
τh ∈ H̃h,0(ΩS)\0

〈τ h n, ψh〉Σ
‖τ h‖div,ΩS

≥ β̃S ‖ψh‖1/2,Σ ∀ψh ∈ Λ̃
S
h(Σ) , (3.57)

sup
vh ∈ H̃h(ΩD)\0

〈vh · n, ξh〉Σ
‖vh‖div,ΩD

≥ β̃D ‖ξh‖1/2,Σ ∀ ξh ∈ ΛD
h (Σ) . (3.58)

In addition, the characterization of the elements of Λ̃
S
h(Σ) yields the supremum in (3.57) to

remain unchanged if taken on H̃h(ΩS) :=
{
τ h ∈ Hh(ΩS) : div τ h = 0

}
instead of H̃h,0(ΩS),

and therefore it is not difficult to see that a sufficient condition for (3.57) is given by:

sup
τh ∈ H̃h(ΩS)\0

〈τh · n, ψh〉Σ
‖τh‖div ,ΩS

≥ β̃S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
h(Σ) ,

where

H̃h(ΩS) :=
{

τh ∈ Hh(ΩS) : div τh = 0
}

.

In this way, we now add the following hypothesis:

(H.3) There exist β̃S, β̃D > 0, independent of h, such that

sup
τh ∈ H̃h(ΩS)\0

〈τh · n, ψh〉Σ
‖τh‖div ,ΩS

≥ β̃S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
h(Σ) , (3.59)

sup
vh ∈ H̃h(ΩD)\0

〈vh · n, ξh〉Σ
‖vh‖div,ΩD

≥ β̃D ‖ξh‖1/2,Σ ∀ ξh ∈ ΛD
h (Σ) . (3.60)

We end this section by mentioning that for computational purposes we replace the Galerkin

scheme (3.49) by the equivalent one arising from the utilization of the decomposition (3.50).

In other words, we drop the explicit unknown approximating µ ∈ R and keep it implicitly by

redefining the approximation of the pseudostress σS ∈ H(div ; ΩS) as an unknown in Hh(ΩS).

This can also be seen as a discrete version of the reconstruction of σS from the decomposition
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(3.21). In this way, the equivalent Galerkin scheme reduces to: Find (σh,uh) ∈ Xh × Mh such

that
A(σh, τh) + B(τ h,uh) = F(τ h) ∀ τ h ∈ Xh ,

B(σh,vh) = G(vh) ∀vh ∈ Mh ,
(3.61)

where
Xh := Hh(ΩS) × Hh(ΩD) × ΛS

h(Σ) × ΛD
h (Σ) ,

Mh := Lh(ΩS) × Lh,0(ΩD) ,

(3.62)

and B is redefined by suppressing the third term on the right hand side of (3.30). The numerical

results shown below in Section 3.6 consider precisely this scheme in which the mean value

condition of Lh,0(ΩD) is imposed through a Lagrange multiplier.

3.4.2 The main result

The following theorem establishes the well posedness of (3.49) and the associated Cea esti-

mate.

Theorem 3.4.1 Assume that the hypotheses (H.0), (H.1), (H.2), and (H.3) hold. Then the

Galerkin scheme (3.49) has a unique solution (σh,uh) ∈ Xh,0 × Mh,0 and there exists C1 > 0,

independent of h, such that

‖(σh,uh)‖X×M ≤ C1

{
‖F|Xh,0

‖X′

h,0
+ ‖G|Mh,0

‖M′

h,0

}
.

In addition, there exists C2 > 0, independent of h, such that

‖σ − σh‖X + ‖u − uh‖M ≤ C2

{
inf

τh∈Xh,0

‖σ − τ h‖X + inf
vh∈Mh,0

‖u − vh‖M

}
, (3.63)

where (σ,u) ∈ X0 × M0 is the unique solution of (3.32).

Proof. It is clear from the analysis in Section 3.4.1 that (H.1) (resp. (H.3)) implies the discrete

inf-sup condition for B (resp. for b) uniformly on Xh,0×Mh,0 (resp. on V1,h ×V2,h). In addition,

the fact that V1,h ⊆ V1 and Lemma 3.3.7 imply that a is uniformly elliptic in V1,h, whereas c

is trivially positive semidefinite on V2,h ⊆ V2 ⊆ H1/2(Σ) × H1/2(Σ) (cf. (3.37)). In this way,

applying the discrete version of Lemma 3.3.4 we conclude that the discrete operator induced by

A is invertible in Vh with uniformly bounded inverse. Therefore, the rest of the proof reduces

to a straightforward application of the discrete Babuška-Brezzi theory (see, e.g. [54, Theorem

II.1.1], [19, Chapter II]).

It is important to remark here that the second and third terms defining the bilinear form c

are the only ones in the whole variational system where the Darcy and Stokes discrete spaces

meet. However, it is also clear from the previous proof that these terms do not play any role in
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the stability analysis of the Galerkin scheme since c is already positive semidefinite in the whole

space H1/2(Σ)×H1/2(Σ). This fact also explains why each one of the hypotheses (H.0), (H.1),

(H.2), and (H.3), is formed by independent conditions concerning the subspaces for the Stokes

and Darcy domains separately. Nevertheless, we notice that these independent assumptions show

analogue structures, particularly with respect to the kind of operators and continuous spaces

involved: compare for instance (3.54) with (3.55) in (H.1) and (3.59) with (3.60) in (H.3). This

fact confirms the strong possibility of deriving stable finite element subspaces of the same kind

in both domains. A specific example in this direction employing the well-known Raviart-Thomas

subspaces is given precisely in Section 3.5 below.

Meanwhile, we prove next that the existence of uniformly bounded discrete liftings for the

normal traces on Σ coming from both regions simplifies the statement of (H.3).

3.4.3 Stable discrete liftings

The aim of this section is to give sufficient conditions for the inf-sup inequalities (3.59) and

(3.60) in hypothesis (H.3). These new conditions have to do with the eventual existence of

stable discrete liftings of the normal traces on Σ, and they will be working hypotheses that can

be more easily verified for each set of discrete spaces. In particular, these will be the conditions

that we will verify for the example with Raviart–Thomas elements in Section 3.5.

We notice first that conditions (3.59) and (3.60) are hypotheses that deal with how the normal

components of elements of H̃h(ΩS) and H̃h(ΩD) are tested with ΛS
h(Σ) and ΛD

h (Σ), respectively.

Because of the already mentioned analogue structure of these assumptions, we summarize them

as follows with ⋆ ∈ {S, D}:

sup
vh ∈ H̃h(Ω⋆)\0

〈vh · n, ξh〉Σ
‖vh‖div,Ω⋆

≥ β̃⋆ ‖ξh‖1/2,Σ ∀ ξh ∈ Λ⋆
h(Σ) . (3.64)

This kind of condition can be broken into two pieces. Let us recall from Section 3.4.1 that

H̃h(ΩS) :=
{

vh ∈ Hh(ΩS) : div vh = 0
}

,

H̃h(ΩD) :=
{

vh ∈ Hh(ΩD) : divvh ∈ P0(ΩD)
}

,
(3.65)

and for ⋆ ∈ {S, D} define

Φ⋆
h(Σ) := {vh · n|Σ : vh ∈ H̃h(Ω⋆) } . (3.66)

Assume that the linear operator vh 7→ vh ·n from H̃h(Ω⋆) to Φ⋆
h(Σ) has a uniformly bounded

right inverse, i.e., there exist a linear operator L⋆
h : Φ∗

h(Σ) → H̃h(ΩS) and c⋆ > 0, independent

of h, such that

‖L⋆
h(φh)‖div ,Ω⋆ ≤ c⋆ ‖φh‖−1/2,Σ and L⋆

h(φh) · n = φh on Σ ∀φh ∈ Φ⋆
h(Σ) . (3.67)



3.5 A particular choice of discrete spaces 67

Such a uniformly bounded right inverse of the normal trace will henceforth be referred to as a

stable discrete lifting to Ω⋆ (⋆ ∈ {S, D}). Note that by [36], existence of L⋆
h satisfying (3.67)

is equivalent to existence of a Scott–Zhang type operator π⋆
h : H(div ; Ω⋆) → H̃h(Ω⋆), linear

and uniformly bounded, such that

π∗
h(vh) = vh ∀vh ∈ H̃h(Ω⋆) , and v · n = 0 on Σ

=⇒
(
π⋆

h(v)
)
· n = 0 on Σ .

The following lemma reduces the inf-sup condition (3.64) to the inherited interaction between

the elements of Φ⋆
h(Σ) and Λ⋆

h(Σ).

Lemma 3.4.1 Assume that there exists a stable discrete lifting to Ω⋆. Then (3.64) is equivalent

to the existence of β̃⋆ > 0, independent of h, such that

sup
φh∈Φ⋆

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̃⋆ ‖ξh‖1/2,Σ ∀ ξh ∈ Λ⋆
h(Σ) . (3.68)

Proof. It suffices to show that there exist C1, C2 > 0, independent of h, such that for each

ξh ∈ Λ⋆
h(Σ) there holds

C1 sup
φh∈Φ⋆

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≤ sup
vh∈H̃h(Ω⋆)\0

〈vh · n, ξh〉Σ
‖vh‖div,Ω⋆

≤ C2 sup
φh∈Φ⋆

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

. (3.69)

In fact, on the one hand

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≤ c⋆
〈φh, ξh〉Σ

‖L⋆
h(φh)‖div ,Ω⋆

≤ c⋆ sup
vh∈H̃h(Ω⋆)\0

〈vh · n, ξh〉Σ
‖vh‖div ,Ω⋆

∀φh ∈ Φ⋆
h(Σ) ,

and on the other hand

〈vh · n, ξh〉Σ
‖vh‖div ,Ω⋆

≤ C
〈vh · n, ξh〉Σ
‖vh · n‖−1/2,Σ

≤ C sup
φh∈Φ⋆

h(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

∀vh ∈ H̃h(Ω⋆) ,

which yield (3.69) with C1 = 1/c⋆ and C2 = C.

We have thus proved that the existence of stable discrete liftings to ΩS and ΩD together with

the inf-sup condition (3.68) constitute sufficient conditions for (H.3) to hold. To this respect,

we find it important to emphasize that (3.68) deals exclusively with spaces of functions defined

on the interface Σ.

3.5 A particular choice of discrete spaces

3.5.1 Discretization of the domains

Let T S
h and T D

h be respective triangulations of the domains ΩS and ΩD formed by shape-

regular triangles in the usual conditions of the finite element literature. Assume that these
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triangulations match in Σ, so that T S
h ∪ T D

h is a triangulation of ΩS ∪ Σ ∪ ΩD. Let Σh be

the partition of Σ inherited from T S
h (or T D

h ). Then, given a triangle T we consider the local

Raviart–Thomas space of the lowest order

RT0(T ) := span
{

(1, 0), (0, 1), (x1, x2)
}

.

We then define one Raviart–Thomas space on each subdomain and their usual companion spaces

of piecewise constant functions: for ⋆ ∈ {S, D}

Hh(Ω⋆) :=
{

vh ∈ H(div ; Ω⋆) : vh|T ∈ RT0(T ) ∀T ∈ T ⋆
h

}
,

Lh(Ω⋆) :=
{

qh : Ω⋆ → R : qh|T ∈ P0(T ) ∀T ∈ T ⋆
h

}
.

(3.70)

It is clear that (H.0) and (H.2) are satisfied and it is well known that so are the discrete inf-sup

conditions (3.54) and (3.55) in (H.1) (see, e.g. [19, Chapter IV] or [69, Chapter 7]). Moreover,

the spaces ΦS
h(Σ) and ΦD

h (Σ) of discrete normal traces on Σ (cf. (3.66)) are, for the time being,

contained in

Φh(Σ) :=
{

ξh : Σ → R : ξh|e ∈ P0(e) ∀ edge e ∈ Σh

}
. (3.71)

We will see later on, as a corollary of Lemma 3.5.1 below, that actually ΦS
h(Σ) = ΦD

h (Σ) =

Φh(Σ).

Now, although we could keep our options open for the remaining spaces ΛS
h(Σ) and ΛD

h (Σ),

we simplify the situation by taking

ΛS
h(Σ) = ΛD

h (Σ) = Λh(Σ) .

Gathering Theorem 3.4.1 and Lemma 3.4.1 we are left with the following tasks:

i) prove the existence of stable discrete liftings (or give conditions on the grid that ensure

their existence).

ii) choose Λh(Σ) such that we can find ψ0 ∈ H1/2(Σ) satisfying ψ0 ∈ Λh(Σ) ∀h and

〈ψ0 · n, 1〉Σ 6= 0 (cf. (3.56) in (H.1)), and such that the inf–sup condition (3.68) holds.

In Sections 3.5.2 and 3.5.3 below we deal precisely with i) and ii), respectively.

3.5.2 The discrete liftings

We are going to be able to construct discrete liftings to ΩS and ΩD by demanding some

additional conditions on the triangulations. Namely, we ask for T S
h and T D

h to be quasiuniform
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in a neighborhood of Σ. More precisely, we assume that there is an open neighborhood of Σ, say

ΩΣ, with Lipschitz boundary, and such that the elements intersecting that region are roughly of

the same size. In other words, for ⋆ ∈ {S, D} we let Ω⋆,Σ := Ω⋆ ∩ ΩΣ, define

T ⋆
h,Σ :=

{
T ∈ T ⋆

h : T ∩ Ω⋆,Σ 6= ∅
}

, Th,Σ := T S
h,Σ ∪ T D

h,Σ ,

and assume that there exists c > 0, independent of h, such that

max
T ∈Th,Σ

hT ≤ c min
T ∈Th,Σ

hT .

Because of the shape-regularity property, this implies that Σh is quasiuniform, which means that

there exists C > 0, independent of h, such that

hΣ := max
{
|e| : e ∈ Σh

}
≤ C min

{
|e| : e ∈ Σh

}
.

Moreover, the quasiuniformity of Σh implies the inverse inequality in Φh(Σ), that is

‖φh‖−1/2+δ,Σ ≤ C h−δ
Σ ‖φh‖−1/2,Σ ∀φh ∈ Φh(Σ) , ∀ δ ∈ [0, 1/2] . (3.72)

Next, in order to define the discrete liftings we need to introduce the Raviart–Thomas in-

terpolation operator. For the forthcoming definitions and arguments ⋆ is a mute symbol taken

in {S, D}. Hence, given a sufficiently smooth vector field v : Ω⋆ → R
2, we define Π⋆

h(v) as the

only element of Hh(Ω⋆) such that

∫

e
Π⋆

h(v) · n =

∫

e
v · n ∀ e ∈ E⋆

h , (3.73)

where E⋆
h is the set of the edges of the triangulation T ⋆

h . Let us review some properties of this

operator that we will use in the sequel:

a) The interpolation operator Π⋆
h is well defined in Hδ(Ω⋆) ∩ H(div ; Ω⋆) for any δ > 0 (see,

e.g. [7, Theorem 3.1]).

b) For all v there holds div Π⋆
h(v) = P⋆

h(div v), where P⋆
h : L2(Ω⋆) → Lh(Ω⋆) is the

orthogonal projector. Equivalently

(div Π⋆
h(v), qh)⋆ = (div v, qh)⋆ ∀ qh ∈ Lh(Ω⋆) .

This property is a simple consequence of the divergence theorem and the interpolation

property (3.73) defining Π⋆
h. In particular, if div v ≡ c, it follows that div Π⋆

h(v) ≡ c.

c) If v · n ∈ Φh(Σ) then Π⋆
h(v) · n = v · n. This property also follows from (3.73).
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d) There exists C > 0, independent of h, such that for each v ∈ Hδ(Ω⋆) ∩ H(div ; Ω⋆) , with

δ ∈ (0, 1], and for all T ∈ T ⋆
h , there holds (see, e.g. [58, Theorem 3.16])

‖v − Π∗
h(v)‖0,T ≤ C hδ

T

{
|v|δ,T + ‖div v‖0,T

}
. (3.74)

We are now in a position to establish the existence of stable discrete liftings.

Lemma 3.5.1 Assume that T S
h and T D

h are quasiuniform in a neighborhood ΩΣ of Σ as ex-

plained in the present section. Then there exist uniformly bounded linear operators L⋆
h : Φh(Σ) →

H̃h(Ω⋆) (cf. (3.65)) such that L⋆
h(φh) · n = φh on Σ for each φh ∈ Φh(Σ).

Proof. We start with the lifting to the Stokes domain ΩS. First of all we increase this region

across the external boundary ΓS to a new domain Ωext
S with Lipschitz boundary Σ ∪ Γext

S . Then

we recall that ΩS,Σ := ΩS ∩ ΩΣ and remark that ΩS \ΩS,Σ is interior to Ωext
S , since both parts

of its boundary lie at a nonzero distance of ∂Ωext
S . We refer to Figure 3.2 for the geometry. The

thick lines enclose the extended Stokes domain Ωext
S , whereas the shaded area corresponds to

the neighborhood ΩΣ.

Σ

ΓS
ext

SΓ

Figure 3.2: The domains in the proof of Lemma 3.5.1.

We now begin the construction of our operator. Given φh ∈ Φh(Σ), we let v ∈ H1(Ωext
S ) be

the unique solution of the boundary value problem

∆v = 0 in Ωext
S , v = 0 on Γext

S , ∂nv = φh on Σ ,

which can be seen as a discrete version of (3.41). Then, as a consequence of the Lax–Milgram

lemma and the classical regularity result on polygonal domains (see, e.g. [55]), we obtain, re-

spectively, the following continuity bounds (we write them in the domains where they will be

used):

‖v‖1,ΩS
≤ C1 ‖φh‖−1/2,Σ , (3.75)

‖v‖5/4,ΩS
≤ C2 ‖φh‖−1/4,Σ . (3.76)
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In addition, since ΩS \ ΩS,Σ is an interior region of Ωext
S , the interior elliptic regularity estimate

(see, e.g. [66, Theorem 4.16]) yields

‖v‖2,ΩS\ΩS,Σ
≤ C3 ‖φh‖−1/2,Σ , (3.77)

Note that in particular ∇v ∈ H1/4(ΩS) ∩ H(div ; ΩS), and hence, thanks to a), we can define

LS
h(φh) := ΠS

h(∇v) ∈ Hh(ΩS) .

Since div ∇v = ∆v = 0 in ΩS and ∇v ·n = ∂nv = φh ∈ Φh(Σ) on Σ, we deduce from

b) and c), respectively, that

div LS
h(φh) = 0 in ΩS and LS

h(φh) · n = φh on Σ ,

which proves that LS
h is a lifting satisfying LS

h(φh) ∈ H̃h(ΩS) ∀φh ∈ Φh(Σ).

It remains to show that LS
h is uniformly bounded. To this end, we divide ΩS into two regions

Ω1
S,h := ∪

{
T ∈ T S

h : T 6∈ T S
h,Σ

}
⊆ ΩS \ ΩS,Σ and Ω2

S,h := ΩS \ Ω1
S,h ,

where we recall that T S
h,Σ :=

{
T ∈ T S

h : T ∩ ΩS,Σ 6= ∅
}

. Then, using (3.75), (3.77), and

the stability of the Raviart–Thomas projection when applied to functions in H1(Ω1
S,h), we can

bound:

‖LS
h(φh)‖div ,ΩS

= ‖LS
h(φh)‖0,ΩS

≤ ‖LS
h(φh)‖0,Ω1

S,h
+ ‖LS

h(φh)‖0,Ω2
S,h

≤ ‖ΠS
h(∇v)‖0,Ω1

S,h
+ ‖∇v‖0,Ω2

S,h
+ ‖∇v − ΠS

h(∇v)‖0,Ω2
S,h

≤ C
{
‖∇v‖1,ΩS\ΩS,Σ

+ ‖φh‖−1/2,Σ + ‖∇v − ΠS
h(∇v)‖0,Ω2

S,h

}

≤ C
{
‖φh‖−1/2,Σ + ‖∇v − ΠS

h(∇v)‖0,Ω2
S,h

}
.

At the same time, applying (3.74) in d) to ∇v ∈ H1/4(ΩS) ∩ H(div ; ΩS), and employing the

bound (3.76) and the inverse inequality (3.72) with δ = 1/4, we find that

‖∇v − ΠS
h(∇v)‖2

0,Ω2
S,h

≤ C
∑

T ∈T S
h,Σ

h
1/2
T ‖∇v‖2

1/4,T ≤ C h
1/2
Σ ‖v‖2

5/4,ΩS

≤ C h
1/2
Σ ‖φh‖2

−1/4,Σ ≤ C ‖φh‖2
−1/2,Σ .

This estimate and the preceeding inequality give the result.

On the other hand, in the case of the Darcy domain ΩD, the interface Σ constitutes the whole

boundary, which implies that ΩD \ΩD,Σ is interior to ΩD, and hence there is no need to extend

the domain to deal with regularity issues in the (non existent) remaining part of the boundary.

According to this, given φh ∈ Φh(Σ), we now define

LD
h (φh) := ΠD

h (∇v) ∈ Hh(ΩD) ,



3.5 A particular choice of discrete spaces 72

where v ∈ H1(ΩD) is the unique solution of the bounday value problem

∆v =
1

|ΩD|

∫

Σ
φh in ΩD , ∂nv = φh on Σ ,

∫

ΩD

v = 0 ,

which can be seen as a discrete version of (3.42). Since

div ∇v = ∆v =
1

|ΩD|

∫

Σ
φh in ΩD and ∇v · n = ∂nv = φh ∈ Φh(Σ) on Σ ,

we use again b) and c) to deduce, respectively, that

div LD
h (φh) =

1

|ΩD|

∫

Σ
φh ∈ R in ΩS and LD

h (φh) · n = φh on Σ ,

which proves that LD
h is a lifting satisfying LD

h (φh) ∈ H̃h(ΩD) ∀φh ∈ Φh(Σ). The uniform

boundedness of LD
h proceeds as in the previous case. We omit further details.

As a consequence of this lemma, and as already announced in Section 3.5.1, we now notice

that ΦS
h(Σ) and ΦD

h (Σ) coincide with Φh(Σ) (cf. (3.71)), and therefore the inf-sup condition

(3.68) reduces simply to the existence of β̃ > 0, independent of h, such that

sup
φh ∈Φh(Σ)\0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̃ ‖ξh‖1/2,Σ ∀ ξh ∈ Λh(Σ) . (3.78)

3.5.3 Discretization on the interface

In this section we discuss on how to choose Λh(Σ) so that ii) be satisfied. In fact, there

are many possible choices of Λh(Σ) such that (3.78) holds, while the condition requiring the

existence of ψ0 ∈ H1/2(Σ) such that ψ0 ∈ Λh(Σ) ∀h and 〈ψ0 · n, 1〉Σ 6= 0, is easy to verify if

the sequence of subspaces is nested or if we are able to find a coarser space where the hypotheses

hold.

Option 1. If the partition Σh inherited from the interior triangulations is uniform, which is

feasible only on very simple geometries Σ, we can take Λh(Σ) to be the space of continuous

linear elements of the dual grid, that is, on the grid whose nodes are the midpoints of Σh. Note

that dim Λh(Σ) = dim Φh(Σ), and that on each corner of Σ there is an element of the dual grid

with half of its length on each of the edges that meet in that corner. The inf-sup condition (3.78)

for these spaces is verified in [70, Lemma 6.4].

Option 2. Let Σ̃h be another partition of Σ, completely independent from Σh, and take now

Λh(Σ) := P1(Σ̃h) ∩ C(Σ), with P1(Σ̃h) :=
∏

e∈eΣh

P1(e) .

If both Σh and Σ̃h are quasiuniform, then there exists a constant C0 ∈ (0, 1] such that whenever

hΣ ≤ C0 h̃Σ , h̃Σ := max{ |ẽ| : ẽ ∈ Σ̃h } ,
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then (3.78) holds [14, Lemma 3.3]. In this case, if we assume that elements of Σ̃h are segments

(no element crosses a corner point), then ψ0 can be constructed exactly as explained at the end

of the proof of Lemma 3.3.6.

Option 3. A very flexible (from the geometric point of view) construction of Λh(Σ) can be done

using a coarsened grid. Let us first assume that the number of edges of Σh is an even number

(we will show a simple strategy in case this number is odd at the end). Then, we let Σ2h be the

partition of Σ arising by joining pairs of adjacent elements and define

Λh(Σ) := P1(Σ2h) ∩ C(Σ). (3.79)

Note that because Σh is inherited from the interior triangulation, it is automatically of bounded

variation (that is, the ratio of lengths of adjacent elements is bounded) and, therefore, so is Σ2h.

Lemma 3.5.2 The inf-sup condition (3.78) holds for the space (3.79).

Proof. We will actually prove an inequality that is more demanding than (3.78) (see (3.81)

below). The structure of the proof (but not the result itself) follows closely [70, Section 7]. Let

Σ2h = {ei | i = 1, . . . , N} be a numbering of the elements of the coarsened grid, where adjacent

elements are numbered consecutively and where, in case of need e0 = eN and e1 = eN+1. Let

also hi := |ei|. To each pair (ei, ei+1) we assign a hat function ηi ∈ Λh(Σ), supported in this pair

and equal to one in the interior node ei ∩ ei+1. Note that {η1, η2, ..., ηN} is the usual basis of

Λh(Σ).

e
i

e
i+1

l
i

r
i l

i+1
r
i+1

η
i

χ
i

Figure 3.3: Construction of the basis functions of Φ◦
h.
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For each ei ∈ Σ2h there are two elements li, ri ∈ Σh, whose union is ei. They are tagged as

left and right in the numbering direction of Σ2h, so that ri is adjacent to li+1 (see Figure 3.3).

As a consequence of the bounded variation property

0 < C1 ≤ ci :=
|ri|
hi

≤ C2 < 1 and 0 < C3 ≤ hi

hi+1
≤ C4 ∀i. (3.80)

We now define the piecewise constant function χi ∈ Φh(Σ) given by

χi =





c−1
i in ri,

(1 − ci+1)
−1 in li+1,

0 otherwise.

The functions χi are mutually orthogonal in L2(Σ). We define

Φ◦
h := span{χ1, . . . , χN} ⊂ Φh(Σ).

The aim of what follows is showing that there exists C (that depends only on the four constants

in (3.80)) such that

sup
φh∈Φ◦

h\0

〈ξh, φh〉Σ
‖φh‖−s,Σ

≥ C‖ξh‖s,Σ ∀ξ ∈ Λh(Σ), s ∈ [0, 1]. (3.81)

We will prove the result for s = 0 and s = 1. Given the fact that the dimensions of Λh(Σ) and Φ◦
h

coincide, an interpolation argument proves the result for the remaining cases. The case s = 1/2

implies (3.78), since the supremum in this last inequality is taken over a larger space.

1st step. We first prove (3.81) for s = 0. Here we follow [70, Proposition 7.1]. Let us define

the operator Th : Λh(Σ) → Φ◦
h by

Thξh = Th

( N∑

i=1

ξiηi

)
:=

N∑

i=1

ξiχi.

Simple computations can be used to show that for all ξh ∈ Λh(Σ)

‖ξh‖2
0,Σ ≤ 1

2

N∑

i=1

ξ2
i (hi + hi+1),

‖Thξh‖2
0,Σ =

N∑

i=1

ξ2
i

(
c−1
i hi + (1 − ci+1)

−1hi+1

)
≤ C

N∑

i=1

ξ2
i (hi + hi+1)

〈ξh, Thξh〉Σ ≥ 1

2

N∑

i=1

ξ2
i

(
hi(

3
2 − ci) + hi+1(

1
2 + ci+1)

)
≥ C

N∑

i=1

ξ2
i (hi + hi+1).

These three inequalities can be used to prove (3.81) when s = 0. Note that only the constants

C1 and C2 of (3.80) are involved in these bounds.
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2nd step. An intermediate step requires proving the following inequality:

N∑

i=1

h2
i

∫

ei

|φh|2 ≤ C
N∑

i=1

(〈φh, ηi〉Σ
‖ηi‖1,Σ

)2

∀φh ∈ Φ◦
h. (3.82)

The proof retraces the steps of [70, Lemma 7.2]. For integrals of Σ we can use the arc parame-

terization x : [0, |Σ|] → Σ, where |Σ| is the length of Σ, and identify

‖η‖2
1,Σ :=

∫ |Σ|

0

(
|(η ◦ x)(t)|2 + |(η ◦ x)′(t)|2

)
dt.

Each of the following inequalities, valid for each ηi and for arbitrary φh =
∑N

i=1 φiχi ∈ Φ◦
h, is

easy to prove:

‖ηi‖2
1,Σ =

1

3
(hi + hi+1) + h−1

i + h−1
i+1 ≤ Ch−1

i ,

N∑

i=1

h2
i

∫

ei

|φh|2 =
N∑

i=1

h3
i

(
c−1
i φ2

i + (1 − ci)
−1φ2

i−1

)
≤ C

N∑

i=1

φ2
i h

3
i ,

N∑

i=1

φ2
i h

3
i ≤ C

N∑

i=1

〈φh, ηi〉Σ h2
i φi

≤ C

(
N∑

i=1

(〈φh, ηi〉Σ
‖ηi‖1,Σ

)2
)1/2 (

N∑

i=1

‖ηi‖2
1,Σh4

i φ
2
i

)1/2

.

In particular, note that the second estimate uses that |ri| = cihi and |li| = (1−ci)hi. From these

inequalities the result follows readily.

3rd step. Once (3.82) has been proved, inequality (3.81) for s = 1 can be proved following

step by step the proof of [70, Proposition 7.3]. This finishes the proof of the Lemma.

If the number of elements in Σh is odd we simply reduce it to the even case. Indeed, in this

case we can prove (3.78) for the subspace of Φh(Σ) consisting of elements such that the value of

φh in a fixed set of two adjacent elements coincides. This fixed double element is considered as

a single element and hence Λh(Σ) is built as in (3.79) on the resulting even number of elements

covering Σ.

3.5.4 The main results

As a consequence of the results and analyses in Sections 3.5.1, 3.5.2, and 3.5.3, we can

establish the following theorems.
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Theorem 3.5.1 Let Hh(ΩS), Hh(ΩD), Lh(ΩS), and Lh(ΩD) be the Raviart-Thomas finite ele-

ment subspaces given in (3.70) and define

Hh(ΩS) := { τ : ΩS → R
2×2 : ct τ ∈ Hh(ΩS) ∀ c ∈ R

2 } ,

Hh,0(ΩS) := Hh(ΩS) ∩ H0(div ; ΩS) ,

Lh(ΩS) := Lh(ΩS) × Lh(ΩS) ,

Lh,0(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) .

Assume that T S
h and T D

h are quasiuniform in a neighborhood of Σ and that Λh(Σ) (and hence

Λh(Σ) := Λh(Σ)×Λh(Σ)) is given by any of the three options described above. Then the Galerkin

scheme (3.49) with the discrete spaces Xh,0 := Hh,0(ΩS)×Hh(ΩD)×Λh(Σ)×Λh(Σ) and Mh,0 :=

Lh(ΩS) × Lh,0(ΩD) × R, has a unique solution (σh,uh) ∈ Xh,0 × Mh,0, which satisfies the

corresponding stability and Cea estimates.

Proof. It follows by gathering the results from Sections 3.4 and 3.5.

Theorem 3.5.2 Assume the same hypotheses of Theorem 3.5.1. Then the Galerkin scheme

(3.61) with the spaces Xh := Hh(ΩS)×Hh(ΩD)×Λh(Σ)×Λh(Σ) and Mh := Lh(ΩS)×Lh,0(ΩD),

has a unique solution (σh,uh) ∈ Xh × Mh, which satisfies the corresponding stability and Cea

estimates.

Proof. It follows from Theorem 3.5.1 and the equivalence between (3.49) and (3.61).

In order to provide the rate of convergence of the Galerkin scheme (3.49), we now recall the

approximation properties of the subspaces involved (see, e.g. [13], [19], [58]):

(AP1) For ⋆ ∈ {S, D}, for each δ ∈ (0, 1], and for each τ ∈ Hδ(Ω⋆) with div τ ∈ Hδ(Ω⋆),

there exists τh ∈ Hh(Ω⋆) such that

‖τ − τh‖div ,Ω⋆ ≤ C hδ
{
‖τ‖δ,Ω⋆ + ‖div τ‖δ,Ω⋆

}
.

(AP2) For ⋆ ∈ {S, D}, for each δ ∈ [0, 1], and for each q ∈ L2(Ω⋆), there exists qh ∈ Lh(Ω⋆)

such that

‖q − qh‖0,Ω⋆ ≤ C hδ ‖q‖δ,Ω⋆ .

(AP3) For each δ ∈ [0, 1] and for each ξ ∈ H1/2+δ(Σ), there exists ξh ∈ Λh(Σ) such that

‖ξ − ξh‖1/2,Σ ≤ C hδ ‖ξ‖1/2+δ,Σ .

The following theorem provides the theoretical rate of convergence of the Galerkin scheme

(3.49) (equivalently (3.61)), under suitable regularity assumptions on the exact solution.
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Theorem 3.5.3 Let (σ,u) ∈ X0×M0 and (σh,uh) ∈ Xh,0×Mh,0 be the unique solutions of the

continuous and discrete formulations (3.32) and (3.49), respectively. Assume that there exists

δ ∈ (0, 1] such that σS ∈ H
δ(ΩS), div σS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and div uD ∈ Hδ(ΩD).

Then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD), ϕ ∈ H1/2+δ(Σ), λ ∈ H1/2+δ(Σ), and there exists

C > 0, independent of h and the continuous and discrete solutions, such that

‖(σ,u) − (σh,uh)‖X×M ≤ C hδ
{
‖σS‖δ,ΩS

+ ‖div σS‖δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖div uD‖δ,ΩD

+ ‖uS‖1+δ,ΩS
+ ‖pD‖1+δ,ΩD

}
.

(3.83)

Proof. We first recall from Theorem 3.2.1 that ∇uS = ν−1 σd
S and ∇pD = −K−1 uD, which

implies that uS ∈ H1+δ(ΩS) and pD ∈ H1+δ(ΩD), whence ϕ = −uS|Σ ∈ H1/2+δ(Σ) and

λ = pD|Σ ∈ H1/2+δ(Σ). The rest of the proof follows from the corresponding Cea estimate, the

above approximation properties, and the fact that, thanks to the trace theorem in ΩS and ΩD,

respectively, there holds

‖ϕ‖1/2+δ,Σ ≤ c ‖uS‖1+δ,ΩS
and ‖λ‖1/2+δ,Σ ≤ c ‖pD‖1+δ,ΩD

.

We end this section by commenting that one should be able to extend the analysis of Section

3.5, without difficulties, to the case of Raviart-Thomas finite element subspaces of higher order.

In this case, given k ≥ 1, RT0(T ) is replaced by RTk(T ) := [Pk(T )]2 ⊕ Pk(T )

(
x1

x2

)
, and

Λh(Σ) is defined in terms of piecewise polynomials of degre 2 k + 1.

3.6 Numerical results

In this section we present three examples illustrating the performance of the Galerkin scheme

(3.61) (equivalently (3.49)) with the subspaces Xh := Hh(ΩS)×Hh(ΩD)×Λh(Σ)×Λh(Σ) and

Mh := Lh(ΩS)×Lh,0(ΩD) defined in Section 3.5. In particular, we adopt the third option from

Section 3.5.3 to choose the space Λh(Σ) of continuous piecewise linear functions on Σ.

We now introduce additional notations. The variable N stands for the number of degrees of

freedom defining Xh and Mh, and the individual errors are denoted by:

e(σS) := ‖σS − σS,h‖div ,ΩS
, e(uS) := ‖uS − uS,h‖div ,ΩS

,

e(uD) := ‖uD − uD,h‖div ,ΩD
, e(pD) := ‖pD − pD,h‖0,ΩD

,

e(ϕ) := ‖ϕ − ϕh‖1/2,Σ , e(λ) := ‖λ − λh‖1/2,Σ ,
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where σh := (σS,h,uD,h, ϕh, λh) ∈ Xh and uh := (uS,h, pD,h) ∈ Mh constitute the unique

solution of (3.61).

Also, we let r(σS), r(uS), r(uD), r(pD), r(ϕ), and r(λ) be the experimental rates of conver-

gence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
σS,uS,uD, pD, ϕ, λ

}
,

where h and h′ denote two consecutive meshsizes with errors e and e
′.

In what follows we describe the data of the examples. In all cases we choose for simplicity

ν = 1, K = I, the identity matrix of R
2×2, and κ = 1.

In Example 1 we consider the regions ΩD :=] − 1/2, 1/2[ × ] − 1/2, 1/2[ and ΩS := ] −
1, 1[ × ]− 1, 1[ \ΩD, which represents a porous medium completely surrounded by a fluid. Then

we choose the data fS and fD so that the exact solution is given by

uS(x1, x2) =




−4 (x2
1 − 1)2 (x2

2 − 1)x2

4 (x2
1 − 1) (x2

2 − 1)2 x1


 in ΩS ,

pS(x1, x2) = − sin(x1) ex2 in ΩS ,

and

pD(x1, x2) = − sin(x1) ex2 in ΩD .

In Example 2 we let ΩS and ΩD be the polygonal domains delimited by the set of points

{(−1, 0), (1, 0), (1, 1), (−1/2, 1)} and {(−1/2,−1), (1/2,−1), (1, 0), (−1, 0)}, respectively, which

constitutes a particular case of a fluid over a porous medium, and choose the data fS and fD so

that the exact solution is given by

uS(x1, x2) =




2 (x2 − 1) (x1 − 1)2 (2x1 − x2 + 2) (2x1 − 2x2 + 3)

−2 (x2 − 1)2 (x1 − 1) (4x1 − x2) (2x1 − x2 + 2)


 in ΩS ,

pS(x1, x2) = ex1 sin(x2) in ΩS ,

and

pD(x1, x2) = sin(x1) (4x2
1 − (x2 + 2)2)2 (x2 + 1)2 in ΩD .

Finally, in Example 3 we consider the domains ΩS := ]−1, 1[ × ]0, 1[ and ΩD := ]−1, 1[ × ]−
1, 0[, which constitutes another case of a fluid over a porous medium, and take the data fS and

fD given by

fS(x1, x2) =




−4 sin(x1x2)x1 + exp(x3
2)

4 exp(3x1) + 4x2



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and

fD(x1, x2) = x3
1

(
exp(x2

2) − 0.5
)
.

This example corresponds to a more realistic situation in which the exact solution is unknown.

The numerical results shown below were obtained using a MATLAB implementation. In

Tables 3.2 and 3.3 we present the convergence history of Examples 1 and 2, respectively, for a

set of shape-regular triangulations of the computational domain Ω̄S ∪ Ω̄D. We see there that

the dominant error in both examples is given by e(σS), though this is more evident in Example

1. In addition, we observe that the rate of convergence O(h) provided by Theorem 3.5.3 for

δ = 1 is attained by all the unknowns. Next, in Figures 3.4 and 3.5 (resp. Figures 3.6 and 3.7)

we display the approximate and exact values of some components of the solution of Example 1

for N=144641 (resp. Example 2 for N = 273071). It is clear from these figures that the finite

element subspaces employed provide very accurate approximations to the unknowns in both

domains. In particular, the quality of these approximations is not affected at all by the strong

oscillations of some solutions. The shape-regular character of the meshes is ilustrated in Figure

3.8 for Example 2.

Next, in Table 3.4 we present the convergence history of Example 3 for a set of shape-regular

triangulations of the computational domain Ω̄S ∪ Ω̄D. The errors and experimental rates of

convergence shown there are computed by considering the discrete solution obtained with a

finer mesh (N = 984068) as the exact solution. Similarly as for Examples 1 and 2 we observe

that the rate of convergence O(h) is attained by all the unknowns, and the dominant error

is also given by e(σS). Next, in Figures 3.9, 3.10, and 3.11 we show some components of the

approximate solutions obtained for N=123396. Note that in this example the normal on the

interface Σ := (−1, 1)×{0} is given by n = (0,−1)t, and hence the first transmission condition

becomes equality of the second components of uS and uD. This can be verified at the discrete

level in Figure 3.10 where we display 3D and 2D joint pictures of the second components of uS,h

and uD,h.

Summarizing, the numerical results reported here confirm the good performance of the mixed

finite element scheme (3.61) with Raviart-Thomas finite element subspaces of lowest order in ΩS

and ΩD, and continuous piecewise linear functions on the interface Σ, for different geometries of

the coupled problem.

We end this paper by mentioning that the only reason for restricting here to 2D is the simple

fact that in our previous works [45] and [48] we assumed that dimension. We believe, however,

that the present results should be extended, with minor modifications, to the three-dimensional

case. Indeed, it is easy to see that the sections concerning the model problem and the general

analysis of the continuous and discrete formulations, should look more or less the same as the
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Figure 3.4: components (1, 1) of σS,h and σS (Example 1)

ones provided here. Eventual technical difficulties, not too hard to solve, nevertheless, might

appear only in the analogue of Section 3.5, probably in the construction of the discrete liftings

and the verification of the discrete inf-sup condition (3.78). We hope to address this issue in a

separate work.

N h e(σS) r(σS) e(uS) r(uS) e(uD) r(uD)

641 0.3536 5.2974 0.3622 0.1204

2401 0.1768 2.6875 1.0277 0.1802 1.0573 0.0584 1.0957

9281 0.0884 1.3468 1.0219 0.0900 1.0269 0.0289 1.0406

36481 0.0442 0.6737 1.0121 0.0450 1.0128 0.0144 1.0178

144641 0.0221 0.3369 1.0062 0.0225 1.0064 0.0072 1.0064

N h e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ)

641 0.3536 0.0645 1.0988 0.2572

2401 0.1768 0.0320 1.0615 0.5390 1.0787 0.1260 1.0807

9281 0.0884 0.0160 1.0253 0.2661 1.0441 0.0619 1.0514

36481 0.0442 0.0080 1.0128 0.1321 1.0232 0.0306 1.0294

144641 0.0221 0.0040 1.0064 0.0658 1.0119 0.0152 1.0159

Table 3.2: degrees of freedom, meshsizes, errors, and rates of convergence (Example 1).
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Figure 3.5: second components of uS,h and uS (Example 1)

N h e(σS) r(σS) e(uS) r(uS) e(uD) r(uD)

219 0.2500 15.4093 1.5670 11.2401

1225 0.0885 6.6580 0.9748 0.7182 0.9063 5.1261 0.9121

7368 0.0347 2.4934 1.0948 0.2789 1.0543 1.6395 1.2707

44595 0.0117 0.9809 1.0363 0.1135 0.9989 0.6796 0.9783

273071 0.0035 0.4041 0.9789 0.0461 0.9931 0.2742 1.0017

N h e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ)

219 0.2500 1.0956 11.6289 6.2759

1225 0.0885 1.0870 0.0091 4.0529 1.2245 4.2773 0.4454

7368 0.0347 0.1317 2.3529 1.2658 1.2972 1.1155 1.4982

44595 0.0117 0.0434 1.2324 0.5188 0.9907 0.3315 1.3478

273071 0.0035 0.0180 0.9709 0.2010 1.0468 0.1286 1.0452

Table 3.3: degrees of freedom, meshsizes, errors, and rates of convergence (Example 2).
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Figure 3.6: first components of uD,h and uD (Example 2)
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Figure 3.7: pD,h and pD (Example 2)

Figure 3.8: meshes for N = 1225 and N = 7368 (Example 2)

N h e(σS) r(σS) e(uS) r(uS) e(uD) r(uD)

516 0.3536 6.7467 0.1873 0.1911

1988 0.1768 3.4022 1.0152 0.0758 1.3414 0.0921 1.0823

7812 0.0884 1.6984 1.0153 0.0340 1.1717 0.0456 1.0273

30980 0.0442 0.8482 1.0080 0.0164 1.0584 0.0227 1.0126

123396 0.0221 0.4243 1.0024 0.0081 1.0208 0.0114 0.9967

N h e(pD) r(pD) e(ϕ) r(ϕ) e(λ) r(λ)

516 0.3536 0.0301 0.5915 0.1324

1988 0.1768 0.0112 1.4659 0.2838 1.0890 0.0498 1.4499

7812 0.0884 0.0050 1.1786 0.1449 0.9824 0.0185 1.4472

30980 0.0442 0.0024 1.0655 0.0761 0.9349 0.0062 1.5870

123396 0.0221 0.0012 1.0031 0.0401 0.9271 0.0019 1.7115

Table 3.4: degrees of freedom, meshsizes, errors, and rates of convergence (Example 3).
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Figure 3.9: first and second components of uS,h (Example 3)

Figure 3.10: second components of uS,h and uD,h (Example 3)
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Figure 3.11: pD,h and λh (Example 3)



Chapter 4

A residual-based a posteriori error

estimator for a fully-mixed

formulation of the Stokes-Darcy

coupled problem

4.1 Introduction

The derivation of new finite element methods for the Stokes-Darcy coupled problem, in

which the respective interface conditions are given by mass conservation, balance of normal

forces, and the Beavers-Joseph-Saffman law, has become a very active research area lately (see,

e.g. [2], [17], [20], [21], [26], [35], [37], [39], [45], [48], [63], [67], [71], [74], [75], [78], [83] and the

references therein). The above list includes porous media with cracks, nonlinear problems, and

the incorporation of the Brinkman equation in the model (see [17], [37], and [83]). In addition,

most of the formulations employed are based on appropriate combinations of stable elements

for the free fluid flow and for the porous medium flow, and the first theoretical results in this

direction go back to [35] and [63]. Indeed, an iterative subdomain method employing the primal

variational formulation and standard finite element subspaces in both domains is proposed in

[35], whereas the primal method in the fluid and the dual-mixed method in the porous medium

are applied in [63]. In this way, the approach from [63] yields the velocity and the pressure in

both domains, together with the trace of the porous medium pressure on the interface, as the

main unknowns of the coupled problem. This trace unknown is motivated by the fact that one

of the transmission conditions becomes essential. Then, new mixed finite element discretizations

84
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of the variational formulation from [63] have been introduced and analyzed in [45] and [48].

The stability of a specific Galerkin method is the main result in [45], and the resulting mixed

finite element method is the first one that is conforming for the primal/dual-mixed formulation

proposed in [63]. The results from [45] are improved in [48] where it is shown that the use of

any pair of stable Stokes and Darcy elements implies the stability of the corresponding Stokes-

Darcy Galerkin scheme. The analysis in [48] hinges on the fact that the operator defining the

continuous variational formulation is given by a compact perturbation of an invertible mapping.

Further techniques utilized in the literature include mortar finite element methods, discontinuous

Galerkin (DG) schemes, and stabilized formulations (see, e.g. [2], [20], [21], [26], [31], [39], [67],

[71], [74], [75], [78]). In particular, the main motivation for employing stabilized formulations

either in both domains or in one of them, is the possibility of approximating the Stokes and

Darcy flows with the same finite element subpaces. Certainly, different finite element subspaces

in each flow region may lead to different approximation properties for each subproblem. On the

contrary, using the same spaces guarantees the same accurateness along the entire domain and

leads to simpler and more efficient computational codes.

Now, in the recent paper [49] we have developed a new variational approach for the 2D

Stokes-Darcy coupled problem, which allows, on one hand, the introduction of further unknowns

of physical interest, and on the other hand, the utilization of the same family of finite element

subspaces in both media, without requiring any stabilization term. More precisely, in [49] we

consider dual-mixed formulations in both domains, which yields the pseudostress and the velocity

in the fluid, together with the velocity and the pressure in the porous medium, as the main

unknowns. The pressure and the gradient of the velocity in the fluid can then be computed

as a very simple postprocess of the above unknowns, in which no numerical differentiation is

applied, and hence no further sources of error arise. In addition, since the transmission conditions

become essential, we impose them weakly and introduce the traces of the porous media pressure

and the fluid velocity, which are also variables of importance from a physical point of view, as

the corresponding Lagrange multipliers. Then, we apply the well known Fredholm and Babuška-

Brezzi theories to prove the unique solvability of the resulting continuous formulation and derive

sufficient conditions on the finite element subspaces ensuring that the associated Galerkin scheme

becomes well posed. Among the several different ways in which the equations and unknowns can

be ordered, we choose the one yielding a doubly mixed structure for which the inf-sup conditions

of the off-diagonal bilinear forms follow straightforwardly. In this way, the arguments of the

continuous analysis can be easily adapted to the discrete case. In particular, a feasible choice

of subspaces is given by Raviart-Thomas elements of lowest order and piecewise constants for

the velocities and pressures, respectively, in both domains, together with continuous piecewise
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linear elements for the Lagrange multipliers.

On the other hand, it is well known that in order to guarantee a good convergence behaviour

of most finite element solutions, specially under the eventual presence of singularities, one usually

needs to apply an adaptive algorithm based on a posteriori error estimates. These are represented

by global quantities η that are expressed in terms of local indicators ηT defined on each element

T of a given triangulation T . The estimator η is said to be efficient (resp. reliable) if there exists

Ceff > 0 (resp. Crel > 0), independent of the meshsizes, such that

Ceff η + h.o.t. ≤ ‖error‖ ≤ Crel η + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. In particular,

the a posteriori error analysis of variational formulations with saddle-point structure has already

been widely investigated by many authors (see, e.g. [8], [9], [10], [23], [25], [28], [43], [56], [64], [65],

[72], [79], and the references therein). These contributions refer mainly to reliable and efficient

a posteriori error estimators based on local and global residuals, local problems, postprocessing,

and functional-type error estimates. In addition, the applications include Stokes and Oseen

equations, Poisson problem, linear elasticity, and general elliptic partial differential equations

of second order. However, up to our knowledge, the first a posteriori error analysis for the

Stokes-Darcy coupled problem has been provided recently in [15], where a reliable and efficient

residual-based a posteriori error estimator for the variational formulation analyzed in [45] is

derived. Partially following known approaches, the proof of reliability makes use of suitable

auxiliary problems, diverse continuous inf-sup conditions satisfied by the bilinear forms involved,

and local approximation properties of the Clément interpolant and Raviart-Thomas operator.

Similarly, Helmholtz decomposition, inverse inequalities, and the localization technique based

on triangle-bubble and edge-bubble functions, are the main tools for proving the efficiency of

the estimator.

Motivated by the discussion in the above paragraphs, our purpose now is to additionally

contribute in the direction of [15] and provide the a posteriori error analysis of the fully-mixed

variational approach introduced in [49]. According to this, the rest of this work is organized as

follows. In Section 4.2 we recall from [49] the Stokes-Darcy coupled problem and its continuous

and discrete fully-mixed variational formulations. The kernel of the present work is given by

Section 4.3, where we develop the a posteriori error analysis. In Section 4.3.1 we employ the

global continuous inf-sup condition, Helmholtz decompositions in both domains, and the local

approximation properties of the Clément and Raviart-Thomas operators, to derive a reliable

residual-based a posteriori error estimator. An interesting feature of our proof of reliability

is the previous transformation of the global continuous inf-sup condition into an equivalent
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estimate involving global inf-sup conditions for each one of the components of the product space

to which the vector of unknowns belongs. Then, in Section 4.3.2 we apply again Helmholtz

decompositions, inverse inequalities, and the localization technique based on triangle-bubble and

edge-bubble functions to prove the efficiency of the estimator. This proof benefits partially from

the fact that some components of the a posteriori error estimator coincide with those obtained in

[15] and the related work [25]. Finally, numerical results confirming the reliability and efficiency

of the a posteriori error estimator and showing the good performance of the associated adaptive

algorithm, are presented in Section 4.4.

We end this section with some notations to be used below. In particular, in what follows we

utilize the standard terminology for Sobolev spaces. In addition, if O is a domain, Γ is a closed

Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , H
r(O) := [Hr(O)]2×2 , and Hr(Γ) := [Hr(Γ)]2 .

However, for r = 0 we usually write L2(O), L
2(O), and L2(Γ) instead of H0(O), H

0(O), and

H0(Γ), respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and

H
r(O)) and ‖ · ‖r,Γ (for Hr(Γ) and Hr(Γ)). Also, the Hilbert space

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see, e.g. [19] or [54]). The space of matrix valued

functions whose rows belong to H(div ;O) will be denoted H(div ;O). The Hilbert norms of

H(div ;O) and H(div ;O) are denoted by ‖ · ‖div ;O and ‖ · ‖div ;O, respectively. On the other

hand, the symbol for the L2(Γ) and L2(Γ) inner products

〈ξ, λ〉Γ :=

∫

Γ
ξ λ ∀ ξ, λ ∈ L2(Γ), 〈ξ, λ〉Γ :=

∫

Γ
ξ · λ ∀ ξ, λ ∈ L2(Γ)

will also be employed for their respective extensions as the duality products H−1/2(Γ)×H1/2(Γ)

and H−1/2(Γ)×H1/2(Γ). Finally, we employ 0 as a generic null vector, and use C and c, with or

without subscripts, bars, tildes or hats, to mean generic positive constants independent of the

discretization parameters, which may take different values at different places.

4.2 The Stokes-Darcy coupled problem

In this section we follow very closely the presentation from [49] to introduce the model

problem and the corresponding continuous and discrete mixed variational formulations.
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Figure 4.1: Geometry of the problem

4.2.1 The model problem

The Stokes-Darcy coupled problem models the interaction of an incompressible viscous fluid

occupying a region ΩS, which flows back and forth across the common interface into a porous

medium living in another region ΩD and saturated with the same fluid. Physically, we consider

a simplified 2D model where ΩD is surrounded by a bounded region ΩS (see Figure 4.1 below).

Their common interface is supposed to be a Lipschitz curve Σ and we assume that ∂ΩD = Σ. The

remaining part of the boundary of ΩS is also assumed to be a Lipschitz curve ΓS. For practical

purposes, we can assume that both ΓS and Σ are polygons. The unit normal vector field on the

boundaries n is chosen pointing outwards from ΩS (and therefore inwards to ΩD when seen on

Σ). On Σ we also consider a unit tangent vector field t in any fixed orientation of this closed

curve.

The governing equations in ΩS are those of the Stokes problem, which are written in the

following non-standard velocity-pressure-pseudostress formulation:

σS = − pS I + ν ∇uS in ΩS , div σS + fS = 0 in ΩS ,

div uS = 0 in ΩS , uS = 0 on ΓS ,

(4.1)

where ν > 0 is the viscosity of the fluid, uS is the fluid velocity, pS is the pressure, σS is the

pseudostress tensor, I is the 2 × 2 identity matrix and fS ∈ L2(ΩS) are known source terms.

Here, div is the usual divergence operator acting on vector fields, and div denotes the action

of div to the rows of each tensor. On the other hand, the flow equations in ΩD are those of the

linearized Darcy model:

uD = −K∇pD in ΩD , div uD = fD in ΩD , (4.2)
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where the unknowns are the pressure pD and the flow uD, and the source term, given by fD ∈
L2(ΩD), satisfies

∫

ΩD

fD = 0. The matrix valued function K, describing permeability of ΩD

divided by the viscosity ν, is symmetric, has L∞(ΩD) components and is uniformly elliptic.

Finally, the transmission conditions on Σ are given by

uS · n = uD · n on Σ ,

σS n + ν κ−1 (uS · t) t = − pD n on Σ ,
(4.3)

where κ := α−1
√

(ν Kt) · t is the friction coefficient and α is an experimentally determined

positive parameter. The first equation in (4.3) corresponds to mass conservation on Σ, whereas

the normal and tangential components of the second one constitute the balance of normal forces

and the Beavers-Joseph-Saffman law, respectively. Throughout the rest of the paper we assume,

without loss of generality, that κ is a positive constant.

We complete the description of our model problem by observing that the equations in the

Stokes domain (cf. (4.1) can be rewritten equivalently as

ν−1 σd
S = ∇uS in ΩS , div σS + fS = 0 in ΩS ,

pS = − 1
2 trσS in ΩS , uS = 0 on ΓS ,

(4.4)

where tr τ := τ11 + τ22, and

τ d := τ − 1
2 (tr τ ) I

is the deviatoric part of the tensor τ := (τij)2×2.

We end this section by remarking that, though the geometry described by Figure 4.1 was

choosen to simplify the presentation, the case of a fluid flowing only across a part of the boundary

of the porous medium does not yield further complications for the a posteriori error analysis

of the problem. We already discussed this issue in [49, Section 2.1], in connection with the

respective a priori error analysis, and further details can be found in [39].

4.2.2 The fully-mixed variational formulation

We add two new unknowns to the system, namely ϕ := −uS|Σ and λ := pD|Σ. The system

will be written in terms of the unknowns σ := (σS,uD, ϕ, λ) and u := (uS, pD). Then we

recall from [49, Lemma 3.5] that the coupled problem given by (4.2), (4.3), and (4.4) has the

one-dimensional kernel defined by

{ ((σS,uD, ϕ, λ), (uS, pD)) : σS = − c I, uD = 0, ϕ = 0, λ = c, uS = 0, pD = c ; c ∈ R} .
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Hence, in order to solve this indetermination, we introduce

L2
0(ΩD) :=

{
q ∈ L2(ΩD) :

∫

ΩD

q = 0

}
,

and define the product spaces

X := H(div ; ΩS) × H(div ; ΩD) × H1/2(Σ) × H1/2(Σ) , M := L2(ΩS) × L2
0(ΩD) ,

endowed with the product norms

‖τ‖2
X := ‖τ S‖2

div ,ΩS
+ ‖vD‖2

div ;ΩD
+ ‖ψ‖2

1/2,Σ + ‖ξ‖2
1/2,Σ ∀ τ := (τ S,vD, ψ, ξ) ∈ X ,

and

‖v‖2
M := ‖vS‖2

0.ΩS
+ ‖qD‖2

0,ΩD
∀v := (vS, qD) ∈ M .

In this way, as explained in [49, Sections 2 and 3]), it suffices to consider from now on the

following modified variational formulation of (4.2), (4.3), and (4.4): Find (σ,u) ∈ X × M such

that
A(σ, τ ) + B(τ ,u) = F(τ ) ∀ τ := (τ S,vD, ψ, ξ) ∈ X ,

B(σ,v) = G(v) ∀v := (vS, qD) ∈ M ,
(4.5)

where

F(τ ) := 0, G(v) = G((vS, qD)) := − (fS,vS)S − (fD, qD)D , (4.6)

and A and B are the bounded bilinear forms defined by

A(σ, τ ) := a((σS,uD), (τ S,vD)) + b((τ S,vD), (ϕ, λ))

+ b((σS,uD), (ψ, ξ)) − c((ϕ, λ), (ψ, ξ)) ,

(4.7)

with

a((σS,uD), (τ S,vD)) := ν−1 (σd
S, τ

d
S)S + (K−1 uD,vD)D ,

b((τ S,vD), (ψ, ξ)) := 〈τ S n, ψ〉Σ − 〈vD · n, ξ〉Σ ,

c((ϕ, λ), (ψ, ξ)) := ν κ−1 〈ϕ · t, ψ · t〉Σ + 〈ϕ · n, ξ〉Σ − 〈ψ · n, λ〉Σ ,

and

B(τ ,v) := (div τ S,vS)S − (div vD, qD)D. (4.8)

Hereafter we utilize, for each ⋆ ∈ {S, D}, the following notations

(u, v)⋆ :=

∫

Ω⋆

u v, (u,v)⋆ :=

∫

Ω⋆

u · v, (σ, τ )⋆ :=

∫

Ω⋆

σ : τ ,

for all u, v ∈ L2(Ω⋆), u, v ∈ L2(Ω⋆), and σ, τ ∈ L
2(Ω⋆), where σ : τ := tr(σtτ ).
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We find it important to remark that ϕ and λ can be interpreted as Lagrange multipliers

associated to the transmission conditions (4.3). In addition, we notice that (4.5) is equivalent

to the variational formulation defined in [49, Section 3.2, eq. (3.2)], in which σS is decomposed

into σS = σ + µ, with σ ∈ H0(div ; ΩS) and µ ∈ R, where

H0(div ; ΩS) :=

{
τ ∈ H(div ; ΩS) :

∫

ΩS

tr τ = 0

}
.

The following result taken from [49] establishes, in particular, the well-posedness of (4.5).

Theorem 4.2.1 For each pair (F ,G) ∈ X
′×M

′ there exists a unique (σ,u) ∈ X×M solution

to (4.5), and there exists a constant C > 0, independent of the solution, such that

‖(σ,u)‖X×M ≤ C
{
‖F‖X′ + ‖G‖M′

0

}
. (4.9)

Proof. See [49, Theorem 3.9].

We end this section with the converse of the derivation of (4.5). More precisely, the following

theorem establishes that the unique solution of (4.5), with F and G given by (4.6), solves the

original transmission problem described in Section 4.2.1. This result will be used later on in

Section 4.3.2 to prove the efficiency of our a posteriori error estimator. We remark that no extra

regularity assumptions on the data, but only fS ∈ L2(ΩS) and fD ∈ L2(ΩD), are required here.

Theorem 4.2.2 Let (σ,u) ∈ H×Q be the unique solution of the variational formulation (4.5)

with F and G given by (4.6). Then div σS = − fS in L2(ΩS), ν−1 σd
S = ∇uS in L

2(ΩS), uS ∈
H1(ΩS), div uD = fD in L2(ΩD), uD = −K∇ pD in L2(ΩD), pD ∈ H1(ΩD), uD ·n + ϕ·n = 0

on H−1/2(Σ), σS n + λn − ν κ−1 (ϕ · t) t = 0 on H−1/2(Σ), λ = pD on H1/2(Σ), ϕ = −uS

on H1/2(Σ), and uS = 0 on H1/2(ΓS).

Proof. It basically follows by applying integration by parts backwardly in (4.5) and using

suitable test functions. We omit further details.

4.2.3 A Galerkin method

Although the analysis in [49] provides general hypotheses for the well-posedness of a Galerkin

scheme of (4.5), we will consider here the particular case described in [49, Section 5]. Let T S
h and

T D
h be respective triangulations of the domains ΩS and ΩD formed by shape-regular triangles T

of diameter hT , and assume that T S
h and T D

h match in Σ, so that their union is a triangulation

of ΩS ∪ Σ ∪ ΩD. Then, for each T ∈ T S
h ∪ T D

h we let RT0(T ) be the local lowest order Raviart-

Thomas space,

RT0(T ) : = span

{(
1

0

)
,

(
0

1

)
,

(
x1

x2

)}
.
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For each ⋆ ∈ {S, D} we define the global spaces

Hh(Ω⋆) :=
{

vh ∈ H(div ; Ω⋆) : vh|T ∈ RT0(T ) ∀T ∈ T ⋆
h

}
, (4.10)

and

Lh(Ω⋆) :=
{

qh : Ω⋆ → R : qh|T ∈ P0(T ) ∀T ∈ T ⋆
h

}
.

Hereafter, given a non-negative integer k and a subset S of R
2, Pk(S) stands for the space of

polynomials defined on S of degree ≤ k. Next, we let Σh be the partition of Σ inherited from

T S
h (or T D

h ), and first assume, without loss of generality, that the number of edges of Σh is even.

Then, we let Σ2h be the partition of Σ arising by joining pairs of adjacent edges of Σh. Note that

because Σh is inherited from one of the interior triangulations, it is automatically of bounded

variation (that is, the ratio of lengths of adjacent edges is bounded) and, therefore, so is Σ2h. If

the cardinal of Σh is odd, we start by joining to adjacent elements and construct Σ2h from this

reduced partition.

Employing the above notations, we now introduce

Hh(ΩS) := { τ : ΩS → R
2×2 : ct τ ∈ Hh(ΩS) ∀ c ∈ R

2 } ,

Lh(ΩS) := Lh(ΩS) × Lh(ΩS) ,

Lh,0(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) ,

Λh(Σ) := { ξh ∈ C(Σ) : ξh|e ∈ P1(e) ∀ e edge of Σ2h } ,

Λh(Σ) := Λh(Σ) × Λh(Σ) ,

and the product spaces

Xh := Hh(ΩS) × Hh(ΩD) × Λh(Σ) × Λh(Σ) and Mh := Lh(ΩS) × Lh,0(ΩD) .

In this way, the Galerkin scheme of (4.5) becomes: Find (σh,uh) ∈ Xh × Mh such that

A(σh, τ ) + B(τ ,uh) = F(τ ) ∀ τ := (τ S,vD, ψ, ξ) ∈ Xh,

B(σh,v) = G(v) ∀v := (vS, qD) ∈ Mh ,
(4.11)

where σh = (σS,h,uD,h, ϕh, λh) and uh := (uS,h, pD,h).

The following theorem, also taken from [49], provide the well-posedness of (4.11), the asso-

ciated Céa estimate, and the corresponding theoretical rate of convergence.
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Theorem 4.2.3 The Galerkin scheme (4.11) has a unique solution (σh,uh) ∈ Xh×Mh. More-

over, there exist C1, C2 > 0, independent of h, such that

‖(σh,uh)‖X×M ≤ C1

{
‖F|Xh

‖X′

h
+ ‖G|Mh

‖M′

h

}
,

and

‖σ − σh‖X + ‖u − uh‖M ≤ C2

{
inf

τ h∈Xh

‖σ − τh‖X + inf
vh∈Mh

‖u − vh‖M

}
.

If there exists δ ∈ (0, 1] such that σS ∈ H
δ(ΩS), div σS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), and

div uD ∈ Hδ(ΩD), then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD), ϕ ∈ H1/2+δ(Σ), λ ∈ H1/2+δ(Σ),

and there exists C > 0, independent of h, such that

‖(σ,u) − (σh,uh)‖X×M ≤ C hδ
{
‖σS‖δ,ΩS

+ ‖div σS‖δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖div uD‖δ,ΩD

+ ‖uS‖1+δ,ΩS
+ ‖pD‖1+δ,ΩD

}
.

(4.12)

Proof. See [49, Theorems 5.3, 5.4 and 5.5].

Note that the proofs of [49, Theorems 5.3, 5.4 and 5.5] require T S
h and T D

h are quasiuniform

in a neighborhood of Σ. Based on a recent result on stable discrete liftings of the normal trace

of Raviart–Thomas elements in [77], the theorem can be easily generalized to any shape–regular

triangulation.

4.3 A residual-based a posteriori error estimator

We first introduce some notations. For each T ∈ T S
h ∪ T D

h we let E(T ) be the set of edges

of T , and we denote by Eh the set of all edges of T S
h ∪ T D

h , subdivided as follows:

Eh = Eh(ΓS) ∪ Eh(ΩS) ∪ Eh(ΩD) ∪ Eh(Σ) ,

where Eh(ΓS) := { e ∈ Eh : e ⊆ ΓS }, Eh(Ω⋆) := { e ∈ Eh : e ⊆ Ω⋆ } for each ⋆ ∈ {S, D},
and Eh(Σ) := { e ∈ Eh : e ⊆ Σ }. Note that Eh(Σ) is the set of edges defining the partition

Σh. Analogously, we let E2h(Σ) be the set of double edges defining the partition Σ2h. In what

follows, he stands for the diameter of a given edge e ∈ Eh ∪ E2h(Σ). Now, let ⋆ ∈ {D, S}
and let q ∈ [L2(Ω⋆)]

m, with m ∈ {1, 2}, such that q|T ∈ [C(T )]m for each T ∈ T ⋆
h . Then,

given e ∈ Eh(Ω⋆), we denote by [q] the jump of q across e, that is [q] := (q|T ′)|e − (q|T ′′)|e,
where T ′ and T ′′ are the triangles of T ⋆

h having e as an edge. Also, we fix a unit normal vector

ne := (n1, n2)
t to the edge e (its particular orientation is not relevant) and let te := (−n2, n1)

t be

the corresponding fixed unit tangential vector along e. Hence, given v ∈ L2(Ω⋆) and τ ∈ L
2(Ω⋆)

such that v|T ∈ [C(T )]2 and τ |T ∈ [C(T )]2×2, respectively, for each T ∈ T ⋆
h , we let [v · te] and
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[τ te] be the tangential jumps of v and τ , across e, that is [v · te] := {(v|T ′)|e − (v|T ′′)|e} · te

and [τ te] := {(τ |T ′)|e − (τ |T ′′)|e} te, respectively. From now on, when no confusion arises, we

will simply write t and n instead of te and ne, respectively. Finally, for suffiently smooth scalar,

vector and tensors fields q, v := (v1, v2)
t and τ := (τij)2×2, respectively, we let

curl v :=




∂v1

∂x2
−∂v1

∂x1
∂v2

∂x2
−∂v2

∂x1


 , curl q :=

(
∂q

∂x2
,− ∂q

∂x1

)
t

,

rotv :=
∂v2

∂x1
− ∂v1

∂x2
, and rot τ :=

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)
t

.

Next, let (σ,u) ∈ X × M and (σh,uh) := ((σS,h,uD,h, ϕh, λh), (uS,h, pD,h)) ∈ Xh × Mh be

the unique solutions of (4.5) and (4.11), respectively. Then, we introduce the global a posteriori

error estimator:

Θ :=





∑

T∈T S
h

Θ2
S,T +

∑

T∈T D
h

Θ2
D,T





1/2

, (4.13)

where, for each T ∈ T S
h :

Θ2
S,T := ‖fS + div σS,h‖2

0,T + h2
T ‖rotσd

S,h‖2
0,T + h2

T ‖σd
S,h‖2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he ‖[σd
S,ht]‖2

0,e +
∑

e∈E(T )∩Eh(ΓS)

he ‖σd
S,ht‖2

0,e +
∑

e∈E(T )∩Eh(Σ)

he ‖uS,h + ϕh‖2
0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥σS,h n + λh n − ν κ−1(ϕh · t) t
∥∥2

0,e
+ he

∥∥∥ν−1σd
S,ht + ϕ′

h

∥∥∥
2

0,e

}
,

and for each T ∈ T D
h :

Θ2
D,T := ‖fD − div uD,h‖2

0,T + h2
T ‖rot (K−1uD,h)‖2

0,T + h2
T ‖K−1uD,h‖2

0,T

+
∑

e∈E(T )∩Eh(ΩD)

he

∥∥[K−1uD,h · t]
∥∥2

0,e
+

∑

e∈E(T )∩Eh(Σ)

he

∥∥K−1uD,h · t + λ′
h

∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he ‖uD,h · n + ϕh · n‖2

0,e + he ‖pD,h − λh‖2
0,e

}
.

The derivatives ϕ′
h and λ′

h have to be understood as tangential derivatives in the direction

imposed by the tangential vector field t on Σ.

4.3.1 Reliability of the a posteriori error estimator

The main result of this section is stated as follows.
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Theorem 4.3.1 There exists Crel > 0, independent of h, such that

‖σ − σh‖X + ‖u − uh‖M ≤ Crel Θ . (4.14)

We begin the derivation of (4.14) by recalling that the continous dependence result given by

(4.9) is equivalent to the global inf-sup condition for the continuous formulation (4.5). Then,

applying this estimate to the error (σ − σh,u − uh) ∈ X × M, we obtain

‖(σ − σh,u − uh)‖X×M ≤ C sup
(τ ,v)∈X×M

(τ ,v) 6=0

|R(τ ,v)|
‖(τ ,v)‖X×M

, (4.15)

where R : X × M → R is the residual functional

R(τ ,v) := A(σ − σh, τ ) + B(τ ,u − uh) + B(σ − σh,v), ∀ (τ ,v) ∈ X × M .

More precisely, according to (4.5) and the definitions of A and B (cf. (4.7), (4.8), we find that

for any (τ ,v) := ((τ S,vD, ψ, ξ), (vS, qD)) ∈ X × M there holds

R(τ ,v) = R1(τ S) + R2(vD) + R3(ψ) + R4(ξ) + R5(vS) + R6(qD) ,

where

R1(τ S) := − ν−1

∫

ΩS

σd
S,h : τ d

S −
∫

ΩS

uS,h · div τ S − 〈τ S n, ϕh〉Σ ,

R2(vD) := −
∫

ΩD

K−1uD,h · vD +

∫

ΩD

pD,h div vD + 〈vD · n, λh〉Σ ,

R3(ψ) := −〈σS,h n, ψ〉Σ − 〈ψ · n, λh〉Σ + ν κ−1〈ψ · t, ϕh · t〉Σ ,

R4(ξ) := 〈uD,h · n, ξ〉Σ + 〈ϕh · n, ξ〉Σ ,

R5(vS) := −
∫

ΩS

vS · (fS + div σS,h) ,

and

R6(qD) := −
∫

ΩD

qD (fD − div uD,h) .

Hence, the supremum in (4.15) can be bounded in terms of Ri , i ∈ {1, ..., 6}, which yields

‖(σ − σh,u − uh)‖X×M ≤ C
{
‖R1‖H(div;ΩS)′ + ‖R2‖HΓD

(div;ΩD)′

+‖R3‖H1/2(Σ)′ + ‖R4‖H1/2(Σ)′ + ‖R5‖L2(ΩS)′ + ‖R6‖L2
0(ΩD)

′

}
.

(4.16)

Throughout the rest of this section we provide suitable upper bounds for each one of the terms

on the right hand side of (4.16). The following lemma, whose proof follows from straightforward

applications of the Cauchy-Schwarz inequality, is stated first.
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Lemma 4.3.1 There hold

‖R5‖L2(ΩS)′ = ‖fS + div σS,h‖0,ΩS
=





∑

T∈T S
h

‖fS + div σS,h‖2
0,T





1/2

, (4.17)

and

‖R6‖L2
0(ΩD)

′ ≤ ‖fD − div uD,h‖0,ΩD
=





∑

T∈T D
h

‖fD − div uD,h‖2
0,T





1/2

. (4.18)

The next lemma estimates the supremums on the spaces defined in the interface Σ.

Lemma 4.3.2 There exist C3 , C4 > 0, independent of h, such that

‖R3‖H1/2(Σ)′ ≤ C3





∑

e∈Eh(Σ)

he

∥∥σS,h n + λh n − ν κ−1(ϕh · t) t
∥∥2

0,e





1/2

, (4.19)

and

‖R4‖H1/2(Σ)′ ≤ C4





∑

e∈Eh(Σ)

he ‖uD,h · n + ϕh · n‖2
0,e





1/2

. (4.20)

Proof. It is clear from the definition of R3 that

R3(ψ) = −〈σS,h n + λh n − ν κ−1(ϕh · t) t, ψ〉Σ ∀ψ ∈ H1/2(Σ) ,

and hence

‖R3‖H1/2(Σ)′ =
∥∥σS,h n + λh n − ν κ−1(ϕh · t) t

∥∥
−1/2,Σ

. (4.21)

In order to estimate
∥∥σS,h n + λh n − ν κ−1(ϕh · t) t

∥∥
−1/2,Σ

in terms of local quantities we now

apply a technical result from [27]. Taking τ S = 0, vD = 0 and ξ = 0 in the first equation of

(4.11), we have

〈σS,h n + λh n − ν κ−1(ϕh · t) t, ψ〉Σ = 0 ∀ψ ∈ Λh(Σ) ,

which says that σS,h n + λh n − ν κ−1(ϕh · t) t is L2(Σ)-orthogonal to Λh(Σ). Hence, applying

[27, Theorem 2], and recalling that Σh and Σ2h are of bounded variation, we deduce that

∥∥σS,h n + λh n − ν κ−1(ϕh · t) t
∥∥2

−1/2,Σ

≤ C
∑

e∈E2h(Σ)

he

∥∥σS,h n + λh n − ν κ−1(ϕh · t) t
∥∥2

0,e

≤ C
∑

e∈Eh(Σ)

he

∥∥σS,h n + λh n − ν κ−1(ϕh · t) t
∥∥2

0,e
,
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which, together with (4.21), yields (4.19).

The proof of (4.20) proceeds analogously. Since

‖R4‖H1/2(Σ)′ = ‖uD,h · n + ϕh · n‖−1/2,Σ ,

and uD,h ·n+ ϕh ·n is L2(Σ)-orthogonal to Λh(Σ) (this is a consequence of the first equation of

(4.11)), another straightforward application of [27, Theorem 2] yields the required estimate.

Our next goal is to bound the remaining terms in right hand side of (4.16), for which we need

some preliminary results. We begin with the following lemma showing the existence of stable

Helmholtz decompositions for HΓD
(div; ΩD) and H(div; ΩS).

Lemma 4.3.3

a) There exists CD > 0 such that every vD ∈ HΓD
(div; ΩD) can be decomposed as vD =

w + curlβ, where w ∈ H1(ΩD), β ∈ H1(ΩD),

∫

ΩS

β = 0 and

‖w‖1,ΩD
+ ‖β‖1,ΩD

≤ CD ‖vD‖div ;ΩD
.

b) There exists CS > 0 such that every τ S ∈ H(div; ΩS) can be decomposed as τ S = η +

curlχ, where η ∈ H
1(ΩS), χ ∈ H1(ΩS) and

‖η‖1,ΩS
+ ‖χ‖1,ΩS

≤ CS ‖τ S‖div ;ΩS
.

Proof. Let G be a convex domain with smooth boundary that contains ΩD. Given vD ∈
HΓD

(div; ΩD), we take z ∈ H1
0 (G) ∩ H2(G) to be the unique solution of

−∆ z =





div vD in ΩD

0 in G \Ω̄D



 in G , z = 0 on ∂G .

It follows that

‖z‖2,G ≤ C ‖div vD‖0,ΩD
≤ C ‖vD‖div ;ΩD

,

and hence, defining w := −∇ z in ΩD, we find that div w = div vD in ΩD and

‖w‖1,ΩD
≤ ‖z‖2,ΩD

≤ ‖z‖2,G ≤ C ‖vD‖div ;ΩD
.

In addition, since div (vD − w) = 0 and ΩD is connected, there exists β ∈ H1(ΩD), with∫

ΩD

β = 0, such that vD − w = curlβ in ΩD. In this way, using the generalized Poincaré

inequality and the above estimate for w, we deduce that

‖β‖1,ΩD
≤ C |β|1,ΩD

= C ‖curlβ‖0,ΩD
= C ‖vD − w‖0,ΩD

≤ C‖vD‖div ;ΩD
,
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which completes the proof of a).

We now let τ S ∈ H(div ; ΩS). Since ΩS is not necessarily connected, we first perform a

suitable extension of τ S to the domain Ω := ΩS ∪ Σ ∪ ΩD, and then apply a) to each row of

the resulting tensor. More precisely, let τ S,i ∈ H(div ; ΩS) be the i-th row of τ S, i ∈ {1, 2},
and let φi ∈ H1(ΩD) be the unique solution of the Neumann problem:

∆φi = − 〈τ S,i · n, 1〉Σ
|ΩD|

in ΩD ,
∂φi

∂n
= τ S,i · n on Σ ,

∫

ΩD

φi = 0 .

Then we define τ ext
i =





τ S,i in ΩS

∇φi in ΩD

, and notice that τ ext
i ∈ H(div ; Ω) and

‖τ ext
i ‖div ;Ω ≤ ‖τ S,i‖div ;ΩS

+ ‖∇φi‖div ;ΩD

≤ ‖τ S,i‖div ;ΩS
+ C ‖τ S,i · n‖−1/2,Σ ≤ C ‖τ S,i‖div ;ΩS

.

Proceeding as in the proof of a), but now for τ ext
i ∈ H(div ; Ω), we deduce the existence of

wi ∈ H1(Ω) and βi ∈ H1(Ω), with

∫

Ω
βi = 0, such that τ ext

i = wi + curlβi in Ω, and

‖wi‖1,Ω + ‖βi‖1,Ω ≤ C ‖τ ext
i ‖div ;Ω ≤ C ‖τ S,i‖div ;ΩS

.

Hence, the proof of b) follows by defining i-th row of η := wi|ΩS
and χ := (β1|ΩS

, β2|ΩS
).

We next recall two well–known approximation operators: the Raviart-Thomas interpolator

(see [19] for example) and the Clément operator onto the space of continuous piecewise linear

functions [25].

The Raviart-Thomas interpolation operator Π⋆
h : H1(Ω⋆) → Hh(Ω⋆) (recall the discrete

spaces in (4.10)), ⋆ ∈ {S, D}, is given by the conditions

Π⋆
hv ∈ Hh(Ω⋆) and

∫

e
Π⋆

hv · n =

∫

e
v · n ∀ edge e of T ⋆

h . (4.22)

As a consequence of (4.22), there holds

div (Π⋆
hv) = P⋆

h(div v) , (4.23)

where P⋆
h, ⋆ ∈ {S, D}, is the L2(Ω⋆)-orthogonal projector onto the piecewise constant functions

on Ω⋆. A tensor version of Π⋆
h, say Π⋆

h : H
1(Ω⋆) → Hh(Ω⋆), which is defined row-wise by Π⋆

h,

and a vector version of P⋆
h, say P⋆

h, which is the L2(Ω⋆)-orthogonal projector onto the piecewise

constant vectors on Ω⋆, might also be required. The local approximation properties of Π⋆
h (and

hence of Π⋆
h) are stated as follows.
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Lemma 4.3.4 For each ⋆ ∈ {S, D} there exist constants c1, c2 > 0, independent of h, such

that for all v ∈ H1(Ω⋆) there hold

‖v − Π⋆
hv‖0,T ≤ c1 hT ‖v‖1,T ∀T ∈ T ⋆

h ,

and

‖v · n − Π⋆
hv · n‖0,e ≤ c2 h1/2

e ‖v‖1,Te ∀ edge e of T ⋆
h ,

where Te is a triangle of T ⋆
h containing e on its boundary.

Proof. See [19].

The Clément operators I⋆
h : H1(Ω⋆) → X⋆,h approximate optimally non–smooth functions

by continuous piecewise linear functions:

X⋆,h := {v ∈ C(Ω̄⋆) : v|T ∈ P1(T ) ∀T ∈ T ⋆
h } for each ⋆ ∈ {S, D} .

Of this operator, we will only use its approximation properties (see below). In addition, we will

make use of a vector version of I⋆
h, say I⋆

h : H1(Ω⋆) → X⋆,h := X⋆,h × X⋆,h, which is defined

componentwise by I⋆
h. The following lemma establishes the local approximation properties of I⋆

h

(and hence of I⋆
h).

Lemma 4.3.5 For each ⋆ ∈ {S, D} there exist constants c3, c4 > 0, independent of h, such

that for all v ∈ H1(Ω⋆) there hold

‖v − I⋆
hv‖0,T ≤ c3 hT ‖v‖1,∆⋆(T ) ∀T ∈ T ⋆

h ,

and

‖v − I⋆
hv‖0,e ≤ c4 h1/2

e ‖v‖1,∆⋆(e) ∀ e ∈ Eh ,

where

∆⋆(T ) := ∪{T ′ ∈ T ⋆
h : T ′ ∩ T 6= 0} and ∆⋆(e) := ∪{T ′ ∈ T ⋆

h : T ′ ∩ e 6= 0} .

Proof. See [30].

Finally, we require the technical results given by the following two lemmas.

Lemma 4.3.6 Let η ∈ H
1(ΩS) and χ ∈ H1(ΩS). Then there hold

|R1(η − ΠS
hη)| ≤ c1 ν−1

∑

T∈T S
h

hT ‖σd
S,h‖0,T ‖η‖1,T + c2

∑

e∈Eh(Σ)

h1/2
e ‖uS,h + ϕh‖0,e ‖η‖1,Te ,
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and

|R1(curl (χ − IS
hχ))|

≤ c3 ν−1
∑

T∈T S
h

hT ‖rotσd
S,h‖0,T ‖χ‖1,∆S(T ) + c4 ν−1

∑

e∈Eh(ΩS)

h1/2
e ‖[σd

S,ht]‖0,e ‖χ‖1,∆S(e)

+ c4 ν−1
∑

e∈Eh(ΓS)

h1/2
e ‖σd

S,ht‖0,e ‖χ‖1,∆S(e) + c4

∑

e∈Eh(Σ)

h1/2
e

∥∥∥ν−1 σd
S,ht + ϕ′

h

∥∥∥
0,e

‖χ‖1,∆S(e).

Proof. We first let ζ := η − ΠS
hη and observe, according to (4.22) and (4.23), that

∫

e
p · ζ n = 0 ∀p ∈ [P0(e)]

2 , ∀ edge e of T S
h , and div ζ = div η − PS

h(div η) .

Then, since σd
S,h : ζd = σd

S,h : ζ and uS,h is constant on each T ∈ T S
h , we deduce from the

definition of R1 and the above identities that

R1(ζ) = − ν−1
∑

T∈T S
h

∫

T
σd

S,h : ζd −
∑

T∈T S
h

∫

T
uS,h · div ζ −

∑

e∈Eh(Σ)

∫

e
ϕh · ζ n

= − ν−1
∑

T∈T S
h

∫

T
σd

S,h : ζ −
∑

e∈Eh(Σ)

∫

e
ϕh · ζ n

= − ν−1
∑

T∈T S
h

∫

T
σd

S,h : ζ −
∑

e∈Eh(Σ)

∫

e
(uS,h + ϕh) · ζ n .

We next let ρ := χ − IS
hχ. Then, using that div (curlρ) = 0, noting that (curlρ)n = (∇ρ) t

on Σ, integrating by parts on each T ∈ T S
h and on Σ, and observing that ϕ′

h ∈ L2(Σ), we obtain

R1(curlρ) = − ν−1

∫

ΩS

σd
S,h : curlρ − 〈(curlρ)n, ϕh〉Σ

= ν−1
∑

T∈T S
h

(
−

∫

T
ρ · rotσd

S,h +

∫

∂T
ρ · σd

S,ht

)
+

∑

e∈Eh(Σ)

∫

e
ρ · ϕ′

h

= −
∑

T∈T S
h

ν−1

∫

T
ρ · rotσd

S,h +
∑

e∈Eh(ΩS)

ν−1

∫

e
ρ · [σd

S,h t]

+
∑

e∈Eh(ΓS)

ν−1

∫

e
ρ · (σd

S,h t) +
∑

e∈Eh(Σ)

∫

e
ρ ·

(
ν−1 σd

S,h t + ϕ′
h

)
.

Hence, straightforward applications of the Cauchy-Schwarz inequality to the above identities,

together with the approximation properties of Lemmas 4.3.4 and 4.3.5, namely,

‖η − ΠS
hη‖0,T ≤ c1 hT ‖η‖1,T , ‖η n − ΠS

hη n‖0,e ≤ c2 h1/2
e ‖η‖1,T

‖χ − IS
hχ‖0,T ≤ c3 hT ‖χ‖1,∆S(T ) , ‖χ − IS

hχ‖0,e ≤ c4 h1/2
e ‖χ‖1,∆S(e) ,

for each T ∈ T S
h and for each e ∈ E(T ), imply the required estimates and finish the proof.
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Lemma 4.3.7 Let w ∈ H1(ΩD) and β ∈ H1(ΩD). Then there hold

|R2(w − ΠD
h w)| ≤ c1

∑

T∈T D
h

hT ‖K−1 uD,h‖0,T ‖w‖1,T + c2

∑

e∈Eh(Σ)

h1/2
e ‖pD,h − λh‖0,e ‖w‖1,Te ,

and
|R2(curl (β − ID

h β))| ≤ c3

∑

T∈T D
h

hT ‖rot (K−1 uD,h)‖0,T ‖β‖1,∆D(T )

+ c4

∑

e∈Eh(ΩD)

h1/2
e ‖[K−1 uD,h · t]‖0,e ‖β‖1,∆D(e)

+ c4

∑

e∈Eh(Σ)

h1/2
e

∥∥K−1 uD,h · t + λ′
h

∥∥
0,e

‖β‖1,∆D(e) .

Proof. Since R1 and R2 have analogue structures, the proof proceeds similarly as for Lemma

4.3.6.

We are now in a position to bound the residual functionals R1 and R2.

Lemma 4.3.8 There exists C1 > 0, independent of h, such that

‖R1‖H(div;ΩS)′ ≤ C1





∑

T∈T S
h

Θ̂2
S,T





1/2

, (4.24)

where, for each T ∈ T S
h :

Θ̂2
S,T := h2

T ‖rotσd
S,h‖2

0,T + h2
T ‖σd

S,h‖2
0,T

+
∑

e∈E(T )∩Eh(ΩS)

he ‖[σd
S,ht]‖2

0,e +
∑

e∈E(T )∩Eh(ΓS)

he ‖σd
S,ht‖2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥ν−1σd
S,ht + ϕ′

h

∥∥∥
2

0,e
+ he ‖uS,h + ϕh‖2

0,e

}

Proof. Given τ S ∈ H(div; ΩS) we know from Lemma 4.3.3 that there exist η ∈ H
1(ΩS) and

χ ∈ H1(ΩS) such that τ S = η + curlχ in ΩS and

‖η‖1,ΩS
+ ‖χ‖1,ΩS

≤ C ‖τ S‖div ;ΩS
. (4.25)

Then, since R1(τ S,h) = 0 ∀ τ S,h ∈ Hh(ΩS), which follows from the first equation of the

Galerkin scheme (4.11) taking (vD, ψ, ξ) = (0,0,0), we obtain

R1(τ S) = R1(τ S − τ S,h) ∀ τ S,h ∈ Hh(ΩS) . (4.26)

In particular, we let τ S,h := ΠS
hη + curl (IS

hχ), which can be seen as a discrete Helmholtz

decomposition of τ S,h, and obtain

R1(τ S) = R1(η − ΠS
hη) + R1(curl (χ − IS

hχ)) . (4.27)
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Hence, applying Lemma 4.3.6 and noticing that the numbers of triangles in #∆S(T ) and #∆S(e)

are bounded, and finally using the estimate (4.25), we prove the upper bound (4.24).

Lemma 4.3.9 There exists C2 > 0, independent of h, such that

‖R2‖HΓD
(div;ΩD)′ ≤ C2





∑

T∈T D
h

Θ̂2
D,T





1/2

, (4.28)

where, for each T ∈ T D
h :

Θ̂2
D,T := h2

T ‖rot (K−1uD,h)‖2
0,T + h2

T ‖K−1uD,h‖2
0,T +

∑

e∈E(T )∩Eh(ΩD)

he

∥∥[K−1uD,h · t]
∥∥2

0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥K−1uD,h · t + λ′
h

∥∥2

0,e
+ he ‖pD,h − λh‖2

0,e

}
.

Proof. It follows basically the same lines of the proof of Lemma 4.3.8. In fact, given vD ∈
HΓD

(div; ΩD) we first apply Lemma 4.3.3 to deduce the existence of w ∈ H1(ΩD) and β ∈
H1(ΩD) such that vD = w + curlβ and

‖w‖1,ΩD
+ ‖β‖1,ΩD

≤ C ‖vD‖div ;ΩD
. (4.29)

Then, since R2(vD,h) = 0 ∀vD,h ∈ Hh(ΩD), which corresponds to the first equation of the

Galerkin scheme (4.11) with (τ S, ψ, ξ) = (0,0,0), we obtain

R2(vD) = R2(vD − vD,h) ∀vD,h ∈ Hh(ΩD) . (4.30)

Next, we choose vD,h = ΠD
h w + curl

(
ID
h β

)
, notice that

R2(vD) = R2(w − ΠD
h w) + R2

(
curl (β − ID

h β)
)

,

and apply Lemma 4.3.7. Noticing again that the number of triangles in ∆D(T ) and ∆D(e) are

bounded, and employing now the upper bound (4.29), we conclude (4.28).

We end this section by observing that the reliability estimate (4.14) (cf. Theorem 4.3.1) is a

direct consequence of Lemmas 4.3.1, 4.3.2, 4.3.8, and 4.3.9.

4.3.2 Efficiency of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 4.3.2 There exists Ceff > 0, independent of h, such that

Ceff Θ ≤ ‖σ − σh‖X + ‖u − uh‖M + h.o.t. , (4.31)

where h.o.t. stands, eventually, for one or several terms of higher order.
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We remark in advance that the proof of (4.31) makes frequent use of the identities provided by

Theorem 4.2.2. We begin with the estimates for the zero order terms appearing in the definition

of Θ2
S,T and Θ2

D,T .

Lemma 4.3.10 There hold

‖fS + div σS,h‖0,T ≤ ‖σS − σS,h‖div ;T ∀T ∈ TS,h

and

‖fD − div uD,h‖0,T ≤ ‖uD − uD,h‖div ;T ∀T ∈ TD,h .

Proof. It suffices to recall, as established by Theorem 4.2.2, that fS = −div σS in ΩS and

fD = div uD in ΩD.

In order to derive the upper bounds for the remaining terms defining the global a posteriori

error estimator Θ (cf. (4.13), we proceed similarly as in [15], using results from [25], [28] and

[40], and apply Helmholtz decomposition, inverse inequalities, and the localization technique

based on element-bubble and edge-bubble functions. To this end, we now introduce further

notations and preliminary results. Given T ∈ T S
h ∪ T D

h and e ∈ E(T ), we let φT and φe be

the usual element-bubble and edge-bubble functions, respectively (see (1.5) and (1.6) in [81]).

In particular, φT satisfies φT ∈ P3(T ), suppφT ⊆ T , φT = 0 on ∂T , and 0 ≤ φT ≤ 1 in

T . Similarly, φe|T ∈ P2(T ), supp φe ⊆ we := ∪{T ′ ∈ T : e ∈ E(T ′)}, φe = 0 on ∂T\e,
and 0 ≤ φe ≤ 1 in we. We also recall from [80] that, given k ∈ N ∪ {0}, there exists an

extension operator L : C(e) → C(T ) that satisfies L(p) ∈ Pk(T ) and L(p)|e = p ∀ p ∈ Pk(e).

A corresponding vector version of L, that is the componentwise application of L, is denoted by

L. Additional properties of φT , φe, and L are collected in the following lemma.

Lemma 4.3.11 Given k ∈ N ∪ {0}, there exist positive constants c1, c2 and c3, depending

only on k and the shape regularity of the triangulations (minimum angle condition), such that

for each triangle T and e ∈ E(T ), there hold

‖q‖2
0,T ≤ c1 ‖φ1/2

T q‖2
0,T ∀ q ∈ Pk(T ), (4.32)

‖q‖2
0,e ≤ c2 ‖φ1/2

e q‖2
0,e ∀ q ∈ Pk(e), (4.33)

and

‖φ1/2
e L(q)‖2

0,T ≤ c3 he‖q‖2
0,e ∀ q ∈ Pk(e) . (4.34)

Proof. See Lemma 1.3 in [80].

The following inverse estimate for polynomials will also be used.
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Lemma 4.3.12 Let k, l, m ∈ N ∪ {0} such that l ≤ m. Then, there exists c > 0, depending

only on k, l, m and the shape regularity of the triangulations, such that for each triangle T there

holds

|q|m,T ≤ c hl−m
T |q|l,T ,∀ q ∈ Pk(T ) . (4.35)

Proof. See Theorem 3.2.6 in [29].

In addition, we need to recall a discrete trace inequality, which establishes the existence of a

positive constant c, depending only on the shape regularity of the triangulations, such that for

each T ∈ T S
h ∪ T D

h and e ∈ E(T ), there holds

‖v‖2
0,e ≤ c

{
h−1

e ‖v‖2
0,T + he |v|21,T

}
∀ v ∈ H1(T ) . (4.36)

For a proof of inequality (4.36) we refer to Theorem 3.10 in [1] (see also eq. (2.4) in [5]).

The following lemma summarizes known efficiency estimates for ten terms defining Θ2
S,T and

Θ2
D,T . Their proofs, which apply the preliminary results described above, are already available

in the literature (see, e.g. [15], [18], [25], [40], [42], [47]). From now on we assume, without loss

of generality, that K−1 uD,h is polynomial on each T ∈ T D
h . Otherwise, additional higher order

terms, given by the errors arising from suitable polynomial approximations, should appear in

the corresponding bounds below, which explains the expression h.o.t. in (4.31).

Lemma 4.3.13 There exist positive constants Ci , i ∈ {1, ..., 10}, independent of h, such that

a) h2
T ‖rot (K−1 uD,h)‖2

0,T ≤ C1 ‖uD − uD,h‖2
0,T ∀T ∈ T D

h ,

b) h2
T ‖rotσd

S,h‖2
0,T ≤ C2 ‖σS − σS,h‖2

0,T ∀T ∈ T S
h ,

c) he |[K−1 uD,h · t]‖2
0,e ≤ C3 ‖uD −uD,h‖2

0,we
∀ e ∈ Eh(ΩD), where the set we is given by

we := ∪
{

T ′ ∈ T D
h : e ∈ E(T ′)

}
,

d) he ‖[σd
S,ht]‖2

0,e ≤ C4 ‖σS − σS,h‖2
0,we

∀e ∈ Eh(ΩS), where the set we is given by

we := ∪
{

T ′ ∈ T S
h : e ∈ E(T ′)

}
,

e) he ‖σd
S,ht‖2

0,e ≤ C5 ‖σS − σS,h‖2
0,T ∀e ∈ Eh(ΓS), where T is the triangle of T S

h having

e as an edge,

f) h2
T ‖K−1 uD,h‖2

0,T ≤ C6

{
‖pD − pD,h‖2

0,T + h2
T ‖uD − uD,h‖2

0,T

}
∀T ∈ T D

h ,

g) h2
T ‖σd

S,h‖2
0,T ≤ C7

{
‖uS − uS,h‖2

0,T + h2
T ‖σS − σS,h‖2

0,T

}
∀T ∈ T S

h ,

h) he ‖pD,h−λh‖2
0,e ≤ C8

{
‖pD−pD,h‖2

0,T + h2
T ‖uD−uD,h‖2

0,T + he ‖λ−λh‖2
0,e

}
∀e ∈ Eh(Σ),

where T is the triangle of T D
h having e as an edge,
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i)
∑

e∈Eh(Σ)

he

∥∥K−1 uD,h · t + λ′
h

∥∥2

0,e
≤ C9





∑

e∈Eh(Σ)

‖uD − uD,h‖2
0,Te

+ ‖λ − λh‖2
1/2,Σ



 ,

where, given e ∈ Eh(Σ), Te is the triangle of T D
h having e as an edge, and

j)
∑

e∈Eh(ΓS)

he

∥∥∥ν−1σd
S,ht + ϕ′

h

∥∥∥
2

0,e
≤ C10





∑

e∈Eh(ΓS)

‖σS − σS,h‖2
0,Te

+ ‖ϕ − ϕh‖2
1/2,Σ



 ,

where, given e ∈ Eh(ΓS), Te is the triangle of T S
h having e as an edge.

Proof. For a) and b) we refer to [25, Lemma 6.1]. Alternatively, a) and b) follow from straight-

forward applications of the technical result provided in [18, Lemma 4.3] (see also [47, Lemma

4.9]). Similarly, for c), d), and e) we refer to [25, Lemma 6.2] or apply the technical result given

by [18, Lemma 4.4] (see also [47, Lemma 4.10]). Then, for f) and g) we refer to [25, Lemma

6.3] (see also [47, Lemma 4.13] or [40, Lemma 5.5]). On the other hand, the estimate given

by h) corresponds to [15, Lemma 4.12]. In particular, its proof makes use of the discrete trace

inequality (4.36). Finally, the proofs of i) and j) follow from very slight modifications of the

proof of [40, Lemma 5.7]. Alternatively, an elasticity version of i) and j), which is provided in

[42, Lemma 20], can also be adapted to our case.

The estimates i) and j) in the previous lemma provide the only non-local bounds of the

present efficiency analysis. However, under additional regularity assumptions on λ and ϕ, we

can give the following local bounds instead.

Lemma 4.3.14 Assume that λ|e ∈ H1(e) for each e ∈ Eh(Σ), and that ϕ|e ∈ H1(e) for each

e ∈ Eh(ΓS). Then there exist C̃9, C̃10 > 0, such that

he

∥∥K−1 uD,h · t + λ′
h

∥∥2

0,e
≤ C̃9

{
‖uD − uD,h‖2

0,Te
+ he

∥∥λ′ − λ′
h

∥∥2

0,e

}
∀ e ∈ Eh(Σ) ,

and

he

∥∥∥ν−1σd
S,ht + ϕ′

h

∥∥∥
2

0,e
≤ C̃10

{
‖σS − σS,h‖2

0,Te
+ he

∥∥ϕ′ − ϕ′
h

∥∥2

0,e

}
∀ e ∈ Eh(ΓS) .

Proof. Similarly as for i) and j) from Lemma 4.3.13, it follows by adapting the corresponding

elasticity version from [42]. We omit details here and refer to [42, Lemma 21].

It remains to provide the efficiency estimates for three residual terms defined on the edges

of the interface Σ. They have to do with the transmision conditions and with the trace equation

uS + ϕ = 0 on Σ. More precisely, we have the following lemmas.
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Lemma 4.3.15 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ), there

holds

he ‖uD,h · n + ϕh · n‖2
0,e ≤ C

{
‖uD − uD,h‖2

0,T + h2
T ‖div (uD − uD,h)‖2

0,T + he ‖ϕ − ϕh‖2
0,e

}
,

where T is the triangle of T D
h having e as an edge.

Proof. We proceed similarly as in [15, Lemma 4.7]. Given e ∈ Eh(Σ), we let T be the triangle of

T D
h having e as an edge, and define ve := uD,h ·n + ϕh ·n on e. Then, applying (4.33), recalling

that φe = 0 on ∂T\e, extending φe L(ve) by zero in ΩD\T so that the resulting function belongs

to H1(ΩD), and using that uD · n + ϕ · n = 0 on Σ, we get

‖ve‖2
0,e ≤ c2 ‖φ1/2

e ve‖2
0,e = c2

∫

e
φe ve (uD,h · n + ϕh · n) = c2 〈uD,h · n + ϕh · n, φe L(ve)〉Σ

= c2 〈uD,h · n − uD · n, φe L(ve)〉Σ + c2 〈ϕh · n − ϕ · n, φe L(ve)〉Σ .

(4.37)

Next, integrating by parts in ΩD, and noting that
(
ϕh ·n−ϕ ·n

)
∈ L2(Σ), we find, respectively,

that

〈uD,h · n − uD · n, φe L(ve)〉Σ =

∫

T
∇

(
φe L(ve)

)
· (uD,h − uD) +

∫

T
φe L(ve) div (uD,h − uD) ,

and

〈ϕh · n − ϕ · n, φe L(ve)〉Σ =

∫

e

(
ϕh · n − ϕ · n

)
φe ve .

Thus, replacing the above expressions back into (4.37), applying the Cauchy-Schwarz inequality

and the inverse estimate (4.35), and recalling that 0 ≤ φe ≤ 1, we obtain

‖ve‖2
0,e ≤ C

{
h−1

T ‖uD −uD,h‖0,T + ‖div (uD −uD,h)‖0,T

}
‖φeL(ve)‖0,T + c ‖ve‖0,e ‖ϕ−ϕh‖0,e.

But, using again that 0 ≤ φe ≤ 1 and thanks to (4.34), we get

‖φe L(ve)‖0,T ≤ ‖φ1/2
e L(ve)‖0,T ≤ c

1/2
3 h1/2

e ‖ve‖0,e , (4.38)

whence the previous inequality yields

‖ve‖0,e ≤ C h1/2
e

{
h−1

T ‖uD − uD,h‖0,T + ‖div (uD − uD,h)‖0,T

}
+ c ‖ϕ − ϕh‖0,e .

Finally, it is easy to see that this estimate and the fact that he ≤ hT imply the required upper

bound for he ‖ve‖2
0,e, which finishes the proof.

Lemma 4.3.16 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ), there

holds

he ‖σS,h n + λh n − ν κ−1 (ϕh · t) t‖2
0,e

≤ C
{
‖σS − σS,h‖2

0,T + h2
T ‖div (σS − σS,h)‖2

0,T + he ‖λ − λh‖2
0,e + he ‖ϕ − ϕh‖2

0,e

}
,

where T is the triangle of T S
h having e as an edge.
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Proof. We proceed as in the previous lemma (see also [15, Lemma 4.6]). Indeed, given e ∈ Eh(Σ),

we let T be the triangle of T S
h having e as an edge, and define ve := σS,h n+ λh n− ν κ−1 (ϕh·t) t

on e. Then, applying (4.33), recalling that φe = 0 on ∂T\e, extending φe L(ve) by zero in ΩS\T
so that the resulting function belongs to H1(ΩS), using that σS n + λn − ν κ−1 (ϕ · t) t = 0

on Σ, and then integrating by parts in ΩS, we arrive at

‖ve‖2
0,e ≤ c2 ‖φ1/2

e ve‖2
0,e = c2

∫

e
φe ve ·

{
σS,h n + λh n − ν κ−1 (ϕh · t) t

}

= c2

∫

T
∇(φe L(ve)) : (σS,h − σS) + c2

∫

T
φe L(ve) · div (σS,h − σS)

+ c2

∫

e
φe ve ·

{
(λh − λ)n − ν κ−1 (ϕh · t − ϕ · t) t

}
.

Next, applying the Cauchy-Schwarz inequality and the inverse estimate (4.35), recalling that

0 ≤ φe ≤ 1, and employing the vector version of (4.38), we deduce that

‖ve‖0,e ≤ C h1/2
e

{
h−1

T ‖σS − σS,h‖0.T + ‖div (σS − σS,h)‖0,T

}

+ C
{
‖λ − λh‖0,e + ‖ϕ − ϕh‖0,e

}
,

which easily yields the required estimate, thus finishing the proof.

Lemma 4.3.17 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ), there

holds

he ‖uS,h + ϕh‖2
0,e ≤ C

{
‖uS − uS,h‖2

0,T + h2
T ‖σS − σS,h‖2

0,T + he ‖ϕ − ϕh‖2
0,e

}
,

where T is the triangle of T S
h having e as an edge.

Proof. Let e ∈ Eh(Σ) and let T be the triangle of T S
h having e as an edge. We follow the proof

of [15, Lemma 4.12] and obtain first an upper bound of h2
T |uS − uS,h|21,T . Indeed, using that

∇uS = ν−1 σd
S in ΩS (cf. Theorem 4.2.2) and that uS,h is constant in T , adding and substracting

σd
S,h, and then applying the estimate g) from Lemma 4.3.13, we deduce that

h2
T |uS − uS,h|21,T =

h2
T

ν2
‖σd

S‖2
0,T ≤ C h2

T

{
‖σS − σS,h‖2

0,T + ‖σd
S,h‖2

0,T

}

≤ C
{
‖uS − uS,h‖2

0,T + h2
T ‖σS − σS,h‖2

0,T

}
.

(4.39)

Next, since ϕ = −uS on Σ (cf. Theorem 4.2.2), we find that

he ‖uS,h + ϕh‖2
0,e ≤ 2 he

{
‖uS − uS,h‖2

0,e + ‖ϕ − ϕh‖2
0,e

}
,

which, employing the discrete trace inequality (4.36) and the estimate (4.39), yields

he ‖uS,h + ϕh‖2
0,e ≤ C

{
‖uS − uS,h‖2

0,T + h2
T |uS − uS,h|21,T + he ‖ϕ − ϕh‖2

0,e

}

≤ C
{
‖uS − uS,h‖2

0,T + h2
T ‖σS − σS,h‖2

0,T + he ‖ϕ − ϕh‖2
0,e

}
,
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which completes the proof.

We end this section by observing that the efficiency estimate (4.31) follows straightforwardly

from Lemmas 4.3.10, 4.3.13, 4.3.15, 4.3.16, and 4.3.17. In particular, the terms he ‖λ−λh‖2
0,e and

he ‖ϕ−ϕh‖2
0,e, which appear in Lemma 4.3.13 (item h)), 4.3.15, 4.3.16, and 4.3.17, are bounded

as follows: ∑

e∈Eh(Σ)

he ‖λ − λh‖2
0,e ≤ h ‖λ − λh‖2

0,Σ ≤ C h ‖λ − λh‖2
1/2,Σ ,

and ∑

e∈Eh(Σ)

he ‖ϕ − ϕh‖2
0,e ≤ h ‖ϕ − ϕh‖2

0,Σ ≤ C h ‖ϕ − ϕh‖2
1/2,Σ .

4.4 Numerical results

In [49, Section 5] we presented several numerical results illustrating the performance of the

Galerkin scheme (4.11) with the subspaces Xh := Hh(ΩS) × Hh(ΩD) × Λh(Σ) × Λh(Σ) and

Mh := Lh(ΩS) × Lh,0(ΩD) defined in Section 4.2.3. We now provide three examples confirming

the reliability and efficiency of the respective a posteriori error estimator Θ derived in Section

4.3, and showing the behaviour of the associated adaptive algorithm.

In what follows, N stands for the number of degrees of freedom defining Xh and Mh. The

solution of (4.5) and (4.11) are denoted

(σ,u) := ((σS,uD, ϕ, λ), (uS, pD)) ∈ X × M

and

(σh,uh) := ((σS,h,uD,h, ϕh, λh), (uS,h, pD,h)) ∈ Xh × Mh.

The separate and total errors are defined by:

e(σS) := ‖σS − σS,h‖div ,ΩS
, e(uS) := ‖uS − uS,h‖div ;ΩS

,

e(uD) := ‖uD − uD,h‖div ;ΩD
, e(pD) := ‖pD − pD,h‖0,ΩD

,

e(ϕ) := ‖ϕ − ϕh‖1/2,Σ , e(λ) := ‖λ − λh‖1/2,Σ ,

and

e(σ,u) :=
{

(e(σS))
2 + (e(uS))

2 + (e(uD))2 + (e(pD))2 + (e(ϕ))2 + (e(λ))2
}1/2

.

The effectivity index with respect to Θ is given by

eff(Θ) := e(σ,u)/Θ .
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Also, we let r(σS), r(uS), r(uD), r(pD), r(ϕ), r(λ), and r(σ,u) be the individual and global

experimental rates of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
σS,uS,uD, pD, ϕ, λ

}
,

and

r(σ,u) :=
log(e(σ,u)/e′(σ,u))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e
′. However, when the

adaptive algorithm is applied (see details below), the expression log(h/h′) appearing in the

computation of the above rates is replaced by − 1
2 log(N/N ′), where N and N ′ denote the

corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them we choose

ν = 1, K = I and κ = 1. Example 1 is used to corroborate the reliability and efficiency of the

a posteriori error estimator Θ. Examples 2 and 3 are utilized to illustrate the behavior of the

associated adaptive algorithm, which applies the following procedure from [81]:

1) Start with a coarse mesh Th := T D
h ∪ T S

h .

2) Solve the discrete problem (4.11) for the current mesh Th.

3) Compute ΘT := Θ⋆,T for each triangle T ∈ T ⋆
h , ⋆ ∈ {D, S}.

4) Check the stopping criterion and decide whether to finish or go to next step.

5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥ 1

2
max
T∈Th

{ΘT : T ∈ Th } .

6) Define resulting meshes as current meshes T D
h and T S

h , and go to step 2.

In Example 1 we consider the regions ΩD := (−0.5, 0.5)2 and ΩS := (−1, 1)2 \ Ω̄D, which

yields a porous medium completely surrounded by a fluid, and choose the data fS and fD so

that the exact solution is given by the smooth functions

uS(x) =




−2 sin2(πx1) sin(πx2) cos(πx2)

2 sin(πx1) sin2(πx2) cos(πx1)


 ∀x := (x1, x2) ∈ ΩS ,

pS(x) = x3
1 ex2 ∀x := (x1, x2) ∈ ΩS ,
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and

pD(x) = x3
1 sin(x2) ∀x := (x1, x2) ∈ ΩD .

In Example 2 we consider ΩD := (−1, 0)2 and let ΩS be the L-shaped domain given by

(−1, 1)2 \ Ω̄D, which yields a porous medium partially surrounded by a fluid. Then we choose

the data fS and fD so that the exact solution is given by

uS(x) = curl
(
0.1

(
x2

2 − 1
)2

sin2(πx1)
)

∀x := (x1, x2) ∈ ΩS ,

pS(x) =
1

100 (x2
1 + x2

2) + 0.1
∀x := (x1, x2) ∈ ΩS ,

and

pD(x) =

(
x1 + 1

10

)2

sin3(2π (x2 + 0.5)) ∀x := (x1, x2) ∈ ΩD .

Note that the fluid pressure pS has high gradients around the origin.

Finally, in Example 3 we take ΩD := (−1, 1) × (−2,−1) and ΩS := (−1, 1)2 \ [0, 1]2, which

yields a porous medium below a fluid, and choose the data fS and fD so that the exact solution

is given by

uS(r, θ) = curl

(
0.1 r5/3 (r2 cos2(θ) − 1)2 (r sin(θ) − 1)2 sin2

(
2θ − π

3

) )
∀ (r, θ) ∈ ΩS ,

pS(x) = 0.1 x1 sin(x2) ∀x := (x1, x2) ∈ ΩS ,

and

pD(x) = 0.1 (x2 + 2)2 sin3(πx1) ∀x := (x1, x2) ∈ ΩD .

Note that uS is defined in polar coordinates and that its derivatives are singular at the origin.

The numerical results shown below were obtained using a MATLAB code. In Table 4.1 we

summarize the convergence history of the mixed finite element method (4.11), as applied to

Example 1, for a sequence of quasi-uniform triangulations of the domain. We observe there,

looking at the corresponding experimental rates of convergence, that the O(h) predicted by

Theorem 4.2.3 (here δ = 1) is attained in all the unknowns. In addition, we notice that the

effectivity index eff(Θ) remains always in a neighborhood of 0.91, which illustrates the reliability

and efficiency of Θ in the case of a regular solution.

Next, in Tables 4.2 - 4.5 we provide the convergence history of the quasi-uniform and adaptive

schemes, as applied to Examples 2 and 3. We observe that the errors of the adaptive procedures

decrease faster than those obtained by the quasi-uniform ones, which is confirmed by the global

experimental rates of convergence provided there. This fact is also illustrated in Figures 4.2
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Table 4.1: Example 1, quasi-uniform scheme

N h e(σS) r(σS) e(uS) r(uS) e(uD) r(uD) e(pD) r(pD)

321 0.5000 35.4015 − 0.6875 − 0.1996 − 0.0117 −
1201 0.2500 20.0107 0.8647 0.4266 0.7234 0.1121 0.8743 0.0057 1.0798

4641 0.1250 10.0700 1.0160 0.1615 1.4370 0.0531 1.1046 0.0023 1.3213

18241 0.0625 5.0492 1.0087 0.0801 1.0238 0.0259 1.0490 0.0011 1.0967

72321 0.0312 2.5268 1.0052 0.0401 1.0064 0.0129 1.0178 0.0005 1.0234

288001 0.0156 1.2637 1.0029 0.0200 1.0031 0.0064 1.0062 0.0003 1.0062

N h e(ϕ) r(ϕ) e(λ) r(λ) e(σ,u) r(σ,u) Θ eff(Θ)

321 0.5000 4.2653 − 0.0981 − 35.6649 − 39.0015 0.9144

1201 0.2500 4.3919 − 0.0973 0.0124 20.4920 0.8399 22.6847 0.9033

4641 0.1250 1.7410 1.3690 0.0537 0.8781 10.2209 1.0292 11.1965 0.9129

18241 0.0625 0.8088 1.1202 0.0259 1.0670 5.1144 1.0117 5.5954 0.9140

72321 0.0312 0.3949 1.0408 0.0126 1.0516 2.5579 1.0060 2.7969 0.9145

288001 0.0156 0.1962 1.0123 0.0062 1.0266 1.2791 1.0031 1.3982 0.9148

and 4.4 where we display the total errors e(σ,u) vs. the number of degrees of freedom N for

both refinements. As shown by the values of r(σ,u), the adaptive method is able to keep the

quasi-optimal rate of convergence O(h) for the total error. Furthermore, the effectivity indexes

remain bounded from above and below, which confirms the reliability and efficiency of Θ in these

cases of non-smooth solutions. Intermediate meshes obtained with the adaptive refinements are

displayed in Figures 4.3 and 4.5. Note that the method is able to recognize the region with high

gradients in Example 2, and the singularity of the solution in Example 3.
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Table 4.2: Example 2, quasi-uniform scheme

N h e(σS) e(uS) e(uD) e(pD) e(ϕ) e(λ)

608 0.3536 4.5187 0.1198 0.2649 0.0184 0.5760 0.1120

2332 0.1768 4.9963 0.0529 0.1520 0.0035 0.2653 0.0347

9140 0.0884 6.7481 0.0253 0.0778 0.0005 0.1485 0.0096

36196 0.0442 4.2857 0.0125 0.0392 0.0002 0.0771 0.0042

144068 0.0221 2.4834 0.0062 0.0196 0.0001 0.0348 0.0022

N h e(σ,u) r(σ,u) Θ eff(Θ)

608 0.3536 4.5660 − 5.4033 0.8450

2332 0.1768 5.0060 − 5.2805 0.9480

9140 0.0884 6.7503 − 6.8230 0.9894

36196 0.0442 4.2866 0.6599 4.3158 0.9932

144068 0.0221 2.4837 0.7901 2.4958 0.9952

1
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100 1000 10000 100000

N

quasi-uniform refinement
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3
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+
++
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Figure 4.2: Example 2, e(σ,u) vs. N for quasi-uniform/adaptive schemes
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Table 4.3: Example 2, adaptive scheme

N e(σS) e(uS) e(uD) e(pD) e(ϕ) e(λ)

608 4.5188 0.1199 0.2649 0.0184 0.5760 0.1121

1118 5.3792 0.0709 0.2262 0.0091 0.3185 0.0402

1391 7.2290 0.0661 0.2098 0.0082 0.2846 0.0215

1636 5.1151 0.0657 0.2094 0.0110 0.2591 0.0236

1884 3.9177 0.0657 0.2093 0.0108 0.2577 0.0229

3558 2.6519 0.0491 0.2020 0.0037 0.1626 0.0128

7164 1.8814 0.0320 0.1751 0.0067 0.1160 0.0171

13073 1.3945 0.0237 0.1591 0.0034 0.0742 0.0109

26227 0.9771 0.0165 0.1222 0.0030 0.0730 0.0103

35611 0.8163 0.0140 0.1089 0.0018 0.0384 0.0075

55318 0.6608 0.0114 0.0808 0.0005 0.0375 0.0039

70434 0.5825 0.0099 0.0747 0.0005 0.0357 0.0038

149402 0.4052 0.0070 0.0548 0.0003 0.0208 0.0023

N e(σ,u) r(σ,u) Θ eff(Θ)

608 4.5660 − 5.4033 0.8450

1118 5.3940 − 5.7977 0.9304

1391 7.2379 − 7.4956 0.9656

1636 5.1264 4.2524 5.4334 0.9435

1884 3.9324 3.7572 4.3145 0.9114

3558 2.6650 1.2238 2.9662 0.8985

7164 1.8934 0.9768 2.0913 0.9054

13073 1.4057 0.9902 1.5394 0.9132

26227 0.9876 1.0142 1.0951 0.9018

35611 0.8246 1.1796 0.9191 0.8972

55318 0.6669 0.9637 0.7388 0.9026

70434 0.5885 1.0359 0.6505 0.9046

149402 0.4095 0.9644 0.4550 0.8999
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Figure 4.3: Example 2, adapted meshes with 1884, 7164, 26227, and 55318 degrees of freedom
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Table 4.4: Example 3, quasi-uniform scheme

N h e(σS) e(uS) e(uD) e(pD) e(ϕ) e(λ)

344 0.5000 16.8563 0.4452 0.7130 0.0674 1.8109 0.1615

1324 0.2500 11.3317 0.3329 0.3846 0.0130 2.5160 0.0826

5204 0.1250 7.0011 0.0849 0.1980 0.0038 0.8665 0.0458

20644 0.0625 4.4530 0.0412 0.0992 0.0018 0.3859 0.0203

82244 0.0312 2.8037 0.0206 0.0496 0.0009 0.1877 0.0097

N h e(σ,u) r(σ,u) Θ eff(Θ)

344 0.5000 16.9751 − 18.8901 0.8986

1324 0.2500 11.6191 0.5626 13.1132 0.8861

5204 0.1250 7.0579 0.7284 7.8041 0.9044

20644 0.0625 4.4711 0.6626 5.0014 0.8940

82244 0.0312 2.8105 0.6717 3.1653 0.8879

1
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100 1000 10000 100000
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Figure 4.4: Example 3, e(σ,u) vs. N for quasi-uniform/adaptive schemes
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Table 4.5: Example 3, adaptive scheme

N e(σS) e(uS) e(uD) e(pD) e(ϕ) e(λ)

344 16.8564 0.4453 0.7131 0.0675 1.8109 0.1616

684 11.8048 0.3406 0.5828 0.0177 2.5165 0.0863

1367 10.6242 0.1330 0.4426 0.0099 0.8682 0.0530

1625 10.4486 0.1314 0.4426 0.0099 0.8682 0.0530

1863 10.3440 0.1278 0.4426 0.0098 0.8678 0.0530

2291 9.2480 0.1173 0.4427 0.0097 0.8672 0.0526

3109 7.5456 0.1013 0.4425 0.0098 0.8670 0.0522

11719 3.9053 0.0530 0.3296 0.0072 0.3875 0.0271

34611 2.2713 0.0202 0.2614 0.0058 0.1901 0.0092

60159 1.7281 0.0153 0.1723 0.0034 0.1759 0.0083

79482 1.5031 0.0111 0.1644 0.0032 0.1154 0.0072

115241 1.2620 0.0167 0.1498 0.0019 0.1101 0.0055

182014 0.9954 0.0130 0.1226 0.0012 0.0900 0.0027

N e(σ,u) r(σ,u) Θ eff(Θ)

344 16.9751 − 18.8901 0.8986

684 12.0893 0.9877 13.6112 0.8882

1367 10.6698 0.3608 11.3264 0.9420

1625 10.4949 0.1912 11.1221 0.9436

1863 10.3907 0.1460 10.8244 0.9599

2291 9.3000 1.0724 9.9113 0.9383

3109 7.6090 1.3146 8.2092 0.9269

11719 3.9388 1.0924 4.2413 0.9362

34611 2.2943 0.9981 2.4691 0.9292

60159 1.7456 0.9889 1.8902 0.9235

79482 1.5165 1.0102 1.5941 0.9513

115241 1.2757 0.9309 1.3418 0.9507

182014 1.0070 1.0350 1.0817 0.9309
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Figure 4.5: Example 3, adapted meshes with 1863, 3109, 11719, and 60159 degrees of freedom



Chapter 5

A twofold saddle point approach for

the coupling of fluid flow with

nonlinear porous media flow

5.1 Introduction

The development of appropriate numerical methods for the coupling of fluid flow (modeled by

the Stokes equation) with porous media flow (modeled by the Darcy equation) has become a very

active research area in recent years (see, e.g. [17], [34], [35], [37], [39], [45], [61], [63], [74], [78], [83]

and the references therein). The above list includes porous media with cracks, the incorporation

of the Brinkman equation in the model, and nonlinear problems. In particular, a mixed finite

element method for a nonlinear Stokes-Darcy flow problem is introduced and analized in [37].

The fluid, being considered non-Newtonian in both domains, is modeled there by the generalized

nonlinear Stokes equation in the free flow region and by the generalized nonlinear Darcy equation

in the porous medium. In addition, the approach in [37] employs the primal method in the Stokes

domain and the dual-mixed method in the Darcy region, which means that only the original

velocity and pressure unknowns are considered in the fluid, whereas a further unknown (velocity)

is added in the porous medium. The corresponding interface conditions are given, as usual lately,

by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. Further,

since one of these conditions becomes essential, the trace of the Darcy pressure on the interface

needs also to be incorporated as an additional Lagrange multiplier.

On the other hand, in the recent paper [49] we have developed the a priori error analysis of a

new fully-mixed variational formulation for the 2D Stokes-Darcy coupled problem. This approach

118



5.1 Introduction 119

allows, on the one hand, the introduction of further unknowns of physical interest, and on the

other hand, the utilization of the same family of finite element subspaces in both media, without

requiring any stabilization term. More precisely, in [49] we consider dual-mixed formulations in

both domains, which yields the pseudostress and the velocity in the fluid, together with the

velocity and the pressure in the porous medium, and the traces of the porous media pressure

and the fluid velocity on the interface, as the resulting unknowns. The pressure and the velocity

gradient in the fluid can then be computed as a very simple postprocess, in which no numerical

differentiation is applied, and hence no further sources of error arise.

Now, it is well known that in order to guarantee a good convergence behaviour of most finite

element solutions, specially under the eventual presence of singularities, one usually needs to

apply an adaptive algorithm based on a posteriori error estimates. These are represented by

global quantities θ that are expressed in terms of local indicators θT defined on each element T

of a given triangulation T . The estimator θ is said to be efficient (resp. reliable) if there exists

Ceff > 0 (resp. Crel > 0), independent of the meshsizes, such that

Ceff θ + h.o.t. ≤ ‖error‖ ≤ Crel θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order. In spite of

the many contributions available in the literature on the posteriori error analysis for variational

formulations with saddle-point structure, the first results concerning the Stokes-Darcy coupled

problem have been provided only in [15], where a reliable and efficient residual-based a poste-

riori error estimator for the variational formulation analyzed in [45] is derived. More recently,

and following some of the techniques from [15] together with classical approaches, a reliable

and efficient residual-based a posteriori error estimator for the fully-mixed variational method

introduced in [49] was provided in [50].

The purpose of the present paper is to extend the results from [49] and [50] to the case

of a nonlinear Stokes-Darcy coupled problem. More precisely, we develop the a priori and a

posteriori error analyses of the fully mixed formulation from [49], as applied to the coupling of

fluid flow with nonlinear porous media flow, where the nonlinearity in the latter region is given

by the corresponding permeability. For this purpose, we consider a dual-mixed formulation in

both domains, which yields the pseudostress and the velocity in the fluid, together with the

velocity, the pressure and its gradient in the porous medium, as the main unknowns. Moreover,

since the transmission conditions become essential, we impose them weakly and introduce the

traces of the porous medium pressure and the fluid velocity as the corresponding Lagrange

multipliers. As in [49], the remaining unknowns of physical interest can then be computed as

a very simple postprocess that makes no use of any numerical differentiation procedure. Then,
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the corresponding variational formulation can be written as a two-fold saddle point operator

equation, and hence the generalization of the Babuška-Brezzi theory developed in [41] is applied

to prove the well-posedness of the continuous and discrete schemes. Furthermore, using some

well known approaches (see, e.g. [8], [9], [10], [23], [25], [28], [43], [56], [64], [65], [72], [79],

and the references therein), we derive a reliable and efficient residual-based a posteriori error

estimator for our nonliner coupled problem. The proof of reliability makes use of a global inf-

sup condition for a linearized version of the problem, Helmholtz decompositions in both media,

and local approximation properties of the Clément interpolant and Raviart-Thomas operator.

On the other hand, inverse inequalities, the localization technique based on element-bubble and

edge-bubble functions, and known results from previous works, are the main tools for proving

the efficiency of the estimator.

The rest of this work is organized as follows. In Section 5.2 we introduce the model prob-

lem, show that the resulting variational formulation can be written as a two-fold saddle-point

operator equation, introduce an equivalent formulation, which is easier to analyze, and collect

the main results of the generalized Babuška-Brezzi theory developed in [41] (see also [53]). This

abstract framework is then applied in Section 5.3 to prove the unique solvability of the equivalent

formulation, which in turn yields the well posedness of our continuous problem. Next, in Section

5.4 we define the Galerkin scheme and derive general hypotheses on the finite element sub-

spaces ensuring that the discrete scheme becomes well posed. A specific choice of finite element

subspaces satisfying these assumptions, namely Raviart-Thomas of lowest order and piecewise

constants on both domains, and piecewise linears on the interface, is described in Section 5.5.

In Section 5.6 we derive the a posteriori error estimator and prove its reliability and efficiency.

Finally, the numerical results are presented in Section 5.7.

We end this section with some notations to be used below. In particular, in what follows we

utilize the standard terminology for Sobolev spaces. In addition, if O is a domain, Γ is a closed

Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2 , H
r(O) := [Hr(O)]2×2 , and Hr(Γ) := [Hr(Γ)]2 .

However, for r = 0 we usually write L2(O), L
2(O), and L2(Γ) instead of H0(O), H

0(O), and

H0(Γ), respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and

H
r(O)) and ‖ · ‖r,Γ (for Hr(Γ) and Hr(Γ)). Also, the Hilbert space

H(div ;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see, e.g. [19]). The space of matrix valued functions

whose rows belong to H(div ;O) will be denoted H(div ;O). The Hilbert norms of H(div ;O)
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and H(div ;O) are denoted by ‖ · ‖div ;O and ‖ · ‖div ;O, respectively. On the other hand, the

symbol for the L2(Γ) and L2(Γ) inner products

〈ξ, λ〉Γ :=

∫

Γ
ξ λ ∀ ξ, λ ∈ L2(Γ), 〈ξ, λ〉Γ :=

∫

Γ
ξ · λ ∀ ξ, λ ∈ L2(Γ)

will also be employed for their respective extensions as the duality products H−1/2(Γ)×H1/2(Γ)

and H−1/2(Γ)×H1/2(Γ). Hereafter, given a non-negative integer k and a subset S of R
2, Pk(S)

stands for the space of polynomials defined on S of degree ≤ k. Finally, we employ 0 as a

generic null vector, and use C, with or without subscripts, bars, tildes or hats, to mean generic

positive constants independent of the discretization parameters, which may take different values

at different places.

5.2 The continuous problem

5.2.1 Statement of the model problem

In order to describe the geometry, we let ΩS and ΩD be bounded and simply connected

polygonal domains in R
2 such that ∂ΩS ∩ ∂ΩD = Σ 6= ∅ and ΩS ∩ ΩD = ∅. Then, we let

ΓS := ∂ΩS\Σ̄, ΓD := ∂ΩD\Σ̄, and denote by n the unit normal vector on the boundaries,

which is chosen pointing outward from ΩS ∪Σ∪ΩD and ΩS (and hence inward to ΩD when seen

on Σ). On Σ we also consider a unit tangent vector t (see Figure 5.1 below).

ΓS

ΩS

Σ

ΩD

t

ΓD

n

n

n

Figure 5.1: The domains for our 2D Stokes–Darcy model

The model consists of two separate groups of equations and a set of coupling terms. In ΩS,

the governing equations are those of the Stokes problem, which are written in the following
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velocity-pressure-pseudostress formulation:

σS = − pS I + ν ∇uS in ΩS , div σS + fS = 0 in ΩS ,

div uS = 0 in ΩS , uS = 0 on ΓS ,

(5.1)

where ν > 0 is the viscosity of the fluid, uS is the fluid velocity, pS is the pressure, σS is the

pseudostress tensor, I is the 2×2 identity matrix, fS are known source terms, and div is the usual

divergence operator div acting row-wise on each tensor. Now, using that tr(∇uS) = div uS = 0

in ΩS, we notice that the equations in (5.1) can be rewritten equivalently as

ν−1 σd
S = ∇uS in ΩS , div σS + fS = 0 in ΩS ,

pS = − 1
2 trσS in ΩS , uS = 0 on ΓS ,

(5.2)

where tr stands for the usual trace of tensors, that is tr τ := τ11 + τ22, and

τ d := τ − 1
2 (tr τ ) I

is the deviatoric part of the tensor τ . On the other hand, in ΩD we consider the following

nonlinear Darcy model:

uD = −κ (·, |∇ pD|)∇ pD in ΩD , div uD = fD in ΩD ,

uD · n = 0 on ΓD ,
(5.3)

where uD and pD denote the velocity and pressure, respectively, κ : ΩD×R
+ → R is a nonlinear

operator representing the porous medium permeability, | · | stands for the Euclidean norm in R
2,

and fD are known source terms satisfying

∫

ΩD

fD = 0. Throughout the paper we assume that

κ ∈ C1(ΩD×R
+) and that there exist constants k0, k1 > 0 such that for all (x, ρ) ∈ ΩD×R

+:

k0 ≤ κ(x, ρ) ≤ k1 ,

k0 ≤ κ(x, ρ) + ρ
∂

∂ρ
κ(x, ρ) ≤ k1 , and

|∇xκ(x, ρ)| ≤ k1 .

(5.4)

In order to handle the nonlinearity in ΩD we proceed as in [41] (see also [44] and [53]),

and introduce the additional unknown tD := ∇pD in ΩD. In this way, the Darcy model is

rewritten as follows:

tD = ∇pD in ΩD , uD + κ (·, |tD|)tD = 0 in ΩD ,

div uD = fD in ΩD , uD · n = 0 on ΓD .
(5.5)
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Finally, the transmission conditions on Σ are given by

uS · n = uD · n on Σ ,

σS n + ν κ−1
f (uS · t) t = − pD n on Σ ,

(5.6)

where κf , the friction coefficient, is assumed to be constant.

5.2.2 The dual-mixed formulation

Let us first introduce further notations. In what follows, given ⋆ ∈ {S, D}, we denote

(u, v)⋆ :=

∫

Ω⋆

u v, (u,v)⋆ :=

∫

Ω⋆

u · v, (σ, τ )⋆ :=

∫

Ω⋆

σ : τ ,

where σ : τ = tr(σtτ ) =

2∑

ij=1

σijτij .

The unknows in the dual-mixed formulation will be the unknows of (5.2) without the pressure

pS and the three unknows in (5.5). Hence, the corresponding spaces will be:

σS ∈ H(div; ΩS), uS ∈ L2(ΩS), tD ∈ L2(ΩD) , uD ∈ HΓD
(div; ΩD), pD ∈ L2(ΩD) ,

where

HΓD
(div; ΩD) := {v ∈ H(div ; ΩD) : v · n = 0 on ΓD} .

In addition, we will need to define two unknowns on the coupling boundary

ϕ := −uS ∈ H1/2(Σ) , λ := pD ∈ H1/2(Σ) , (5.7)

where H1/2(Σ) := H
1/2
00 (Σ) × H

1/2
00 (Σ) and

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1(ΩS) , v = 0 on ΓS

}
.

Equivalently, if E0,S : H1/2(Σ) → L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ

0 on ΓS

∀ψ ∈ H1/2(Σ) ,

we have that

H
1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,

endowed with the norm ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. The dual space of H1/2(Σ) is denoted

by H
−1/2
00 (Σ). Note that, in principle, the spaces for uS and pD do not allow enough regularity

for the traces ϕ and λ to exist. However, solutions of (5.2) and (5.5) have these unknowns in

H1(ΩS) and H1(ΩD) respectively.
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Next, for the derivation of the weak formulation of (5.2)-(5.5)-(5.6), we begin by testing the

first equations of (5.2) and (5.5) with arbitrary τ S ∈ H(div; ΩS) and vD ∈ HΓD
(div; ΩD),

respectively. Thus, integrating by parts, and using the identity σd
S : τ S = σd

S : τ d
S, we obtain

ν−1 (σd
S, τ

d
S)S + (div τ S,uS)S + 〈τ S n, ϕ〉Σ = 0 ∀ τ S ∈ H(div; ΩS) , (5.8)

and

(tD,vD)D + (div vD, pD)D + 〈vD · n, λ〉Σ = 0 ∀vD ∈ HΓD
(div; ΩD) . (5.9)

In addition, the corresponding equilibrium equations become

(div σS,vS)S = − (fS,vS)S ∀vS ∈ L2(ΩS) , (5.10)

and

(div uD, qD)D = (fD, qD)D ∀ qD ∈ L2(ΩD) , (5.11)

whereas the transmission conditions from (5.6), being essential due to the mixed nature of

the coupled model, are imposed independently, which yields the introduction of the auxiliary

unknowns (5.7) as the associated Lagrange multipliers. According to this, we get the equations

〈ϕ · n, ξ〉Σ + 〈uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) (5.12)

and

〈σSn, ψ〉Σ + 〈ψ · n, λ〉Σ − ν κ−1
f 〈ψ · t, ϕ · t〉Σ = 0 ∀ψ ∈ H1/2(Σ) . (5.13)

Finally, the equation relating uD to the new unknown tD is incorporated by:

(κ(·, |tD|)tD, sD)D + (uD, sD)D = 0 ∀ sD ∈ L2(ΩD) . (5.14)

As a consequence of the above, we find that the resulting variational formulation reduces to

a nonlinear system of seven unknowns and seven equations given by the set (5.8) – (5.14).

However, it is easy to see that this system is not uniquely solvable since, given any solution

((σS, tD), (uS,uD, ϕ), (pD, λ)) and c ∈ R, ((σS−c I, tD), (uS,uD, ϕ), (pD+c, λ+c)) also becomes

a solution. In order to avoid this non-uniqueness from now on we require that the Darcy pressure

pD belongs to L2
0(ΩD) :=

{
v ∈ L2(ΩD) :

∫

ΩD

v = 0
}

.

Now, it is quite clear that there are many different ways of ordering the variational system

(5.8) – (5.14). Throughout the rest of the paper, and for convenience of the analysis, we adopt

one leading to a twofold saddle point structure. To this end, we group unknowns and spaces as

follows:
(σS, tD) ∈ X := H(div; ΩS) × L2(ΩD) ,

(uS,uD, ϕ) ∈ M := L2(ΩS) × HΓD
(div; ΩD) × H1/2(Σ) ,

(pD, λ) ∈ Q := L2
0(ΩD) × H1/2(Σ) ,
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and consider the following product norms

‖τ‖X := ‖τ S‖div ;ΩS
+ ‖sD‖0,ΩS

∀ τ := (τ S, sD) ∈ X ,

‖v‖M := ‖vS‖0,ΩS
+ ‖vD‖div ;ΩD

+ ‖ψ‖1/2,00,Σ ∀v := (vS,vD, ψ) ∈ M ,

‖q‖Q := ‖qD‖0,ΩD
+ ‖ξ‖1/2,Σ ∀q := (qD, ξ) ∈ Q .

Next, we define the nonlinear operator A : X −→ X′,

[A(σS, tD), (τ S, sD)] := [AS(σS), τ S] + [AD(tD), sD] (5.15)

where AS : H(div; ΩS) → H(div; ΩS)
′ and AD : L2(ΩD) → L2(ΩD)′ are given, respectively, by

[AS(σS), τ S] := ν−1(σd
S, τ

d
S)S , (5.16)

[AD(tD), sD] := (κ(·, |tD|)tD, sD)D . (5.17)

In addition, we define the bounded and linear operatos B1 : X −→ M′ and B : M −→ Q′,

[B1(τ S, sD), (vS,vD, ψ)] := (div τ S,vS)S + (sD,vD)D + 〈τ S n, ψ〉Σ , (5.18)

[B(vS,vD, ψ), (qD, ξ)] := (div vD, qD)D + 〈vD · n, ξ〉Σ + 〈ψ · n, ξ〉Σ , (5.19)

the positive semi-definite and linear operator S : M −→ M′,

[S(uS,uD, ϕ), (vS,vD, ψ)] := νκ−1
f 〈ψ · t, ϕ · t〉Σ , (5.20)

and the functionals F ∈ X′, G1 ∈ M′, and G ∈ Q′, given by

[F, (τ S, sD)] := 0 , [G1, (vS,vD, ψ)] := (fS,vS)S , and [G, (qD, ξ)] := (fD, qD)D . (5.21)

Hereafter, [·, ·] denotes the duality pairing induced by the operators and functionals involved.

Hence, defining the global unknowns

σ := (σS, tD) ∈ X , u := (uS,uD, ϕ) ∈ M , and p := (pD, λ) ∈ Q ,

we realize that the variational system (5.8) – (5.14) can be stated as the twofold saddle point

operator equation: Find (σ,u,p) ∈ X × M × Q such that,




A B′
1 0

B1 −S B′

0 B 0







σ

u

p


 =




F

G1

G


 . (5.22)

The abstract theory for this kind of continuous formulation is already available (see, e.g.

[41]), and its main results are collected in the following subsection.
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5.2.3 Abstract theory for twofold saddle point operator equations

Let X, M and Q be Hilbert spaces with duals X ′, M ′ and Q′, and consider a nonlinear

operator A : X → X ′, and linear bounded operators S : M → M ′, B1 : X → M ′, and

B : M → Q′, with corresponding adjoints B′
1 : M → X ′ and B′ : Q → M ′. Then we are

interested in the following nonlinear variational problem: Given (F, G1, G) ∈ X ′×M ′×Q′, find

(σ, u, p) ∈ X × M × Q such that




A B′
1 O

B1 −S B′

O B O







σ

u

p


 =




F1

G1

G


 (5.23)

We have the following theorem.

Theorem 5.2.1 Let V be the kernel of B, that is

V :=
{
v ∈ M : [B(v), q] = 0 ∀ q ∈ Q

}
.

Assume that:

i) A is strongly monotone and Lipschitz continuous , that is, there exist α, γ > 0 such that

[A(τ) − A(ζ), τ − ζ] ≥ α ‖τ − ζ‖2
X ∀ τ, ζ ∈ X ,

and

‖A(τ) − A(ζ)‖X′ ≤ γ ‖τ − ζ‖X ∀ τ, ζ ∈ X ;

ii) S is positive semi-definite on V , that is

[S(v), v] ≥ 0 ∀ v ∈ V ;

iii) B1 satisfies the inf-sup condition on X × V , that is, there exists β1 > 0 such that

sup
τ∈X
τ 6=0

[B1(τ), v]

‖τ‖X
≥ β1 ‖v‖M ∀ v ∈ V ;

iv) B satisfies the inf-sup condition on M × Q, that is, there exists β > 0 such that

sup
v∈M
v 6=0

[B(v), q]

‖v‖M
≥ β ‖q‖Q ∀ q ∈ Q .
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Then, for each (F, G1, G) ∈ X ′
1 ×M ′×Q′, there exists a unique (σ, u, p) ∈ X ×M ×Q solution

of (5.23). In addition, there exists C > 0, depending only on γ, α, β1, β, ‖B1‖, and ‖S‖, such

that

‖σ‖X + ‖u‖M + ‖p‖Q ≤ C
{
‖F1‖X′ + ‖G1‖M ′ + ‖G‖Q′ + ‖A(0)‖X′

}
. (5.24)

Proof. See Theorem 2.1 in [41].

Now, let Xh, Mh and Qh be finite-dimensional subspaces of X, M and Q, respectively. Then

the Galerkin scheme associated with (5.23) reads as follows: Given (F, G1, G) ∈ X ′ × M ′ × Q′,

find (σh, uh, ph) ∈ Xh × Mh × Qh such that

[A(σh), τh] + [B1(τh), uh] = [F, τh] ∀ τh ∈ Xh ,

[B1(σh), vh] − [S(uh), vh] + [B(vh), ph] = [G1, vh] ∀ vh ∈ Mh ,

[B(uh), qh] = [G, qh] ∀ qh ∈ Qh .

(5.25)

The discrete analogue of Theorem 5.2.1 is established next.

Theorem 5.2.2 Let Vh be the discrete kernel of B, that is

Vh :=
{
vh ∈ Mh : [B(vh), qh] = 0 ∀ qh ∈ Qh

}
.

Assume that

i) A is strongly monotone and Lipschitz continuous (cf. hypothesis i) in Theorem 5.2.1);

ii) S is positive semi-definite on Vh, that is

[S(vh), vh] ≥ 0 ∀ vh ∈ Vh ;

iii) B1 satisfies the inf-sup condition on Xh × Vh, that is, there exists β∗
1 > 0 such that

sup
τh∈Xh
τh 6=0

[B1(τh), vh]

‖τh‖X
≥ β∗

1 ‖vh‖M ∀ vh ∈ Vh ;

iv) B satisfies the inf-sup condition on Mh × Qh, that is, there exists β > 0 such that

sup
vh∈Mh
vh 6=0

[B(vh), qh]

‖vh‖M
≥ β∗ ‖qh‖Q ∀ qh ∈ Qh .

Then, there exists a unique (σh, uh, ph) ∈ Xh × Mh × Qh solution of (5.25). In addition, there

exists C > 0, depending only on γ, α, β∗
1 , β∗, ‖B1‖, and ‖S‖, such that

‖σh‖X + ‖uh‖M + ‖ph‖Q ≤ C
{
‖Fh‖X′

h
+ ‖G1,h‖M ′

h
+ ‖Gh‖Q′

h
+ ‖Ah(0)‖X′

h

}
,

where Fh := F |Xh
, G1,h := G1|Xh

, Gh := G|Qh
, and Ah(0) := A(0)|Xh

.
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Proof. See Theorem 3.1 in [41].

Finally, concerning the error analysis, we have the following result.

Theorem 5.2.3 Assume that the hypotheses of Theorem 5.2.1 and Theorem 5.2.2 hold and

that the operator A : X → X ′ has a hemi-continuous first order Gâteaux derivative DA : X →
L(X, X ′), that is, for any τ , ζ ∈ X, the mapping R ∋ µ → DA(ζ+µ τ)(τ, ·) ∈ X ′ is continuous.

Let (σ, u, p) ∈ X × M × Q and (σh, uh, ph) ∈ Xh × Mh × Qh be the unique solutions of (5.23)

and (5.25), respectively. Then there exists C > 0, independent of h, such that

‖(σ, u, p) − (σh, uh, ph)‖ ≤ C inf
(τh,vh,qh)

∈Xh×Mh×Qh

‖(σ, u, p) − (τh, vh, qh)‖ . (5.26)

Proof. See Theorem 3.3 in [41].

5.2.4 An equivalent twofold saddle point formulation

In order to apply the abstract theory from Section 5.2.3 to our problem (5.22), we need first

to introduce an equivalent formulation. To this end, we now reutilize the equilibrium equation

of the Stokes problem in the form of the following Galerkin least squares-type term

(div σS,div τ S)S = −(fS,div τ S)S ∀ τ S ∈ H(div ; ΩS) , (5.27)

which is then added to the formulation (5.22) and placed within the operator A, thus giving rise

to a modified operator Ã (see (5.34), (5.35) below). In addition, we consider the decomposition

H(div ; ΩS) = H0(div ; ΩS) ⊕ P0(ΩS)I , (5.28)

where

H0(div ; ΩS) :=

{
σ ∈ H(div ; ΩS) :

∫

ΩS

trσ = 0

}
,

and set σS = σ̃S + cI, with the new unknowns σ̃S ∈ H0(div ; ΩS) and c ∈ R.

In this way, the equations (5.8), (5.13) and (5.27) are rewritten, equivalently as

ν−1(σ̃d
S, τ

d
S)S + (div τ S,uS)S + 〈τ Sn, ϕ〉Σ = 0 ∀ τ S ∈ H0(div ; ΩS , (5.29)

d 〈n, ϕ〉Σ = 0 ∀ d ∈ R , (5.30)

〈σ̃Sn, ψ〉Σ + 〈ψ · n, λ〉Σ − ν κ−1
f 〈ψ · t, ϕ · t〉Σ + c 〈n, ψ〉Σ = 0 ∀ψ ∈ H1/2(Σ) , (5.31)

and

(div σ̃S,div τ S)S = − (fS,div τ S)S ∀ τ S ∈ H0(div ; ΩS) . (5.32)
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Then, we define the global unknowns

σ̃ := (σ̃S, tD) ∈ X̃ := H0(div ; ΩS) × L2(ΩD) , p̃ := (p, c) ∈ Q̃ := Q × R ,

and group the equations (5.9)–(5.12), (5.14), (5.29)–(5.32), which yields the following variational

formulation: Find (σ̃,u, p̃) ∈ X̃ × M × Q̃ such that




Ã B′
1 0

B1 −S B̃′

0 B̃ 0







σ̃

u

p̃


 =




F̃

G1

G̃


 . (5.33)

Hereafter, the nonlinear operator Ã : X̃ → X̃′ is given by

[Ã(σS, tD), (τ S, sD)] := [ÃS(σS), τ S] + [AD(tD), sD] , (5.34)

with ÃS : H0(div ; ΩS) −→ H0(div ; ΩS)
′ the linear and bounded operator defined by

[ÃS(σS), τ S] := [AS(σS), τ S] + (div σS,div τ S)S ,

which, according to the definition of AS (cf. (5.16)), yields

[ÃS(σS), τ S] := ν−1 (σd
S, τ

d
S)S + (div σS,div τ S)S . (5.35)

In addition, the linear and bounded operator B̃ : M → Q̃′, and the functionals F̃ ∈ X̃′ and

G̃ ∈ Q̃′, are given, respectively, by

[B̃(vS,vD, ψ), (qD, ξ, d)] := [B(vS,vD, ψ), (qD, ξ)] + d 〈n, ψ〉Σ

= (div vD, qD)D + 〈vD · n, ξ〉Σ + 〈ψ · n, ξ〉Σ + d 〈n, ψ〉Σ ,

(5.36)

[F̃, (τ S, sD)] = [F, (τ S, sD)] − (fS,div τ S)S = −(fS,div τ S)S ,

and

[G̃, (qD, ξ, d)] = [G, (qD, ξ)] = (fD, qD)D .

The following theorem establishes the equivalence between (5.22) and (5.33).

Theorem 5.2.4 If (σ,u,p) := ((σS, tD),u,p) ∈ X × M × Q is a solution of (5.22), where

σS = σ̃S + cI, with σ̃S ∈ H0(div ; ΩS) and c ∈ R, then (σ̃,u, p̃) := ((σ̃S, tD),u, (p, c)) ∈
X̃×M× Q̃ is a solution of (5.33). Conversely, if ((σ̃S, tD),u, (p, c)) ∈ X̃×M× Q̃ is solution

of (5.33), then ((σ̃S + cI, tD),u,p) ∈ X × M × Q is a solution of (5.22).

Proof. It suffices to apply the decomposition (5.28) and observe that in either direction one

deduces that div σS = div σ̃S = − fS in ΩS. We omit futher details.
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5.3 Analysis of the continuous problem

In this section we analyze the well posedness of (5.22) (equivalently (5.33)). To this end,

we prove below in Section 5.3.2 that the formulation (5.33) satisfies the hypotheses of Theorem

5.2.1.

5.3.1 Preliminaries

Here we group some merely technical results and further notations that we will serve for the

forthcoming analyis. The following lemma is already well known.

Lemma 5.3.1 There exists C > 0, depending only on ΩS, such that

C ‖τ S‖2
0,ΩS

≤ ‖τ d
S‖2

0,ΩS
+ ‖div τ S‖2

0,ΩS
∀ τ S ∈ H0(div ; ΩS) . (5.37)

Proof. See [12, Lemma 3.1] or [19, Proposition 3.1, Chapter IV].

We also recall that, given vD ∈ HΓD
(div; ΩD), the boundary condition vD · n = 0 on

ΓD means 〈vD · n, E0,D(µ)〉∂ΩD
= 0 ∀µ ∈ H

1/2
00 (ΓD), where 〈·, ·〉∂ΩD

stands for the

duality pairing of H−1/2(∂ΩD) and H1/2(∂ΩD) with respect to the L2(∂ΩD)-inner product,

E0,D : H1/2(ΓD) → L2(∂ΩD) is the extension operator defined by

E0,D(µ) :=

{
µ on ΓD

0 on Σ
∀µ ∈ H1/2(ΓD) ,

and

H
1/2
00 (ΓD) =

{
µ ∈ H1/2(ΓD) : E0,D(µ) ∈ H1/2(∂ΩD)

}
,

endowed with the norm ‖µ‖1/2,00,ΓD
:= ‖E0,D(µ)‖1/2,∂ΩD

.

As a consequence, it is not difficult to show (see e.g. Section 2 in [39]) that the restriction of

vD · n to Σ can be identified with an element of H−1/2(Σ), namely

〈vD · n, ξ〉Σ := 〈vD · n, ED(ξ)〉∂ΩD
∀ ξ ∈ H1/2(Σ) , (5.38)

where ED : H1/2(Σ) → H1/2(∂ΩD) is any bounded extension operator. In particular, given

ξ ∈ H1/2(Σ), one could define ED(ξ) := z|∂ΩD
, where z ∈ H1(ΩD) is the unique solution of

the boundary value problem: ∆z = 0 in ΩD , z = ξ on Σ , ∇z · n = 0 on ΓD. In

addition, one can show that for all µ ∈ H1/2(∂ΩD), there exist unique elements µΣ ∈ H1/2(Σ)

and µΓD
∈ H

1/2
00 (ΓD) such that

µ = ED(µΣ) + E0,D(µΓD
) , (5.39)

and

C1

(
‖µΣ‖1/2,Σ + ‖µΓD

‖1/2,00,ΓD

)
≤ ‖µ‖1/2,∂ΩD

≤ C2

(
‖µΣ‖1/2,Σ + ‖µΓD

‖1/2,00,ΓD

)
.
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5.3.2 The main results

We begin by proving the continuous inf-sup condition for B̃ (cf. (5.36)), which will follow

from the next two lemmas that separate the required estimate into two parts.

Lemma 5.3.2 There exist C1, C2 > 0 such that

S1(ξ, d) := sup
ψ∈H

1/2
00 (Σ)

ψ 6=0

d 〈n, ψ〉Σ + 〈ψ · n, ξ〉Σ
‖ψ‖1/2,00,Σ

≥ C1 |d| − C2 ‖ξ‖1/2,Σ , (5.40)

for all (ξ, d) ∈ H1/2(Σ) × R.

Proof. Let ψ0 be a fixed element in H1/2(Σ) such that 〈n, ψ0〉Σ 6= 0. Hence, given (ξ, d) ∈
H1/2(Σ) × R, we find that

S1(ξ, d) ≥

∣∣∣d 〈n, ψ0〉Σ + 〈ψ0 · n, ξ〉Σ
∣∣∣

‖ψ0‖1/2,00,Σ
≥ C1 |d| − C2 ‖ξ‖1/2,Σ , (5.41)

where C1 :=
|〈n,ψ0〉Σ|

‖ψ0‖1/2,00,Σ
, and C2 satisfies | 〈ψ0 · n, ξ〉Σ | ≤ C2 ‖ψ0‖1/2,00,Σ ‖ξ‖1/2,Σ.

Note that there is a very simple way of defining such an element ψ0. In fact, as explained

in [49, Section 3.2], we pick one interior corner point of Σ and define a function v that is

continuous, linear on each side of Σ, equal to one in the chosen vertex, and zero on all other

ones. If n1 and n2 are the normal vectors on the two sides of Σ that meet at the corner point,

then ψ0 := v (n1 + n2) satisfies that property. If the interface Σ were a line segment (without

interior corners), we pick v as the continuous linear function on Σ, equal to one in any interior

point and zero in the extreme points, and define ψ0 := v n.

Lemma 5.3.3 There exists C3 > 0 such that

S2(qD, ξ) := sup
vD∈HΓD

(div;ΩD)

vD 6=0

(div vD, qD)D + 〈vD · n, ξ〉Σ
‖vD‖div ;ΩD

≥ C3

{
‖qD‖0,ΩD

+ ‖ξ‖1/2,Σ

}
,

(5.42)

for all (qD, ξ) ∈ L0(ΩD) × H1/2(Σ).

Proof. Let (qD, ξ) ∈ L0(ΩD)×H1/2(Σ). Then, we define wD := ∇z in ΩD, where z ∈ H1(ΩD)

is the unique solution of the boundary value problem:

∆ z = qD in ΩD , ∇z · n = 0 on ∂ΩD ,

∫

ΩD

z = 0 .
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It is clear that div wD = qD in ΩD, wD ∈ HΓD
(div; ΩD) (since actually wD ·n = 0 on ∂ΩD), and

‖wD‖div ;ΩD
≤ C ‖qD‖0,ΩD

. Hence, using from (5.38) that 〈wD · n, ξ〉Σ = 〈wD · n, ED(ξ)〉∂ΩD
=

0, we deduce that

S2(qD, ξ) ≥ (div wD, qD)D
‖wD‖div ;ΩD

≥ C3 ‖qD‖0,ΩD
. (5.43)

On the other hand, given φ ∈ H−1/2(Σ), we define η ∈ H−1/2(∂ΩD) as

〈η, µ〉∂ΩD
:= 〈φ, µΣ〉Σ ∀µ ∈ H1/2(∂ΩD) , (5.44)

where µΣ is given by the decomposition (5.39). It is not difficult to see that

〈η, E0,D(ρ)〉∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) , (5.45)

〈η, ED(ξ)〉∂ΩD
= 〈φ, ξ〉Σ , (5.46)

and

‖η‖−1/2,∂ΩD
≤ C ‖φ‖−1/2,Σ . (5.47)

Hence, we now define wD := ∇z in ΩD, where z ∈ H1(ΩD) is the unique solution of the

boundary value problem:

∆ z =
1

|ΩD|
〈η, 1〉∂ΩD

in ΩD , ∇z · n = η on ∂ΩD ,

∫

ΩD

z = 0 .

It follows that divwD = 1
|ΩD| 〈η, 1〉∂ΩD

∈ P0(ΩD), wD ·n = η on ∂ΩD, and, using the estimate

(5.47), ‖wD‖div ;ΩD
≤ C ‖η‖−1/2,∂ΩD

≤ C ‖φ‖−1/2,Σ. In addition, according to (5.38) and (5.46),

and (5.45), we find, respectively, that

〈wD · n, ξ〉Σ = 〈wD · n, ED(ξ)〉∂ΩD
= 〈η, ED(ξ)〉∂ΩD

= 〈φ, ξ〉Σ ,

and

〈wD · n, E0,D(ρ)〉∂ΩD
= 〈η, E0,D(ρ)〉∂ΩD

= 0 ∀ρ ∈ H
1/2
00 (ΓD) ,

which implies that wD ∈ HΓD
(div; ΩD). In this way, since qD ∈ L2

0(ΩD), we conclude that

S2(qD, ξ) ≥ | 〈wD · n, ξ〉Σ |
‖wD‖div ;ΩD

≥ C
|〈φ, ξ〉Σ|
‖φ‖−1/2,Σ

∀φ ∈ H−1/2(Σ) ,

and therefore

S2(qD, ξ) ≥ C sup
φ∈H−1/2(Σ)

φ6=0

|〈φ, ξ〉Σ|
‖φ‖−1/2,Σ

= C ‖ξ‖1/2,Σ .

This estimate and (5.43) imply (5.42), which finishes the proof.

The continuous inf-sup condition for B̃ follows straightforwardly from the previous lemmas.
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Lemma 5.3.4 There exists β > 0 such that

sup
v∈M

v 6=0

[B̃(v), (q, d)]

‖v‖M

≥ β
{
‖q‖Q + |d|

}
∀ (q, d) ∈ Q̃ := Q × R . (5.48)

Proof. It suffices to observe, recalling that M := L2(ΩS) × HΓD
(div; ΩD) × H1/2(Σ), that

sup
v∈M

v 6=0

[B̃(v), (q, d)]

‖v‖M

≥ max
{

S1(ξ, d), S2(qD, ξ)
}

∀ (q, d) := ((qD, ξ), d) ∈ Q̃ ,

and then perform a suitable linear combination of (5.40) and (5.42) (cf. Lemmas 5.3.2 and 5.3.3).

We continue the analysis with the continuous inf-sup condition for B1 on X̃ × V, where V,

the kernel of B̃, is given by

V :=
{
v ∈ M : [B̃(v), (q, d)] = 0, ∀ (q, d) ∈ Q̃

}
.

More precisely, according to the definition of B̃ (cf. (5.36)), we find that

V :=
{

(vS,vD, ψ) ∈ M : div vD = 0 in ΩD , vD · n = −ψ · n on Σ , 〈n, ψ〉Σ = 0
}

.

Then, similarly as for B̃, we recall from (5.18) the definition of B1, and separate the required

estimate into the following two parts.

Lemma 5.3.5 There holds

S3(vD) := sup
sD∈L2(ΩD)

s 6=0

(sD,vD)D
‖sD‖0,ΩD

≥ ‖vD‖div ;ΩD
∀ (vS,vD, ψ) ∈ V . (5.49)

Proof. Given (vS,vD, ψ) ∈ V, it suffices to bound S3(vD) by taking in particular sD = vD,

and then use that ‖vD‖0,ΩD
= ‖vD‖div ;ΩD

.

Lemma 5.3.6 There exists C4 > 0 such that

S4(vS, ψ) := sup
τ S ∈ H0(div ;ΩS)

τ S 6=0

(div τ S,vS)S + 〈τ S n, ψ〉Σ
‖τ S‖div ;ΩS

≥ C4

{
‖vS‖0,ΩS

+ ‖ψ‖1/2,00,Σ

}
(5.50)

for all (vS,vD, ψ) ∈ V.

Proof. Given (vS,vD, ψ) ∈ V and τ S := τ S,0 + c I ∈ H(div; ΩS) with τ S,0 ∈ H0(div ; ΩS)

and c ∈ P0(ΩS) (cf. (5.28)), we notice that (div τ S,vS)S = (div τ S,0,vS)S, 〈τ S n, ψ〉Σ =

〈τ S,0 n, ψ〉Σ, and ‖τ S‖2
div ;ΩS

= ‖τ S,0‖2
div ;ΩS

+ 2 c2 |ΩS|. Hence, the supremum S4 remains the
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same if taken on H(div; ΩS) instead of H0(div ; ΩS). The rest proceeds exactly as in the proof

of [14, Theorem 2.1] by defining suitable auxiliary problems. We omit further details.

As a consequence of the previous lemmas, and recalling that X̃ := H0(div ; ΩS) × L2(ΩD),

we are able to establish the following result.

Lemma 5.3.7 There exists β1 > 0 such that

sup
τ̃∈X̃

τ̃ 6=0

[B1(τ̃ ),v]

‖τ̃‖
X̃

≥ β1 ‖v‖M ∀v := (vS,vD, ψ) ∈ V . (5.51)

Proof. It suffices to observe that

sup
τ̃∈X̃

τ̃ 6=0

[B1(τ̃ ),v]

‖τ̃‖
X̃

≥ max
{

S3(vD), S4(vS, ψ)
}

∀ (vS,vD, ψ) ∈ V ,

and then apply the estimates (5.3.5) and (5.3.6) (cf. Lemmas 5.3.5 and 5.3.6).

We now come to the strong monotonicity and Lipschitz-continuity of Ã : X̃ → X̃′.

Lemma 5.3.8 There exist constants α , γ > 0 such that

[Ã(τ̃ ) − Ã(ζ̃), τ̃ − ζ̃] ≥ α ‖τ̃ − ζ̃‖2
X̃

and

‖Ã(τ̃ ) − Ã(ζ̃)‖
X̃′ ≤ γ ‖τ̃ − ζ̃‖

X̃
,

for all τ̃ , ζ̃ ∈ X̃.

Proof. Let us have in mind the definition of Ã from (5.34). Then, thanks to the assumptions

(5.4), one can show (see e.g. [53, Theorem 3.8] for details) that the nonlinear operator AD (cf.

(5.17)) is strongly monotone and Lipschitz continuous on L2(ΩD). In addition, it is easy to see,

using Lemma 5.3.1, that the bounded linear operator ÃS (cf. (5.35)) is elliptic on H0(div ; ΩS).

These results yield the required estimates for Ã.

We are now in a position to establish the well-posedness of (5.22).

Theorem 5.3.1 For each (F,G1,G) ∈ X′×M′×Q′ there exists a unique (σ,u,p) ∈ X×M×Q

solution of (5.22). Moreover, there exists a constant C > 0, independent of the solution, such

that

‖(σ,u,p)‖X×M×Q ≤ C
{
‖F‖X′ + ‖G1‖M′ + ‖G‖Q′

}
. (5.52)
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Proof. It follows from Lemmas 5.3.4, 5.3.7 and 5.3.8, and a direct application of the abstract

result given by Theorem 5.2.1, that problem (5.33) is well-posed and the analogue estimate

(5.52) holds. Then, the equivalence result provided by Theorem 5.2.4 completes the proof.

We end this section with the converse of the derivation of (5.22). More precisely, the following

theorem establishes that the unique solution of (5.22) solves the original transmission problem

described in Section 5.2.1. We remark that no extra regularity assumptions on the data, but

only fS ∈ L2(ΩS) and fD ∈ L2(ΩD), are required here.

Theorem 5.3.2 Let (σ,u,p) ∈ X×M×Q be the unique solution of the variational formulation

(5.22) with F, G1 and G given by (5.21). Then div σS = −fS in ΩS, ν−1 σd
S = ∇uS in

ΩS, uS ∈ H1(ΩS), div uD = fD in ΩD, uD = −κ(·, |tD|) tD in ΩD, tD = ∇pD in ΩD,

pD ∈ H1(ΩD), uD · n + ϕ · n = 0 on Σ, σ n + λn − ν κ−1
f (ϕ · t) t = 0 on Σ, λ = pD on Σ,

ϕ = −uS on Σ, uS = 0 on ΓS, and uD · n = 0 on ΓD.

Proof. It basically follows by applying integration by parts backwardly in (5.22) and using

suitable test functions. We omit further details.

5.4 The mixed finite element scheme

In this section we analyze the well-posedness of the Galerkin scheme of (5.22). For this

purpose, we also introduce the Galerkin scheme of the auxiliary problem (5.33), and establish

suitable assumptions on the finite element subspaces ensuring that both discrete schemes are

equivalent and that the latter is well-posed.

5.4.1 Preliminaries

We begin by selecting two collections of discrete spaces:

Hh(ΩS) ⊆ H(div ; ΩS) , Lh(ΩS) ⊆ L2(ΩS) , ΛS
h(Σ) ⊆ H

1/2
00 (Σ) ,

Hh(ΩD) ⊆ H(div ; ΩD) , Th(ΩD) , Lh(ΩD) ⊆ L2(ΩD) , ΛD
h (Σ) ⊆ H1/2(Σ) .

(5.53)

According to this, for the Stokes domain we define the subspaces

Lh(ΩS) := Lh(ΩS) × Lh(ΩS), ΛS
h(Σ) := ΛS

h(Σ) × ΛS
h(Σ) ,

Hh(ΩS) :=
{
τ : ΩS → R

2×2 : atτ ∈ Hh(ΩS) ∀a ∈ R
2
}

,

Hh,0(ΩS) := Hh(ΩS) ∩ H0(div ; ΩS) ,



5.4 The mixed finite element scheme 136

and for the Darcy domain we set

Th(ΩD) := Th(ΩD) × Th(ΩD) ,

Hh,ΓD
(ΩD) :=

{
v ∈ Hh(ΩD) : v · n = 0 on ΓD

}
,

Lh,0(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) .

(5.54)

Then, the global unknowns and corresponding finite element subspaces are given by:

σh := (σS,h, tD,h) ∈ Xh := Hh(ΩS) × Th(ΩD) ,

σ̃h := (σ̃S,h, tD,h) ∈ X̃h := Hh,0(ΩS) × Th(ΩD) ,

uh := (uS,h,uD,h, ϕh) ∈ Mh := Lh(ΩS) × Hh,ΓD
(ΩD) × ΛS

h(Σ) ,

p
h

:= (pD,h, λh) ∈ Qh := Lh,0(ΩD) × ΛD
h (Σ) ,

p̃
h

:= (p
h
, ch) ∈ Q̃h := Qh × R .

In this way, the Galerkin schemes for (5.22) and (5.33) read, respectively: Find (σh,uh,p
h
)

∈ Xh × Mh × Qh such that

[A(σh), τ ] + [B1(τ ),uh] = [F, τ ] ∀ τ ∈ Xh ,

[B1(σh),v] − [S(uh),v] + [B(v),p
h
] = [G1,v] ∀v ∈ Mh ,

[B(uh),q] = [G,q] ∀q ∈ Qh ,

(5.55)

and: Find (σ̃h,uh, p̃
h
) ∈ X̃h × Mh × Q̃h such that

[Ã(σ̃h), τ ] + [B1(τ ),uh] = [F̃, τ ] ∀ τ ∈ X̃h ,

[B1(σ̃h),v] − [S(uh),v] + [B̃(v), p̃
h
] = [G1,v] ∀v ∈ Mh ,

[B̃(uh), q̃] = [G̃, q̃] ∀ q̃ ∈ Q̃h .

(5.56)

5.4.2 The main results

In what follows, we proceed analogously to [49, Section 4] and derive general hypotheses on

the subspaces (5.53) that allow us to show that (5.55) and (5.56) are equivalent, and that (5.56)

is well posed. Our approach consists of adapting to the present discrete setting the arguments

employed in the corresponding continuous analyses (cf. Theorem 5.2.4 and Lemmas 5.3.2, 5.3.3,

5.3.5 and 5.3.6).

We observe first that, in order to have meaningful spaces Hh,0(ΩS) and Lh,0(ΩD), we need

to be able to eliminate multiples of the identity matrix from Hh(ΩS) and constant polynomials

from Lh(ΩD). This request is certainly satisfied if we assume the following:
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(H.0) [P0(ΩS)]
2 ⊆ Hh(ΩS) and P0(ΩD) ⊆ Lh(ΩD).

In particular, it follows that I ∈ Hh(ΩS) for all h, and hence there holds the decomposition:

Hh(ΩS) = Hh,0(ΩS) ⊕ P0(ΩS) I . (5.57)

Next, in order to prove the equivalence between (5.55) and (5.56), we assume that:

(H.1) div Hh(ΩS) ⊆ Lh(ΩS).

As a consequence, we have the following theorem.

Theorem 5.4.1 If (σh,uh,p
h
) := ((σS,h, tD,h),uh,p

h
) ∈ Xh × Mh × Qh is a solution of

(5.55), where σS,h = σ̃S,h + chI, with σ̃S,h ∈ Hh,0(ΩS) and ch ∈ R, then (σ̃h,uh, p̃
h
) :=

((σ̃S,h, tD,h),uh, (p
h
, ch)) ∈ X̃h×Mh×Q̃h is a solution of (5.56). Conversely, if (σ̃h,uh, p̃

h
) ∈

X̃h × Mh × Q̃h is a solution of (5.56), with σ̃h = (σ̃S,h, tD,h) and p̃
h

:= (p
h
, ch), then

((σ̃S,h + chI, tD,h),uh,p
h
) ∈ Xh × Mh × Qh is a solution of (5.55).

Proof. Thanks to (H.1), it suffices to apply the decomposition (5.57) and observe that in either

direction one deduces that div σS,h = div σ̃S,h = −fS. We omit futher details.

As already announced, we now analyze the well-posedness of the Galerkin scheme (5.56),

thanks to which we will conclude the well-posedness of the equivalent scheme (5.55). To this

end, and in order to apply the abstract result given by Theorem 5.2.2, we need to introduce

further hypotheses. We begin with the following:

(H.2) There exists ψ0 ∈ H
1/2
00 (Σ) such that

ψ0 ∈ ΛS
h(Σ) ∀h and 〈ψ0 · n, 1〉Σ 6= 0 . (5.58)

It is easy to see that (H.2) yields the following inf-sup condition, which constitutes the discrete

version of Lemma 5.3.2: There exist C̃1 , C̃2 > 0, independent of h, such that

S1,h(ξh, dh) := sup

ψh∈ΛS
h(Σ)

ψh 6=0

dh 〈n, ψh〉Σ + 〈ψh · n, ξh〉Σ
‖ψh‖1/2,00,Σ

≥ C̃1 |dh| − C̃2 ‖ξh‖1/2,Σ , (5.59)

for all (ξh, dh) ∈ ΛD
h (Σ) × R.

Next, we assume that the discrete version of Lemma 5.3.3 holds, that is:
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(H.3) There exist C̃3 > 0, independent of h, such that

S2,h(qh, ξh) := sup
vh∈Hh,ΓD

(ΩD)

vh 6=0

(div vh, qh)D + 〈vh · n, ξh〉Σ
‖vh‖div ;ΩD

≥ C̃3

{
‖qh‖0,ΩD

+ ‖ξh‖1/2,Σ

}
(5.60)

∀ (qh, ξh) ∈ Lh,0(ΩD) × ΛD
h (Σ).

On the other hand, we now look at the discrete kernel of B̃, which is defined by

Vh :=
{
vh ∈ Mh : [B̃(vh), (q

h
, dh)] = 0 ∀ (q

h
, dh) ∈ (Qh × R)

}
.

Moreover, in order to deduce a more explicit definition of Vh, we introduce the hypothesis:

(H.4) div Hh(ΩD) ⊆ Lh(ΩD) and P0(Σ) ⊆ ΛD
h (Σ).

It follows, according to the definition of B̃ (cf. (5.36)) and (H.4), that vh := (vS,h,vD,h, ψh)

belongs to Vh if and only if

div vD,h ∈ P0(ΩD) , 〈vD,h · n, ξh〉 = − 〈ψh · n, ξh〉Σ ∀ξh ∈ ΛD
h (Σ) , and 〈ψh · n, 1〉Σ = 0 .

In particular, taking ξh := 1 ∈ ΛD
h (Σ) we find that 〈vD,h · n, 1〉Σ = 0, which implies that

div vD,h = 0 in ΩD, and hence

Vh :=
{

(vS,h,vD,h, ψh) ∈ Mh := Lh(ΩS) × Hh,ΓD
(ΩD) × ΛS

h(Σ) : div vD,h = 0 on ΩD,

〈ψh · n, ξh〉Σ = − 〈vD,h · n, ξh〉 ∀ ξh ∈ ΛD
h (Σ) , 〈ψh · n, 1〉Σ = 0

}
.

(5.61)

In virtue of the above, and aiming now to establish the discrete versions of Lemmas 5.3.5

and 5.3.6, we define

Vh(ΩD) :=
{

vD,h ∈ Hh(ΩD) : div vD,h = 0
}

, (5.62)

and consider the following hypothesis:

(H.5) Vh(ΩD) ⊆ Th(ΩD), and there exists c4 > 0, independent of h, such that

S4,h(vh, ψh) := sup
τ h∈Hh(ΩS)

τ h 6=0

(div τ h, vh)S + 〈τh · n, ψh〉Σ
‖τh‖div ;ΩS

≥ c4

{
‖vh‖0,ΩS

+ ‖ψh‖1/2,00,Σ

}

(5.63)

for all (vh, ψh) ∈ Lh(ΩS) × ΛS
h(Σ).
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Hence, it is easy to see that the condition Vh(ΩD) ⊆ Th(ΩD) allows to extend the simple

argument employed in the proof of Lemma 5.3.5 to the present discrete case, which yields

S3,h(vD,h) := sup
sD,h∈Lh(ΩD)

sD,h 6=0

(sD,h,vD,h)

‖sD,h‖0,ΩD

≥ ‖vD,h‖div ;ΩD
∀ (vS,h,vD,h, ψh) ∈ Vh . (5.64)

Furthermore, since div Hh(ΩS) = div Hh,0(ΩS) (cf. 5.57), the inf-sup condition (5.63) implies

the existence of C̃4 > 0, independent of h, such that

sup
τ S,h∈ Hh,0(ΩS)

τ S,h 6=0

(div τ S,h,vS,h)S + 〈τ S,h n, ψh〉Σ
‖τ S,h‖div ;ΩS

≥ C̃4

{
‖vS,h‖0,ΩS

+ ‖ψh‖1/2,00,Σ

}
(5.65)

for all (vS,h,vD,h, ψh) ∈ Vh.

We are now in a position to establish, under the hypotheses specified throughout this section,

the well posedness of (5.55) and the associated Cea estimate, which follows straightforwardly

from the corresponding results for the equivalent scheme (5.56).

Theorem 5.4.2 Assume that (H.0) – (H.5) hold. Then the Galerkin scheme (5.55) has a

unique solution (σh,uh,p
h
) ∈ Xh × Mh × Qh. In addition, there exist C, C̃ > 0, independent

of h, such that

‖(σh,uh,p
h
)‖X×M×Q ≤ C

{
‖F|Xh

‖X′

h
+ ‖G1|Mh

‖M′

h
+ ‖G|Qh

‖Q′

h

}
, (5.66)

and

‖σ − σh‖X + ‖u − uh‖M + ‖p − p
h
‖Q

≤ C̃
{

inf
τ h∈Xh

‖σ − τh‖X + inf
vh∈Mh

‖u − vh‖M + inf
q

h
∈Qh

‖p − q
h
‖Q

}
.

(5.67)

Proof. We first observe, thanks to (5.59) (which follows from (H.2)) and (H.3), and proceed-

ing analogously to the proof of Lemma 5.3.4, that B̃ satisfies the discrete inf-sup condition

on Mh × Q̃h. Similarly, using (5.64) and (5.65) (which follows from (H.4) and (H.5)), and

proceeding as in the proof of Lemma 5.3.7, one can easily show that B1 satisfies the discrete

inf-sup condition on X̃h × Vh. In addition, we recall that the nonlinear operator Ã is strongly

monotone and Lipschitz-continuous (cf. Lemma 5.3.8), and that S is positive semidefinite on

M (cf. (5.20)). On the other hand, it is known from [11, Lemma 3] that the operator AD (cf.

(5.17)) has a continuous first order Gâteaux derivative DAD : L2(ΩD) → L(L2(ΩD),L2(ΩD)′).

Hence, due also to the boundedness of the linear operator ÃS (cf. (5.35)), we conclude that Ã

(cf. (5.34)) has a continuous first order Gâteaux derivative DÃ : X̃ → L(X̃, X̃′) as well. Con-

sequently, straightforward applications of Theorems 5.2.2 and 5.2.3 imply the well-posedness of
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the auxiliary Galerkin scheme (5.56) and the associated Cea estimate. Finally, the equivalence

results provided by Theorems 5.2.4 and 5.4.1 yield the unique solvability of the original Galerkin

scheme (5.55) and the required estimates (5.66) and (5.67).

5.5 A particular mixed finite element scheme

In this section we follow very closely the analysis and results from [49, Section 5] to define

specific finite element subspaces verifying the hypotheses (H.0) – (H.5). In this way, a particular

mixed finite element scheme (5.55) satisfying the estimates (5.66), (5.67), and the corresponding

rate of convergence, is derived.

5.5.1 The finite element subspaces

Let T S
h and T D

h be respective triangulations of the domains ΩS and ΩD, which are formed

by shape-regular triangles of diameter hT , and assume that they match in Σ so that T S
h ∪ T D

h

is a triangulation of ΩS ∪ Σ ∪ ΩD. In addition, T S
h and T D

h are supposed to be quasiuniform in

a neighborhood of Σ. Then, for each T ∈ T S
h ∪ T D

h we consider the local Raviart–Thomas space

of the lowest order

RT0(T ) := span
{

(1, 0), (0, 1), (x1, x2)
}

.

We also define one Raviart–Thomas space on each subdomain and their usual companion spaces

of piecewise constant functions: for ⋆ ∈ {S, D}

Hh(Ω⋆) :=
{

vh ∈ H(div ; Ω⋆) : vh|T ∈ RT0(T ) ∀T ∈ T ⋆
h

}
,

Lh(Ω⋆) :=
{

qh : Ω⋆ → R : qh|T ∈ P0(T ) ∀T ∈ T ⋆
h

}
.

(5.68)

It is clear that (H.0), (H.1), and the condition divHh(ΩD) ⊆ Lh(ΩD) in (H.4) are satisfied. In

addition, it is easy to see that in this case Vh(ΩD) (cf. (5.62)) is contained in Lh(ΩD)×Lh(ΩD),

and hence, in order to have the condition Vh(ΩD) ⊆ Th(ΩD) in (H.5), it suffices to choose

Th(ΩD) = Lh(ΩD), that is

Th(ΩD) :=
{

qh : ΩD → R : qh|T ∈ P0(T ) ∀T ∈ T D
h

}
. (5.69)

Furthermore, it is well known (see, e.g. [19, Chapter IV] or [69, Chapter 7]) that the pairs of

subspaces (Hh(ΩS), Lh(ΩS)) and (Hh,ΓD
(ΩD), Lh,0(ΩD)) (cf. (5.54) and (5.68)) satisfy the usual

discrete inf-sup conditions, that is there exist β̃S, β̃D > 0, independent of h, such that

sup
τ h∈Hh(ΩS)

τ h 6=0

(div τ h, vh)S
‖τ h‖div ;ΩS

≥ β̃S ‖vh‖0,ΩS
∀ vh ∈ Lh(ΩS) , (5.70)
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and

sup
vh∈Hh,ΓD

(ΩD)

vh 6=0

(div vh, qh)D
‖vh‖div ;ΩD

≥ β̃D ‖qh‖0,ΩD
∀ qh ∈ Lh,0(ΩD) . (5.71)

In addition, the set of discrete normal traces on Σ of Hh(ΩS) and Hh(ΩD) is given by

Φh(Σ) :=
{

φh : Σ → R : φh|e ∈ P0(e) ∀ edge e ∈ Σh

}
, (5.72)

where, hereafter, Σh denotes the partition of Σ inherited from T S
h (or T D

h ). Note that the local

quasiuniformity around Σ and the shape regularity property of the triangulations imply that Σh

is also quasiuniform, which yields a classical inverse inequality for Φh(Σ) (see [50, eq. (5.3)]).

Next, in order to introduce the particular subspaces ΛS
h(Σ) and ΛD

h (Σ), we first assume,

without loss of generality, that the number of edges of Σh is even. Then, we let Σ2h be the

partition of Σ arising by joining pairs of adjacent edges of Σh. Note that because Σh is inherited

from the interior triangulations, it is automatically of bounded variation (that is, the ratio of

lengths of adjacent edges is bounded) and, therefore, so is Σ2h. Now, if the number of edges of

Σh is odd, we simply reduce it to the even case by joining any pair of two adjacent elements,

and then construct Σ2h from this reduced partition. In this way, denoting by x0 and xN the

extreme points of Σ, we define

ΛS
h(Σ) :=

{
ψh ∈ C(Σ) : ψh|e ∈ P1(e) ∀ e ∈ Σ2h , ψh(x0) = ψh(xN ) = 0

}
, (5.73)

ΛD
h (Σ) =

{
ξh ∈ C(Σ) : ξh|e ∈ P1(e) ∀ e ∈ Σ2h

}
. (5.74)

It is clear from (5.74) that P0(Σ) ⊆ ΛD
h (Σ), which completes the requirements of (H.4). In

addition, if we assume that the elements of Σ2h are segments, that is no element of Σ2h crosses

a corner point, then we can construct ψ0 satisfying (H.2), exactly as explained at the end of

the proof of Lemma 5.3.2.

Furthermore, at this point we recall from [49, Lemma 5.2] that there exist β̂S, β̂D > 0,

independent of h, such that the pairs of subspaces (Φh(Σ), ΛS
h(Σ)) and (Φh(Σ), ΛD

h (Σ)) satisfy,

respectively, the following discrete inf-sup conditions:

sup
φh ∈Φh(Σ)

φh 6=0

〈φh, ψh〉Σ
‖φh‖−1/2,Σ

≥ β̂S ‖ψh‖1/2,00,Σ ∀ψh ∈ ΛS
h(Σ) , (5.75)

and

sup
φh ∈Φh(Σ)

φh 6=0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̂D ‖ξh‖1/2,Σ ∀ ξh ∈ ΛD
h (Σ) . (5.76)
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5.5.2 The discrete inf-sup conditions

In what follows we complete the verification of the hypotheses required by Theorem 5.4.2.

More precisely, according to our previous analysis, it only remains to show the discrete inf-sup

conditions (5.60) and (5.63), which yield (H.3) and (H.5), respectively. This is the purpose of

the following two lemmas.

Lemma 5.5.1 Let us recall from (5.54) that Hh,ΓD
(ΩD) :=

{
v ∈ Hh(ΩD) : v · n =

0 on ΓD

}
and Lh,0(ΩD) := Lh(ΩD) ∩ L0(ΩD), with Hh(ΩD) and Lh(ΩD) given by (5.68),

and let ΛD
h (Σ) be defined by (5.74). Then, there exists C̃3 > 0, independent of h, such that

S2,h(qh, ξh) := sup
vh∈Hh,ΓD

(ΩD)

vh 6=0

(div vh, qh)D + 〈vh · n, ξh〉Σ
‖vh‖div ;ΩD

≥ C̃3

{
‖qh‖0,ΩD

+ ‖ξh‖1/2,Σ

}

∀ (qh, ξh) ∈ Lh,0(ΩD) × ΛD
h (Σ).

Proof. Let (qh, ξh) ∈ Lh,0(ΩD) × ΛD
h (Σ). It is easy to see, using the estimate (5.71) and the

boundedness of the normal trace of H(div ; ΩD), that

S2,h(qh, ξh) ≥ sup
vh∈Hh,ΓD

(ΩD)

vh 6=0

(div vh, qh)D
‖vh‖div ;ΩD

− ‖ξh‖1/2,Σ ≥ β̃D ‖qh‖0,ΩD
− ‖ξh‖1/2,Σ (5.77)

On the other hand, given φh ∈ Φh(Σ), we proceed similarly to the proof of Lemma 5.3.3 and

define ηh ∈ H−1/2(∂ΩD) as

〈ηh, µ〉∂ΩD
= 〈φh, µΣ〉Σ ∀µ ∈ H1/2(∂ΩD) , (5.78)

which satisfies

〈ηh, E0,D(ρ)〉∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) , (5.79)

〈ηh, ED(ξh)〉∂ΩD
= 〈φh, ξh〉Σ , (5.80)

and

‖ηh‖−1/2,∂ΩD
≤ C ‖φh‖−1/2,Σ . (5.81)

Then, according to the result provided by [49, Lemma 5.1] for the Darcy domain ΩD, we deduce

the existence of v̄h ∈ Hh(ΩD) such that

div v̄h ∈ P0(ΩD) in ΩD , v̄h · n = ηh on ∂ΩD , (5.82)

and

‖v̄h‖div ;ΩD
≤ C ‖ηh‖−1/2,∂ΩD

. (5.83)
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In this way, thanks to (5.38) and (5.80), and (5.79), we find, respectively, that

〈v̄h · n, ξh〉Σ = 〈v̄h · n, ED(ξh)〉∂ΩD
= 〈ηh, ED(ξh)〉∂ΩD

= 〈φh, ξh〉Σ ,

and

〈v̄h · n, E0,D(ρ)〉∂ΩD
= 〈ηh, E0,D(ρ)〉∂ΩD

= 0 ∀ρ ∈ H
1/2
00 (ΓD) ,

which implies that v̄h ∈ HΓD
(div; ΩD). Moreover, it is clear from (5.81) and (5.83) that

‖v̄h‖div ;ΩD
≤ C ‖φh‖−1/2,Σ . (5.84)

Hence, bounding from below with vh = v̄h, and recalling that qh ∈ L2
0(ΩD), we deduce that

S2,h(qh, ξh) ≥ | (div v̄h, qh)D + 〈v̄h · n, ξh〉Σ |
‖v̄h‖div ;ΩD

=
| 〈v̄h · n, ξh〉Σ |
‖v̄h‖div ;ΩD

≥ C̄
| 〈φh, ξh〉Σ |
‖φh‖−1/2,Σ

,

which, noting that φh is arbitrary in Φh(Σ), yields

S2,h(qh, ξh) ≥ C sup
φh ∈Φh(Σ)

φh 6=0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

.

This inequality and (5.76) imply that S2,h(qh, ξh) ≥ C ‖ξh‖1/2,Σ, which, combined with (5.77),

completes the proof.

Lemma 5.5.2 Let Hh(ΩS) and Lh(ΩS) be given by (5.68), and let ΛS
h(Σ) be defined by (5.73).

Then there exists c4 > 0, independent of h, such that

S4,h(vh, ψh) := sup
τ h∈Hh(ΩS)

τ h 6=0

(div τh, vh)S + 〈τ h · n, ψh〉Σ
‖τ h‖div ;ΩS

≥ c4

{
‖vh‖0,ΩS

+ ‖ψh‖1/2,00,Σ

}

for all (vh, ψh) ∈ Lh(ΩS) × ΛS
h(Σ).

Proof. Let (vh, ψh) ∈ Lh(ΩS) × ΛS
h(Σ). We first observe, using (5.70) and the boundedness of

the normal trace of H(div ; ΩS), that

S4,h(vh, ψh) ≥ sup
τ h∈Hh(ΩS)

τ h 6=0

(div τ h, vh)S
‖τ h‖div ;ΩS

− ‖ψh‖1/2,00,Σ ≥ β̃S ‖vh‖0,ΩS
− ‖ψh‖1/2,00,Σ . (5.85)

Next, given φh ∈ Φh(Σ), we apply a slight modification of [49, Lemma 5.1] for the Stokes domain

ΩS, and deduce the existence of τ̄h ∈ Hh(ΩS) such that

div τ̄h = 0 in ΩS , τ̄h · n = φh on Σ , (5.86)

and

‖τ̄ h‖div ;ΩS
≤ C ‖φh‖−1/2,Σ . (5.87)



5.5 A particular mixed finite element scheme 144

Therefore, bounding from below with τh = τ̄ h, we deduce in this case that

S4,h(vh, ψh) ≥ | (div τ̄ h, vh)S + 〈τ̄h · n, ψh〉Σ |
‖τ̄h‖div ;ΩS

=
| 〈τ̄ h · n, ψh〉Σ |
‖τ̄ h‖div ;ΩS

≥ C̄
| 〈φh, ψh〉Σ |
‖φh‖−1/2,Σ

,

which, noting that φh is arbitrary in Φh(Σ), yields

S4,h(vh, ψh) ≥ C sup
φh ∈Φh(Σ)

φh 6=0

〈φh, ψh〉Σ
‖φh‖−1/2,Σ

.

This inequality and (5.75) imply that S4,h(vh, ψh) ≥ C ‖ψh‖1/2,00,Σ, which, combined with

(5.85), completes the proof.

5.5.3 The main results

In this section we prove the unique solvability of (5.55) for the subspaces introduced in

Section 5.5.1, and establish the associated rate of convergence.

Theorem 5.5.1 Assume that T S
h and T D

h are quasiuniform in a neighborhood of Σ. Let Hh(ΩS),

Hh(ΩD), Lh(ΩS), Lh(ΩD), Th(ΩD), ΛS
h(Σ), and ΛD

h (Σ) be the finite element subspaces defined

in (5.68), (5.69), (5.73), and (5.74), respectively, and let

Hh(ΩS) := { τ : ΩS → R
2×2 : at τ ∈ Hh(ΩS) ∀a ∈ R

2 } ,

Th(ΩD) := Th(ΩD) × Th(ΩD) ,

Lh(ΩS) := Lh(ΩS) × Lh(ΩS) ,

Hh,ΓD
(ΩD) :=

{
v ∈ Hh(ΩD) : v · n = 0 on ΓD

}
,

Lh,0(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) ,

ΛS
h(Σ) := ΛS

h(Σ) × ΛS
h(Σ) .

Then the Galerkin scheme (5.55) with the discrete spaces Xh := Hh(ΩS) × Th(ΩD), Mh :=

Lh(ΩS)×Hh,ΓD
(ΩD)×ΛS

h(Σ), and Qh := Lh,0(ΩD)×ΛD
h (Σ) has a unique solution (σh,uh,p

h
) ∈

Xh × Mh × Qh, which satisfies the estimates (5.66) and (5.67).

Proof. Since the hypotheses (H.0) – (H.5) are satisfied by the specific finite element subspaces

Xh, Mh, and Qh, the conclusion follows from a straightforward application of Theorem 5.4.2.

Our next goal is to provide the rate of convergence of the Galerkin scheme (5.55). To this

end, we now recall the approximation properties of the subspaces involved (see, e.g. [13], [19],

[58]). Note that each one of them is named after the unknown to which it is applied later on.
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(APσS
h ) For each δ ∈ (0, 1], and for each τ ∈ H

δ(ΩS) with div τ ∈ Hδ(ΩS), there exists

τh ∈ Hh(ΩS) such that

‖τ − τh‖div ;ΩS
≤ C hδ

{
‖τ‖δ,ΩS

+ ‖div τ‖δ,ΩS

}
.

(APtD
h ) For each δ ∈ [0, 1], and for each s ∈ Hδ(ΩD), there exists sh ∈ Th(ΩD) such that

‖s − sh‖0,ΩD
≤ C hδ ‖s‖δ,ΩD

.

(APuS
h ) For each δ ∈ [0, 1], and for each v ∈ Hδ(ΩS), there exists vh ∈ Lh(ΩS) such that

‖v − vh‖0,ΩS
≤ C hδ ‖v‖δ,ΩS

.

(APuD
h ) For each δ ∈ (0, 1], and for each v ∈ Hδ(ΩD) ∩ HΓD

(div ; ΩD) with div v ∈ Hδ(ΩD),

there exists vh ∈ Hh,ΓD
(ΩD) such that

‖v − vh‖div ;ΩD
≤ C hδ

{
‖v‖δ,ΩD

+ ‖div v‖δ,ΩD

}
.

(APpD

h ) For each δ ∈ [0, 1], and for each q ∈ Hδ(ΩD) ∩ L2
0(ΩD), there exists qh ∈ Lh,0(ΩD)

such that

‖q − qh‖0,ΩD
≤ C hδ ‖q‖δ,ΩD

.

(AP
ϕ
h ) For each δ ∈ [0, 1] and for each ψ ∈ H1/2+δ(Σ) ∩ H

1/2
00 (Σ), there exists ψh ∈ ΛS

h(Σ)

such that

‖ψ − ψh‖1/2,00,Σ ≤ C hδ ‖ψ‖1/2+δ,Σ .

(APλ
h) For each δ ∈ [0, 1] and for each ξ ∈ H1/2+δ(Σ), there exists ξh ∈ ΛD

h (Σ) such that

‖ξ − ξh‖1/2,Σ ≤ C hδ ‖ξ‖1/2+δ,Σ .

The following theorem provides the theoretical rate of convergence of the Galerkin scheme

(5.55) under suitable regularity assumptions on the exact solution.

Theorem 5.5.2 Let (σ,u,p)) ∈ X×M×Q and (σh,uh,p
h
) ∈ Xh ×Mh ×Qh be the unique

solutions of the continuous and discrete formulations (5.22) and (5.55), respectively. Assume

that there exists δ ∈ (0, 1] such that σS ∈ H
δ(ΩS), div σS ∈ Hδ(ΩS), tD ∈ Hδ(ΩD), uD ∈

Hδ(ΩD), and div uD ∈ Hδ(ΩD). Then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD), ϕ ∈ H1/2+δ(Σ),

λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h and the continuous and discrete

solutions, such that

‖(σ,u,p) − (σh,uh,p
h
)‖X×M×Q ≤ C hδ

{
‖σS‖δ,ΩS

+ ‖div σS‖δ,ΩS

+ ‖tD‖δ,ΩD
+ ‖uS‖1+δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖div uD‖δ,ΩD

+ ‖pD‖1+δ,ΩD

}
.

(5.88)
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Proof. We first recall from Theorem 5.3.2 that ∇uS = ν−1 σd
S and ∇pD = tD, which implies

that uS ∈ H1+δ(ΩS) and pD ∈ H1+δ(ΩD), whence ϕ = −uS|Σ ∈ H1/2+δ(Σ) and λ =

pD|Σ ∈ H1/2+δ(Σ). The rest of the proof follows from the corresponding Cea estimate, the

above approximation properties, and the fact that, thanks to the trace theorem in ΩS and ΩD,

respectively, there holds

‖ϕ‖1/2+δ,Σ ≤ c ‖uS‖1+δ,ΩS
and ‖λ‖1/2+δ,Σ ≤ c ‖pD‖1+δ,ΩD

.

5.6 The a-posteriori error analysis

In this section we derive a reliable and efficient residual-based a-posteriori error estimate for

our mixed finite element scheme (5.55) with the discrete spaces introduced in Section 5.5. Most

of our analysis makes extensive use of the estimates derived in [50] and [15] for the corresponding

linear case. We begin with some notations. For each T ∈ T S
h ∪ T D

h we let E(T ) be the set of

edges of T , and we denote by Eh the set of all edges of T S
h ∪ T D

h , subdivided as follows:

Eh = Eh(ΓS) ∪ Eh(ΩS) ∪ Eh(ΩD) ∪ Eh(Σ) ,

where Eh(ΓS) := { e ∈ Eh : e ⊆ ΓS }, Eh(Ω⋆) := { e ∈ Eh : e ⊆ Ω⋆ } for each ⋆ ∈ {S, D},
and Eh(Σ) := { e ∈ Eh : e ⊆ Σ }. Note that Eh(Σ) is the set of edges defining the partition

Σh. Analogously, we let E2h(Σ) be the set of double edges defining the partition Σ2h. In what

follows, he stands for the diameter of a given edge e ∈ Eh ∪ E2h(Σ). Now, let ⋆ ∈ {D, S}
and let q ∈ [L2(Ω⋆)]

m, with m ∈ {1, 2}, such that q|T ∈ [C(T )]m for each T ∈ T ⋆
h . Then,

given e ∈ Eh(Ω⋆), we denote by [q] the jump of q across e, that is [q] := (q|T ′)|e − (q|T ′′)|e,
where T ′ and T ′′ are the triangles of T ⋆

h having e as an edge. Also, we fix a unit normal vector

ne := (n1, n2)
t to the edge e (its particular orientation is not relevant) and let te := (−n2, n1)

t be

the corresponding fixed unit tangential vector along e. Hence, given v ∈ L2(Ω⋆) and τ ∈ L
2(Ω⋆)

such that v|T ∈ [C(T )]2 and τ |T ∈ [C(T )]2×2, respectively, for each T ∈ T ⋆
h , we let [v · te] and

[τ te] be the tangential jumps of v and τ , across e, that is [v ·te] := {(v|T ′)|e− (v|T ′′)|e} ·te and

[τ te] := {(τ |T ′)|e − (τ |T ′′)|e} te, respectively. From now on, when no confusion arises, we will

simply write t and n instead of te and ne, respectively. Finally, for sufficiently smooth scalar,

vector and tensors fields q, v := (v1, v2)
t and τ := (τij)2×2, respectively, we let

curl v :=




∂v1

∂x2
−∂v1

∂x1
∂v2

∂x2
−∂v2

∂x1


 , curl q :=

(
∂q

∂x2
,− ∂q

∂x1

)
t

,
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rotv :=
∂v2

∂x1
− ∂v1

∂x2
, and rot τ :=

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)
t

.

In what follows, (σh,uh,p
h
) := ((σS,h, tD,h), (uS,h,uD,h, ϕh), (pD,h, λh)) ∈ Xh × Mh × Qh

and (σ,u,p) ∈ X × M × Q denote the solutions of (5.55) and (5.22), respectively. Then we

introduce the global a posteriori error estimator:

Θ :=





∑

T∈T S
h

Θ2
S,T +

∑

T∈T D
h

Θ2
D,T





1/2

, (5.89)

where, for each T ∈ T S
h

Θ2
S,T := ‖fS + div σS,h‖2

0,T + h2
T ‖rotσd

S,h‖2
0,T + h2

T ‖σd
S,h‖2

0,T

+
∑

e∈E(T )∩Eh(ΩS)

he ‖[σd
S,ht]‖2

0,e +
∑

e∈E(T )∩Eh(ΓS)

he ‖σd
S,ht‖2

0,e +
∑

e∈Eh(T )∩Eh(Σ)

he ‖uS,h + ϕh‖2
0,e

+
∑

e∈Eh(T )∩Eh(Σ)

{
he

∥∥∥σS,h n + λh n − ν κ−1
f (ϕh · t) t

∥∥∥
2

0,e
+ he

∥∥∥ν−1 σd
S,ht + ϕ′

h

∥∥∥
2

0,e

}
,

and for each T ∈ T D
h

Θ2
D,T := ‖fD − div uD,h‖2

0,T + h2
T ‖tD,h‖2

0,T + ‖κ(·, |tD,h|) tD,h + uD,h‖2
0,T

+
∑

e∈E(T )∩Eh(ΩD))

he ‖[tD,h · t]‖2
0,e +

∑

e∈E(T )∩Eh(ΓD)

he ‖tD,h · t‖2
0,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥tD,h · t − λ′
h

∥∥2

0,e
+ he ‖uD,h · n + ϕh · n‖2

0,e + he ‖pD,h − λh‖2
0,e

}
.

Here, ϕ′
h andλ′

h have to be understood as tangential derivatives, that is in the direction imposed

by the tangential vector field t on Σ. In addition, it is important to remark, as announced at

the beginning of this section, that some components of the a posteriori error estimator (5.89)

coincide with those obtained in [50] and [15]. In particular, ΘS,T is exactly the same estimator

for the Stokes domain provided in [50].

The main result of this section is stated as follows.

Theorem 5.6.1 There exist positive constants Crel and Ceff, independent of h, such that

Ceff Θ ≤ ‖σ − σh‖X + ‖u − uh‖M + ‖p − p
h
‖Q ≤ Crel Θ . (5.90)

The efficiency of Θ (lower bound in (5.90)) is proved below in Section 5.6.2, whereas the

corresponding reliability estimate (upper bound in (5.90)) is proved next in Section 5.6.1.



5.6 The a-posteriori error analysis 148

5.6.1 Reliability of the a posteriori error estimator

We begin by noticing, thanks to the assumptions (5.4), that the Gâteaux derivative of AD

at any rD ∈ L2(ΩD), say DAD(rD), is a uniformly bounded and uniformly elliptic bilinear form

on L2(ΩD) × L2(ΩD) (see, e.g. [53, Theorem 3.8] for details). Hence, as a consequence of the

continuous dependence result provided by the linear version of Theorem 5.2.1 (cf. (5.24) with

A linear), we conclude that the linear operator obtained by adding the three equations of the

left hand side of (5.22), after replacing AD by DAD(rD), satisfies a global inf-sup condition.

Furthermore, we observe that the continuity of DAD guarantees that there exists a particular

r̃D ∈ L2(ΩD), which is a convex combination of tD and tD,h, such that

[DAD(r̃D)(tD − tD,h), sD] = [AD(tD) − AD(tD,h), sD] ∀ sD ∈ L2(ΩD) . (5.91)

Hence, applying the above described inf-sup estimate (with rD = r̃D) to our Galerkin error

(σ − σh,u − uh,p − p
h
) ∈ X × M × Q, we find that

‖(σ − σh,u − uh,p − p
h
)‖X×M×Q ≤ C sup

(τ ,v,q)∈X×M×Q

(τ ,v,q) 6=0

R(τ ,v,q)

‖(τ ,v,q)‖X×M×Q

, (5.92)

where, according to (5.22), (5.91), and the definitions of B1, B and S, the residual functional

R : X × M × Q → R is given by

R(τ ,v,q) := R1(τ S) + R2(sD) + R3(vS) + R4(vD) + R5(ψ) + R6(qD) + R7(ξ) ,

for each τ := (τ S, sD) ∈ X, v := (vS,vD, ψ) ∈ M, and q := (qD, ξ) ∈ Q, with

R1(τ S) := −ν−1

∫

ΩS

σd
S,h : τ d

S −
∫

ΩS

uS,h · div τ S − 〈τ S n, ϕh〉Σ ,

R2(sD) := −
∫

ΩD

(κ(·, |tD,h|) tD,h + uD,h) · sD ,

R3(vS) := −
∫

ΩS

vS · (fS + div σS,h) ,

R4(vD) := −
∫

ΩD

tD,h · vD −
∫

ΩD

pD,h div vD − 〈vD · n, λh〉Σ ,

R5(ψ) := −〈σS,h n, ψ〉Σ − 〈ψ · n, λh〉Σ + ν κ−1
f 〈ψ · t, ϕh · t〉Σ ,

R6(qD) :=

∫

ΩD

qD (fD − div uD,h) ,

R7(ξ) := 〈uD,h · n, ξ〉Σ + 〈ϕh · n, ξ〉Σ .
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Hence, the supremum in (5.92) can be bounded in terms of Ri, i ∈ {1, ..., 7}, which yields

‖(σ − σh,u − uh,p − p
h
)‖X×M×Q ≤ C

{
‖R1‖H(div;ΩS)′ + ‖R2‖L2(ΩD)′

+ ‖R3‖L2(ΩS)′ + ‖R4‖HΓD
(div;ΩD)′ + ‖R5‖H

1/2
00 (Σ)′

+ ‖R6‖L2
0(ΩD)′ + ‖R7‖H1/2(Σ)′

}
.

(5.93)

Throughout the rest of this section we provide suitable upper bounds for each one of the terms

on the right hand side of (5.93). The following lemma, whose proof follows from straightforward

applications of the Cauchy-Schwarz inequality, is stated first (see also [50, Lemma 3.1] for the

estimates (5.95) and (5.96) below).

Lemma 5.6.1 There hold

‖R2‖L2(ΩD)′ = ‖κ(·, |tD,h|) tD,h + uD,h‖0,ΩD
=

{
∑

T∈T D
h

‖κ(·, |tD,h|) tD,h + uD,h‖2
0,T

}1/2

, (5.94)

‖R3‖L2(ΩS)′ = ‖fS + div σS,h‖0,ΩS
=

{
∑

T∈T S
h

‖fS + div σS,h‖2
0,T

}1/2

, (5.95)

‖R6‖L2
0(ΩD)′ ≤ ‖fD − div uD,h‖0,ΩD

=

{
∑

T∈T D
h

‖fD − div uD,h‖2
0,T

}1/2

. (5.96)

Next, we give the estimates for the suprema on the spaces defined in the interface Σ.

Lemma 5.6.2 There exist C5 , C7 > 0, independent of h, such that

‖R5‖H
1/2
00 (Σ)′

≤ C5





∑

e∈Eh(Σ)

he

∥∥∥σS,h n + λh n − ν κ−1
f (ϕh · t) t

∥∥∥
2

0,e





1/2

, (5.97)

and

‖R7‖H1/2(Σ)′ ≤ C7





∑

e∈Eh(Σ)

he ‖uD,h · n + ϕh · n‖2
0,e





1/2

. (5.98)

Proof. See [50, Lemma 3.2] for details.

It remains to provide the upper bounds for ‖R1‖H(div;ΩS)′ and ‖R4‖HΓD
(div;ΩD)′ . For this

purpose, we also proceed as in [50] and apply Helmholtz decompositions of H(div; ΩS) and

HΓD
(div; ΩD) (see, e.g. [50, Lemma 3.3]), the usual integration by parts on each element, and

the approximation properties of the Clément and Raviart-Thomas interpolation operators in

both domains. More precisely, applying the same analysis suggested by [50, Lemmas 3.6 and

3.7], we observe that the estimate for ‖R1‖H(div;ΩS)′ is exactly the one provided by [50, Lemma

3.8], whereas the estimate for ‖R4‖HΓD
(div;ΩD)′ arises from a slight modification of the proof of

[50, Lemma 3.9]. These results are established as follows.
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Lemma 5.6.3 There exists C1 > 0, independent of h, such that

‖R1‖H(div;ΩS)′ ≤ C1





∑

T∈T S
h

Θ̂2
S,T





1/2

, (5.99)

where, for each T ∈ T S
h

Θ̂2
S,T := h2

T ‖rotσd
S,h‖2

0,T + h2
T ‖σd

S,h‖2
0,T +

∑

e∈E(T )∩Eh(ΩS)

he ‖[σd
S,ht]‖2

0,e

+
∑

e∈E(T )∩Eh(ΓS)

he ‖σd
S,ht‖2

0,e +
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥ν−1σd
S,ht + ϕ′

h

∥∥∥
2

0,e
+ he ‖uS,h + ϕh‖2

0,e

}

Proof. See [50, Lemma 3.8].

Lemma 5.6.4 There exists C4 > 0, independent of h such that

‖R4(vD)‖HΓD
(div;ΩD)′ ≤ C4





∑

T∈T D
h

Θ̂2
D,T





1/2

, (5.100)

where, for each T ∈ T D
h

Θ̂2
D,T := h2

T ‖tD,h‖2
0,T +

∑

e∈E(T )∩Eh(ΩD)

he ‖[tD,h · t]‖2
0,e

+
∑

e∈E(T )∩Eh(ΓD)

he ‖tD,h · t‖2
0,e +

∑

e∈E(T )∩Eh(Σ)

{
he

∥∥tD,h · t − λ′
h

∥∥2

0,e
+ he ‖pD,h − λh‖2

0,e

}
.

Proof. It suffices to apply [50, Lemma 3.9] with tD,h instead of K−1 uD,h, noting that rot (tD,h)

vanishes since tD,h is piecewise constant, and then recalling that in the present geometry the

boundary of ΩD includes also the additional part given by ΓD.

We end this section by observing that the reliability estimate (upper bound in (5.90)) is a

direct consequence of Lemmas 5.6.1, 5.6.2, 5.6.3, and 5.6.4.

5.6.2 Efficiency of the a posteriori error estimator

We now aim to prove the eficiency of Θ, that is the lower bound in (5.90). We begin with

the estimates for the zero order terms appearing in the definition of Θ2
S,T and Θ2

D,T .

Lemma 5.6.5 There hold

‖fS + div σS,h‖0,T ≤ ‖σS − σS,h‖div ;T ∀T ∈ T S
h ,

‖fD − div uD,h‖0,T ≤ ‖uD − uD,h‖div ;T ∀T ∈ T D
h ,
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and there exists c > 0, depending on κ1 (cf. (5.4)), such that

‖κ(·, |tD,h|)tD,h + uD,h‖0,T ≤ c
{
‖tD − tD,h‖0,T + ‖uD − uD,h‖div ;T

}
∀T ∈ T D

h .

Proof. For the first two estimates it suffices to recall, as established by Theorem 5.3.2, that

fS = −div σS in ΩS and fD = div uD in ΩD. Next, adding and subtracting uD, and using

also from Theorem 5.3.2 that uD = −κ(·, |tD|)tD, we find that

‖κ(·, |tD,h|)tD,h + uD,h‖0,T ≤ ‖κ(·, |tD,h|)tD,h − κ(·, |tD|)tD‖0,T + ‖uD − uD,h‖div ;T .

Then, proceeding similarly as in the proof of [11, Lemma 3] and using the assumptions on κ (cf.

(5.4)), we deduce that

‖κ(·, |tD,h|)tD,h − κ(·, |tD|)tD‖0,T ≤ 3 k1 ‖tD − tD,h‖0,T ,

which, replaced back into the previous estimate, completes the proof.

The derivation of the upper bounds for the remaining terms defining the global a posteriori

error estimator proceeds similarly as in [50] (see also [15]), using known results from [25], [28], and

[40], and applying Helmholtz decompositions, inverse inequalities, and the localization technique

based on element-bubble and edge-bubble functions. We omit further details and just provide

the following lemma that summarizes known efficiency estimates for thirteen terms defining Θ2
S,T

and Θ2
D,T . The corresponding proofs, as detailed below, can be found in [15], [18], [25], [40], [42],

[47], and [50]).

Lemma 5.6.6 There exist positive constants ci , i ∈ {1, ..., 13}, independent of h, such that

a) h2
T ‖rotσd

S,h‖2
0,T ≤ c1 ‖σS − σS,h‖2

0,T ∀T ∈ T S
h ,

b) he |[tD,h · t]‖2
0,e ≤ c2 ‖uD − uD,h‖2

0,we
∀ e ∈ Eh(ΩD), where the set we is given by

we := ∪
{

T ′ ∈ T D
h : e ∈ E(T ′)

}
,

c) he ‖[σd
S,ht]‖2

0,e ≤ c3 ‖σS − σS,h‖2
0,we

∀e ∈ Eh(ΩS), where the set we is given by

we := ∪
{

T ′ ∈ T S
h : e ∈ E(T ′)

}
,

d) he ‖tD,h ·t‖2
0,e ≤ c4 ‖uD−uD,h‖2

0,T ∀e ∈ Eh(ΓD), where T is the triangle of T D
h having

e as an edge,

e) he ‖σd
S,ht‖2

0,e ≤ c5 ‖σS − σS,h‖2
0,T ∀e ∈ Eh(ΓS), where T is the triangle of T S

h having

e as an edge,

f) h2
T ‖tD,h‖2

0,T ≤ c6

{
‖pD − pD,h‖2

0,T + h2
T ‖uD − uD,h‖2

0,T

}
∀T ∈ T D

h ,
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g) h2
T ‖σd

S,h‖2
0,T ≤ c7

{
‖uS − uS,h‖2

0,T + h2
T ‖σS − σS,h‖2

0,T

}
∀T ∈ T S

h ,

h) he ‖pD,h−λh‖2
0,e ≤ c8

{
‖pD−pD,h‖2

0,T + h2
T ‖uD−uD,h‖2

0,T + he ‖λ−λh‖2
0,e

}
∀e ∈ Eh(Σ),

where T is the triangle of T D
h having e as an edge,

i)
∑

e∈Eh(Σ)

he

∥∥tD,h · t − λ′
h

∥∥2

0,e
≤ c9





∑

e∈Eh(Σ)

‖uD − uD,h‖2
0,Te

+ ‖λ − λh‖2
1/2,Σ



 ,

where, given e ∈ Eh(Σ), Te is the triangle of T D
h having e as an edge.

j)
∑

e∈Eh(Σ)

he

∥∥∥ν−1σd
S,ht + ϕ′

h

∥∥∥
2

0,e
≤ c10





∑

e∈Eh(ΓS)

‖σS − σS,h‖2
0,Te

+ ‖ϕ − ϕh‖2
1/2,00,Σ



 ,

where, given e ∈ Eh(Σ), Te is the triangle of T S
h having e as an edge.

k) he ‖uD,h ·n + ϕh ·n‖2
0,e ≤ c11

{
‖uD−uD,h‖2

0,T + h2
T ‖div (uD−uD,h)‖2

0,T + he ‖ϕ−ϕh‖2
0,e

}
,

for all e ∈ Eh(Σ), where T is the triangle of T D
h having e as an edge,

l) he ‖σS,h n + λh n − ν κ−1
f (ϕh · t) t‖2

0,e

≤ c12

{
‖σS − σS,h‖2

0,T + h2
T ‖div (σS − σS,h)‖2

0,T + he ‖λ − λh‖2
0,e + he ‖ϕ − ϕh‖2

0,e

}
,

for all e ∈ Eh(Σ), where T is the triangle of T S
h having e as an edge, and

m) he ‖uS,h + ϕh‖2
0,e ≤ c13

{
‖uS − uS,h‖2

0,T + h2
T ‖σS − σS,h‖2

0,T + he ‖ϕ − ϕh‖2
0,e

}
,

for all e ∈ Eh(Σ), where T is the triangle of T S
h having e as an edge.

Proof. For a) we refer to [25, Lemma 6.1]. Alternatively, a) follows from straightforward applica-

tions of the technical result provided in [18, Lemma 4.3] (see also [47, Lemma 4.9]). Similarly, for

b), c), d), and e) we refer to [25, Lemma 6.2] or apply the technical result given by [18, Lemma

4.4] (see also [47, Lemma 4.10]). Then, for f) and g) we refer to [25, Lemma 6.3] (see also [47,

Lemma 4.13] or [40, Lemma 5.5]). On the other hand, the estimate given by h) corresponds to

[15, Lemma 4.12]. The proofs of i) and j) follow from very slight modifications of the proof of

[40, Lemma 5.7]. Alternatively, an elasticity version of i) and j), which is provided in [42, Lemma

20], can also be adapted to our case. Finally, for k), l) and m) we refer to [50, Lemmas 3.15,

3.16 and 3.17].

The estimates i) and j) in the previous lemma provide the only non-local bounds of the

present efficiency analysis. However, under additional regularity assumptions on λ and ϕ, we

can give the following local bounds instead.

Lemma 5.6.7 Assume that λ|e ∈ H1(e) for each e ∈ Eh(Σ), and that ϕ|e ∈ H1(e) for each

e ∈ Eh(ΓS). Then there exist c̃9, c̃10 > 0, such that

he

∥∥tD,h · t + λ′
h

∥∥2

0,e
≤ c̃9

{
‖uD − uD,h‖2

0,Te
+ he

∥∥λ′ − λ′
h

∥∥2

0,e

}
∀ e ∈ Eh(Σ) ,
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and

he

∥∥∥ν−1σd
S,ht + ϕ′

h

∥∥∥
2

0,e
≤ c̃10

{
‖σS − σS,h‖2

0,Te
+ he

∥∥ϕ′ − ϕ′
h

∥∥2

0,e

}
∀ e ∈ Eh(ΓS) .

Proof. Similarly as for i) and j) from Lemma 5.6.6, it follows by adapting the corresponding

elasticity version from [42]. We omit details here and refer to [42, Lemma 21].

We end this section by observing that the required efficiency estimate follows straight-

forwardly from Lemmas 5.6.5, 5.6.6, and 5.6.7. In particular, the terms he ‖λ − λh‖2
0,e and

he ‖ϕ−ϕh‖2
0,e, which appear in Lemma 5.6.6 (items h), k), l), and m)), are bounded as follows:

∑

e∈Eh(Σ)

he ‖λ − λh‖2
0,e ≤ h ‖λ − λh‖2

0,Σ ≤ C h ‖λ − λh‖2
1/2,Σ ,

and ∑

e∈Eh(Σ)

he ‖ϕ − ϕh‖2
0,e ≤ h ‖ϕ − ϕh‖2

0,Σ ≤ C h ‖ϕ − ϕh‖2
1/2,00,Σ .

5.7 Numerical results

In this section we provide three examples illustrating the performance of the Galerkin scheme

(5.55) with the subspaces Xh := Hh(ΩS)×Th(ΩD), Mh := Lh(ΩS)×Hh,ΓD
(ΩD)×ΛS

h(Σ) and

Qh := Lh,0(ΩD) × ΛD
h (Σ) defined in Section 5.5, confirming the reliability and efficiency of the

a posteriori error estimator Θ, and showing the behaviour of the associated adaptive algorithm.

In what follows, N stands for the number of degrees of freedom defining Xh and Mh. The

solution of (5.22) and (5.55) are denoted

(σ,u,p) := ((σS, tD), (uS,uD, ϕ), (pD, λ)) ∈ X × M × Q

and

(σh,uh,p
h
) := ((σS,h, tD,h), (uS,h,uD,h, ϕh), (pD,h, λh)) ∈ Xh × Mh × Qh .

The individual and global errors are defined by:

e(σS) := ‖σS − σS,h‖div ;ΩS
, e(uS) := ‖uS − uS,h‖div ;ΩS

,

e(tD) := ‖tD − tD,h‖0,ΩD
, e(uD) := ‖uD − uD,h‖div ;ΩD

, e(pD) := ‖pD − pD,h‖0,ΩD
,

e(ϕ) := ‖ϕ − ϕh‖1/2,00,Σ , e(λ) := ‖λ − λh‖1/2,Σ ,

and

e(σ,u,p) :=
{

(e(σS))
2 + (e(uS))

2 + (e(tD))2 + (e(uD))2 + (e(pD))2 + (e(ϕ))2 + (e(λ))2
}1/2

,
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whereas the effectivity index with respect to Θ is given by

eff(Θ) := e(σ,u,p)/Θ .

Also, we let r(σS), r(uS), r(tD), r(uD), r(pD), r(ϕ), r(λ), and r(σ,u,p) be the individual

and global experimental rates of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
σS,uS, tD,uD, pD, ϕ, λ

}
,

and

r(σ,u,p) :=
log(e(σ,u,p)/e′(σ,u,p))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e
′. However, when the

adaptive algorithm is applied (see details below), the expression log(h/h′) appearing in the

computation of the above rates is replaced by − 1
2 log(N/N ′), where N and N ′ denote the

corresponding degrees of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them we choose

ν = 1, κf = 1, and κ(·, s) = 2 + 1/(1 + s). It is easy to check that κ satisfies the assumptions

(5.4) with k0 = 1 and k1 = 3. Example 1 is used to illustrate the performance of the Galerkin

scheme (5.55) and to corroborate the reliability and efficiency of the a posteriori error estimator

Θ. Then, Examples 2 and 3 are utilized to illustrate the behavior of the associated adaptive

algorithm, which applies the following procedure from [81]:

1) Start with a coarse mesh Th := T D
h ∪ T S

h .

2) Solve the discrete problem (5.55) for the current mesh Th.

3) Compute ΘT := Θ⋆,T for each triangle T ∈ T ⋆
h , ⋆ ∈ {D, S}.

4) Check the stopping criterion and decide whether to finish or go to next step.

5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥ 1

2
max
T∈Th

{ΘT : T ∈ Th } .

6) Define resulting meshes as current meshes T D
h and T S

h , and go to step 2.

In Example 1 we consider the regions ΩS := (−1, 1) × (0, 1) and ΩD := (−1, 1) × (−1, 0),

and choose the data fS and fD so that the exact solution is given by the smooth functions

uS(x) = curl
(
x2

2 sin(π x1)
)

∀x := (x1, x2) ∈ ΩS ,
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pS(x) = x3
1 + x3

2 ∀x := (x1, x2) ∈ ΩS ,

and

pD(x) = x1

(
x2

1 − 1
)2

(x2 + 1)2 ∀x := (x1, x2) ∈ ΩD .

In Example 2 we consider ΩD := (−1, 1) × (−2,−1) and let ΩS be the L-shaped domain

given by (−1, 1)2 \ [0, 1]2. Then we choose fS and fD so that the exact solution is given by

uS(x) = curl
(
3 (x2

1 + x2
2)

4/3 (x2 + 1)2
)

∀x := (x1, x2) ∈ ΩS ,

pS(x) = (x2 + 1)2 ex1 ∀x := (x1, x2) ∈ ΩS ,

and

pD(x) =
1

5
(x3

1 − 3x1) cos(π x2) ∀x := (x1, x2) ∈ ΩD .

Note that ∇uS and σS have a singularity at the origin.

In Example 3 we consider the same geometry of Example 1 and choose the data fS and fD

so that the exact solution is given by the smooth functions

uS(x) = curl
(
0.2 x3

2 ex1+x2
)

∀x := (x1, x2) ∈ ΩS ,

pS(x) = x2
2 ex1 ∀x := (x1, x2) ∈ ΩS ,

and

pD(x) =
x1

(
x2

1 − 1
)2

(
x2

1 + (x2 + 1)2 + 0.05
) ∀x := (x1, x2) ∈ ΩD ,

In this case, pD and hence tD = ∇ pD and uD = −κ (·, |∇ pD|)∇ pD show a numerical singu-

larity in a neighborhood of the point (0,−1).

The numerical results shown below were obtained using a MATLAB code. In Table 5.1 we

summarize the convergence history of the mixed finite element method (5.55), as applied to

Example 1, for a sequence of quasi-uniform triangulations of the domain. We observe there,

looking at the corresponding experimental rates of convergence, that the O(h) predicted by

Theorem 5.5.2 (here δ = 1) is attained in all the unknowns. In addition, we notice that the

effectivity index eff(Θ) remains always in a neighborhood of 0.87, which illustrates the reliability

and efficiency of Θ in the case of a regular solution.

Next, in Tables 5.2 - 5.5 we provide the convergence history of the quasi-uniform and adaptive

schemes, as applied to Examples 2 and 3. We observe that the errors of the adaptive procedures
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Table 5.1: Example 1, quasi-uniform scheme

N h e(σS) r(σS) e(uS) r(uS) e(tD) r(tD) e(uD) r(uD)

168 0.707 7.359 − 0.865 − 0.489 − 1.694 −
640 0.354 4.312 0.799 0.457 0.953 0.220 1.196 1.375 0.312

2496 0.177 2.195 0.992 0.230 1.008 0.106 1.078 0.829 0.743

9856 0.088 1.103 1.002 0.115 1.007 0.052 1.036 0.476 0.810

39168 0.044 0.552 1.003 0.058 1.004 0.026 1.011 0.260 0.878

156160 0.022 0.276 1.002 0.029 1.002 0.013 1.004 0.137 0.929

N e(pD) r(pD) e(λ) r(λ) e(ϕ) r(ϕ) e(σ,u,p) r(σ,u,p) eff(Θ)

168 0.126 − 0.683 − 0.037 − 7.648 − 0.862

640 0.045 1.524 0.497 0.475 0.139 − 4.583 0.765 0.879

2496 0.018 1.371 0.244 1.041 0.042 1.734 2.373 0.967 0.898

9856 0.008 1.179 0.120 1.030 0.014 1.549 1.213 0.976 0.845

39168 0.004 1.061 0.060 1.011 0.005 1.513 0.616 0.982 0.875

156160 0.002 1.018 0.030 1.004 0.001 1.505 0.311 0.988 0.871

decrease faster than those obtained by the quasi-uniform ones, which is confirmed by the global

experimental rates of convergence provided there. This fact is also illustrated in Figures 5.2 and

5.4 where we display the total errors e(σ,u,p) vs. the number of degrees of freedom N for

both refinements. As shown by the values of r(σ,u,p), the adaptive method is able to keep the

quasi-optimal rate of convergence O(h) for the total error. Furthermore, the effectivity indexes

remain bounded from above and below, which confirms the reliability and efficiency of Θ in these

cases of non-smooth solutions. Intermediate meshes obtained with the adaptive refinements are

displayed in Figures 5.3 and 5.5. Note that the method is able to recognize the singularity of

the solution in Example 2 and the region with high gradients in Example 3.
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Table 5.2: Example 2, quasi-uniform scheme

N h e(σS) e(uS) e(tD) e(uD) e(pD)

404 0.5000 29.3565 5.8914 0.3784 2.2553 0.0806

1576 0.2500 19.7820 3.0327 0.1895 1.2565 0.0409

6224 0.1250 13.2561 1.5276 0.0948 0.6588 0.0204

24736 0.0625 8.4281 0.7652 0.0474 0.3369 0.0102

98624 0.0312 5.5354 0.3828 0.0237 0.1703 0.0051

N e(λ) e(ϕ) e(σ,u,p) r(σ,u,p) eff(Θ)

404 0.3325 0.2636 30.0322 − 0.5258

1576 0.1713 0.1226 20.0546 0.5933 0.5631

6224 0.0887 0.0477 13.3608 0.5914 0.5627

24736 0.0450 0.0172 8.4697 0.6607 0.5986

98624 0.0226 0.0060 5.5513 0.6109 0.5598

1
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Figure 5.2: Example 2, e(σ,u,p) vs. N for the quasi-uniform and adaptive schemes
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Table 5.3: Example 2, adaptive scheme

N e(σ,u,p) r(σ,u,p) Θ eff(Θ)

404 30.0322 − 57.1171 0.5258

548 22.2145 1.9781 34.9558 0.6355

784 18.8764 0.9093 27.8872 0.6769

1544 12.4998 1.2164 18.5554 0.6736

2026 10.6033 1.2113 15.9807 0.6635

4373 7.8376 0.7856 11.0736 0.7078

4781 7.2224 1.8328 10.3884 0.6952

7105 5.9397 0.9872 8.4901 0.6996

9673 5.2169 0.8411 7.3908 0.7059

20712 3.6174 0.9618 5.0386 0.7179

29906 2.9286 1.1501 4.1342 0.7084

36304 2.6731 0.9416 3.7189 0.7188

53634 2.2272 0.9353 3.0884 0.7212

67436 1.9670 1.0850 2.7358 0.7190

71449 1.9011 1.1802 2.6419 0.7196

96176 1.6508 0.9499 2.2885 0.7213

126900 1.4424 0.9737 2.0029 0.7201
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Figure 5.3: Example 2, adapted meshes with 1544, 4781, 20712, and 67436 degrees of freedom
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Figure 5.4: Example 3, e(σ,u,p) vs. N for the quasi-uniform and adaptive schemes
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Table 5.4: Example 3, quasi-uniform scheme

N h e(σS) e(uS) e(tD) e(uD) e(pD)

168 0.7071 1.6203 0.1781 2.7631 5.7862 0.4991

640 0.3536 0.8166 0.0920 2.5015 6.6021 0.2920

2496 0.1768 0.4069 0.0446 1.3345 10.7401 0.1288

9856 0.0884 0.2035 0.0222 0.6524 7.9304 0.0642

39168 0.0442 0.1017 0.0111 0.3264 4.9954 0.0322

156160 0.0221 0.0509 0.0055 0.1632 2.7788 0.0161

N e(λ) e(ϕ) e(σ,u,p) r(σ,u,p) eff(Θ)

168 0.4683 0.0570 6.6515 − 0.9877

640 0.6154 0.0736 7.1407 − 1.0202

2496 0.2349 0.0159 10.8337 − 1.0145

9856 0.1023 0.0044 7.9607 0.4487 1.0077

39168 0.0478 0.0014 5.0074 0.6720 1.0050

156160 0.0253 0.0005 2.7842 0.8488 1.0041



5.7 Numerical results 161

Table 5.5: Example 3, adaptive scheme

N e(σ,u,p) r(σ,u,p) Θ eff(Θ)

1346 8.5936 − 8.5943 0.9999

1866 6.9966 1.2588 7.0143 0.9975

3633 5.3139 0.8258 5.3029 1.0021

5069 4.4949 1.0051 4.4942 1.0001

5146 4.4662 0.8474 4.4546 1.0026

8042 3.6365 0.9207 3.6203 1.0045

13148 2.8766 0.9538 2.8588 1.0062

15921 2.5961 1.0722 2.5742 1.0085

23197 2.1824 0.9225 2.1712 1.0051

28262 1.9700 1.0365 1.9556 1.0074

43218 1.6240 0.9096 1.6176 1.0039

50762 1.4914 1.0589 1.4833 1.0055

62798 1.3415 0.9958 1.3341 1.0055

76352 1.2116 1.0424 1.2053 1.0052

88422 1.1253 1.0064 1.1186 1.0060

133093 0.9381 0.8898 0.9318 1.0068

144737 0.8932 1.1703 0.8877 1.0062

191228 0.7814 0.9597 0.7767 1.0062
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Figure 5.5: Example 3, adapted meshes with 1346, 3633, 15921, and 62798 degrees of freedom



Chapter 6

Conclusiones y trabajo futuro

6.1 Conclusiones

El objetivo principal de la tesis presentada ha sido el desarrollo de métodos de elementos fini-

tos mixtos conformes para el problema acoplado de Stokes-Darcy. Lo anterior se logra, en primer

lugar, mejorando resultados previos existentes en la literatura, y en segundo lugar, proponiendo

nuevos métodos que permiten aproximar las distintas variables f́ısicas del problema. Además,

con el fin de verificar el buen funcionamiento de cada uno de los métodos propuestos, se han

desarrollado códigos computacionales y se han presentado ejemplos numéricos que corroboran

los resultados teóricos obtenidos.

Las conclusiones principales de esta tesis, en orden de desarrollo, son:

1. Se mejoran los resultados obtenidos en [45] y se demuestra que es posible utilizar cualquier

par de elementos finitos estables para los problemas de Stokes y Darcy en el esquema de

Galerkin de la formulación primal-mixta propuesta en [63]. En particular, para el dominio

de Stokes se pueden utilizar elementos de Taylor-Hood, Bernardi-Raugel y el elemento

MINI, mientras que en el dominio de Darcy se pueden utilizar elementos de Raviart-

Thomas de cualquier orden.

2. Se introduce una nueva formulación variacional, dual-mixta en ambos dominios, para el

problema acoplado de Stokes-Darcy, la cual permite la utilización de la misma familia

de elementos finitos en ambos dominios. La estructura dual-mixta se obtiene mediante la

introducción del pseudo-esfuerzo y la velocidad en el fluido, junto con la velocidad y la

presión en el medio poroso, como incógnitas principales del modelo.

3. Se desarrolla un análisis de error a posteriori para la formulación variacional, dual-mixta

en ambos dominios, descrita en 2., y se obtiene un estimador de error a posteriori residual,

163
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confiable y eficiente, para el problema acoplado. Los elementos finitos considerandos son:

elementos de Raviart-Thomas para el pseudostress en el fluido y la velocidad de filtración

en el medio poroso, elementos constantes a trozos para la velocidad del fluido y la presión

en el medio poroso, y elementos continuos lineales a trozos para los multiplicadores de

Lagrange definidos en la interfase.

4. Se desarrolla un análisis a priori y a posteriori para la formulación variacional de un

acoplamiento no lineal de Stokes-Darcy. El modelo considerado describe la interacción de

un fluido viscoso cuyo comportamiento es descrito por la ecuación de Stokes, con un medio

poroso modelado por un sistema de Darcy no lineal. Las incógnitas principales consideradas

en el modelo son: el pseudo-esfuerzo y la velocidad en el fluido; la velocidad, la presión y

el gradiente de presión en el medio poroso; la presión del fluido en el medio poroso y la

velocidad del fluido libre en la interfase. Con ello se obtiene una estructura dual-mixta en el

fluido y dual-dual-mixta en el medio poroso. A nivel discreto el esquema propuesto permite

la utilización de la misma familia de elementos finitos en ambos dominios. Finalmente, se

desarrolla un estimador de error a posteriori residual, confiable y eficiente.

6.2 Trabajo futuro

1. Se desarrollará el análisis a priori y a posteriori de una versión aumentada del método

de elementos finitos mixtos para el problema acoplado de Stokes-Darcy introducido en

el Caṕıtulo 3. Esto apunta a la posibilidad de relajar las hipótesis sobre los espacios de

elementos finitos a utilizar.

2. Se comenzará un análisis a priori y a posteriori de métodos de elementos finitos mixtos para

el acoplamiento de fluidos con medios porosos, considerando no linealidades en el dominio

Stokes, y/o en ambos dominios. Se desarrollará un análisis teórico, utilizando herramientas

disponibles en la literatura y se elaborarán codigos computacionales que corroboren los

resultados teóricos obtenidos.

3. Se extenderán los resultados obtenidos en este trabajo de tesis al problema evolutivo de

acoplamiento de fluidos con medios porosos, cuyo modelo se determina por un sistema

acoplado de las ecuaciones evolutivas de Stokes y Darcy.
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Modélisation Mathématique et Analyse Numérique, vol. 9, pp. 77-84, (1975).

[31] M.R. Correa and A.F.D. Loula, A unified mixed formulation naturally coupling

Stokes and Darcy flows. Computer Methods in Applied Mechanics and Engineering,

doi:10.1016/j.cma.2009.03.016.

[32] C. D’Angelo and P. Zunino, A finite element method based on weighted interior penalties

for heterogeneous incompressible flows. SIAM Journal on Numerical Analysis, vol. 47, 5, pp.

3990-4020, (2009).

[33] C. D’Angelo and P. Zunino, Robust numerical approximation of coupled Stokes’ and

Darcy’s flows applied to vascular hemodynamics and biochemical transport. M2AN: Math-

ematical Modelling and Numerical Analysis, DOI: 10.1051/m2an/2010062, (2010).

[34] M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Ground-

water Flows. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, 2004.

[35] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models

for coupling surface and groundwater flows. Applied Numerical Mathematics, vol. 43, pp.

57-74, (2002).



BIBLIOGRAPHY 168
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