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RESUMEN

El objetivo principal de esta tesis es desarrollar un analisis de error a priori y a posteriori de un método
de elementos finitos completamente mixto para un problema de interaccion sélido-fluido bidimensional.
Ademaés de lo anterior, se deduce un estimador de error a posteriori residual, confiable y eficiente, para
el problema de elasticidad lineal en el plano con condiciones de frontera de traccién pura.

Primero, se desarrolla un andlisis de error a priori de un método de elementos finitos completamente
mixto para un problema de interaccién solido-fluido bidimensional. El modelo se rige por las ecuaciones
de la elastodindamica y la actustica en régimen de tiempo armonico, y las condiciones de transmisién estan
dadas por el equilibrio de fuerzas y la igualdad de los correspondientes desplazamientos normales. Se
introduce una formulacién dual mixta en ambos dominios, la cual tiene el esfuerzo y la rotacion en el sélido,
ademas del gradiente de presiones en el fluido, como las principales incégnitas. A su vez, ambas condiciones
de transmision son esenciales, las cuales se imponen débilmente por medio de multiplicadores de Lagrange.
Luego, se muestra una descomposicién apropiada del espacio al cual pertenecen el esfuerzo y el gradiente
de presiones, y posteriormente se aplica la teoria de Babuska-Brezzi y la alternativa de Fredholm, para
realizar el andlisis de la formulacién continua. Posteriormente, las incégnitas se aproximan por un esquema
de Galerkin conforme definido en términos de los elementos de Raviart-Thomas de bajo orden en ambos
dominios, y las funciones lineales a trozos continuas sobre las fronteras. Entonces, el andlisis discreto se
basa en una descomposicion estable de los espacios de elementos finitos correspondientes y en un resultado
clasico de métodos de proyeccién para operadores de Fredholm de indice cero.

Por otro lado, a modo de analisis preliminar y también como un subproducto de esta tesis, se considera
un problema de elasticidad lineal bidimensional con condiciones de frontera de Neumann no homogéneas,
y se deduce un estimador de error a posteriori residual, confiable y eficiente para su formulacién varia-
cional dual mixta, en términos del esfuerzo, el desplazamiento y la rotacién. La demostracién de la
confiabilidad hace uso de un problema auxiliar apropiado, la condicién inf-sup continua y las propiedades
de aproximacién local de los operadores de interpolacién de Clément y Raviart-Thomas. A su vez, las
desigualdades de traza discreta e inversa, y la técnica de localizacién basada en funciones burbuja sobre

tridngulos y lados, son las principales herramientas para probar la eficiencia del estimador.

Finalmente, se deduce un estimador de error a posteriori, basado en términos residuales, confiable
y eficiente, para el problema de interacciéon estudiado en la primera parte. Las principales herramientas
para probar la confiabilidad involucran una condicién inf-sup global, las descomposiciones de Helmholtz
continua y discreta en cada dominio, y las propiedades de aproximacién local de los operadores de interpo-
lacion de Clément y Raviart-Thomas. Luego, se aplican las mismas técnicas mencionadas anteriormente
para obtener la eficiencia. Finalmente, varios resultados numéricos confirman la confiabilidad y eficiencia

del estimador, e ilustran el comportamiento del esquema adaptivo asociado.






ABSTRACT

The main purpose of this thesis is to develop the a priori and a posteriori error analyses of a fully-
mixed finite element method for a fluid-solid interaction problem in 2D. In addition, we also derive a
reliable and efficient residual-based a posteriori error estimator for the plane linear elasticity problem
with pure traction boundary conditions.

First, we develop an a priori error analysis of a fully-mixed finite element method for a fluid-solid
interaction problem in 2D. The media are governed by the elastodynamic and acoustic equations in time-
harmonic regime, and the transmission conditions are given by the equilibrium of forces and the equality
of the corresponding normal displacements. We introduce dual-mixed approaches in both domains, which
yields the stress and the rotation in the solid, as well as the pressure gradient in the fluid, as the main un-
knowns. In turn, since both transmission conditions become essential, they are enforced weakly by means
of two suitable Lagrange multipliers. Next, we show that suitable decompositions of the spaces to which
the stress and the pressure gradient belong, allow the application of the Babuska-Brezzi theory and the
Fredholm alternative for analyzing the solvability of the resulting continuous formulation. The unknowns
are approximated by a conforming Galerkin scheme defined in terms of Raviart-Thomas element of lowest
order in both domains, and continuous piecewise linear functions on the boundaries. Then, the analysis
of the discrete method relies on a stable decomposition of the corresponding finite element spaces and
also on a classical result on projection methods for Fredholm operators of index zero.

Next, as a preliminary analysis as well as a by product of this thesis, we consider the two-dimensional
linear elasticity problem with non-homogeneous Neumann boundary conditions, and derive a reliable and
efficient residual-based a posteriori error estimator for the corresponding stress-displacement-rotation
dual-mixed variational formulation. The proof of reliability makes use of a suitable auxiliary problem,
the continuous inf-sup conditions satisfied by the bilinear forms involved, and the local approximation
properties of the Clément and Raviart-Thomas interpolation operators. In turn, inverse and discrete trace
inequalities, and the localization technique based on triangle-bubble and edge-bubble functions, are the
main tools yielding the efficiency of the estimator.

Finally, we derive a reliable and efficient residual-based a posteriori error estimator for the interaction
problem studied in the first part. The main tools for proving the reliability of the estimator involve a
global inf-sup condition, continuous and discrete Helmholtz decompositions on each domain, and the local
approximation properties of the Clément and Raviart-Thomas interpolation operators. Next, we apply
the above mentioned techniques to obtain the efficiency. Finally, several numerical results confirming the

reliability and efficiency of the estimator, and illustrating the good performance of the associated adaptive

scheme, are reported.
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Chapter 1

Introduccion

En esta tesis se exponen tres trabajos que abordan los temas de andlisis de error a priori
y a posteriori en el marco de los elementos finitos mixtos. El primero se refiere al estudio de
un problema de interaccion solido-fluido bidimensional modelado por las ecuaciones de Lamé-
Helmholtz. El segundo presenta un estimador de error a posteriori residual, confiable y eficiente,
para el problema de elasticidad lineal con condiciones de frontera de tracciéon pura. Finalmente,
en el tercer trabajo se deduce un estimador de error a posteriori residual, confiable y eficiente,
para el problema de interaccion considerado inicialmente. Cabe mencionar que el desarrollo
intermedio del indicador de error a posteriori del problema de elasticidad lineal, se efectia
con el fin de adentrarnos, de una manera mas sencilla, en las técnicas de demostracién de los
estimadores de error a posteriori de tipo residual para el cuerpo sélido (consultar en [22]), antes

de abordar el problema de interaccion entre el medio sélido y el fluido.

El analisis a priori del problema Lamé-Helmholtz constituye una extension de lo trabajado
en el articulo [37] (ver también [50] y [39]), dado que se desarrolla un planteamiento variacional
dual mixto en ambos dominios. El concepto de extension se refiere a la formulacién variacional
utilizada, la cual en vez de considerar una aproximacién primal en el fluido acotado, como se
aplicé en [37], emplea en cada dominio el mismo método mixto dual. Mas precisamente, la
formulacion dual mixta presente en el fluido se origina por la introduccién de la nueva incégnita
o = Vp, esto es el gradiente de presiones, lo cual conlleva a reescribir la ecuacién de Helmholtz
y una de las condiciones de transmisién. La introduccién de of en la ecuacién de Helmholtz es
motivada por la eventual necesidad de obtener aproximaciones por elementos finitos directas y
més precisas del Vp (en vez de aplicar diferenciacién numérica, con la consecuente de perdida de
precision en la aproximacién de la presién p, cuando se emplea una formulacion primal usual en el
fluido). Lo anterior se requiere, en particular, cuando se resuelve el problema inverso relacionado

con la ecuacién de Helmholtz, en el que la representacion integral de la frontera de un patrén de



campo lejano, una variable importante en un algoritmo iterativo asociado, depende de la traza
de p y la traza normal de oy (ver [25], Capitulo 2, Teorema 25).

En las formulaciones variacionales mixtas, el espacio para encontrar las soluciones oy y o
estd dado por H(div; Q) (donde €2 denota la regién donde vive cada incégnita), siendo natural
aproximar ambas con los elementos finitos de Raviart-Thomas. Lo anterior simplifica en gran
medida el diseno del cédigo computacional, dado que en ambos dominios se consideran los
mismos elementos finitos. A su vez, las condiciones de transmisién son ahora esenciales, las
cuales se imponen débilmente mediante multiplicadores de Lagrange apropiados. Por medio de
este proceso se introducen nuevas incognitas dadas por el desplazamiento del sélido sobre la
interfase, y la presién sobre la interfase y la frontera.

Por otra parte, el indicador a posteriori del error es un estimador que, numéricamente,
hace posible el proceso adaptivo, lo cual permite garantizar el buen comportamiento de la
convergencia a la solucion obtenida en el calculo por elementos finitos, especialmente cuando se
presentan dominios con geometrias complejas o singularidades. Dicho indicador se reperesenta
usualmente por una cantidad global 8, que se expresa en términos de estimadores locales 07
definidos sobre cada elemento T de una triangulacién dada en el dominio. El estimador € se dice
que es confiable (resp. eficiente) si existe Cye > 0 (resp. Cess > 0), independiente del tamano

de la malla, tal que

Cerf0+ hoot. < |lerror|| < Cre@ + heo.t.,

donde h.o.t es una expresion genérica en inglés (higher order terms) que denota a uno o varios
términos de orden superior. Dentro de la bibliografia existente en el ambito del andlisis de
error a posteriori, se puede afirmar que [35] es el unico trabajo que aborda esta problemética
para un problema de interacién sélido-fluido modelado por las ecuaciones de la actstica y la
elastodindmica en régimen de tiempo arménico. En lo referente a la cota de confiabilidad, se
esbozan en esta tesis dos procedimientos diferentes. En el problema de elasticidad lineal se
plantea un problema auxiliar seguidamente de la aplicacion de una de las condiciones inf-sup
continuas, en tanto que en el problema de Lamé-Helmholtz se hace uso de una condicién inf-sup
global, la cual es una consecuencia directa de la dependencia continua del problema. Ahora
bien, en ambos problemas se recurre a la descomposicién de Helmholtz, y a las propiedades
de aproximacion local de los interpolantes de Clément y Raviart-Thomas. Por otro lado, en la
demostracién de la eficiencia de los estimadores de error a posteriori se utilizan diferentes tipos
de herramientas matematicas, siendo las mas relevantes: las desigualdades inversas (c.f. [21]
Teorema 3.2.6), las técnicas de localizacién basadas en funciones burbuja sobre lados y tridngulos
(c.f. [46] egs. (1.5) and (1.6)), los operadores de extensién (c.f. [72]) y las desigualdades de traza
discreta (c.f. [23] Lemmas 20 y 21).



El propésito de este trabajo es ampliar la gama de métodos numeéricos existentes para el
problema de Lamé-Helmholtz, lo cual procede de una generalizacion de los trabajos realizados
en [35] y [37], obteniéndose de esta manera un mayor rango de eleccién de los elementos finitos
para el esquema de Galerkin asociado a cada formulacién variacional. Por otra parte, se proponen
nuevas formulaciones que permiten, por un lado, la introduccién de incognitas adicionales de
interés fisico, y también la utilizacién del mismo tipo de elementos finitos en ambos dominios.
Ademas, se extiende lo anterior a los métodos numéricos adaptivos, mediante la obtencién de
estimadores de error a posteriori correspondientes.

El resto de esta tesis se organiza de la manera que se indica a continuacién: En el Capitulo
2 se estudia un problema bidimensional de interaccién sélido-fluido aplicando el método de los
elementos finitos mixto en ambos dominios. El modelo a estudiar consiste de un cuerpo sélido
con propiedades elasticas, inmerso en un fluido, sobre el cual incide una onda de sonido que
se desplaza a través del fluido. El propdsito es encontrar los esfuerzos generados en el sdlido
y el gradiente de presiones en el fluido. Se considera el dominio del fluido representado por
una regién anular, cuya condicién de frontera exterior es de tipo Robin, la cual se impone
lejos del cuerpo sélido con el fin de imitar el campo de dispersién de la onda en el infinito. Se
emplean las ecuaciones elastodindmicas y acusticas en régimen de tiempo armonico, como las
ecuaciones constitutivas del modelo, y se establecen las condiciones de transmision en la frontera
de acoplamiento, las cuales describen el equilibrio de fuerzas y la igualdad de los desplazamientos
normales. El andlisis de error a priori se basa en una formulacién variacional dual mixta, tanto
a nivel continuo como discreto, de donde se obtiene un sistema desacoplado a través de un
operador compacto, lo cual se representa como una estructura de punto silla por bloques en la
diagonal. Lo anterior permite la aplicaciéon de la teoria de Babuska-Brezzi en cada dominio, y
gracias a la perturbacién compacta, se emplea la alternativa de Fredholm. Ademas, se utilizan
varias otras herramientas matematicas, entre las cuales se encuentran: proyectores ortogonales,
descomposicién ortogonal del espacio H(div), inclusiones compactas, operador de interpolacién
de Raviart-Thomas, levantamientos discretos estables, y propiedades de aproximacién de sub-

espacios de elementos finitos. Este capitulo esta constituido por la siguiente publicacién:

DoMINGUEZ, C., GATICA, G.N., MEDDAHI, S. AND OYARZUA, R., A priori error analysis
of a fully-mized finite element method for a two-dimensional fluid-solid interaction problem.
ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, 2, pp. 471-506, (2013).

En el Capitulo 3 se deduce un estimador de error a posteriori de un problema de elasticidad
lineal en el plano con condiciones de contorno de Neumann puras, cuyo planteamiento esta dado
por una formulacién variacional dual mixta, en el cual las incégnitas respectivas estdn dadas por:

el tensor de esfuerzos de Cauchy, el desplazamiento, la rotacion y la traza del desplazamiento.



De hecho, la condicién de Neumann se impone débilmente precisamente a través de la intro-
duccién de la traza del desplazamiento como un multiplicador de Lagrange. Los subespacios de
elementos finitos considerados son basicamente PEERS, esto es: Raviart-Thomas + el rotacional
de las funciones burbuja para el tensor de esfuerzos, las funciones constantes a trozos para el
desplazamiento, y las funciones lineales a trozos y continuas para describir la rotacién y el mul-
tiplicador de Lagrange sobre la frontera. En la deduccién del estimador a posteriori se comienza
con la cota de confiabilidad, la cual recurre en primera instancia al planteamiento de un pro-
blema auxiliar y la condicién inf-sup continua. Posteriormente se introduce el rotacional de una
funcién potencial en la variable del tensor de esfuerzos, anexdandole el interpolante de Clément, y
luego se aplica una descomposicion de Helmholtz en la cual actdan los interpolantes de Clément
vy Raviart-Thomas. Por otro lado, las principales herramientas utilizadas para demostrar la efi-
ciencia del estimador incluyen: la desigualdad inversa, las técnicas de localizacién basadas en
funciones burbuja sobre lados y tridngulos, los operadores de extensién y la desigualdad de traza.

Los contenidos del Capitulo 3 constituyen la siguiente prepublicacién:

DoMiNGUEzZ C., GATiIcA G.N. AND MARQUEZ A., A residual-based a posteriori error
estimator for the plane linear elasticity problem with pure traction boundary conditions.
Preprint 2014-04, Departamento de Ingenieria Matematica, Universidad de Concepcion,
Chile, (2014).

Finalmente, en el Capitulo 4 se desarrolla un andlisis de error a posteriori del método de ele-
mentos finitos completamente mixto para el problema de interaccién sélido-fluido bidimensional
estudiado en el Capitulo 2. El problema es modelado por las ecuaciones de la elastodinamica
y la actstica en régimen de tiempo armonico, las condiciones de transmisién estdn dadas por
el equilibrio de fuerzas y la igualdad de los desplazamientos normales correspondientes, y el
fluido ocupa una regién anular, la cual rodea al sélido, de modo que una condicién de frontera
de tipo Robin se impone sobre la frontera exterior imitando el comportamiento de las condi-
ciones de Sommerfeld al infinito. La formulaciéon dual mixta se aplica en ambos dominios, y
las ecuaciones que rigen el modelo se emplean para eliminar el desplazamiento u del sélido y
la presién p del fluido. Ademads, en este caso las condiciones de transmisiéon son esenciales, y
por lo tanto se imponen débilmente por medio de multiplicadores de Lagrange apropiados. Las
incognitas del sélido y del fluido se aproximan por un esquema de Galerkin conforme, se definen
en términos de los elementos PEERS en el sélido, los Raviart-Thomas de bajo orden en el fluido,
y las funciones lineales a trozos y continuas sobre la frontera. Se obtiene un estimador de error
a posteriori basado en términos residuales, confiable y eficiente, para este problema acoplado.

Las principales herramientas para probar la confiabilidad del estimador involucran la condicién



inf-sup global continua, las descomposiciones de Helmholtz continua y discreta en cada dominio,
y las propiedades de aproximacion local de los interpolantes de Clément y Raviart-Thomas.
Posteriormente, para demostrar la eficiencia del estimador se emplean desigualdades inversas,
desigualdades de traza discreta, y técnicas de localizacién basadas en funciones burbuja sobre
lados y triangulos. Es importante mencionar que el andlisis a posteriori desarrollado en este
capitulo es un complemento del Capitulo 2, en donde se realizé un anélisis a priori de la misma

formulacion variacional. El Capitulo 4 estd constituido por la siguiente prepublicacién:

DoMmiNnGUEz C., GATIicA G.N. AND MEDDAHI S., A posteriori error analysis of a fully-
mized finite element method for a two-dimensional fluid-solid interaction problem. Preprint

2014-02, Departamento de Ingenieria Matemadtica, Universidad de Concepcién, Chile, (2014).



Chapter 2

A priori error analysis of a
fully-mixed finite element method
for a two-dimensional fluid-solid

interaction problem

2.1 Introduction

In this paper we focus again on the two-dimensional fluid-solid interaction problem studied
recently in [37] (see also [50], which is the first paper concerning the coupling procedure of the
fluid-structure interaction problems, and [39] for a version employing boundary integral equation
methods). More precisely, we consider an incident acoustic wave upon a bounded elastic body
(obstacle) fully surrounded by a fluid, and are interested in determining both the response of
the body and the scattered wave. The obstacle is supposed to be a long cylinder parallel to the
xr3-axis whose cross-section is {25. The boundary of €25 is denoted by Y. We assume that the
incident wave and the volume force acting on the body exhibit a time-harmonic behaviour with
e 'w! ansatz and phasors p; and f, respectively, so that p; satisfies the Helmholtz equation in
R2\Q,. Hence, since the phenomenon is supposed to be invariant under a translation in the z3-
direction, we may consider a bidimensional interaction problem posed in the frequency domain.
In this way, in what follows we let og : 2, — C?*2 u: Q; — C?, and p : R®\Q, — C be
the amplitudes of the Cauchy stress tensor, the displacement field, and the total (incident +

scattered) pressure, respectively, where C stands for the set of complex numbers.
The fluid is assumed to be perfect, compressible, and homogeneous, with density p; and

6



2.1 Introduction 7

wave number Ky = U%, where v is the speed of sound in the linearized fluid, whereas the solid
is supposed to be isotropic and linearly elastic with density ps and Lamé constants p and .
The latter means, in particular, that the corresponding constitutive equation is given by Hooke’s
law, that is

os = Mre(u)I + 2pue(u) in Q,

where £(u) := § (Vu+(Vu)*) is the strain tensor of small deformations, V is the gradient tensor,
tr denotes the matrix trace, * stands for the transpose of a matrix, and I is the identity matrix of
C2%2, Consequently, under the hypotheses of small oscillations, both in the solid and the fluid,
the unknowns o, u, and p satisfy the elastodynamic and acoustic equations in time-harmonic
regime, that is:

div03+/{§u = —f in Qg,

Ap + /ﬁfcp 0 in R2\Q,,

where k4 is defined by ,/psw, together with the transmission conditions:

oV = —pv on X,
2.1
prUZU'V = g—p on X, 2
v

and the behaviour at infinity given by

p—pi =0k (2:2)
and a( )
P—Di -
Tl —1kp(p—pi) = ofr D, (2.3)
as r = [|x|]| — -oo, uniformly for all directions ﬁ Hereafter, div stands for the usual
X

divergence operator div acting on each row of the tensor, ||x|| is the euclidean norm of a vector

t ¢ R?, and v denotes the unit outward normal on X, that is pointing toward

x = (x1,x2)
R2\Q,. The transmission conditions given in (2.1) constitute the equilibrium of forces and the
equality of the normal displacements of the solid and fluid. In other words, the first equation in
(2.1) results from the action of pressure forces exerted by the fluid on the solid, and the second
one expresses the continuity of the normal components of the acceleration, in time-harmonic,
of the solid and fluid on the interface. In turn, the equation (2.3) is known as the Sommerfeld

radiation condition.

Now, it is important to remark that the development of suitable numerical methods for
the above described fluid-solid interaction problems has become a subject of increasing interest

during the last two decades. Several approaches relying on a primal formulation in the solid,
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in which the displacement becomes the only unknown in this medium, were originally studied
n [14], [52], [53], [54], [55], [65], and [67]. More recently, and in particular motivated by the
need of obtaining direct finite element approximations of the stresses, dual-mixed formulations
in the solid have begun to be considered as well (see e.g. [37] and [39]). In fact, the model is
first simplified in [37] by assuming that the fluid occupies a bounded annular region Q, whence
a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed
on the exterior boundary of @, which is located far from the obstacle. Then, the method in
[37] employs a dual-mixed variational formulation for plane elasticity in the solid and keeps the
usual primal formulation in the linearized fluid region. In addition, the elastodynamic equation
is used to eliminate the displacement unknown from the resulting formulation. Furthermore,
since one of the transmission conditions becomes essential, it is enforced weakly by means of
a Lagrange multiplier. As a consequence, the stress tensor in the solid and the pressure in
the fluid, which solves the Helmholtz equation, constitute the main unknowns. Next, a judicious
decomposition of the space of stresses renders suitable the application of the Fredholm alternative
and the Babuska-Brezzi theory for the analysis of the whole coupled problem. The corresponding
discrete scheme is defined with PEERS elements in the obstacle and the traditional first order
Lagrange finite elements in the fluid domain. The stability and convergence of this Galerkin
method also relies on a stable decomposition of the finite element space used to approximate
the stress variable. On the other hand, the strategy from [37] is modified in [39] in such a way
that, instead of introducing a Robin condition on the exterior boundary, a non-local absorbing
boundary condition based on boundary integral equations is considered there. Consequently,
the exterior boundary can be chosen as any parametrizable smooth closed curve containing the
solid, which, in order to minimize the size of the computational domain, is adjusted as sharply as
possible to the shape of the obstacle. The rest of the analysis for the corresponding continuous
and discrete formulations follows very closely the techniques and arguments developed in [37].

We refer to [39] for further details on this modified approach.

The goal of the present paper is to additionally extend the approach from [37] and [39] by
employing now dual-mixed formulations in both media. The extension concept refers here to
the fact that, instead of using a primal approach in the bounded fluid domain, as in [37] and
[39], we now apply in that region the same dual-mixed method that is employed in the solid.
In this way, the well-posedness of the formulation that would arise from the additional use of
the boundary integral equation method (BIEM) in the unbounded fluid domain, as it was done
in [39], will follow straightforwardly from the analyses in that reference and the present paper.
By the way, the advantages and disadvantages of using BIEM or not have to do mainly with
the computational domain (smaller with BIEM) and the complexity of the resulting Galerkin
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system (simpler without BIEM). In any case, the above remarks emphasize that, besides o,

from now on we set the additional unknown
of = Vp in R:\Q,
so that the Helmholtz equation and the second condition in (2.1) are rewritten, respectively, as
dive, + /i?cp =0 in R*\Q, (2.4)

and

of-v=piwiu-v on X. (2.5)

The introduction of o; and the resulting equation (2.4) is motivated by the eventual need
of obtaining direct and more accurate finite element approximations for the pressure gradient
o := Vp (instead of applying numerical differentiation, with the consequent loss of accuracy,
to the approximation of p arising from the usual primal formulation). The above is required, for
instance, to solve the inverse problem related to the Helmholtz equation, in which the bound-
ary integral representation of the far field pattern, a crucial variable in an associated iterative
algorithm, depends on both the trace of p and the normal trace of of (see, e.g. [25, Chapter
2, Theorem 2.5], [29, 30, 31]). To this respect, a H(div)-type approximation of o is certainly
better suited for this purpose. The usefulness of the mixed formulation for the pressure p is
also justified by the fact that it is locally mass conservative. Moreover, since both transmission
conditions become now essential, they are enforced weakly by using the traces of the displace-
ment and the pressure on the interface as suitable Lagrange multipliers. Hence, the fact that
these variables of evident physical interest can also be approximated directly from the asso-
ciated Galerkin schemes, constitute another important advantage of the fully-mixed approach
proposed here. Furthermore, the use of a dual-mixed approach in the solid and the fluid sim-
plify the corresponding computational code since Raviart-Thomas based subspaces can be used
in both domains. The rest of this work is organized as follows. In Section 2.2 we redefine the
fluid-solid interaction problem on an annular domain Q; C R? (as in [37] and [39]), and derive
the associated continuous variational formulation. Then, in Section 2.3 we utilize the Fredholm
and Babuska-Brezzi theories to analyze the resulting saddle point problem and provide sufficient
conditions for its well-posedness. The corresponding Galerkin scheme is studied in Section 2.4.
Finally, some numerical experiments illustrating the theoretical results are reported in Section
2.5.

We end this section with further notations to be used below. Since in the sequel we deal with
complex valued functions, we use the symbol ¢ for v/—1, and denote by z and |z| the conjugate

and modulus, respectively, of each z € C. Also, given T := (7;5), ¢, := (¢;j) € C?*2, we define
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the deviator tensor 7¢ := 74 — %tr(Ts) I, the tensor product 74 : {, = Z?,j:l 7ij Gij, and the
conjugate tensor T, := (7;;). In turn, in what follows we utilize standard simplified terminology
for Sobolev spaces and norms. In particular, if O is a domain, S is a closed Lipschitz curve, and

r € R, we define
H"(0) := [H"(0)]*, H(0) := [H"(0)]***, and H"(S) := [H"(S))?.

However, when r = 0 we usually write L2(0), L?(0), and L?(S) instead of H°(0), H°(O), and
HY(S), respectively. The corresponding norms are denoted by || - |0 (for H"(0), H"(O), and
H"(0)) and || - ||, s (for H"(S) and H"(S)). In general, given any Hilbert space H, we use H and
H to denote H? and H?*2, respectively. In addition, we use (-,-)s to denote the usual duality
pairings between H~1/2(S) and H/%(S), and between H~/2(S) and H'/?(S). Furthermore, the
Hilbert space

H(div;0) == {w e L}0): divw e L*(0)},

is standard in the realm of mixed problems (see [19], [47]). The space of matrix valued functions
whose rows belong to H(div; O) will be denoted H(div;O). The Hilbert norms of H(div; O)
and H(div; O) are denoted by || - |laiv;0 and || - ||aiv:0, respectively. Note that if 7 € H(div; O),
then div T € L2(0O). Finally, we employ 0 to denote a generic null vector (including the null
functional and operator), and use C' and ¢, with or without subscripts, bars, tildes or hats, to
denote generic constants independent of the discretization parameters, which may take different

values at different places.

2.2 The continuous variational formulation

We first observe, as a consequence of (2.2) and (2.3), that the outgoing waves are absorbed
by the far field. According to this fact, and in order to obtain a convenient simplification of our
model problem, we now proceed similarly as in [37] and introduce a sufficiently large polyhedral
surface I' approximating a sphere centered at the origin, whose interior contains ;. Then, we

define € as the annular region bounded by ¥ and I', and consider the Robin boundary condition:
of VvV —1kfp =g := Vp;-v —akgp; on I,

where v denotes also the unit outward normal on I'. Therefore, given f € L2?(€) and g €
H~1/2(T"), we are now interested in the following fluid-solid interaction problem: Find o, €
H(div;Qs), u € HY(Q,), o5 € H(div;Qy), and p € H'(Qy), such that there hold in the
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distributional sense:

os = Ce(u) in Qs,
divos + x2u = —f in Qg
oy = Vp in Qp,

divey + w3p = 0 in Q, (2.6)
oV = —pU on X,
ofv = pfw2u-1/ on X,
ofV —1Kkfp = ¢ on I,

where C is the elasticity operator given by Hooke’s law, that is
CC¢, = Mr(¢)I + 2u¢, V¢, € L2(9Q,). (2.7)

Note from (2.6) the full symmetry existing between the dual-mixed formulations in the domains
and between the transmission conditions on Y. This fact motivates later on the use of Raviart-
Thomas based subspaces in both domains.

It is clear from (2.7) that C is bounded and invertible and that the operator C~! reduces to

1 A
T a0t

In addition, the above identity and simple algebraic manipulations yield

Cl¢,

= ﬂ tr(Cs)I st € L2(QS)

— 1
|66 = o IEa, VG, € L), (28)
Qs K

We now apply dual-mixed approaches in the solid €25 and the fluid 2y to derive the fully-
mixed variational formulation of (2.6). Indeed, following the usual procedure from linear elas-
ticity (see [4], [37] and [70]), we first introduce the rotation

v = %(Vu— (Vu)) € L2, ()

asym

2

as a further unknown, where L5, (€25) denotes the space of asymmetric tensors with entries in

L?(€2). According to this, the constitutive equation can be rewritten in the form
Clos =¢e(u) = Vu — ~,
which, multiplying by a function 7, € H(div; Q) and integrating by parts, yields

/C_la'S:Ts—i—/ u-diVT5—<Tsl/,u>2+/ Ts:y = 0. (2.9)
Qs Qs Qs
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At this point we remark that, given 7, € H(div;Q,), T, vy is the functional in H~/2(X%)
defined as
<T5V7‘P>E = / TSZVW+ W‘diVTs vgoeHl/Z(E)’
s Qs

where w is any function in H'(Q) such that w =¢ on Y and w =0 on I. Then, using
the elastodynamic equation (cf. second equation of (2.6)) to eliminate u in Q, and introducing
the additional unknown

e, = uly € HY2(D), (2.10)

we find that (2.9) becomes
1

1
/ c! 0'5:7'5—2/ divas-div78—<rsu,cp8>g+/ Ty = / f-divr,. (2.11)
Qs Ks J, Qs

2
s Qs KRy

Similarly, multiplying the constitutive equation oy = Vp in Qf by 7y € H(div;Qy),
integrating by parts, noting that the normal vector points inward €2y on X, replacing from the

Helmholtz equation p = — %2 divoy in €y, and introducing the auxiliary unknown
¥

‘Pf = (9027801") = (p‘prh") € Hl/Q(E) X H1/2(F)¢ (212)
we arrive at
1 .
/ of Ty — — / diverdivry + (T¢-v,05)x — (Tf-v,00)r = 0. (2.13)
Qy Ky Jay

Finally, the symmetry of o5, the transmission conditions on ¥, and the Robin boundary

condition on I' are imposed weakly through the relations:

/{; Os:M = 0 Vn € Lgsym(QS)v

_<USV7¢S>E_<902V7¢S>E = 0 vV, GHI/Q(E)’
(2.14)

<Uf‘Va¢z>g—wa2<¢gVaﬂos>z = 0 sz €H1/2(2)7

_<af'yv¢r>r+lﬁf<(pr7wr>r = —<97¢p>r quz)r €H1/2(F)7

where the traces of u and p have been replaced by the new unknowns introduced in (2.10) and
(2.12), the expression (¢, v, 1y, )y, in the second transmission condition has been rewritten
as (5 V, @, )y, and the signs of the first transmission condition and the Robin boundary
condition have been changed for convenience. Note that ¢, and ¢, constitute precisely the

Lagrange multipliers associated with the transmission and Robin boundary conditions.
Throughout the rest of the paper we make the identification H'(0Q) = H'(X) x H'(T)

for each ¢t € R, with the norm HTPth,an = |[Yglles + ||¥p]ler for each Yy o= (g, ) €
H'(0y).
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Therefore, adding (2.11), (2.13), and (2.14), and defining the spaces
H := H(div; Q) x H(div; Q) and Q := L2 ,(Q) x HY2(S) x HY/2(99y),

we arrive at the following fully-mixed variational formulation of (2.6): Find & := (os,0¢) € H

and ¥ := (v, ¥, @) € Q such that
A(e,7) + B(T,y) = F(7) VT = (15,7f) € H,
(2.15)
B(e,n) + K7.m) = G0) V= (¢, ) € Q,
where F': H — C and G : Q — C are the lineal functionals

F(7) := /Q f-divry V7T := (7,,7¢) € H,

X
o]

G(@) = — (g, Yr >F v = (n’¢sa¢f) = (nvwsv(wza¢r)) € Q,

andA:HxH—-C, B:HxQ —C, and K : Q x Q — C are the bilinear forms defined by

- _ 1 1
A(¢,T) ::/Qc "ot ms —HQ/Q div ¢, - div T, +/Q cf.rf—/#/ﬂ div ¢y divry
s S s f f f

Y (C7) == ((CeCp)s (T, 7p) € Hx H,

(2.16)
B(T,m) = Bs(ts,(n, %)) + By(ry, %) V(T,0) = (15,7), (M ¥, ¥y) € HxQ,
(2.17)
with
Bu(re () = [ oin— (ravw)s, (2.18)
Bf(Tf7'l»bf) = <Tf ’ V’¢E>E - <Tf ’ V7¢F>F’ (2'19)
and
K()/Z,ﬁ) = <£z I/,’l,bs>2 - pfw2 <w2 Vv£s>2 + iky <€F’¢F>F
(2.20)

V)AC = (Xassvgf) = (X?ﬁsv(fzagr)) € Qa
vﬁ = (777",557"!’]‘) = (n7¢s’(wz7¢r)) € Q

It is straightforward to see, applying the Cauchy-Schwarz inequality, the duality pairings
(-,-)x and (-, )1, and the usual trace theorems in H(div;2) and H(div; ), that F', G, A, B,
B, By, and K are all bounded with constants depending on ks, p, k¢, py, and w.
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2.3 Analysis of the continuous variational formulation

In this section we proceed analogously to [37] and employ suitable decompositions of H(div; ;)
and H(div; Q) to show that (2.15) becomes a compact perturbation of a well-posed problem.
To this end, we now need to introduce two projectors defined in terms of auxiliary Neumann

boundary value problems posed in {25 and )¢, respectively.

2.3.1 The associated projectors

We begin by recalling from the analysis in [37, Section 4.1] the definition of the projector in
Q. In fact, let us first denote by RM(€2,) the space of rigid body motions in g, that is

RM(Qy) := {V (0, — C?: v(x) = ¢ +c 2 Vx = o € Qs, a,b,ce (C},
b —I1 o

and let M : L2(Qy) — RM(f2) be the associated orthogonal projector. Then, given 7, €
H(div; Qs), we consider the boundary value problem
6, =Ce(u) in Qp, dives = (I—M)(diVTS) in Q,

(2.21)
6,v =0 on ¥, ue(I-M)L*Q))),

where C e(q) is defined according to (2.7). Hereafter, I denotes also a generic identity operator.
Note that the application of the operator I—IM on the right hand side of the equilibrium equation
is needed to guarantee the usual compatibility condition for the Neumann problem (2.21) (cf. [18,
Theorem 9.2.30]), and that the orthogonality condition on u is required for uniqueness. Indeed,
it is well known (see, e.g. [38, Section 3, Theorem 3.1]) that (2.21) is well-posed. In addition,
owing to the regularity result for the elasticity problem with Neumann boundary conditions
(see, e.g. [48], [49]), we know that (&, @) € H(Qy) x HT¢(€y), for some € > 0, and there holds

los

e, T [[tlliten, < Cldivrsoa, - (2.22)

We now introduce the linear operator Py : H(div; Q) — H(div; ;) defined by

Ps(7s) = &5 V1, € H(div; Qs), (2.23)
where 65 := Ce(u) and u is the unique solution of (2.21). It is clear from (2.21) that
Pi(75)" = Py(rs) in Qg, divPy(r,) = (I—M)(diVTs) in Qg, (2.24)

and
Pi(ts)vr = 0 on X. (2.25)
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Then, the continuous dependence result for (2.21) gives

[Ps(7s)laivio, < C[div Tslloq, VTs € H(div; ),
which shows that Py is bounded. Moreover, it is easy to see from (2.21), (2.23), (2.24), and
(2.25) that Py is actually a projector, and hence there holds

H(div; Q) = Ps(H(div;Qy)) & (I —Py)(H(div;y)) . (2.26)
Finally, it is clear from (2.22) that Py(7s) € H¢(Qs) and

IPs(Ts) e, < C|ldivTslon, V1s € H(div; Q). (2.27)

We proceed analogously for the domain Q. In fact, let Py(€2¢) be the space of constant
polynomials on Qy, and let J : L*(2y) — Py(Qy) be the corresponding orthogonal projector.

Then, given 74 € H(div;Q¢), we consider the Neumann boundary value problem

oy =Vp in Qp, divey = (I-J)(divry) in Q,
(2.28)
Grprv=0 on ZUL, pe I-I)(L*Q)).

Analogue remarks to those given for the compatibility condition and uniqueness of solution of
(2.21) are valid here with J instead of M. In addition, it is not difficult to see that (2.28) is
well-posed as well. Furthermore, the classical regularity result for the Poisson problem with
Neumann boundary conditions (see, e.g. [48], [49]) implies that (6 ,p) € HE(f) x HT¢(Qy),
for some € > 0 (parameter that can be assumed, from now on, to be the same of (2.22)), and
that
losllen, + IPliten, < Clldivryloq, - (2.29)
We now define the linear operator P : H(div; Q) — H(div; ) by
Ps(ty) := o0y VT € H(div; Qy), (2.30)
where 6 := Vp and p is the unique solution of (2.28). It follows that
divPs(ry) = I-J)(divry) in Qf and Py(ry)-v =0 on S UT. (2.31)
In addition, thanks to the continuous dependence result for (2.28), there holds
IPs(mp)llaive, < Clldivrellog, — V7p € H(div;Qy),
which shows that P is bounded. Furthermore, it is straightforward from (2.28), (2.30), and
(2.31) that Py is a projector, and therefore
H(div;Qy) = Py (H(div;Qy)) @ (I—Py) (H(div; Qy)) . (2.32)
Also, it is clear from (2.29) that P¢(7¢) € H(2¢) and

[P p(T)l

Qf < CHdiVTfHo’Qf V1yr € H(diV;Qf). (2.33)
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2.3.2 Decomposition of the bilinear form A

We begin the analysis by introducing the bilinear forms A} : H(div; Q) x H(div;Qs) — C
and A}' : H(div; Q) x H(div; Q) — C given by

1
A:(CS,TS) = ¢t Co:Ts + = / div(, - div T, V¢, s € H(div; Qg), (2.34)
Qs S Qs

and
Cf,Tf / CriTs + — / div(y-divry V¢, Ty € H(div; Qy), (2.35)

which are clearly bounded, symmetric, and positive semi-definite. Actually, it is straightforward
to see from (2.35) that A}' is H(div; Qf)-elliptic, that is there exists oz;f := min {1, é} > 0
such that

Af(r5,75) > af ITfllave, V75 € H(div;Qp), (236)
and we show below in Section 2.3.3 that A} is also elliptic but on a subspace of H(div; ;).

In what follows, we employ the decompositions (2.26) and (2.32) to reformulate (2.15) in

a more suitable form. More precisely, the unknown & := (o,0) and the corresponding test
function 7 := (74, 7y), both in H, are replaced, respectively, by the expressions

os = Py(o,) + I-Py)(os), oy =Psloy) + (I-Py)(oy) (2.37)
and

Ts = Py(7s) + A=Py)(1s), 75 =Ps(ry) + T-Py)(7y). (2.38)

To this respect, we observe, according to (2.24), (2.25), and the fact that Vv € L2

asym(§2s) for all
v € RM(Qy), that for all {,, s € H(div; Qs), there holds

/ div(I - P,)(¢,) - divPy(7s) = / M(div ¢,) - div P4(75)
2 2 (2.39)
— /Q VM(div(,) : Py(Ts) + (Ps(Ts)v, M(div(,) )y, =0.

Analogously, according to (2.31), we deduce that for all ¢, 7y € H(div;{2y), there holds

div(I—P,)(¢,)divP () = J(div¢ divP (T
/Qf ( 1) (€y) £(T¢) (div¢y) /ﬂf £(T¢) .10)

= 3(div¢p) {(Pr(rp) v, D = (Py(ry) v, 1)) = 0.
Hence, using the decompositions (2.26) and (2.32), and the identities (2.39) and (2.40), and
adding and substracting suitable terms, we find that A (cf. (2.16)) can be decomposed as

ACT) = Ao(C.7) + Ko(C,7)  Y(C.7) = (¢, ¢p)s (T5,7p)) € Hx H,
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where Ag: Hx H — C and Ky : H x H— C are given by

Ao(C,7) = A(Corms) + Af(CpiTy), (2.41)
and
Ko(C,7) = Ky(Coos) + Kf(Cpu7y),s (2.42)

with the bilinear forms A : H(div; Q) x H(div; Q) — C, Ay : H(div; Qy) x H(div; Q) — C,
K, : H(div; Q) x H(div; Q) — C, and Ky : H(div; Qf) x H(div; Qf) — C defined by

As (€5, Ts)) == — Aj(Ps(Cs)v Py(1s)) + A:((I - PS)(Cs)v (I - PS)(TS)) ) (2~43)
Ap(Cpomy) = —AF(Pp(Cp), Pr(Ty)) + AT (X =Pp)(Cy), (T—Pp)(7y)), (2.44)
Ke(Gur)) =2 [ CTIPUC) Pur) + [ CTIPUC) (- PO(r)

s s (2.45)

- NP Pu(r) (14 5) i div(l - P.)(C) divil - P(r.)

s

and

Ky (¢pory) =2 /Q Py Prlry) + /Q RIIBRUS S
=
f

2.46
+ [ (=P Pyt = (14 5) i PO (L P)ry) o

Next, welet Ay : H—>H, Ko: H—>H, B: H — Q and K: Q — Q be the linear and
bounded operators induced by the bilinear forms (2.41), (2.42), (2.17), and (2.20), respectively.
In addition, we let B* : Q — H be the adjoint of B, and denote by F and G the Riesz
representants of the functionals F' and G. Hence, using these notations and taking into account
the decompositions (2.37) and (2.38), the fully-mixed variational formulation (2.15) can be
rewritten as the following operator equation: Find (&,5) € H x Q such that

(w2 () () (5) e

Moreover, it is quite straightforward from the definitions of Ay (cf. (2.41)) and B (cf. (2.17))

Q)

2)

that (up to a permutation of rows) there holds

A; B; 0 O
B 0 5 A; B* ’ '
Yy 0 f Dy gf

By 0 Py
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where A : H(div; Q) — H(div; Qs), Bs : H(div; Q) — }Lzsym(Qs)le/Q(E), A H(div;Qf) —

H(div; ), and By : H(div; Q) — H'/2(99) are the bounded linear operators induced by As,
B, Ay, and By, respectively.

In the following section we show that the matrix operators on the left hand side of (2.47)
become bijective and compact, respectively. In particular, concerning the bijectivity issue, and
because of the block-diagonal saddle point structure shown by the right-hand side of (2.48), it
suffices to apply the well known Babuska-Brezzi theory independently to each one of the two

blocks arising there.

2.3.3 Application of the Babuska-Brezzi and Fredholm theories

We begin with the continuous inf-sup conditions for the bilinear forms B, and By, which are
equivalent to the surjectivity of By and By, respectively. For this purpose, we first notice from

(2.18) and (2.19) that these operators are given by

B, () = (;(75 ) SR, m) V. € H(div:0,). (2.49)
and
Bf(tf) == (Ry(tf-v),—R.(Tf-V)) VT € H(div; Qy), (2.50)

where R, : HV/2(X) » HY2(X), R, : H-V(X) — HY(Y), and R, : H-Y2(I') — HY?(T"),

are the respective Riesz operators. Hence, we have the following lemmas.

Lemma 2.1 There exists 55 > 0 such that

su ‘BS(T&(/’st) |
p
TocH@diviooNfo} | Tsldivia,

> Bsllm )l V(mp,) € Ligm(92) x HV2(E).

Proof. We proceed as in the proof of [40, Lemma 4.1]. Given (n,%,) € L2, () x H/2(X) we

asym

let z € H () be the unique (up to a rigid motion) solution of the variational formulation
/ e(z)e(w) = — / r(n,v,)w —/ n:Vw+ (R (¢,), w)s Vw e HY(Q,), (2.51)
QS Qs QS

where r(n,1,) € RM(y) is characterized by

/ r(n,Y,) -w = —/ n:Vw + (R (), w)s Vw € RM(Qs).

s

Then, defining ¢, := e(z) + n, we find from (2.51) that div{, = r(n,v,) in Q,, whence
¢, € H(div;Qy), and thus (v = —R;1(),) on X. It follows that Bs(¢,) = (n,,), which

proves the surjectivity of Bs.



2.3 Analysis of the continuous variational formulation 19

Lemma 2.2 There ewists 3y > 0 such that

| By (t5,%;) |
sup DI s gl naa, Vb = () € HY?(09).
T €H(div;Qp)\{0} HTfHdiv;Qf
Proof. Given v, 1= (Y, %) € H'Y2(0Qy), we let z € H'(€y) be the unique solution (up to

a constant) of the Neumann boundary value problem

1 .
Az = = (RS W) s + (RNG), Ur) i 9y,
€2 ] (2.52)
Vzev=R]'py) on ¥, Vz-v=-R:'(¢) on I.
Then, defining ¢y := Vz in (Qy, we easily see that
Bf(Cf) = (Rz(Cf ) V)7_RF(Cf ’ V)) = (wz:vl/}r)v
which shows that B is surjective.
g

We now let V, and V be the kernels of By and By, respectively, that is, according to (2.49)
and (2.50),

Vi ::{TSEH(diV;QS): Ts =71¢ in Q, T,v=0 on E}, (2.53)

S
V= {TfeH(diV;Qf): Tfrv=0 on ¥, T;v=0 on F}, (2.54)

and aim to prove that A|v,xv, and A¢|v sxV, induce bijective operators. In particular, for Ay

we proceed as in [37, Section 4.2] and make use of the decomposition

H(div; Q) = Hp(div;Qs) & CI,

with
Ho(div; ) = {7'5 e H(div; Q) - /Q trry = 0}, (2.55)
and the inequalities 5
I8 0, + IdivrslBo, > elTsollie,  V7s € H(div; Q) (2.56)
(cf. [19, Proposition 3.1, Chapter IV]), and
I7solldivie, > ellTslGva, V75 € H(diviQy) (2.57)
(cf. [37, Lemma 4.5]), with
H(div; Q) = {Ts € H(div;Qs): 7sv =0 on X }, (2.58)

where each 7, € H(div; Q) is written as 74 = 750 + dI, with 74 € Hoy(div; Q) and d € C.

The following lemma establishes the H(div; Q,)-ellipticity of A7
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Lemma 2.3 There exists of > 0, depending on p, ks, c1, and ca, such that
Af (16,7 > of |Tolldva,  V7s € H(div; Q). (2.59)

Proof. According to the definition of A} (cf. (2.34)), and using the inequalities (2.8), (2.56), and
(2.57), we find that for each 7, € H(div; ) there holds

_ 1 2 1 . 2
AT (75,75) 2 2 ¢ 6,0, + 2 [div 75,0,
> mind o R, + divrale,} + 5o Idiveslig
- 2u’ 2K2 SHEA0s nhs 2K2 nhs

_ 1 .
> Tsollga, + 22 div 7[5 o,
S

N |
> win{a, 5 b ImaolBive, > o 7.
S

1 1 1
with ¢ := ¢; min¢ —, — » and al := ¢y min{ &, — ¢, which completes the proof.
2u’ 2K2 2K2

a

We are now in a position to prove that A, and Ay satisfy the continuous inf-sup conditions

required by the Babuska-Brezzi theory. To this end, we need to introduce the operators
Es = (I — 2Py) : H(div;Qs) — H(div; ;) (2.60)

and

[1]

pi= 1 —=2Py) : H(div;Qf) — H(div;Qy), (2.61)
which, recalling that P, and P are projectors, are certainly bounded and satisfy
P2, = — Py, I-Py)ZEs =1 - Py, (2.62)
P;=y = —Py, and (I -Py)ZE; =1 Py. (2.63)
Then, we can establish the following lemmas.

Lemma 2.4 There exist ay, Cs > 0 such that

AS(CLWES(ES)) Z Qs ||<'s||3iv;ﬂS V Cs € H(diV;QS)¢ (264)

and

As s3Ts
sup Tl S o e, Ve, € Vi (2.65)

TseV:\{0} ||'7-s||div;QS
In addition, there holds

sup  |As(¢,,Ts)| > 0 V1s € Vg, 75 #0. (2.66)
¢.eVi\{0}
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Proof. We first observe, thanks to the definitions of V, and H(div; Q) (cf. (2.53), (2.58)), and
the properties of P, (cf. (2.24), (2.25)), that V, C H(div; ) and P4(¢,) € V, for each
¢, € H(div; ), and hence, in particular both P4(¢,) and (I —P,)(¢,) belong to H(div; Q) for
each ¢, € H(div; ;). It follows, according to the definition of A, (cf. (2.43)), the properties of
Z, (cf. (2.62)), and the ellipticity of A (cf. (2.59)), that for each ¢, € H(div;Q,) there holds

As(Csa ES(ES)) = Aj(PS(Cs)? PS(ZS)) + A:((I - PS)(CS)? (I - Ps)(zs))
of {IPs(¢ Eive, + 1= P A, |

+
(6
> - ||Cs||d1vQ )

v

which shows (2.64) with o := «F /2. Next, given ¢, € V\ {0}, it is clear from the above
analysis that Z4({,) € Vs\O0, and therefore, applying (2.64), we deduce that

|A (CsaTS ‘AS(CSWES(ES))‘ HCSHdva

sup > >« —7
revafoy [[Tsllaive, 125(¢s)llaivss 125(Cs) lldivis

which yields (2.65) with Cs = a/||Zs]|. Finally, (2.66) is a straightforward consequence of
(2.65) and the symmetry of As.

O
Lemma 2.5 There exist ay, Cy > 0 such that
Ap(CrEr(Cp) = apll€sllGe, ¥ ¢y € H(div;Qy), (2.67)
and {A )‘
€y
sup  LSLTIN S 0 elava, Vs € V5 (2.68)
revioy T rllaivie;
In addition, there holds
sup ‘Af(Cf,Tf)| >0 VTr e Vy, Tp#0. (2.69)

Cfevf\{o}

Proof. We proceed analogously to the proof of the previous lemma. In fact, according to the
definition of Af (cf. (2.44)) and the properties of Z (cf. (2.63)), and applying the ellipticity of
A;{ (cf. (2.36)), we find that for each ¢y € H(div;Qy) there holds

Ap(CrEr(Cp)) = AF(Pp(Cp), Pr(Cy)) + AF(A—Py)(Cp), (T—Py)(Cy))

o {IPs (e, + IE=P IR, |

Y, %
1\3‘\-1- \-i-

L¢3,
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which proves (2.67) with ay := a}r/Q. Next, it is clear from (2.67) that Z7({;) # O for each
¢y € H(div; ;)\ {0}. In addition, thanks to the properties of P (cf. (2.31)) and the definition
of V¢ (cf. (2.54)), we deduce that Ef(zf) belong to V\ {0} for each ¢; € V;\ {0}, and hence

‘Af(Cfan)} > }Af(CfaE'f(Zf)H > o ||C£H31v;ﬂf
U EHC ) lave,

sup > =L
rrevaior I7slldivie, 127 (Cp)llaivie,

which implies (2.68) with C; := ay/||Z¢||. Finally, the inequality (2.69) follows directly from

(2.68) and the symmetry of Ay.
a

As a consequence of Lemmas 2.1, 2.2, 2.4, and 2.5, and having in mind the identity (2.48)
and the classical Babuska-Brezzi theory (cf. [19, Theorem 1.1, Chapter II]), we conclude that the
B*

. Ay
matrix operator
B o0

) : HxQ — HxQ is an isomorphism. In turn, the compactness

Ko O
of ( 00 K ) : HxQ — H x Q is proved by the following lemma.

Lemma 2.6 The operators Ko: H— H and K : Q — Q are compact.

Proof. We first recall from Section 2.3.1 (cf. (2.27) and (2.33)) that there exists € > 0 such that
P,(7,) € H(Sy) for each 7, € H(div; (), and Ps(7s) € HY(Qy) for each 7§ € H(div; Qy),
which, thanks to the compact imbeddings H(Qs) — L?(£;) and H(Qy) — L2*(Qy), imply
the compactness of P, : H(div; Q) — L?(Q) and Py : H(div; Q) — L?(2y). It follows that
the adjoints P* : L2(€) — H(div; {2,) and P} L%(Qf) — H(div; Qy), and hence the operators
P:C'P,, I-P,)*C'P,, P:C"' (I~ P,), PPy, (I~ P;)*Py, and P (I — Py) are all
compact. This shows that the first three terms defining the bilinear forms Ky (cf. (2.45)) and
Ky (cf. (2.46)) induce compact operators. In addition, it is clear from the second identity in
(2.24) and the first identity in (2.31) that the fourth terms of K, and K yield finite rank

operators, and therefore Ko : H — H becomes compact.

Furthermore, the three terms defining K (cf. (2.20)), that is (&, v, v¥,)s, pfw? (Y v, &,)s,
and vkf (€., %) also yield compact operators because of the compactness of the composition

defined by the following diagram

HY2(x) OISt p2(yy continyous yasy Pt py-1/2(57)
wz — wz — wzy — T/JZV7

and thanks to the compact imbedding H'/2(I'") < H~'/2(T'). This completes the proof.

We are able now to provide the main result of this section.
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Theorem 2.1 Assume that the homogeneous problem associated to (2.15) has only the trivial
solution. Then, given f € L2(Qy) and g € H~Y/?(T"), there exists a unique solution (&,7) €
H x Q to (2.15) (equivalently (2.47)). In addition, there exists C > 0 such that

1@ A)laxa < C{lf

o0 + lgll-1/or }

Proof. It suffices to notice, according to our previous analysis, that the left hand side of (2.47)

constitutes a Fredholm operator of index zero. O

We end this section by remarking that the extension of the previous continuous analysis to
the 3D version of our interaction problem is quite straightforward. However, this is not exactly
the case when trying to extend to 3D the Galerkin analysis shown below in Section 2.4. In
particular, the proofs of the discrete inf-sup conditions involving boundary or interface terms are
rather technical and they require additional hypotheses on the triangulations of both domains.
In order to circumvent these difficulties, in the recent works [40] and [42] we have developed a
new approach which incorporates the exact satisfaction of the transmission conditions into the

definitions of the continuous and discrete spaces.

2.4 Analysis of the Galerkin scheme

In this section we introduce a Galerkin approximation of (2.15) and show, under the same
assumption of Theorem 2.1, that it is well-posed. The corresponding result is given by Theorem
2.2, whose proof is obtained as a consequence of the analysis in the following sections. In fact,
we first define in Section 2.4.1 the main finite element subspaces to be employed in the definition
of the Galerkin scheme (cf. (2.76)) and provide their approximation properties in Section 2.4.2.
Then, in Section 2.4.3 we prove the existence of stable discrete liftings of the normal traces on X
and I of the finite element subspaces approximating the stresses. These lifting operators allow
us to establish certain equivalence results (cf. Lemmas 2.9 and 2.10), which later on simplify
the proofs of the discrete inf-sup conditions for the bilinear forms By and B, (cf. Lemmas 2.13
and 2.14). Next, in Section 2.4.4 we introduce uniformly bounded discrete operators Py and
P approximating Py and P, respectively. Recall that the latter operators were utilized in
Section 2.3.3 to prove the continuous inf-sup conditions for the bilinear forms A, and A (cf.
Lemmas 2.4 and 2.5). Hence, the key results in Section 2.4.4 refer to the upper estimates for the
errors ||Py — Pyl and [Py — Pyl (cf. Lemmas 2.11 and 2.12), which are utilized in Lemma
2.16 to prove the discrete inf-sup conditions for A, and Ay. Finally, after establishing all the
above mentioned discrete inf-sup conditions in Section 2.4.5, the well-posedness of the Galerkin

scheme, which follows at once, is summarized in Theorem 2.2.
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2.4.1 Preliminaries

We first let 7,° and 7;Lf be triangulations, belonging to shape-regular families, of the polygonal

regions Q, and Q f, respectively, by triangles T' of diameter hr, with global mesh size
h = max{max{h;p: Te’ﬁf}; max{hT: Teﬁlf}} )

and such that the vertices of 7,° and 7;Lf coincide on X. In what follows, given an integer ¢ > 0
and a subset S of R?, P,(S) denotes the space of polynomials defined in S of total degree < /.
In addition, following the same terminology described at the end of the introduction, we denote
P(S) := [Py(S)]?. Furthermore, given T' € 7,* U 'ﬁlf and x := (71, 72)* a generic vector of R?
we let RTo(T) := span {(1, 0),(0,1), (x1, :1:2)} be the local Raviart-Thomas space of order 0 (cf.
[19], [69]), and set curl® by := (% — %Tl), where by is the usual cubic bubble function on 7.

Oz’
Then we define

o= {Von €H(div; Q) 1 voulr € RTo(T) @ Py(T)curl® by VT €T |,

b= {Ton €H(diviQ): ¢ty € H Vee ]R2}, (2.70)

ul = {rf,h € H(div;Qf): 7 plr € RTo(T) VT e Thf}, (2.71)

Q= {nh = < —(:m %’l > . e O, mlr € PU(T) VT e 7;} . (272)
Qi = Mp(2) x Ap(X), (2.73)

Q) = An(E) x Au(D), (2.74)

where Ap(X) and Ap(T") are generic finite dimensional subspaces (to be specified later on) of

H'Y2(%) and HY?(I'), respectively, and introduce the finite element subspaces H, € H and
Qn € Q, given by

H, = H} x Hl  and Q= Q] x Q x Q. (2.75)

Note that the associated generic subspaces Qi and Q; are employed below (cf. Lemmas 2.9 and
2.10) to establish preliminary equivalence results concerning the discrete inf-sup conditions for
By and B,. Explicit definitions of Aj(X) and Aj(T"), and hence of Q£ and Qj, are given later
on in Section 2.4.5 (cf. (2.117), (2.118), (2.119), and (2.120)) to finally guarantee the ocurrence

of the discrete inf-sup conditions for those bilinear forms (cf. Lemmas 2.13 and 2.14).

In addition, our analysis below will also require the subspaces

0 o= {v&h € H(div;Q) :  venlr € RTo(T) VT e Th}
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s = {Ts,h € H(div; Q) : c*7yy € H) Ve 6R2},
‘;L = {Vh S L2(QS)2 Vh‘T € P()(T) VT € 7;?}
and

U]{ = {’Uh S LQ(Qf): 'Uh’T S P()(T) VT € Ef}

We recall here that Hj x Uj x Qj constitutes the well known PEERS space introduced in
[4] for a mixed finite element aproximation of the linear elasticity problem in the plane. In turn,
H£ X U}{ is the lowest order Raviart-Thomas mixed finite element approximation of the Poisson
problem for the Laplace equation (see [19], [69]). Also, it is important to notice, which will be
used below, that ﬂz C Hj and hence Hz C Hy.

The Galerkin scheme associated to our continuous problem (2.15) is then defined as follows:

Find 6y, 1= (osp,0pn) € Hy and 4y 1= (Y4, P s @rn) € Qn such that

A(@p,Th) + B(Th:A) = F(Th) V7 o= (TshTrn) € Hy,
(2.76)

B(on,ny,) + KA n,) = G@y) V0 = My YspVrn) € Qs

We collect next the approximation properties of the finite element subspaces introduced

above.
2.4.2 Approximation properties of the subspaces
We begin with the subspaces Hj and H£ Indeed, given ¢ € (0, 1], we let
& HO(Q,) N H(div; Q) - H, C Hi  and & :H(Qf) N H(div; Q) — H)

be the usual Raviart-Thomas interpolation operators (see [19], [69]), which, given 7, € H®(£2,)N
H(div; Q) and 77 € H(Qy) N H(div; Qy), are characterized by the identities

/gi(Ts)l/-q:/Tsl/-q Vq € Pole), Vedgeeof T, (2.77)

and
/Eg(rf)-l/q = /Tf-l/q Vq € Pye), Vedgeeof’]}lf. (2.78)

In addition, the corresponding conmuting diagram properties yield
div(&(Ts)) = Pi(divr,) V7, € H(Q,) NH(div; Q,), (2.79)

and
div(&l(r4)) = Pl(divry)  Vrp e HY(Qp) NH(div; Qy), (2.80)
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where Py : L2(Q,) — U; and 73}: c L2(Q §) — U,{ are the corresponding orthogonal projectors,

which satisfy the following error estimates (see, e.g. [19])
(AP$) For each t € (0,1] and for each v € H(€), there holds

v =Pi(v)lloq. < Ch' IV, -

(AP%) For each ¢t € (0,1] and for each v € H'(€2), there holds
lo=Pi@)loa, < CH el
Furthermore, it is easy to show, using the well-known Bramble-Hilbert Lemma and the
boundedness of the local interpolation operators on the reference element 7 (see, e.g. [51,

equation (3.39)]), that there exist Ci, éf > 0, independent of h, such that for each 75 €
H?(Q5) NH(div; Q) and for each 7, € H(Qy) N H(div; Q;), there hold

Ims = & rollor < Con {Irslsz + Idivr,or} VT €Ty, (2.81)

and
Ims = &l plor < Cphf{I7s

o1 + HdiVTfHo,T} VI eT,. (2.82)

Hence, as a consequence of (2.79), (2.81), and (APj) (respectively, (2.80), (2.82), and (AP{L)),

one can derive the following two statements
(AP7*) For each § € (0,1] and for each 7, € H%(Q), with div 7, € H’(Q,), there holds

Ims = &) laive. < O {Imllsa., + lIdivrslsa, }-

(AP,?f) For each & € (0,1] and for each 7y € H?(Qy), with divr; € H°(Qy), there holds
Ims = &l Pllawse, < CH{Imsllsg, + Idivrllsg, }-

2
asym

Finally, the orthogonal projector Ry : L
[19])

(Qs) — Qj satisfies the following property (see

(APZ) For each ¢ € (0,1] and for each p € H*(Qg) N L2, (), there holds

asym

7= Rem) oo, < Ch [0, -

The approximation properties of Q7 and Q£ will be provided once we introduce the specific

finite element subspaces Ap(X) and Ap(T). In fact, as already mentioned, the choice of these
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discrete spaces will be indicated throughout the analysis of well-posedness of our Galerkin scheme
(2.76) (see Section 2.4.5 below), particularly when proving the discrete inf-sup conditions for By
and By. We previously need to define in Section 2.4.3 stable discrete liftings towards {25 and €
of normal traces on ¥ and I' and establish its connection with those stability conditions for B
and By. Then in Section 2.4.4 we introduce suitable discrete approximations of the operators
P S|HZ and Pyl 1 which will be employed in Section 2.4.5 to show the discrete inf-sup conditions
for As; and By.

2.4.3 Stable discrete liftings of normal traces on ¥ and I’

In what follows we proceed as in [45, Sections 4.3 and 5.2] and assume from now on that
{75} h>0 and {ﬁlf }h>0 are quasi-uniform around ¥ and I'. This means that there exist Lipschitz-
continuous neighborhoods Qx and Qr of ¥ and I', respectively, such that the elements of 7’

and 7;Lf intersecting those regions are more or less of the same size. Equivalently, we define

Ton ::{TeﬁfuThf: Tﬂﬁgyé(z)}, (2.83)
Trn = {Te’rhf; TﬂQp;&@}, (2.84)

and assume that there exist ¢ > 0, independent of h, such that
hr; h < i in hr; in h Vh>0. 2.85

Note that the above assumption and the shape-regularity property of the meshes imply that X,
the partition on X inherited from 7,° (or from 77Lf ), and I'j,, the partition on I' inherited from
77{ , are also quasi-uniform, which means that there exist C, C, > 0, independent of h, such
that

hy = Inax{ le] - e edge of Eh} < C min{ le] - e edge of Zh}

and
hr = max{ le] - e edge of Fh} < C, min{ le] - e edge of Fh}.

Also, it is easy to see that there exist ¢, C' > 0, independent of h, such that
chy < hp < Chs. (2.86)
In addition, the quasi-uniformity of ¥ and I'j, guarantees the inverse inequality on the spaces
(D) = {¢h € LX(X):  dnle € Pole) Ve edge of zh}

and
o, () = {(Z)h e L) :  ¢ple € Py(e) Ve edge of Fh},
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which means that

lonll-1/2455 < Chs’llnll-1jos Von € ®u(S), Vo€[0,1/2] (2.87)

and
Ionll 12450 < Chilllonll_1jor Vén € u(T), Vée[0,1/2]. (2.88)

The following two lemmas establish our results on the existence of stable discrete liftings.
These lifting operators will then be employed to prove the equivalence results given by Lemmas

2.9 and 2.10, which later on simplify the proofs of the discrete inf-sup conditions for By and Bs.

Lemma 2.7 There exist uniformly bounded linear operators .Ci : Dp(X) x Op(T) — H£ such
that
Ei(d)h) v=¢,5 on¥ and ££(¢h) v=—¢,onl (2.89)

for each @y, = (¢, 5, P,r) € Pr(X) x @(T).

Proof. Given ¢y, := (¢, 5, ¢, ) € Pn(X) x ®4(T'), we let z € H'(Q) be the unique solution (up
to a constant) of the Neumann boundary value problem

1

Az = — ——
Q2]

{<¢h,271>2 + <¢h,1‘71>r} in Qf?
(2.90)

Vz-v=¢,, on ¥, Vz:v=-¢,,. on I

which can be seen as a discrete version of (2.52), and whose corresponding continuous dependence

result says that

2llo, < Clignllorzon, = C{I6slras + I9ucllijer }- (2.91)

Furthermore, since the Neumann datum ¢, belongs to H%(X) x H*(T') for any 6 € [—1/2,1/2),
the classical regularity result for mixed boundary value problems on polygonal domains (see,
e.g. [49]) implies that z € H*/4(Q;) and

lellszasy < Cllidnl-yuon, = C{Iduslorjaz + Iclljar }. (292)

In addition, since Q]icnt = Qp\ (Qz UQF) is strictly contained in €7, the interior elliptic regularity
estimate (see, e.g. [66, Theorem 4.16]) yields

HZH2,Qif“ < Clénll-1/2.00; - (2.93)

According to the above, we now let ¢; := Vz in 2y, whence ¢ belongs to H1/4(Qf), and
notice from the first equation in (2.90) that

1

Wer= "oy

{5 D5 + (60 0} in 9y, (2.94)
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thus showing that ¢; € H(div; Q). Then we can define
Lh(dy) = &) € HY,

which, in virtue of the conmuting diagram property (2.80) and the characterization (2.78), and

having in mind (2.94) and the boundary conditions in (2.90), clearly satisfies

1

. Af _ .

div Eh(¢h) - ’Qf| {<¢h,2a 1>E + <¢h,ra 1>F} mn Qf’ (295)
and the identities required by (2.89).

It remains to show that ££ is uniformly bounded. We first deduce, using (2.95), that there
exists C' > 0, independent of h, such that

1l (@llaivia, < C{Ionll-1200, + I1LH(@1)log, |- (2.96)

Next, in order to estimate |\££(¢h) 0,0, we divide Q2 into three regions by defining (cf. (2.83),

(2.84))
Qé,h = U{T: T € 7;Lfﬁ7'g’h},

Qrp = U{T: T€7f,h},
and
Q}n/f = O\ (Q{)h U Ql“,h)'
It follows, using the stability of 8}{ in Hl(Q}n}f), the fact that ¢ | aie € Hl(Q}n}f), the inclusion
Q¥ C QF°, and the estimate (2.93), that
1Lt (nllos, = 1€ C))

< Cllallogm + 1ECHIgar  + IELCHl00m, (2.97)
f ISR

0, < NELCHllogm + 1ELCHIqr  + IELCH00r,
I.h ik

IN

Clnll-r200, + €€z, + 1€/ logr, -

Now, adding and substracting {; = Vz in Qgh C Qy, noting that HCfHO,QQh < [|z[]1,;, and
employing the estimates (2.91), (2.82) (with 6 = 1/4) and (2.92), together with the identity
(2.95), the quasi-uniformity bound (2.85), the inverse inequalities (2.87) and (2.88), and the

equivalence between hy, and hr (cf. (2.86)), we arrive at

f 2 f 2 2
€€ oy, < C{IC — &R o, + 1< 0y }

1/2
3 ST WL + 0l 00
f

TeTL,

C{nonl2 1ya00, + I0ul2 1200, §

C H¢h”2_1/2,69f‘

IN

(2.98)

IN

IN
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The estimate for ||5,{ (Cr) ||379F , broceeds similarly and yields the same upper bound. In this way,
(2.96), (2.97), and (2.98) provide the uniform boundedness of cf , which completes the proof.
O

Lemma 2.8 There exist uniformly bounded linear operators L3 : ®p(X) x ®(X) — Hj such that
L5 (Pp) v = ¢y, on X Vo, € Pu(X) x Op(2). (2.99)

Proof. Given ¢, € ®,(X) x ®,(X) we let z € H(Q) be the unique solution (up to a constant

vector) of the Neumann boundary value problem (in vectorial form)
1 .
Az = — [ ¢, in s, Vzv = ¢, on X,
%] Js
whose corresponding continuous dependence result states that

||

10, < Cllopll-i/2,s-

Since the Neumann datum ¢, belongs to H’(X) for any § € [0,1/2), we know that we have at
least H?/2(Q,)-regularity for z and

I12lls/2.0. < Clignllos-

In addition, noting that Qi** := Q,\ Qs is an interior region of Qs, the interior elliptic regularity

estimate again (see, e.g. [66, Theorem 4.16]) yields

[Zll2,0me < Cll@pll—1/2,5 -

Next, we set ¢, := Vz in (s, which belongs to H'/2(Q5) N H(div; Qs), define £ (¢y,) = E(C,),
and proceed analogously to the proof of the previous lemma, by using now the conmuting dia-
gram property (2.79), the characterization (2.77), the error estimate (2.81), the quasi-uniformity
bound (2.85), and the inverse inequality (2.87). We omit further details.

O

As a first consequence of Lemmas 2.7 and 2.8, and noting from the definitions of Hi (cf.
(2.71)) and Hy (cf. (2.70)) that

Tf7h‘V’an = (Tﬂh‘V’zj,Tf’h-I/h*) S <I>h(2) X @h(F) VTfJL S Hi,

and

Ts,h V|E € <I>h(2) X (I)h(Z) VTs,h S Hz,
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we deduce that actually there hold
By(2) x &p(T) = {Tf,h.ubgf T Hg}, (2.100)
and

By (T) X Bp(3) = {rs,hu|2: Ton € Hg}. (2.101)

Hence, the stable discrete liftings E{ and L7, and the identities (2.100) and (2.101) allow to
show equivalence results concerning the discrete inf-sup conditions for By (cf. (2.19)) and for

the second term defining B; (cf. (2.18)). More precisely, we have the following lemmas.
Lemma 2.9 Let us define, for each ), = (¥, 5, ¥, ) € Q£ = Ap(2) x Ap(D),

| B(Trn % sn) |
S = : 2
(¢f,h) Supf ||Tf b ”diV~Q
Tf,hGHh\{O} ) wef

and

‘ <¢h,27wh,2>2 + <¢h,F7¢h,F>F’

§ = su
(Prn) b ®nll-1/2,00,

¢h = (Pp 5¢h 1)
€ 2, (X)x @, (T) \{0}

Then there exist C1, Co > 0, independent of h, such that

C1S(psy) < Spsy) < C2S(py,)  Vpyy € Q. (2.102)

Proof. Let ¢y > 0, independent of h, whose existence is provided by Lemma 2.7, such that

HE{L(d)h)Hdiv;Qf < crllonllcip00,  Véu = (0,5, 0,r) € Pr(X) x 4(D).
Then, for each ¢, := (¢, 5, ¢, 1) € Pr(X) x @4(I") \ {0} there holds, using (2.89),

’ <¢h,27¢h,2>2 + <¢h,F7¢h,I‘>F| ‘ <¢h,27wh,2>2 + <¢h,F7wh,F>F’
1Pnll-1/2,00; 1£] (D) laivir,
(L () - v, bus)s — (LR(B)) - vt 0)r ]

= Cf S Cf S("ﬁbf,h) Y
1L () laivse,

which implies the left-hand side of (2.102) with C, = 0;1. Similarly, for each T¢) € H{ we

<Cf

find, using that ||7¢n vl 1200, = ITrn V125 + I7rn - vlc12r < CliTpnllaivie, and
(2.100), that

’Bf(TfJH'(/)f,h) ‘ _ ‘ <Tf,h ) V?¢h,2>2 - <Tf7h ’ V?¢h,F>F ‘
7 £.nllaivie, 7 £.nllaivie,

‘ <Tf7h ’ V7wh,2>2 - <Tf,h ’ V’¢h,F>F ‘
|7 ¢n VH—1/2,an

which yields the right-hand side of (2.102) with Co = C.

<C < CS(y),
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Lemma 2.10 Let us define for each g, € Qf = Ap(X) x Ap(%)

‘ <T37h v, /ll)s,h>2 |

T(ws,h) = sup
ronem\o}y  Tsnllaiva,
" [ {Dns s )5 |
~ o Pun)s
T(¢s,h) = sup W
¢h€‘1’h(2)xd>h(2) hll—1/2,%
¢, #0

Then there exist Cg, Cy > 0, independent of h, such that

03 T('d)s,h) < T(¢s,h) < 04 T(ws,h) v'l1bs,h € QZ (2103)

Proof. 1t follows analogously to the proof of Lemma 2.9 by using now, thanks to Lemma 2.8,
that there exists c; > 0, independent of h, such that ||£} (o) |ldivio. < csll@pll-12x Vo, €

Dy (X) x @(X), and noting that |7, v|_1/25x < C |75 alldiv,o,. We omit further details.
O

The previous two lemmas, more precisely the left-hand sides of the equivalences (2.102) and
(2.103), will be employed below in Section 2.4.5 to show that the bilinear forms By and B

satisfy the discrete inf-sup conditions on the corresponding finite element subspaces.

2.4.4 Discrete approximations of P,|y: and Pf|H£

In what follows we introduce uniformly bounded linear operators Py, : Hj — H7 and Py, :
H£ — H£ approximating PS‘HZ : Hy — H(div; Q) and Pf|H}fl CH - H(div; Qy), respectively,
and derive upper bounds for the associated errors given by |P (75 4) =P n(Tsn)| div:o, (cf. Lema
2.11) and [P (7 5n) =P sn(Tsn)ldivie, (cf. Lemma 2.12) for each (754, 7yn) € Hy, = Hj xH{.
These are the key estimates utilized below in Section 2.4.5 to prove the discrete inf-sup conditions

for the bilinear forms Ay and A (cf. Lemma 2.16).

Indeed, given (75 p,T¢n) € Hy, we first recall from (2.23) and (2.21) that Py(754) = &,
where 65 = Ce(u) and 1 is the unique solution of
s =Ce(n) in Q, dive, = (I-M)(divr,;) in Q,
(2.104)
;v =0 on X, uc (I-M)(LQy)),
In turn, we know from (2.30) and (2.28) that P¢(7¢4) := &y, where 65 := Vp and p is
the unique solution of
&f = Vﬁ in Qf, diV&f = (I—J)(diVTf,h) in Qf,
(2.105)
Grprv=0 on SUL, pe d-I(L*Q).
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We now let (65 p, 0y, 5;,) € Hi x(I-M)(U7)xQ; be the mixed finite element approximation
of (2.104), which was introduced and analyzed in [37, Section 5.2], and define

Psn(Tsp) == Osp- (2.106)

)

Hence, we know from [37, Section 5.2] that there hold
IPsn(Tsp)llaivio, < CllTsnllaivias (2.107)

Psp(tsp)y =0 on X and / Pp(tsn):m, =0 Vo, € Q. (2.108)
Qs

The uniform boundedness of Py j, is obvious from (2.107), whereas the first equation of (2.108)
says that P (Ts4) belongs to H(div; Qs) (cf. (2.58)). Furthermore, in virtue of [37, Lemma
5.4], whose proof makes use of the definition (2.106), the conmuting diagram identity (2.79), the
approximation properties (2.81), (AP7), and (APZ), and the regularity estimate for (2.104) (cf.
(2.22), (2.27)), we have the following error estimate.

Lemma 2.11 Let € > 0 be the parameter defining the reqularity of the solution of (2.104).
Then, there exists C' > 0, independent of h, such that for each 7,5, € Hj there holds

HPS(TS,h) - PS,h(TS,h)HdiV;Qs < Chf|div TS,hHO,Qs- (2.109)

We now turn to the definition and properties of P ;. According to the regularity estimates
given by (2.29) and (2.33), we know that P (7 ;) belongs to H(Q) and

1Py (7 s.n)

which suggests to consider the Raviart-Thomas interpolation operator 5,{ and define

Pin(tin) = & (Pi(rsn)). (2.111)

0 < Clldivrpallog, (2.110)

It follows, employing the conmuting diagram property (2.80), the second equation in (2.105)
(which says that divPs(rs,) = (I —J)(divrysy)), and the fact that divry, is piecewise

constant, that
div Pfﬁ(‘l‘f’h) = P}{ (diV Pf(Tf,h)) = 'P}{((I — J)(diV Tf,h)) = div Pf(TfJL) . (2.112)

Also, it is easy to see that the uniform boundedness of 5,{ :HE(Qy) N H(div; Qf) — H£ (which
follows from (2.82) and (2.80)), together with the estimate (2.110) and the identity (2.112),
imply that Py is uniformly bounded as well. In addition, using the characterization property
(2.78) and the third equation in (2.105) (which says that Py(7sp)-v = 0 on X UT), we
easily deduce that

Prp(tsn)-v =0 on XUT. (2.113)

We are now in a position to establish our second error estimate.
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Lemma 2.12 Let € > 0 be the parameter defining the reqularity of the solution of (2.105).
Then, there exists C > 0, independent of h, such that for each T € H£ there holds

IPp(Trn) — Pra(Trn)llaivie, < Chdivrsaloq, - (2.114)

Proof. We proceed as in the proof of [37, Lemma 5.4], though the present one becomes simpler.

Let us first notice, in virtue of (2.111) and (2.112), that

IPs(Trn) — Pralmrnlave, = IPs(mrn) — Pra(rrnllog, = IX—EDP(ren)log, -

Hence, applying the approximation property (2.82) and the identity (2.112), we find that

IE=DH@rrrm) R, = D 1A=EDPs(rrn)I3r

TeT!
< o> m{Pren)lr + laivP(ren)lEr
TeT!
2e 2 : 2
< cn{IPprpn)lZa, + 1(1-3)(divrpn)lde, |

which, together with the estimate (2.110) and the fact that ||[I — J|| < 1, completes the proof.
O

2.4.5 Well-posedness of the Galerkin scheme

We now aim to show the well-posedness of the mixed finite element scheme (2.76). For this
purpose, as established by a classical result on projection methods for Fredholm operators of
index zero (see, e.g. [59, Theorem 13.7]), one just needs to prove that the Galerkin scheme
B*
0
tity (2.48), it suffices to apply the discrete Babuska-Brezzi theory to each one of the blocks

A
associated to the isomorphism ( BO ) is well-posed. Equivalently, in virtue of the iden-

A, B! A; B | |
and . According to the above, in what follows we show that the
B, O By 0

bilinear forms A,, Bs, Af, and By (not necessarily in this order) satisfy the discrete inf-sup

conditions on the corresponding finite element subspaces.

We begin our analysis with the derivation of the discrete inf-sup condition for By. To this
end, and in order to apply Lemma 2.9, we first notice that for each ;) = (¢, ¢, ) €
Q] = An(%) x Ay(T) there holds

‘ <¢h,27wh,2>2 + <¢h,r7wh,r>F‘

g("»bh) = sup

D, = (0}, .0p, 1) ||¢h”—1/2,aﬂf
€ 05 (Z)x Py () \{0}
> 1 sup @5 Yusiz| + Fnr Yurir |
2 lo,geononioy nsll-izs o, eamnior 19nrll-1/2r
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It follows, in virtue also of the left-hand side of (2.102), that a sufficient condition for the required
inequality concerning By is the existence of B 5 ﬂN rr > 0, independent of h, such that

| <¢ ad) >Z | ~
sup o > Brs Y, sllies Vs € A(D), (2.115)
oy €N} [0 sll-1/25
" {Gur bl |
3 T ~
P e > B [0, pllyar Ve € AR(D). (2.116)

o c@nO\0} [[@nrll-1/2r
Note that (2.115) and (2.116) constitute two independent discrete inf-sup conditions holding
between subspaces living in 3 and T', respectively. Then, we recall from [45, Lemma 5.2] that a
suitable choice of the subspaces Ay (X) and Ay (I") guarantees the ocurrence of the above. More
precisely, let us assume, without loss of generality, that the number of edges of ¥, and I'}, are
even numbers. Then, we let ¥y, (resp. I'yp,) be the partition of ¥ (resp. I') arising by joining

pairs of adjacent elements, and define

Ap(D) = {¢h € C(D): Ynle € Pi(e) Ve edge of zgh}, (2.117)
Ap(T) = {wh € OT): nl € Pile) Ve edge of r%}, (2.118)
Q] = ML) x Au(T). (2.119)
and
Q= AW(E) x An(E). (2.120)

In this way, we are in a position to establish the following result.
Lemma 2.13 Let Q{ be given by (2.119). Then there exists Bf > 0, independent of h, such that

Bi(Trn,
sup \ f( f.h lbf,h)’

Tf,hEH{L\{O} HTf,thiV;Qf

> Brlpsalijnon,  Yibpn € QL = An(S) x Ay(I).

Proof. A straightforward application of [45, Lemma 5.2] to the pairs of subspaces (®5(X), An(X))

and (P4, (T"), Ap(T)) imply (2.115) and (2.116), and hence the previous discussion completes the
proof with the constant Bf = % min { Bf’z), Bf’r‘ }

O

Before continuing the analysis, we let TI, : H'/2(X) — Ax(¥) and II,. : HY/2(I') — Ay(T) be

the orthogonal projectors, and recall from [10] that the approximation properties of Aj(X) and

Ap(T") are given as follows:
(APsy; ) For each ¢ € (0,1] and for each ¢ € H'/?%9(%), there holds

1 — T, (W) hjes < ChY 1Y /246 -
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(APr ) For each 6 € (0,1] and for each ¢ € H'/?*9(T), there holds

[ — T ()l1j2r < C hi 1 /2451 -

Note that (APx ;) and (APp ) yield the approximation properties of Qj and Qi (cf. (2.73),
(2.74)).

We now turn to the connection between Lemma 2.10 and the discrete inf-sup condition for
the bilinear form By (cf. (2.18)) with Qj = Ap(X) x Ap(E) and Ap(X) given by (2.117). We
first notice that for each v, = (Q/Jh,z,{/;h’z) € Qj, there holds, denoting ¢, := (¢, ., 5}@) €
D5 (%) x @5(%),

-~ bl S >
Fwny = ap L]
b cn iy B0 12
¢, #0
> 1 ’ <¢h,27wh,2>2 ’ | <¢h,2’ ¢h,2>2 ‘
> = sup —_— + sup _—
2 s, petnmnioy 9nsll-1/25 s €N} [0 zll-1/25

Hence, since [45, Lemma 5.2] guarantees (2.115), we deduce from the above inequality that

T(ho1) = Br{lnslhpos + [oslhps)  Yun = WsBis) € Qi

which, combined with the left-hand side of (2.103), yields

T(p,,) = sup LTk Pens]

> Cs Bf72‘|¢s,h||1/2,2 Vi, € Qp. (2.121)
ronei\fo} | Tsnllaivio,

Consequently, we are now able to prove the following lemma.
Lemma 2.14 Let Qj be given by (2.120). Then there exists Bs > 0, independent of h, such that

| BS(TSJL? (niw ’d)s,h)) |
sup
Ton €H\{0} 175, |l divie2s

> BS ”("hﬂ/’g,h)” V(Tlhﬂ/’s,h) € QZ X Qi

Proof. Given (n,,%,) € Qf x Qj we have, according to the definition of By (cf. (2.18)), that

| BS(TSJL? (nh7 /l/)s,h)) | | <Ts,h v, st,h)E ’

sup : > sup = lmnllo.c.
Ton €H:\{0} 75,1 lldiv;e, ronem\0}  Tsnllaivio,
which, thanks to (2.121), implies that
| Bs(T 5,15 (M1, ¥s.1)) | >
sup = = > C3Bps Vs ullies — Innlloq. - (2.122)

To,n € H; \{0} ||Ts,h||div;QS
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Furthermore, we know from [62, Theorem 4.5] (see also [4, Lemma 4.4]) that there exists (), €

Hy such that ;v =0 on X, div{,, = 0 in £, and

| Bs (€, (s 5 0)) | 2 ClICs plloas mlloe. = CllCsn

|diV;Qs ”"7”0,93 )

which yields
| Bs(T s,y (M, ¥s ) |
sup
Top €Hs \{0} 175, div: s

> Clny

lo.s - (2.123)

Finally, a suitable linear combination of (2.122) and (2.123) gives the required inequality.
a

We now let V j, and V), be the discrete kernels of By (cf. (2.18) ) and By (cf. (2.19)), that
is,
Vari={ra el [ maim=0 Ym e (raridls =0 Vi, € Qi)
’ (2.124)
Vin = {Tf,h € H£ : <Tf,h'vah,2>2 = <Tf,h'V’¢h,r>F =0 v(wh,27wh,r) € Q£}> (2.125)

and aim to prove that the bilinear forms A, and Ay satisfy the discrete inf-sup conditions on

Vin x Vg and Vyp x Vi, respectively.

We begin by observing that V) is certainly contained in

Vo = {rs €H@IVi%) : (rov, 9 )s =0 Yib,, € Q} ),

which is not a subspace of H(div;€) (cf. (2.58)) but on the contrary contains it. While this
latter fact prevent us of applying directly (2.57) (and hence the ellipticity estimates (2.59) and
(2.64)) to the whole \737;1, we show next that actually (2.57) does also hold in this bigger space.
In fact, let us first pick one corner point of ¥ and define a function v that is continuous, linear
on each side of 3, equal to one in the chosen vertex and zero on all other ones. Then, it is easy
to check that, if 1 and vo are the normal vectors on the two sides of ¥ that meet at the corner
point, the function 1 € H'/2(X) given by 9 := v (v1 + v2) belongs to QF := Ax(X) x Ay(X)
for each h > 0, and satisfies

(v, ¥)s #0.
This function 9 in Qj is employed next to prove the validity of (2.57) in \Nf&h.
Lemma 2.15 There exists ¢ > 0, independent of h, such that
Imsoldivio, = & ITsllave,  Y7s € Vi, (2.126)

where Ty = Tgo + dI, with 7,0 € Hy(div; ) (cf. (2.55)) and d € C.
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Proof. Given 14 € \Nfsyh we clearly have, using that 19 € Q; for each h > 0, that

0= <T5V,'l,b>2 = <TS,0V7¢>E =+ d<va>2a

which gives

J— _ (Tsov.¥)s
<V7¢>Z 7

and hence

/2,5
‘d‘ S ¢ ‘ <V ¢>E’ HT&OHdiWQs'
This inequality and the fact that ||Ts||(2;1iv;QS = HTS,OH(QiiV;QS + 2d?|Qs| imply (2.126).
a

As a consequence of Lemma 2.15, and following basically the same arguments employed in
the proofs of Lemmas 2.3 and 2.4, we deduce that the inequalities (2.59) and (2.64) also hold in

V1. In particular, the latter says that there exists &, > 0, independent of h, such that

Ag(T5,E5(T5)) > b 1753w, VTs € Vgp. (2.127)

We are now ready to prove the discrete analogues of (2.65) (cf. Lemma 2.4) and (2.68) (cf.

Lemma 2.5), which constitute the required discrete inf-sup conditions for A; and Ay.

Lemma 2.16 There exist 53, 6f, ho > 0, independent of h, such that for each h < hg there

holds

A (C h’T 7h> ~
sup M > Cs HCS,thiv;QS Vcs,h € Vg (2.128)

ToneVo\0)  ITsnlldivio,

and

v

sup ‘Af(Cf,hv Tf,h)‘

Crll¢ nllana,  YCin € Vin. (2.129)
T €V \{0} HTf,thiv;Qf

Proof. In order to prove (2.128) we introduce the natural discrete approximation of the operator
Zs (cf. (2.60)) given by Z,p = (I — 2P, ) : Hy — Hj, with P, defined by (2.106). In this
way, it follows directly from (2.109) (cf. Lemma 2.11) that

||ES(Cs,h) - ES,h(Cs,h)HdiV;Qs < Ch HCS,thiV;Qs VCS,h € Hi :

Hence, taking in particular ¢,;, € Vjp, adding and substracting = (E&h), using the bound-
edness of Ay, and applying the inequality (2.127) (having in mind that V3 C V&h), we find
that

A BanCan) | 2 [ A€o BsCun) | = CH ICanlhive, = {@ = ChflICanlEimn, -
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from which we deduce the existence of ¢, hg > 0, independent of h, such that

| As(Con Bsn(Csn)) | = ¢ ||Cs,h||?1iv;QS VCon € Vsny Vh<hg. (2.130)

Note from this inequality that = ,({; ;) # 0 for each () # 0. Also, it is clear from (2.108) and
the characterization of Vi (cf. (2.124)) that P, ((, ), and hence = (¢, ), belong to Vi j,
for each (), € V. Consequently, we employ (2.130) to bound the supremum on V,;\{0} as

follows

|As(cs,hv7—5,h)| > }As(cs,hvas,h(zs,h))’ > ||C8,h 3iv;QS

sup z — =
Tonevefor  [7snllaivia, 1268 (Cs p) v

C —
126,10 (Cs ) lldivie.

for each ¢ ), € Vs and for each h < hg, which, thanks to the uniform boundedness of ||=; ||,
say by a constant C' > 0, imply (2.128) with Cy = ¢/C.

The proof of (2.129) proceeds analogously by considering now Zyj := (I - 2P f,h) : H£ —
Hg, with Py, defined by (2.111), applying the inequality (2.67) (cf. Lemma 2.5), using, thanks
to (2.114) (cf. Lemma 2.12), that

I1Z¢Csn) — EpnlCrillamo, < ChéllCsnllave, V¢ € HL,

and noting, in virtue of (2.113), that Zy,(Css) € Vyp (cf. (2.125)) for each (s € V.
a

The following theorem establishes the well-posedness and convergence of the discrete scheme
(2.76) with the finite element subspaces H?, Hf, Q5. Q7, Qﬁ, Ap(%), and Ap(T), given, respec-
tively, by (2.70), (2.71), (2.72), (2.73), (2.74), (2.117), and (2.118).

Theorem 2.2 Assume that the homogeneous problem associated to (2.15) has only the trivial
solution, and let hg > 0 be the constant provided by Lemma 2.16. Then there exists hy € (0, ho]
such that for each h € (0, h1], the fully-mized finite element scheme (2.76) has a unique solution
(@1Ah) = (FsnTfn), (Yn> Ps s Prp)) € Hy X Qp. In addition, there exist C1, Co > 0,
independent of h, such that for each h € (0, hi] there hold

PN F(T G(n
[(GhAn)llEXQ < C1 { sup F(7)] +  sup | (nh)’} < Cl{Hf o,QS+|!gH—1/2,F}

Fremnoy ITaln 5 cquop [Mlle

and

16.3) ~ GuAWlExg < Co _ i [6.7) — Fniin)lsxq. (2.131)

(ThMp,)EHLXQy
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where (0,5) = ((0s,07), (7, ¢5, ¥f)) € HxQ is the unique solution of (2.15). Furthermore, if
there ezists § € (0,1] such that o € H2(Qs), dives € HY(Qy), oy € H(Qy), dive s € HY(Qy),
v € H(Q), @, € H/?H(X), and pr € HY/2+3(9Qy), then for each h € (0, hi] there holds

1(@,7) — (Gn7n)llHxQ < C3 hé{llaslla,ﬂs + [[divesllsa, + [loflsq;

+ [ldiveyllso, + 1vllse. + ll@sllijzvsx + H‘Pf”l/?Jr(S,BQf}v
with a constant C3 > 0, independent of h.

Proof. Because of Lemmas 2.13, 2.14, and 2.16, the proof of the first part is a straightforward
application of [59, Theorem 13.7]. In turn, the rate of convergence follows directly from the
Cea estimate (2.131) and the approximation properties of the finite element subspaces involved
(see (APY*), (AP,?f), (APZ) in Section 2.4.2, and (APy ) and (APr}) above in the present
section).

O

2.5 Numerical results

In this section we present three examples showing the performance of our fully-mixed finite
element scheme (2.76). Examples 1 and 2 consider smooth exact solutions, whereas Example 3,
whose exact solution is singular, is utilized to illustrate the regularity dependence of the rate of
convergence (cf. Theorem 2.2). We begin by introducing additional notations. The variable N
stands for the total number of degrees of freedom defining the finite element subspaces Hy, and
Q. (cf. (2.75)), and the individual errors are denoted by

e(os) == |los — osnllaivia,, eloy) == |loy —orullavia;, e(¥) = v —Yullog,,
e(‘los) = ||S05_‘Ps’h||1/2,2, e((pz) = HQDE _sz,hul/Q,E and e(gpr) = ||SOF _(pr,h||1/2,F>

where ¢ = (py, ) € HYA(E)x HYA(T) and ¢y, = (y,,¢,,) € Qf 1= Ap() x Ap(T),

Also, we let r(os), (of), r(7), r(ps), r(¢y) and r(p.) be the experimental rates of convergence

given by
o)) = log (e(os)/e'(0s)) Hop) = log ((e(of)/e' (o))
s/ log(h/H ’ £ log(h/H) ’
_ log(e(v)/e'()) _log (e(p,)/€'(¢,))
= gy T T ey
_ log (e(ps)/e'(¢5)) _log (e(pr)/e(9r))
r(SOE) T log(h/h/) and 74(901") T log(h/h’) ’

where h and h’ denote two consecutive meshsizes with corresponding errors e and e’.
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We first consider Qg := (—0.2,0.2) x (—0.4,0.4) and let the artificial boundary T" be the
ellipse centered at the origin with minor and major semiaxis given by 0.4 and 0.6, respectively,
x5

that is Qp := {(,Il,l‘Q)t € R?: % oz < 1}\63. We take ps = pf = A = p = 1, and

the rest of parameters are given by the sets
{vozl;w:5; Kg = D K,f:E)} and {0020.7;w:7; ks = T; file()},

which define Examples 1 and 2, respectively. Furthermore, let Kg, K1 and K9 be the modified
Bessel functions of the second kind and order 0, 1, and 2, respectively, and let Hél) be the Hankel
function of the first kind and order zero. Then, we choose the data in such a way that the exact
solution of (2.6) (or (2.15)) is determined by

1 —1)?
000 — B
u(x) = ! Vx = (x1,72)" € Qg, and p(x) = Hél)(w x]) Vx € Qy,
(561 — 1) T2
- TX(X)

where 71 := /(1 —1)? + 23, (x) = Ko(rwry) + ﬁ{Kl(zwrl) — %Kl (z%l>},

and x(x) = Ko(iwry) — %Kg (“\“/gl). Actually, u is the fundamental solution, centered at

(1,0)*, of the elastodynamic equation, which yields f = 0 in Q,, and p is the fundamental

solution, centered at the origin, of the Helmholtz equation in 2.

Then, for Example 3 we let Q4 be the L-shaped domain (—0.3,0.3)2\ (0,0.3)? and consider
I' as the boundary of the unit circle B(0,1). In addition, we take ps = py = X = p = 1,
vo = 6/11, and w = 6, so that ks = 6 and k5 = 11. Then, we choose the data in such a way that
the exact solution of (2.6) (or (2.15)) is given by
) 1+
u(r,d) := 3 sin ((26 —m)/3) V(r,0) € Q,
1+
and

p(x) = HY (w|x + (0.15,0)])  Vxe€Qf,

Note that u becomes singular at the origin, the corner of the L. More precisely, it is not difficult
to see that around this singularity div o5 behaves of order r—1/3. It follows that div o5 belongs
to H?/ 3=€(Q) for each € > 0, and hence, according to Theorem 2.2, we expect experimental

rates of convergence, particularly (o), close to 2/3.

In Tables 2.1 to 2.4 we present the convergence history of Examples 1 and 2 for finite

sequences of quasi-uniform triangulations of the computational domain , U ﬁf. We remark
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that the rate of convergence O(h) predicted by Theorem 2.2 (when § = 1) is attained for all
the unknowns in both cases. In particular, we observe that the errors e(p,), e(py,), and e(p..)
converge a bit faster than expected. On the other hand, in Table 2.5 we display the convergence
history of some unknowns of Example 3 for finite sequences of quasi-uniform triangulations of
the computational domain QU Q. We notice here, as already announced, that (o) oscillates
in fact around 2/3. However, the other rates of convergence shown there are not affected by the
lack of regularity of o ;. Finally, in Figures 2.1 to 2.8 we display real and imaginary parts of some
components of the approximate and exact solutions of Examples 1 and 2 for N = 13666. The
fact that they do not distinguish from each other illustrates the accurateness of the proposed
fully-mixed method. Note that in the case of the unknowns on the boundaries, they are depicted
along straight lines beginning at the points (0.2,0.4) and (0.4, 0.0) for ¥ and T, respectively, and

then continuing counterclockwise.

h N | e0) [red]| ewp |repn| et |
27/64 1117 6.150E—02 — 8.8656E—01 — 6.642E—03 —
27 /96 2090 4.264E—02 | 0.903 || 5.996E—01 | 0.964 || 3.975E—03 | 1.266
277/128 3686 3.112E—-02 | 1.095 || 4.414E—01 | 1.065 || 2.570E—-03 | 1.516
27/192 7869 2.107TE—-02 | 0.962 || 3.044E—01 | 0.917 || 1.530E—-03 | 1.279
27 /256 13666 1.586E—02 | 0.987 || 2.249E—01 | 1.053 | 1.018E—03 | 1.415
27T/384 31282 1.038E—-02 | 1.046 || 1.489E—-01 | 1.017 | 6.623E—04 | 1.061
27 /512 55438 || 7.784E—03 | 1.000 || 1.106E—01 | 1.035 || 4.324E—04 | 1.482
27 /768 | 125069 || 5.152E—03 | 1.017 || 7.397E—02 | 0.991 | 2.745E—04 | 1.121
27r/1024 221848 || 3.871E—03 | 0.994 || 5.540E—02 | 1.005 | 2.034E—04 | 1.041
27 /1536 | 498545 || 2.579E—03 | 1.001 || 3.670E—02 | 1.016 | 1.298E—04 | 1.109
27/2048 | 887629 || 1.927E—03 | 1.014 || 2.770E—02 | 0.978 | 9.678E—05 | 1.019

Table 2.1: Convergence history for o, o, and v (EXAMPLE 1)
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h N e(ps) | rles) e(ps) | rles) e(er) | r(er)

27 /64 1117 9.684E—03 — 1.689E—-01 — 4.819E—-02 -
27 /96 2090 4.899E—03 | 1.681 || 7.439E—02 | 2.022 || 2.030E—-02 | 2.133
27 /128 3686 2.727E—-03 | 2.037 || 4.415E—-02 | 1.813 || 1.226E—02 | 1.752
27 /192 7869 1.427E—-03 | 1.598 || 2.362E—02 | 1.542 || 5.610E—03 | 1.928
27/256 | 13666 | 8.446E—04 | 1.822 || 1.348E—02 | 1.951 || 3.850E—03 | 1.308
27 /384 | 31282 | 4.023E—04 | 1.829 || 6.741E—03 | 1.708 || 1.834E—03 | 1.830
2 /512 | 55438 || 2.521E—04 | 1.625 || 3.849E—03 | 1.948 || 1.187E—03 | 1.511
27 /768 | 125069 || 1.266E—04 | 1.699 || 1.896E—03 | 1.746 || 6.280E—04 | 1.571
27/1024 | 221848 || 8.236E—05 | 1.494 || 1.290E—03 | 1.339 | 4.437TE—04 | 1.208
27 /1536 | 498545 || 4.112E—05 | 1.713 || 6.765E—04 | 1.592 | 2.231E—04 | 1.695
27/2048 | 887629 || 2.633E—05 | 1.550 || 4.455E—04 | 1.452 || 1.533E—04 | 1.305

Table 2.2: Convergence history for ¢,, ¢, and ¢. (EXAMPLE 1)

h N e(os) | r(os) | eloy) |r(oy) e(7) r(v)

27 /64 1117 1.260E-01 — 9.166E—-01 - 1.166E—02 —
27 /96 2090 7.827TE—-02 | 1.174 || 6.046E—01 | 1.026 | 5.671E—03 | 1.777
27 /128 3686 5.687E—02 | 1.111 || 4.434E—-01 | 1.077 | 3.591E—03 | 1.588
27 /192 7869 3.851E—-02 | 0.962 || 3.052E—01 | 0.921 | 2.119E—-03 | 1.301
27/256 | 13666 || 2.880E—02 | 1.009 || 2.252E—01 | 1.057 | 1.414E—03 | 1.406
27/384 | 31282 || 1.880E—02 | 1.052 || 1.490E—01 | 1.019 || 8.978E—04 | 1.121
27/512 | 55438 || 1.410E—02 | 1.001 || 1.106E—01 | 1.036 | 5.736E—04 | 1.557
27 /768 | 125069 || 9.319E—03 | 1.021 || 7.398E—02 | 0.992 | 3.624E—04 | 1.133
27/1024 | 221848 || 6.999E—03 | 0.995 | 5.541E—02 | 1.005 || 2.665E—04 | 1.069
27 /1536 | 498545 || 4.662E—03 | 1.002 | 3.670E—02 | 1.016 || 1.682E—04 | 1.135
27/2048 | 887629 || 3.485E—03 | 1.012 || 2.770E—02 | 0.978 | 1.247TE—04 | 1.040

Table 2.3: Convergence history for o, o, and v (EXAMPLE 2)
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h N oeten e | etes) o) | eten) | e

27 /64 1117 2.0561E—-02 - 2.498E—-01 — 7.683E—02 -
27 /96 2090 8.132E—03 | 2.281 || 9.442E—02 | 2.399 || 2.67T0E—02 | 2.607
27 /128 3686 4.515E—-03 | 2.045 || 5.483E—-02 | 1.890 || 1.581E—-02 | 1.820
27 /192 7869 2.478E—03 | 1.480 || 2.897E—02 | 1.573 || 7.554E—-03 | 1.822
27 /256 | 13666 | 1.438E—03 | 1.892 || 1.611E—02 | 2.041 || 4.685E—03 | 1.660
27 /384 | 31282 | 7.075E—04 | 1.749 || 7.925E—03 | 1.749 || 2.200E—03 | 1.865
27/512 | 55438 | 4.504E—04 | 1.570 || 4.488E—03 | 1.976 || 1.393E—03 | 1.587
27 /768 | 125069 || 2.114E—04 | 1.865 || 2.162E—03 | 1.802 || 7.204E—04 | 1.627
27/1024 | 221848 || 1.435E—04 | 1.346 || 1.448E—03 | 1.393 || 5.041E—04 | 1.241
27 /1536 | 498545 || 7.019E—05 | 1.764 || 7.478E—04 | 1.629 | 2.517E—04 | 1.713
27/2048 | 887629 | 4.461E—05 | 1.575 || 4.897TE—04 | 1.472 | 1.728E—04 | 1.307

Table 2.4: Convergence history for ¢,, ¢, and ¢. (EXAMPLE 2)

h N elos) |r(os) | eloy) |r(oy) () ()

27 /64 2215 9.938E-01 — 1.375E4-01 — 1.1156E-01 —
27 /96 4767 6.768E—01 | 0.947 || 8.337E—00 | 1.235 || 2.291E—-02 | 3.903
27 /128 8495 5.373E—01 | 0.802 || 5.973E—00 | 1.159 || 1.020E—-02 | 2.814
27 /192 19067 4.468E—-01 | 0.455 || 3.971E—-00 | 1.007 | 5.789E—-03 | 1.396
27 /256 33331 3.899E—-01 | 0.474 || 3.001E—00 | 0.974 | 3.776E—03 | 1.485
27/384 | 75077 | 2.800E—01 | 0.817 || 1.973E—00 | 1.034 || 1.680E—03 | 1.998
27 /512 | 133497 | 2.351E—01 | 0.607 || 1.488E—00 | 0.981 || 1.154E—03 | 1.303
27 /768 | 299000 || 1.883E—01 | 0.547 || 9.898E—01 | 1.006 || 6.706E—04 | 1.340
27/1024 | 534105 || 1.493E—01 | 0.807 || 7.408E—01 | 1.007 || 4.519E—04 | 1.372
27 /1536 | 1199275 | 1.109E—01 | 0.735 || 4.947E—01 | 0.996 || 2.701E—04 | 1.270

Table 2.5: Convergence history for o, o, and v (EXAMPLE 3)
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Figure 2.2: Approximate and exact real part of o521 (EXAMPLE 1)
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Figure 2.3: Approximate and exact imaginary part of os; (EXAMPLE 1)

Figure 2.4: Approximate (red) and exact (blue) real and imaginary parts of ¢ (EXAMPLE 1)
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Figure 2.5: Approximate and exact imaginary part of o511 (EXAMPLE 2)

Figure 2.6: Approximate and exact real part of o¢; (EXAMPLE 2)
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Figure 2.7: Approximate and exact real part of o2 (EXAMPLE 2)

Figure 2.8: Approximate (red) and exact (blue) real and imaginary parts of ¢, (EXAMPLE 2)






Chapter 3

A residual-based a posteriori error
estimator for the plane linear
elasticity problem with pure traction

boundary conditions

3.1 Introduction

The possibility of introducing further unknowns of physical interest, such as stresses and
rotations, and the need of locking-free numerical schemes when the corresponding Poisson ra-
tio approaches 1/2, constitute the main reasons for the utilization of dual-mixed variational
formulations and the associated mixed finite element methods to solve elasticity problems. Con-
sequently, the derivation of appropriate finite element subspaces yielding well posed Galerkin
schemes has been extensively studied and several choices, including the classical PEERS element
and recent approaches, are already available in the literature (see, e.g. [4], [5], [6], [7], [8], [19],
[58], [70], and [73]). It is also well known that, within the framework of dual-mixed formula-
tions, and on the contrary to the usual primal ones, the Dirichlet and Neumann data exchange
their roles and become now natural and essential boundary conditions, respectively. In partic-
ular, non-homogeneous Neumann data usually lead to non-conforming Galerkin schemes and
respective consistency terms, which need to be suitably estimated to be able to prove stability
and convergence of the discrete methods. These facts explain why most of the works dealing
with dual-mixed finite element methods in continuum mechanics consider either pure Dirichlet

or mixed boundary conditions with homogeneous Neumann datum, thus avoiding the addi-

50
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tional difficulties arising from the presence of non-homogeneous essential boundary conditions.
Nevertheless, one way of successfully handling these conditions consists of the introduction of
appropriate Lagrange multipliers enforcing them weakly, as done originally in [9] for the primal
finite element method with non-homogeneous Dirichlet boundary conditions. The extension of
the method from [9] to a large class of dual-mixed variational formulations was studied in [11],
where a second order elliptic equation in divergence form with mixed boundary conditions and

non-homogeneous Neumann datum was considered as a model problem.

In turn, the extension of the results from [11] to the dual-mixed variational formulation
of the linear elasticity problem in the plane was performed in [38]. More precisely, the stress-
displacement-rotation formulation for the case of non-homogeneous pure traction boundary con-
ditions was considered in [38], and a new dual-mixed finite element method for approximating
its solution was developed there. The main novelty of the approach in [38] lies on the weak
enforcement of the non-homogeneous Neumann boundary condition, similarly as done in [11],
through the introduction of the boundary trace of the displacement as a Lagrange multiplier. In
addition, since the rigid body motions solve the associated homogeneous boundary value prob-
lem, the displacements lie in the respective orthogonal complement and are computed through
the introduction of an artificial unknown as an additional Lagrange multiplier. A suitable com-
bination of PEERS and continuous piecewise linear functions on the boundary are employed to
define the dual-mixed finite element scheme, and the classical Babuska-Brezzi theory is applied
to show the well-posedness of the continuous and discrete formulations. A priori rates of conver-
gence of the method, including an estimate for the global error when the stresses are measured
with the L2-norm, are also derived in [38]. It is important to remark that this work is actually the
first one dealing with the dual-mixed finite element method for the above mentioned boundary
value problem, in which the stress-displacement-rotation formulation and triangular elements
are employed. Moreover, the analysis of the corresponding continuous variational formulation,
which is also provided there, was not available before. On the contrary, the analysis of the con-
tinuous and discrete primal variational formulations for the linear elasticity problem with pure
Neumann boundary conditions is nowadays very well established (see, e.g. [18, Chapter 9], [17],
[32], and [60] for detailed analyses).

On the other hand, in order to guarantee a good convergence behaviour of the finite element
solutions, particularly under the presence of singularities, one usually needs to apply an adaptive
strategy based on a posteriori error estimates. These are usually represented by global quantities
0 that are expressed in terms of local estimators 67 defined on each element T of a given

triangulation of the domain. The estimator 6 is said to be reliable (resp. efficient) if there exists
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Cre1 > 0 (resp. Cogs > 0), independent of the meshsizes, such that
Cet: 0 + hoot. < |lerror|| < Cre1 0 + h.o.t.,

where h.o.t. is a generic expression denoting one or several terms of higher order. Most of the
a posteriori error estimators for the mixed finite element formulation of the linear elasticity
problem are derived similarly as those for elliptic partial differential equations of second order
in divergence form (see. e.g. [2] where estimators based on residuals and on the solution of local
problems, using Raviart-Thomas and Brezzi-Douglas-Marini spaces, are provided). In connec-
tion with Raviart-Thomas spaces, one may also refers to [16], [21], and [36], where reliable and
efficient residual-based a posteriori error estimators for the Poisson problem are obtained. The
main tools of the corresponding analyses include Helmholtz decompositions, the localization
technique based on bubble functions, discrete trace and inverse inequalities, and the approxi-
mation properties of the Clément interpolant. The extension of the results in [21] to the linear
elasticity problem is developed in [22] and [62]. In addition, energy norm a posteriori error es-
timates based on postprocessing are obtained in [63], and functional-type error estimates are

presented in [68].

Motivated by the preceding remarks, the main purpose of the present paper is to consider
the plane linear elasticity problem with pure traction boundary conditions and derive a reliable
and efficient residual-based a posteriori error estimator for the corresponding dual-mixed finite
element method introduced and analyzed in [38]. The rest of this work is organized as follows.
In Section 3.2 we recall from [38] the boundary value problem of interest and its dual-mixed
variational formulation. In Section 3.3 we reconsider the mixed finite element scheme from [38]
and introduce some improvements in its definition and solvability analysis that have arisen in
recent related works. The core of the present work is Section 3.4, where we develop the announced
a posteriori error analysis. The reliability and efficiency of the proposed estimator are proved
in Sections 3.4.1 and 3.4.2, respectively. Finally, several numerical examples confirming these
properties and showing the good performance of the associated adaptive algorithm, are provided
in Section 3.5.

We end this section with further notations to be used below. In what follows, I is the identity

* stands for the transpose of a matrix, and given

matrix of R?*2, tr denotes the matrix trace,
7= (73j), €5 = (Gij) € R¥*2, we define the deviator tensor 7% := 7 — L tr() 1, and the tensor
product T : (, = E?,j:l Ti;j Gij- Also, we utilize standard simplified terminology for Sobolev
spaces and norms. In particular, if O is a domain, S is a closed Lipschitz curve, and r € R, we

define

H'(0) = [H"(0)2, H'(0) := [H"(O)]>2, and H'(S) := [H"(S)?.
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However, when 7 = 0 we usually write L2(0), L?(0), and L?(S) instead of H°(0), H(0), and
HY(S), respectively. The corresponding norms are denoted by || - ||, 0 (for H"(0), H"(O), and
H"(0)) and || - ||,s (for H"(S) and H"(S)). In general, given any Hilbert space H, we use H and
H to denote H? and H?*2, respectively. In addition, we use (-,-)s to denote the usual duality
pairings between H~'/2(S) and H'/%(S), and between H~/2(S) and H'/?(S). Furthermore, the
Hilbert space

H(div;0) := {w e L*(0): divw e L*(0)},

is standard in the realm of mixed problems (see [19], [47]). The space of matrix valued functions
whose rows belong to H(div; O) will be denoted H(div; Q). Note that if 7 € H(div; O), then
div T € L?(0), where div stands for the usual divergence operator div acting on each row of the
tensor, The Hilbert norms of H(div; O) and H(div; O) are denoted by || - ||giv,0 and || - ||aiv,0,
respectively. Finally, we employ 0 to denote a generic null vector (including the null functional
and operator), and use C and ¢, with or without subscripts, bars, tildes or hats, to denote
generic constants independent of the discretization parameters, which may take different values

at different places.

3.2 The boundary value problem

In this section we recall from [38] the boundary value problem of interest, its associated
dual-mixed variational formulation, and the corresponding well-posedness result. To this end,
we let © be a bounded and simply connected polygonal domain in R? with Lipschitz-continuous
boundary I'. Our goal is to determine the displacement u and stress tensor o of a linear elastic
material occupying the region €2 and which is subject to a volume force and pure traction
boundary conditions. In other words, given f € L(Q2) and g € H™Y/2(I"), we seck a symmetric

tensor field o and a vector field u such that
o =Ce(u), dive=—-f in Q, and ov=g on I, (3.1)

where C is the elasticity operator determined by Hooke’s law, that is, given Lamé constants
A, >0,
Cly = Atr(C)T + 2pu¢, V¢, € LX(9), (3:2)

e(u) := 3 (Vu+ (Vu)®) is the strain tensor of small deformations, and v is the unit outward
normal to I'. Concerning the existence of solution of (3.1), we first recall (see, e.g. [18, Theorem

9.2.30]) that this problem is solvable if and only if

Afx+%&mF—0 Vx € RM(9), (3.3)
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where RM(2), the space of rigid body motions in £, is defined as

RM(®) = {x: 2~ R? : x(x)z(Z)—i—c( 2 ) Vx::<x1>€§2, ab,ceR }.
—x1 T

Hence, throughout the rest of the paper we assume that the compatibility condition (3.3) holds.

Next, following the usual procedure for the stress-displacement-rotation formulation of the
elasticity problem (see, e.g. [4], [19], [70]), that is defining the rotation v := 1(Vu — (Vu)*) €

L2,..(9) as an auxiliary unknown, where
La(@ = {7 € LAQ): 7+ 7" =0}

is the space of skew-symmetric tensors, and introducing the trace ¢ := —u € HY/?2 (T") as an ad-
ditional Lagrange multiplier, we obtain, at first instance, the dual-mixed variational formulation:
Find (o, (u,¢,7)) € H(div; Q) x Q such that

a(e,7) + b(r,(u,¢,7)) = 0 V7 eHdiv; Q),

(3.4)
b(o, (v, %,m)) = —AfV+@Wﬁ Vv, em) €Q,

where

Q = L) x HYA(I) x L3, (),
and a : H(div; Q) x H(div; 2) — R and b : H(div; Q) x Q — R are the bilinear forms given by
a(C,.7) /clg. V(¢ ) € H(div; ) x H(div; 9), (3.5)

and
b(t,(v,¢,n)) = /Qv-diVTJr (Tv,¥)r +/QT 'n YV (7, (v,¢,n)) € H(div; 2)xQ. (3.6)

However, it is easy to see that, given any x € RM(Q), (0, (x, —x|r, VX)) solves the homo-
geneous system associated to (3.4), and therefore, in order to avoid these spurious solutions, we
now look for displacements u in the orthogonal complement of the rigid body motions. Accord-
ing to the foregoing analysis, we arrive at the following dual-mixed variational formulation of
(3.1): Find ((o, p), (u,¢,7)) € H x Q such that

A((o,p),(T,x)) + B((T.x), (0, ,7)) = 0 V(r,x) € H,

B((o, p), (v.th,m)) = —Afv+@mw V(v,.m) € Q,
(3.7)
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where

H := H(div; Q) x RM(Q),

and A:HxH — R and B: H x Q — R are the bilinear forms given by

A((Cy @), (7X)) = a(C,T) + /Q o-x V(o) (rix)cH, (3.8)

and
B((r, %), (v..1)) == b(r, (v, 9. m)) + /Q x'v Y(rx) eH, Y(vmeq. (39)

The following lemmas are needed to establish the well-posedness of (3.7) and also to carry

on the announced a posteriori error analysis in Section 3.4.

Lemma 3.1 Let V := {(r,x) € H: B((r,x),(v,¥,n)) = 0 V(v,¢,n) € Q}. Then
there holds
V =V x {0}, (3.10)

with

Vo= {TEH(div;Q): divr=0 in Q, 7v =0 on I, 7=7° in Q},

(3.11)
and there exists o > 0, independent of \, such that
A((T,x), (1,x) = al(mx)|E  Y(rx) € V.
Proof. See [38, Lemma 3.3]. ]
Lemma 3.2 There exists B > 0, independent of A, such that
B T?X ) Vv’l)ba
wp BEXLVBD] s gy g vivapm e Q.
(T,X)eH ||(7'7X)”H
(T, X)#0
Proof. See [38, Lemma 3.4]. ]

The well-posedness of the variational formulation (3.7) is stated as follows.

Theorem 3.1 There exists a unique solution ((o, p), (u,@,v)) € Hx Q to (3.7). In addition,
p = 0 and there exists C' > 0, independent of X, such that

(@, (w .Mlliamq < C{Ifloa + ligl-ryer }- (3.12)

Proof. See [38, Theorem 3.1]. O

Actually, thanks to Lemmas 3.1 and 3.2, we can establish the following more general result.
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such that

A((a,p),(1,x)) + B((,x),(0,,%)) = F((r,x)) V(r.x)€H,

(3.13)
B((a,p),(v,¥,m) = G((v,¢¥,m) Y(v,¢,n)€Q.
In addition, there exists C > 0, depending only on (3, «, ||a||, and ||b]|, such that
I@.p)ln + @@ Ala < C{IFla + [Cla |- (3.14)

We end this section with the converse of the derivation of (3.7). Indeed, the following theorem
establishes that the unique solution of (3.7) solves the original boundary value problem (3.1).
This result will be used later on in Section 3.4.2 to prove the efficiency of the a posteriori error

estimator.

Theorem 3.3 Let ((o,p), (u,p,7)) € H x Q be the unique solution of (3.7). Then p = 0 in
Q, dive = —finQ, Vu = Clo + v in Q (which yields u € HY(Q)), u = —¢ on T,
o=0"inQ, v =1 (Vu—(Vu)*) in Q (which yields o = Ce(u)), and ov = g onI.

Proof. Tt suffices to apply integration by parts backwardly in (3.7) and then use suitable test

functions. Further details are omitted. O

3.3 The mixed finite element scheme

We now recall from [38] the mixed finite element scheme for (3.7). As said there, we could
define this discrete scheme by utilizing any of the classical finite element subspaces available in
the literature (see, e.g. [19] and the references therein), or those that have emerged recently from
the finite element exterior calculus (see, e.g. [6], [7]). However, for simplicity of the presentation,
we consider in what follows the well known PEERS elements. To this end, we first let {73 }n>0
be a regular family of triangulations of the polygonal region 2 by triangles T of diameter hr
with global mesh size h := max{hy : T € T}, such that they are quasi-uniform around
I'. In what follows, given an integer £ > 0 and a subset S of R?, P,(S) denotes the space of
polynomials defined in S of total degree < ¢. Recall that, according to the notation convention
explained in the introduction, we denote P,(S) := [P(9)]?. Furthermore, given T € T}, and
x := (z1,22)" a generic vector of R?, we let RTo(T) := span{(l,()), (0,1), (1'1,1‘2)} be the
local Raviart-Thomas space of order 0 (cf. [19], [69]), and let curl® by := (% — %), where

Oz’ ox1

by is the usual cubic bubble function on 7. Then we define the finite element subspaces HYZ ,
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@y, and QZ, associated with the unknowns o, u, and =, respectively, as follows:

HP = {1}, e H(div; Q) : c*7|r € RTo(T) ® Po(T)curl®by VT € T, VeeR?*},

(3.15)
Qr = {vy, € L}(Q): wviplr € Po(T) VT € Tp}, (3.16)

and
Q) = {( (:m %") e CQ), mlr € PUT) VTen} . (3.17)

Note here that HZ x Q} x QZ constitutes the classical PEERS introduced in [4] for a mixed
finite element aproximation of the linear elasticity problem with Dirichlet boundary conditions.
Next, in order to set the finite dimensional subspace Qf associated with the unknown ¢, we let
I'y, be the partition of I inherited from the triangulation 73, and suppose, without loss generality,
that the numbers of edges of I'y, is even. The case of an odd number of edges is easily reduced
to the even case (see [45, remark at the end of Section 5.3] for details). Then, we let I'y;, be the
partition of I' arising by joining pairs of adjacent edges of I';. Because of the assumptions on
the triangulations, I'j, is automatically of bounded variation, and, therefore, so is I'g;. Hence,

we now define
QF = {z,bh € CM): byl € Pie) Ve edge of r%}. (3.18)

It is important to remark at this point that the above choice of Q‘P, using the “double” partition
[y;, instead of an independent partition I'; of I' as in the original work [38], constitutes a
clear simplification of the discrete analysis of our problem. In fact, thanks to the recent results
obtained in [45, Section 5.3, particularly Lemma 5.2] (see also [34, Section 4.4]), the restriction
on the mesh sizes given by h < Cy iL, with an unknown constant Cp, which is required in [38,
Lemmas 4.2 and 4.3] to prove the discrete inf-sup condition for B, is not needed any more.
Moreover, the aforementioned requirement of quasi-uniformity of the triangulations around I,
which is a key ingredient in [45], was removed recently in [64, Sections 4 and 5] for the 2D case.
However, we prefer to keep it here since the a posteriori error analysis to be developed below can

also be extended to three-dimensional problems, for which that assumption is still necessary.
According to the foregoing analysis, we introduce the product spaces
Hj, = HZ xRM(Q) and Qj := Q} x QF x Q) ,

and consider the following Galerkin approximation of (3.7): Find ((op, py,), (un, @n,7v,)) €
H; x Qy such that

A((oh, pr)s (ThyXn)) + B((Th Xa)s (Whs ep,v) = 0,

(3.19)
B((0h, pu)s (Vi ) = — /Q £ vh+ (g Wn)r,



3.4 A residual-based a posteriori error estimator 58

for all ((7h,xn); (Vh, ¥, M) € Hp x Qp. Concerning the analysis of (3.19) we remark that,
besides the advances arising from the results in [45, Section 5.3], the asymptotic equivalence of
norms given in [38, Lemma 4.4], which is actually taken from [33, Lemma 4.4], has also been
improved lately to the case of arbitrary mesh sizes (see [28, Lemma 4.9]). Consequently, instead
of the original result provided in [38, Theorem 4.1], the well-posedness of the Galerkin scheme

(3.19) is now stated as follows.

Theorem 3.4 There exists a unique ((op, pp), (n, n,vn)) € Hi x Qp solution of (3.19).
Moreover, there exist C', C > 0, independent of h and X, such that

lonllaive + loallon + llunlon + lealyer + valoe < € {Iflon + lel-yer b, (3:20

and

o —onllaive + llenlloe + llu—wsllog + le —enllior + v —vnlloe

N (3.21)
< C{ dist(o, H?) + dist(u,Q}) + dist(go,Qh(P) + dist(y, QZ) },

where ((0,0), (u,p,7v)) € H x Q is the unique solution of (3.7).

3.4 A residual-based a posteriori error estimator

In this section we derive reliable and efficient residual based a posteriori error estimators
for (3.19). We begin by introducing several notations. We let &, be the set of all edges of
the triangulation 7y, and given T' € Ty, we let £(T) be the set of its edges. Then we write
En = En(Q)UELT), where E,(R2) == {e €&, : eCQ}and &) = {ec &, : e T}
In what follows, h. stands for the length of a given edge e. Also, for each edge e € &, we fix

a unit normal vector v, := (v1,12)*

, and let s, := (—w9,11)" be the corresponding fixed unit
tangential vector along e. However, when no confusion arises, we simple write v and s instead
of v, and s, respectively. Now, let 7 € L%(Q) such that 7|7 € C(T) on each T € Tj. Then,
given T' € T, and e € E(T) N ER(L), we denote by [ s| the tangential jump of T across e, that
is [Ts] := (7|7 — T|17)|es, where T and T" are the triangles of Tj, having e as a common edge.
Similar definitions hold for the tangential jumps of scalar fields v € L?(2) such that v|r € C(T)
on each T' € Tp. Finally, given scalar, vector and tensor valued fields v, ¢ = (¢;,,) and

T := (745), respectively we let

v o0p, 9P, 912 _ Ot

Oxa Oxa ox1 ox1 Oxo
curl(v) := , curl(yp) = , and curl(r) :=

D) 9P,y 9P, Ora2 _ OTon

- 871‘1 8902 - 8:)31 81‘1 3.772
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Next, letting ((oh, pp,), (W, @4, v4)) € Hp x Qp, be the unique solution of (3.19), we define

for each T' € T}, the a posteriori error indicator:

07 = |If + divonlir + llon — ol s + llenldr + ki el (C on + vu)ll.r

+ hplCTlon + e+ D hellClon + vn) sl

e€E(T)NER(Q) ,
d 3.22
+ > he|[(Clon + s + .l (3.22)
ds ||,
e€E(T) N ER(T) e
+ > hellg—onvlie + Y. hellen+unl,
ecE(T)NER(T) ecE(T)NELR(T)

and introduce the global a posteriori error estimator

1/2

0:=q> 07

TeT

Then, the following theorem constitutes the main result of this paper.

Theorem 3.5 Assume thatg € L%(T). Let (o, p), (u,,7)) € HxQ and ((on, pp,), (Un, ¢n, 7)) €
H;, x Qp be the unique solutions of (3.7) and (3.19), respectively. Then, there exists constants
Cre1 > 0 and Cess > 0, independent of h, such that

Cets 0 < |[(0,p) — (oh, pp)llH + (W, 0,7) — (un, 01, 7n)ll@ < Crer 0. (3.23)

The efficiency of the global a posteriori error estimator (lower bound in (3.23)) is proved below
in Subsection 3.4.2, whereas the corresponding reliability (upper bound in (3.23)) is derived next.
3.4.1 Reliability of the a posteriori error estimator

We begin with the following preliminary estimate for the partial error ||(o, p) — (oh, py)||H-

Lemma 3.3 Let Sy, : H(div; Q) — R be the functional defined by
Sp(t) == a(on, 7) + b(T, (un, p,7,)) V7 € H(div; Q),

and let S|y be its restriction to V', the first component of the kernel V. of B (cf. (3.11)). Then,
there exists C' > 0, independent of h, such that

l(e,p) = (on.pn)lu < C{IISh!vllv' + [[f +divoplloe
(3.24)

+ llow—otloa + lenloe + lg—onvlipr},

and there holds Sp(7p) = 0 for each Ty € H}?
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Proof. We make use of a particular problem of the form (3.13). More precisely, let ((a, p), (0, ®,7)) €
H x Q be the unique solution of problem (3.13) with F' € H' and G € Q' defined by

F(r,x) =0 Y(r,x) eH and G(v,%,n) := B((o,p)—(on ps), (v,¥,m) Y (v,¥,n) € Q.

According to the second equation of (3.7) and the definition of B (cf. (3.9)), we easily find that

v (f+divoy) — /

Q

G = - [

O'hin_/ph'v"‘ <g—O'hV,'l/)>1",
Q Q

which, noting that / op:n= %/(a’h —o}) 1 m, yields
Q Q

IGlla < € {lif +divonlog + lon - ofloe + lealos + g —onvl1or}-

Then, the continuous dependence result (3.14) and the above estimate for ||G||q imply

00 + lonllos + g = onvll1jor}. (3.25)

I, Pl < C{If +divanllo + on— okl

On the other hand, a straightforward application of the triangle inequality gives

le:p) = (onpp)la < l(a,p) = (an pn) = (7, p)llu + (o, 0) |1, (3.26)

and hence, thanks to (3.25), it only remains to estimate ||(o, p) — (oh, p,) — (6, p)||m. To this
end, we first observe from the second equation of (3.13) that (o, p) — (oh, p,) — (&, p) belongs
to V, the kernel of operator B (cf. (3.10)). Hence, applying the ellipticity of A on V (cf. Lemma
3.1), we obtain that

Q H(O',p) - (Uhvph) - (7ap)H%I < A((va) - (Uh;ph) - (&7[))7 (Uap) - (Uhvph) - (6ap>)
< A((0'7p) - (o-haph)a (O',p) - (Uh,ph) - (6’,ﬁ))

+Alll(e,p)u (e, p) = (on, pr) — (&, 0) |1

which, dividing by ||(o, p) — (o, pp,) — (7, p)||1, taking supremum on V, and then recalling
from (3.11) (cf. Lemma 3.1) that V.=V x {0}, gives

« H(O‘,p) — (O'h,ph) — (7aﬁ)||H < s-ug A((O’,p) [T(’El:’gh% (7-70))
TH#0 ’

+ [Allll(e, p)l[a- (3.27)

Next, from the first equation of (3.7) we have

A((o,p),(1,0)) = =B((7,0),(u,,7)) =0 VT eV,
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and then, bearing in mind the definition of A (cf. (3.8)), we get
A((o,p) = (oh, pp): (7,0)) = = A((oh, py), (7,0)) = —a(on,T) VTEV,
which, together with the fact that b(7, (un, ¢;,,7))) certainly vanishes for each 7 € V| yields
A((o,p) = (0n,pp); (1,0)) = =Sp(1) VT eV. (3.28)

In this way, (3.24) follows directly from (3.25), (3.26), (3.27), and (3.28). Finally, it is quite clear
from the first equation of (3.19) that

0 = A((O'h,ph)a (Th70)) + B((Tmo)?(uhacph?’)/h))

= a(op,mh) + b(Th, (an, @4,7)) = Sn(Th) V1, € HP,

which completes the proof. O
We now aim to estimate ()
Sh(T
S|V |y == sup ————
rev ITllaiv.e
T40

in (3.24), for which, according to the null property of S}, provided by the previous theorem, we
will replace Sj,(7) by Sp(7 — 73) with a suitably chosen 75, € HZ depending each time on the
given 7 € V. To this end, we now let Ij, : H'(Q) — X}, be the Clément interpolation operator
(cf. [23]), where

X, = {vh cO@): wlr e P(T) VT e n} (3.29)

A vectorial version of I, say Ij, : HY(Q) — X}, := X}, x X},, which is defined componentwise
by Iy, is also required. The following lemma provides the local approximation properties of Ij,.

Analogue estimates hold for the operator Ij.

Lemma 3.4 There exist c1, ca > 0, independent of h, such that for all v € H'(Q) there holds

v = In()llor < c1 hr |lv]liacr) VT €Ty
and

Io = Tn(@)lloe < e B2 uliae Ve € E(Q) UELD),
where A(T) == U{T" €Tp,: T'NT #0} and Ale) := H{T' € Tp: T Nne#0}.
Proof. See [23]. O

The estimate for ||Sy|v ||y is established as follows.
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Lemma 3.5 Let ((Uap)a (u7¢77)) € Hx Q and ((Uh7ph)7 (uh7¢h77h)) € Hy x Qh be the
unique solutions of (3.7) and (3.19), respectively. Then, there exists C > 0, independent of h,

such that
1/2

ISulvilv: < € > 67 ; (3.30)
TeT,

where

07 = b7 ewd(Clon + )lor + D hellC o + va) sl

eEE(T) N gh(ﬂ)
+ > ke
e€&(T) N ER(T)

d (3.31)
(C_lo'h + v )S + %

0,e

Proof. Given 7 € V' (cf. (3.11)) we clearly have divT = 0 in Q, and hence there exists ¢ :=
(¢1,02) € HY(Q) such that [,¢1 = [,¢2 = 0 and 7 = curl¢. Note that the conditions
satisfied by the components of ¢ guarantee that ||@||1 o and |@|; o are equivalent. Then, we let
¢;, € X}, be the Clément interpolant of ¢, that is ¢, := I;(¢), and define 7, := curl¢;, so
that 7 — 7, = curl(¢ — ¢,). In turn, it is easy to see that 7, belongs to HZ , and therefore

the null property satisfied by Sj, (cf. Lemma 3.3) implies that
Sp(T) = Sp(T —7n) = alop, 7 — 1) + b(T — 7h, (Un, @, Y1)

which, in virtue of the definitions of a and b (cf. (3.5), (3.6)), gives

Sp(T) = /Q (C_lffh + 1) : curl(¢p — ¢p,) + (curl(¢ — ¢,) V7¢h>r' (3.32)

Next, since

curl($ ~ ¢)v =~ (¢~ #) and P errr),

we find, integrating by parts on I'; that

(@~ gy v =~ (L0 o) = [P0 G

On the other hand, integrating by parts on each T' € T, we obtain that

Z /{C on+,} curl(¢ — @)

TeT

/Q {Clon+7,} :curl(¢p — ¢y,)

=3 {—/Tcurl(c_la'h—l—’yh)-(aﬁ—d)h) +/8T(C_10'h+7h)s'(¢_¢h)}

TeTh
= — Z /curlC O'h+’7h) (¢ —p) + Z / C 0'h+’7h) ] (¢ — o)
TeT, e€&R(Q

+ > /C on+vn)s (0~ n),

ec&y (T
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which, together with (3.33), yields

Sir) = = Y [ewtc o m) - @-en+ X[l ot m)s] @ d)

TET, ec& () V¢

+ > /{C ah—i—'yh)s—i—dd} (¢ — bn) -

ec&L ()
(3.34)

Then, applying Cauchy-Schwarz inequality and the approximation properties of the Clément
interpolation operator I;, (cf. Lemma 3.4), and then using that the number of elements of A(T")

is bounded independently of T € Tj, it follows that

Z /Cuﬂ Clon+an) (@—p)| < Z hr |curl(C o + s, HOT oA
TET TeTs
1/2

< {3 W femlc on ) o ldlie.
T€ETh

(3.35)
Proceeding analogously, and now employing that the number of elements of A(e) is bounded

independently of e € £,(Q2) U &, (), we find that

1/2
_ 2
> / [(C on+an)s]- (=) <C S D> he |[C on+v)s]llo.p N8l
EGS;L eeé’h(ﬂ)
(3.36)
and
1 de
Z (C Gh+’7h)S+ di (¢ — )
eegh(l“) €
o (3.37)
<C Z he Clah—i—’yh)s%—%
- ds ||,
€€€h ,€
Finally, (3.34), (3.35), (3.36), and (3.37), together with the fact that
[Plle < clolio = llcurl@lloo = [ITloe = [T/aive.
imply (3.30) and complete the proof. O

Besides Lemmas 3.3 and 3.5, and in order to complete the upper bound for ||(o,p) —
(h, pp)|lm in terms of local quantities, we need to estimate the boundary term ||g—op V| —1 /2 1.

In fact, we first observe that taking (v, m;) = (0,0) in (3.19), we arrive at

(ohv—g,¥p)r =0 Y, € QP
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which says, having in mind that g € L2?(I'), that each component of (o, v — g) is L2(T)-
orthogonal to the continuous piecewise linear functions on the double partition I'y;, of I'. Con-
sequently, applying [20, Theorem 2] and recalling that I';, and I'y;, are of bounded variation, we

obtain
lg—onvl’yor < ¢ Y hellg—onvli,. (3.38)

ec&y(T)
In this way, the a posteriori error estimate for ||(o, p) — (o, pp,) |1 follows straightforwardly

from Lemmas 3.3 and 3.5, and (3.38). More precisely, we have the following result.

Lemma 3.6 Let ((Uap)a (u7¢37)) € HxQ and ((Uh7ph)7 (uh7¢h77h)) € Hy x Qp be the
unique solutions of (3.7) and (3.19), respectively. Then, there exists a constant C > 0 indepen-

dent of h, such that
1/2

Ie.p) = (Fnp)lln < C <> 078 (3.39)
TET,

where

03 = 02 + £+ divonllr + llow—ofl2r + lonldr + S helg—onvll, (3.40)
e€E(T) N ER(T)

for each T € Ty, with 5% defined by (3.31).

We proceed next to obtain the corresponding upper bound for [[(u,,~) — (up, @, vu)ll-
For this purpose, we need some additional preliminary results concerning the Helmholtz decom-
position of H(div;2) and the approximation properties of the Raviart-Thomas interpolation

operator. We begin with the following lemma.

Lemma 3.7 For each T € H(div; Q) there exist (; € HY(Q) and ¢ := (¢1,¢2)* € HY(Q), with
fQ o1 = fQ ¢2 =0, such that T = ¢, + curl¢ in Q and

€6l + |

1o < Cllrllaive, (3.41)
where C' is a positive constant independent of 7.

Proof. It is an adaptation of the analysis from [35, Section 3.2.2]. See also [27, Lemma 3.4] for
full details. O

On the other hand, we also need to introduce the space of pure Raviart-Thomas tensors of

order 0, that is

RT, = {74 € H(div; Q) : c*7p|r € RTo(T) VT € T, VYeceR?},
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which is clearly contained in HZ (cf. (3.15)). Then, we let II, : H*(Q) — RT}, be the usual

Raviart-Thomas interpolation operator, which is characterized by the identity

/Hh(cs)V:/Csu VecTn, V¢, cHY(Q). (3.42)

It is easy to show, using (3.42), that
diV(Hh(CS)) = Ph(div Cs) st € HI(Q) ) (343)

where P, is the L?(Q2)-orthogonal projector onto @ (cf. (3.16)). In addition, it is well known
(see, e.g. [19], [34, Lemmas 3.16 and 3.18], and [69]) that IIj, satisfies the following approximation
properties

HCS - Hh(Cs)HU7T < Chr HCS ‘LT VT e 77” st € Hl(Q) ) (344)

and
1(¢s = h(Cy)) vlloe < CRY? N YeeTh, V¢, € HY(Q), (3.45)

where T, in (3.45) is a triangle of 7, containing e on its boundary.

We are now in a position to establish the remaining a posteriori error estimate.

Lemma 3.8 Let ((o,p),(u,¢,7)) € H x Q and ((on, py), (up, ©p,7s)) € Hp x Qp be the
unique solutions of (3.7) and (3.19), respectively. Then, there exists a constant C > 0, indepen-
dent of h, such that

1/2

H(u’ 90a7) - (uh’¢ha7h)||Q S C Z 9% ’ (346)
TeTh

where «9% is the complete a posteriori error indicator defined by (3.22).

Proof. We begin by applying the continuous inf-sup condition for B (cf. Lemma 3.2), which

yields
B((Ta X)7 (u7 P,Y) — (Uh, Ph: Y )
Bl e, %) = (un @nva)llq < sup ) w)) (3.47)
(T, X)eH ||(7'7X)”H
(T, X)#0
Next, using from the first equation of (3.7) that B((7, x), (u,¢,7)) = —A((o,p),(T,Xx)), and

then substracting and adding (o, p;,) in the first component, we find that for each (7,x) € H
there holds

B((7,x), (u,,7) — (n, 4 71)) = —A((o,p) — (n, o), (T, X))
(3.48)

- A((Ghv ph)? (Tv X)) - B((Tv X)? (uh7 Qoh)’Yh)) :
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Then, noting that [,(un 4+ pp,) - x = 0, which follows from the first equation of (3.19) when
taking x; = x and 7, = 0, and bearing in mind the functional Sy, : H(div; ) — R defined in
the statement of Lemma 3.3, we obtain that for each (7, x) € H there holds

_A((Ufhph)? (TaX)) - B((7-7X)7 (uhagoh?’)/h)) = _a(o-th) - b(T7 (uhvcph/)/h)) = = Sh(T)7

whence (3.48) becomes

B((7,x), (0, 0,7) — (up, p,74)) = —A((o,p) — (on,pp), (T,x)) — Su(T)  V(r,x) € H.

Thus, replacing the above expression back into (3.47) and using the boundedness of A (with

constant ||Al|), we easily deduce that

BlI(a,0,7) = (an, e, vn)llQ < [[AllI(e; p) = (an: pr)llE + 154w (div; oy (3.49)

It remains to bound |S|lmasv; )y on the right hand side of (3.49), for which we appeal to
the Helmholtz decompositions from Lemma 3.7. In other words, given 7 € H(div; ), we let
¢, € ML), ¢ € H(Q), and C a positive constant independent of 7, such that 7 = {, + curl ¢
in  and

1¢slle + llellne < Clirllaive- (3.50)
Then, we introduce
¢, = I(p) €X;, and T4, := ,(¢,) + curl(e,) € RT, C HY ,

which yields
T — 71 = ¢, — Hp(¢,) + curl(¢p— ¢y,) .

It follows using (3.43) that
div(t — 7,) = (I-Pp)(div¢,) = (I—Py)(divT),

which is L%(Q)-orthogonal to @V, and hence, taking into account from Lemma 3.3 the null

property satisfied by Sy, we can write that

Sp(T) = Sp(t — 7Th) = Su(¢s — Ma(Cy)) + Sw(curl(e — @y)) . (3.51)

where, recalling that Sy, (7) = a(op, ) + b(7, (un, Y5, vs)), we have

Sh(cs - Hh(Cs>) = / (Cilah_'_’)/h) : (Cs - Hh(CS)) + <(Cs - Hh(Cs)) Va90h>F’

Q
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and

Sp(curl(¢ — ¢y,)) = /Q (C_lah +73) :curl(¢p — ¢,) + (curl(¢ — ¢y,) v, @p)r -

The estimate for the latter term proceeds exactly as in the proof of Lemma 3.5, which gives,
using now (3.50), that
1/2
[Sh(curl(¢—¢))| < C S D07y Irlave, (3.52)
TeTh
with 5% defined by (3.31). In turn, for the former term we first notice that the fact that ¢,
belongs to H'(2) guarantees that (¢, — I5(¢,)) v € L*(T'), and then, utilizing additionally the

characterization (3.42), we get

Sh(Cs - Hh(CS)) = / (C_lo-h +’7h) : (CS - Hh(c.s)) + Z (Cs - Hh(Cs)) v (Soh—'_uh) .
Q@ ecs, ()€
(3.53)

In this way, employing the Cauchy-Schwarz inequality, the approximation properties (3.44) and
(3.45), and the estimate (3.50), we deduce from (3.53) that

1/2
190 (¢s = Ta(Cy))| < C S D BrlC  on+ul5r + D hellon +unll, 17| qiv,0 -
TET;, ec&p ()
(3.54)
Finally, it follows from (3.51), (3.52), and (3.54) that
1/2

ISnlsaviay < €4 3 (B + w3lc on+lir) + 3 hellon+wldep
TET;, ec&p(T)

which, together with (3.49) and the estimate for ||(o, p) — (o1, py,) || given by Lemma 3.6, yields
(3.46) and completes the proof. O

We end this section by remarking that the reliability of 6, that is the upper bound in (3.23),

is a straightforward consequence of Lemmas 3.6 and 3.8.

3.4.2 Efficiency of the a posteriori error estimators

The goal of this section is to show the efficiency of our a posteriori error estimator 6. In other
words, we provide upper bounds depending on the actual errors for the nine terms defining the
local indicator 62 (cf. (3.22)). We begin with the first three ones appearing there. In fact, since

divo = —f in (), we easily see that

If + divonlir = [div(e —an)llir < lo—onld.r. (3.55)
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Next, adding and substracting o, and using that o = o* in , we obtain
lon = oillsr < 4lle—anlir- (3.56)
Finally, since actually p = 0 (cf. Theorem 3.1), it is clear that

lenllsr = lle—pllor - (3.57)

In what follows we give the corresponding upper bounds for the remaining terms in (3.22).
Since most of these estimates are already available in the literature or can be easily derived
from related ones (see, e.g. [21], [22], [27], [35], and [43]), we either refer to the corresponding
proofs or sketch them. The main techniques involved include the localization technique based on
triangle-bubble and edge-bubble functions, together with extension operators, discrete trace and
inverse inequalities. For a better understanding of them, we now introduce further notations and
preliminary results. Given T € T, and e € E(T'), we let 1»p and 1, be the usual triangle-bubble
and edge-bubble functions, respectively (see [72, egs. (1.5) and (1.6)]), which satisfy:

ii) Yr € P3(T), v =0 o0n 0T, supp(¢pr) CT,and 0 < ¢ <1in T.

i) Yelr € Po(T), e = 0 0n 9T \ e, supp(she) C we :=U{T" € Tp: e € E(T")}, and 0 <t < 1

n we.

We also know from [71] that, given k¥ € NU{0}, there exists an extension operator L : C(e) —
C(T) that satisfies L(p) € Px(T) and L(p)|e = p for all p € Pi(e). Additional properties of ¥,

e and L are collected in the following lemma.

Lemma 3.9 Given k € NU {0}, there exist positive constants c1, ca and c3, depending only on
k and the shape regularity of the triangulations (minimun angle condition), such that for each
T eTn and e € E(T), there hold

lal2 7 < crlvy?allr Va € PU(T) (3.58)
Ipllz. < c2llvl?pld.  Vp € Pile) (3.59)
and
[ 2L(p)II3 7 < 3 helpll. Vp € Py(e) (3.60)
Proof. See 71, Lemma 1.3]. O

The following inverse and discrete trace inequalities are also employed.
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Lemma 3.10 Let k, [, m € NU {0} such that | < m. Then there exists ¢ > 0, depending only
on k, I, m and the shape regularity of the triangulations, such that for each T € Ty there holds

lalmr < by ™lahr Vg€ Pu(T). (3.61)
Proof. See [24, Theorem 3.2.6]. O

Lemma 3.11 There exists C' > 0, depending only on the shape reqularity of the triangulations,
such that for each T € Ty, and e € E(T'), there holds

be < C{h 0IEr + helvlir} Yoe HY(T). (3.62)

lv

Proof. See [1, Theorem 3.10] or [3, eq. (2.4)]. |

The upper bounds for the terms involving only the tensor C~'a, + 7, whose proofs make

use of the techniques and results described above, are given next.

Lemma 3.12 There exists C' > 0, independent of h and X, such that for each T € T}, there
holds

P llewrl (€Yo + 7B < C{llo = onllr + Iy =l }
Proof. See [22, Lemma 6.3] or [13, Lemma 4.7]. O

Lemma 3.13 There exists C' > 0, independent of h and X, such that for each T € Ty, there
holds

W IC e < € {lu—wlir + B llo - oulie + W3y - vilir)
Proof. See [22, Lemma 6.6]. O

Lemma 3.14 There exists C > 0, independent of h and X\, such that for each e € &,(S2) there
holds

he lIC on +p)s|

2= Y {lo—ouldr + v —ldr},
T C we

where we == U{T" € T,: ec&(T")}.

Proof. See [22, Lemma 6.4]. O

The upper bound for the term involving the tensor C~'a, +7;, and the tangential derivative

of ¢}, is given now.
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Lemma 3.15 There exists C > 0, independent of h and X\, such that

d 2
Z he [[(C an +7,)s + Ehd ]
ds ||p.
ec&r(T) ’
<c{ Y {lo—auln + v —mldz} + lle— el

ec&y(I)

where, given e € E(I"), Te is the triangle of Tp having e as an edge.

Proof. We refer to [35, Lemma 20] where this result was established and proved. The proof
makes use of the vector version of the extension operator L : C(e) — C(T), the fact that
Vu = C"1o +~ in Q, the boundedness of the tangential derivative % :HY2(I) - H-2(I),
the inverse and the Cauchy-Schwarz inequalities, and the bound for h2Te |curl (C~ Loy, + 7h)Hg,Te

provided by Lemma 3.12. O

While the estimate given by Lemma 3.15 is of non local character, it certainly suffices to
conclude the efficiency of 8. However, the following lemma establishes that, under an additional

regularity assumption on ¢, a corresponding local estimate can also be obtained.

Lemma 3.16 Assume that ¢|. € H'(e) for each e € E,(T). Then there exists C > 0, indepen-
dent of h and X\, such that for each e € E,(T") there holds

2

d
he (C on +,)s + 220
ds 0.e
d 2
<c {\a ~oulBa, + I =l + he || 20— on) } ,
0,e
where T, is the triangle of Tj, having e as an edge.
Proof. See [35, Lemma 21]. O

We derive now the upper bound for the term concerning the Neumann boundary condition on
I'. To this end, and for simplicity, we assume that g is piecewise polynomial on I'. Otherwise, one
would proceed as in the proof of related results by adding and substracting a suitable projection

of g onto a polynomial space (see, e.g. [35, Lemma 23]).

Lemma 3.17 There ezists C' > 0, independent of h, such that for each e € E,(I") there holds
hellg = anvide < C{llo—anldr + Wldivie — o)z}, (3.63)

where T is the triangle of T, having e as an edge.
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Proof. Given e € &,(T'), we let T be the triangle of T having e as an edge, define v, := g—o, v
on e, and consider the vector version L of the extension operator L : C(e) — C(T). Then,
applying (3.59), recalling that ¥, = 0 on 97T \e, extending ¥, L(v.) by zero in Q\T so that the
resulting function belongs to H!(£2), and replacing the datum g by o v on I, we get

Ivel2, < e / Yeve: (8- onv) = ea{(o — on) v, e L(ve))r.

Hence, integrating by parts in €2, and then employing the Cauchy-Schwarz inequality, the inverse

estimate (3.61), and the bound given by (3.60), we get

Vel < o { [ vt divie - o) + [ (0~ o) s V(L) |

<C {Hdiv(o' — o)

or + hpt o = anllor} e L(ve)llor
< on?{l|divie = on)lor + hr'lo = onlor } vello.

which, after minor manipulations and using that h, < hyp, yields (3.63) and completes the proof.
O

The proof of efficiency of @ is completed with the following result.

Lemma 3.18 There ezists C' > 0, independent of h, such that for each e € E,(T") there holds
hellen +wilde < € {nhllo = onldr + W3 lly = valir + lu—wildzr + helle - enlie }
where T is the triangle of Ty, having e as an edge.

Proof. Adding and substracting ¢ = —u on I', and then employing the discrete trace inequality
(3.62) (cf. Lemma 3.11), we obtain for each e € &, (T")

helon + willde < 20 {llon — @l + u—wal, }
(3.64)

< C{helien = @le + lu—wildr + w3 lufir},

where the last term uses that h. < hy and that uy is piecewise constant (cf. (3.16)). Then,
using that Vu = C~lo ++ in Q, adding and substracting C~ o}, ++},, and employing the upper
bound from Lemma 3.13, we find that

Wity = B3l e + 1B < 203 {lo = anldr + Iy = ilBr + 1€ o0+ valr}

< c{rlo—anldr + W lv—valdr + lu—wldz}.
(3.65)

Finally, (3.64) and (3.65) yield the required estimate and finish the proof. O
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3.5 Numerical results

In this section we present some numerical results confirming the reliability and efficiency of
the a posteriori error estimator @ analyzed in Section 3.4, and illustrating the performance of
the associated adaptive algorithm. We begin by introducing additional notations. The variable
N stands for the number of degrees of freedom defining the finite element subspaces Hj and
Q. (equivalently, the number of unknowns of (3.19)), and the individual and global errors are

denoted by:
e(0) = |lo—onllave,  e):= lu-wlog,

e(p) = H‘P_QOhHl/Q,F, e(y) == |lv —ulloe, and
e = {[e(@)” + le(p)? + le()” + [e(e)]? + le(m)?} .

where ((0,0),(u,,v)) € H x Q and ((op, py), (un, ¢n,7vn)) € Hp x Qp are the unique
solutions of (3.7) and (3.19), respectively. Also, we define the effectivity index

eff(f) = e/0.

In turn, we let r(o), r(u), r(¢), r(v), and r be the experimental rates of convergence given by

Ho) = log(e(a)/¢' (o)) ru) = log(e(u)/e'(u)) Hg) = log(e(p)/¢'(¢))
' log(h/h) ' log(h/h') ' log(h/I")

oy o o)

Log(h /1)

log (e/e’)
toa(h/)

where h and h’ denote two consecutive meshsizes with errors e and e’, respectively. However,
when the adaptive algorithm is applied (see details below), the expression log(h/h’) is replaced
by — % log(N/N"), where N and N’ denote the corresponding degrees of freedom of each trian-

gulation.

In what follows we describe the examples to be considered, which are basically the same

ones employed in [38]. In Example 1 we consider the Young modulus E = 1 and the Poisson

ratio v = 0.4999, which yields the Lamé parameters A := (l+l/)E(+2u) = 1666.4444 and p =
ﬁ = 0.3333. Then, we take the square domain 2 :=]—1/2,1/2[? and choose f and g so that
the exact solution u is given by the first column of the fundamental solution at x¢ := (1,0)*,
that is

N SR U0 A +p)  (x—x0)(x—x0)*| (1 .
u(x).—{ 47w(/\+2u)lgH 0HI+47TN()‘+2N) — }(()) Vx € Q.
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In particular, f = 0 and u is smooth in a neighborhood of €2, whence [38, Theorem 4.2] yields an
a priori rate of convergence of O(h). This fact was confirmed by the numerical results provided

in [38].

Next, in Example 2 we consider the same Lamé parameters from Example 1, take the L-
shaped domain © :=]—1,1[2?\ [0,1]2, and choose f and g so that the exact solution u is given,

in polar coordinates, by

u(r,0) = r*sin((20 — 7)/3) ( 1 ) V(r,0) € Q.

Note in this case that the partial derivatives of u, of order > 2, are singular at the origin.
Moreover, because of the power of r, we find that f := — div o belongs to H2/3(Q), whence
[38, Theorem 4.2] yields in this case an a priori rate of convergence of O(h?/3). This fact was
also confirmed by the numerical results provided in [38]. According to the preceding remarks,
this example is utilized to illustrate the behavior of the adaptive algorithm associated with 6,

which applies the following procedure from [72]:

1) Start with a coarse mesh 7p,.

2) Solve the discrete problem (3.19) for the actual mesh 7j,.

3) Compute the error indicators 07 on each triangle T' € Tj,.

4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each 7" € T, whose local error indicator 67+ satisfies

O > %max{@T: TE’E}.

6) Define resulting mesh as actual mesh 7, and go to step 2.

The numerical results shown below were obtained using a MATLAB code. In Tables 3.1 and
3.2 we display the convergence history of our mixed finite element scheme (3.19) as applied to
Example 1 for a finite sequence of quasi-uniform triangulations of 2. While this example was
already considered in [38, Section 6] (though with different Lamé constants), the novelty now
is certainly the computation of the effectivity indexes. Indeed, we notice from the last column
of Table 3.2 that the effectivity indexes eff(0) remain always in a neighborhood of 0.15, which
illustrates the reliability and efficiency of 8 in the case of a regular solution. In turn, as previously

observed in [38, Section 6], it is clear from the experimental rates of convergence shown in these
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tables that the O(h) predicted by [38, Theorem 4.2] when ¢ = 1 is attained in all the unknowns

of this example.

Next, in Tables 3.3 up to 3.6 we provide the convergence history of the quasi-uniform and
adaptive refinements, as applied to Example 2. We notice in the quasi-uniform case that r(o)
oscillates around 2/3, whence, being e(o) the dominant component of the total error e, this
oscillation is also reflected in the global rate of convergence r. In addition, it is clear from these
tables that the total errors of the adaptive scheme decrease faster than those obtained by the
quasi-uniform one, which is confirmed by the global experimental rates of convergence provided
in Table 3.6. This fact becomes also evident from Figure 3.1, mainly from N = 1FE + 04 on,
where we display e vs. N for both refinements. Furthermore, it is quite straightforward from
the values of r in Table 3.6 that the adaptive method is able to recover the quasi-optimal rate
of convergence O(h) for e. In turn, the reliability and efficiency of 0 is clearly confirmed by the
effectivity indexes from Table 3.6 (most of them around 0.30) for this example with a non-smooth
solution. Intermediate meshes obtained with the adaptive refinement are displayed in Figure 3.2.
As expected, the method is able to recognize the origin as a singularity of the solution of this
example. Finally, in order to illustrate the accurateness of the proposed mixed method and the
adaptive scheme induced by 6, several components of the approximate (left) and exact (right)
solutions of Example 2 are displayed in Figures 3.3 up to 3.5. Note here that the values of ¢ and
o, on I' are depicted along a straight line beginning at the point (—1,—1) and then continuing

counterclockwise.

h N e(o) r(o) e(u) r(u)
1/8 1044 3.364E—-02 — 1.087E—02 -
1/12 2284 2.159E—-02 | 1.094 || 7.206E—03 | 1.014
1/16 4004 1.595E—-02 | 1.052 || 5.396E—03 | 1.005
1/24 8884 1.051E-02 | 1.029 || 3.594E—-03 | 1.002
1/32 | 15684 | 7.845E—03 | 1.017 || 2.695E—03 | 1.001
1/48 | 35044 | 5.208E—03 | 1.010 || 1.796E—03 | 1.000
1/64 | 62084 | 3.899E—03 | 1.007 || 1.347E—03 | 1.000
1/96 | 139204 | 2.595E—03 | 1.004 || 8.980E—04 | 1.000

1/128 | 247044 | 1.944E—03 | 1.003 || 6.735E—04 | 1.000
1/192 | 554884 || 1.295E—03 | 1.002 || 4.490E—04 | 1.000
1/256 | 985604 || 9.711E—04 | 1.001 || 3.367E—04 | 1.000

Table 3.1: Convergence history for o and u (EXAMPLE 1)
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N o) |r@) | e | rw e r | ezz(0)
1044 3.642E—-02 — 2.387TE—02 — 5.609E—-02 — 0.2271
2284 1.605E—-02 | 2.021 || 1.234E—02 | 1.628 || 3.046E—02 | 1.506 || 0.1916
4004 9.025E—03 | 2.000 || 7.851E—03 | 1.570 || 2.066E—02 | 1.350 || 0.1765
8884 4.126E—03 | 1.930 || 4.220E—03 | 1.531 || 1.258E—02 | 1.223 || 0.1642
15684 2.404E—-03 | 1.877 || 2.731E—03 | 1.513 || 9.058E—03 | 1.142 || 0.1592
35044 1.140E—03 | 1.841 || 1.482E—03 | 1.508 || 5.818E—03 | 1.092 || 0.1548
62084 6.760E—04 | 1.814 || 9.610E—04 | 1.506 || 4.289E—03 | 1.060 || 0.1529

139204 || 3.267E—04 | 1.795 || 5.220E—04 | 1.505 || 2.814E—03 | 1.040 || 0.1512
247044 || 1.957E—-04 | 1.782 || 3.386E—04 | 1.505 || 2.095E—03 | 1.026 || 0.1504
554884 || 9.536E—05 | 1.773 || 1.840E—04 | 1.504 || 1.386E—03 | 1.018 || 0.1497
985604 || 5.737E—05 | 1.766 || 1.194E—04 | 1.503 || 1.036E—03 | 1.012 || 0.1494

Table 3.2: Convergence history for ¢, «, e, and effectivity index (EXAMPLE 1)

100000 F T T T \‘ \‘ T \‘ T T T T T \‘ T T \:
F quas1—un1%0rm reﬁnement ——
adaptive refinement - < - ]
10000 ¢ E
e 1000 3 E
100 ¢ E
10 ! Lol - P Lol |

10 100 1000 10000 100000 le+06 1e+07
N

Figure 3.1: EXAMPLE 2, total error e vs. N for the quasi-uniform and adaptive schemes
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h N e(o) r(o) e(u) r(u)
1/1 73 3.107TE+03 | — 3.966E+03 | —
1/3 713 8.641E402 | 1.165 || 1.615E+02 | 2.914
1/5 1878 6.384E+02 | 0.593 || 5.721E+401 | 2.031
1/7 3898 4.873E+02 | 0.803 || 2.527E401 | 2.429
1/9 6218 3.920E4-02 | 0.866 || 1.593E+01 | 1.835
1/11 9408 3.599E4-02 | 0.425 | 1.042E+01 | 2.114
1/13 13333 3.172E402 | 0.756 || 7.628E+00 | 1.869
1/15 | 17318 | 2.958E+02 | 0.487 || 5.740E400 | 1.988
1/17 22338 2.633E402 | 0.931 || 4.638E+00 | 1.702
1/20 31364 2.427E402 | 0.501 | 3.404E+00 | 1.904
1/25 | 49273 | 2.049E+402 | 0.759 || 2.034E400 | 2.308
1/35 94938 1.720E+02 | 0.520 || 1.126E4-00 | 1.758
1/42 | 137179 || 1.583E402 | 0.457 || 7.667TE—01 | 2.106
1/50 | 191774 | 1.294E+02 | 1.152 || 5.588E—01 | 1.814
1/56 | 242234 | 1.152E+02 | 1.026 || 4.354E—01 | 2.202
1/63 | 308798 | 1.077E+402 | 0.571 || 3.342E—01 | 2.246
1/70 | 381354 | 9.951E+401 | 0.753 || 2.785E—01 | 1.731
1/80 | 497729 | 9.789E+01 | 0.127 || 2.201E—01 | 1.763
1/90 | 624949 | 8.678E+01 | 1.022 || 1.745E—01 | 1.970

1/100 | 768804 | 8.348E+01 | 0.368 || 1.427E—01 | 1.913
1/120 | 1124779 || 7.142E+01 | 0.855 | 9.926E—02 | 1.989
1/140 | 1518284 || 6.433E+01 | 0.678 || 6.918E—02 | 2.342

Table 3.3: Convergence history for o and u (quasi-uniform scheme, EXAMPLE 2)
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N e(¢) r(¢) e(v) r(v) e r | ef£(6)
73 2.020E+04 | — | 7.724E+03 | — || 2.220E+04 | — | 0.8936
713 || 5.520E+02 | 3.277 || 2.970E+02 | 2.966 || 1.080E403 | 2.752 | 0.3984
1878 | 1.955E+02 | 2.032 || 1.054E+02 | 2.028 | 6.783E+02 | 0.910 || 0.3591
3898 | 9.219E+01 | 2.234 || 5.730E+01 | 1.811 || 4.999E+02 | 0.907 | 0.3496
6218 || 5.910E+01 | 1.769 | 3.552E+01 | 1.903 || 3.983E+02 | 0.904 | 0.3287
9408 | 3.866E+01 | 2.114 || 2.645E+01 | 1.469 || 3.631E+02 | 0.461 | 0.3610
13333 | 2.924E+01 | 1.673 | 1.982E401 | 1.728 || 3.193E+02 | 0.770 | 0.3488
17318 || 2.284E+01 | 1.726 || 1.546E401 | 1.734 | 2.972E+02 | 0.501 | 0.3636
22338 | 1.896E+01 | 1.485 || 1.335E+01 | 1.175 || 2.644E+02 | 0.935 || 0.3585
31364 | 1.249E+01 | 2.568 || 1.043E+01 | 1.518 || 2.433E+02 | 0.511 || 0.4102
49273 || 8.879E+00 | 1.530 || 7.007E+00 | 1.783 || 2.052E402 | 0.763 || 0.3686
94938 || 5.090E+00 | 1.654 | 4.420E+00 | 1.369 || 1.721E402 | 0.522 | 0.3812
137179 | 3.418E+00 | 2.184 | 3.478E400 | 1.314 || 1.583E+02 | 0.458 | 0.4279
191774 || 2.687E+00 | 1.380 || 2.692E400 | 1.470 | 1.295E+02 | 1.153 | 0.3675
242234 | 2.324E-+00 | 1.280 | 2.335E+00 | 1.254 || 1.153E+02 | 1.026 || 0.3607
308798 || 2.106E+00 | 0.838 | 2.006E+00 | 1.290 || 1.078E402 | 0.572 || 0.3805
381354 | 1.487E+00 | 3.300 || 1.734E+00 | 1.383 || 9.954E+01 | 0.754 | 0.3749
497729 | 1.202E400 | 1.595 | 1.490E-+00 | 1.137 || 9.790E+01 | 0.124 || 0.3842
624949 | 9.922E—01 | 1.629 | 1.264E+00 | 1.394 || 8.680E+01 | 1.022 | 0.3922
768804 | 8.616E—01 | 1.340 | 1.137E+00 | 1.009 || 8.349E+01 | 0.369 | 0.3949
1124779 | 6.768E—01 | 1.324 || 9.039E—01 | 1.257 || 7.143E+01 | 0.855 | 0.3939
1518284 | 5.304E—01 | 1.580 || 7.456E—01 | 1.249 || 6.434E+01 | 0.678 || 0.4148

Table 3.4: Convergence history for ¢, v, e, and effectivity index (quasi-uniform scheme, ExAMm-

PLE 2)
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N e(o) r(o) e(u) r(u)
73 3.107E+4-03 — 3.966E4-03 —
224 1.852E+03 | 0.923 || 9.058E4-02 | 2.634
676 1.135E4+03 | 0.887 || 2.911E+402 | 2.056
1264 8.404E+02 | 0.959 || 1.351E+02 | 2.452
2495 5.810E+02 | 1.086 || 5.425E+01 | 2.685
4286 4.479E402 | 0.962 || 2.962E401 | 2.237
6636 3.496E+02 | 1.133 || 1.905E+01 | 2.020
9471 2.752E+02 | 1.346 || 1.310E+01 | 2.106
15034 2.187E402 | 0.994 || 8.178E+00 | 2.039
24695 1.730E+02 | 0.945 || 4.884E400 | 2.078
34829 || 1.377TE+02 | 1.329 || 3.172E400 | 2.511
60717 1.063E+02 | 0.931 || 1.918E+400 | 1.810
94831 || 8.485E+01 | 1.010 || 1.198E+400 | 2.112
136714 || 6.844E+01 | 1.175 || 8.121E—01 | 2.125
241371 || 5.276E+01 | 0.915 || 4.664E—01 | 1.951
368348 || 4.248E+01 | 1.025 || 3.090E—01 | 1.948
525936 | 3.511E+01 | 1.070 || 2.143E—01 | 2.055
955896 || 2.628E+401 | 0.970 || 1.164E—01 | 2.042
1453383 || 2.106E+01 | 1.057 || 7.816E—02 | 1.902

Table 3.5: Convergence history for o and u (adaptive scheme EXAMPLE 2)
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N o) |r@) | e | rw e r | etz(0)
73 2.220E+04 — 7.724E+03 — 2.220E+04 — 0.8936
224 3.345E+03 | 3.205 || 1.556E+03 | 2.858 || 4.226E+03 | 2.959 || 0.5302
676 9.327E+02 | 2.312 || 5.313E+02 | 1.946 || 1.589E+03 | 1.771 || 0.4089
1264 4.642E+02 | 2.230 || 3.424E+02 | 1.404 || 1.028E+03 | 1.391 || 0.3802
2495 2.054E+02 | 2.398 || 1.495E+02 | 2.437 || 6.364E+02 | 1.411 || 0.3557
4286 1.192E+02 | 2.011 || 1.073E+02 | 1.225 || 4.766E+02 | 1.069 || 0.3402
6636 8.668E+01 | 1.457 || 8.520E+01 | 1.057 || 3.706E+02 | 1.151 || 0.3430
9471 5.086E+01 | 2.998 || 5.997E+01 | 1.974 || 2.865E+02 | 1.447 || 0.3211
15034 3.557E+01 | 1.548 || 4.537E4+01 | 1.208 || 2.263E+02 | 1.020 || 0.3203
24695 2.223E+01 | 1.893 || 3.464E+01 | 1.088 || 1.779E+02 | 0.970 || 0.3248
34829 1.693E+01 | 1.586 || 2.752E+01 | 1.338 || 1.414E+02 | 1.334 || 0.3066
60717 1.081E+01 | 1.615 || 2.049E+01 | 1.062 || 1.088E+02 | 0.945 || 0.3103
94831 7.247E4+00 | 1.793 || 1.602E+401 | 1.102 || 8.666E+01 | 1.020 || 0.3117
136714 5.505E+00 | 1.503 || 1.306E401 | 1.130 || 6.989E+01 | 1.175 || 0.2990
241371 3.940E+4+00 | 1.177 || 9.571E4+00 | 1.093 || 5.377E+01 | 0.923 || 0.3057
368348 || 2.654E4+00 | 1.870 || 7.464E+00 | 1.176 || 4.322E+01 | 1.034 || 0.3066
525936 1.779E+00 | 2.247 || 6.778E+00 | 0.542 || 3.580E+01 | 1.057 || 0.2994
955896 1.241E+00 | 1.205 || 4.713E+00 | 1.216 || 2.673E+01 | 0.979 || 0.3029
1453383 || 8.444E—01 | 1.838 || 3.852E+00 | 0.963 || 2.143E+01 | 1.055 || 0.3022

Table 3.6: Convergence history for ¢, 7, e, and effectivity index (adaptive scheme, EXAMPLE 2)
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Figure 3.2: EXAMPLE 2: adapted meshes for N € {6636,24695,60717,136714}
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Figure 3.3: Approximate and exact o117 (N = 1453383, EXAMPLE 2)
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Figure 3.4: Approximate and exact ug (N = 1453383, EXAMPLE 2)
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Figure 3.5: Approximate (red) and exact (blue) ¢ (N = 1453383, EXAMPLE 2)






Chapter 4

A posteriori error analysis of a
fully-mixed finite element method
for a two-dimensional fluid-solid

interaction problem

4.1 Introduction

In the recent paper [28] we introduced and analyzed a fully-mixed finite element method
for the two-dimensional fluid-solid interaction problem studied originally in [37] (see also [39]).
The respective model consists of an elastic body which is subject to a given incident wave that
travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region,
and hence a Robin boundary condition imitating the behavior of the scattered field at infinity
is imposed on its exterior boundary, which is located far from the obstacle. The media are
governed by the elastodynamic and acoustic equations in time-harmonic regime, respectively,
and the transmission conditions are given by the equilibrium of forces and the equality of the
corresponding normal displacements. Differently from the analysis in [37] where dual and primal
methods are utilized in the solid and fluid, respectively, dual-mixed approaches are applied in
both domains in [28], and the governing equations are employed to eliminate the displacement
u of the solid and the pressure p of the fluid. In addition, since both transmission conditions
become essential, they are enforced weakly by means of two suitable Lagrange multipliers. In
this way, the Cauchy stress tensor and the rotation of the solid, together with the gradient

of p and the traces of u and p on the boundary of the fluid, constitute the unknowns of the

84
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coupled problem. The solvability of the resulting continuous formulation is analyzed in [28] by
incorporating first suitable decompositions of the spaces to which the stress and the gradient
of p belong, and then by applying the Babuska-Brezzi theory and the Fredholm alternative.
The unknowns of the solid and the fluid are approximated by a conforming Galerkin scheme
defined in terms of PEERS elements in the solid, Raviart-Thomas of lowest order in the fluid,
and continuous piecewise linear functions on the boundary. The analysis of the discrete method
relies on a stable decomposition of the corresponding finite element spaces and also on the

classical result on projection methods for Fredholm operators of index zero.

On the other hand, it is well known that in order to guarantee a good convergence behaviour
of the finite element solutions, specially under the presence of complex geometries leading even-
tually to singularities, one needs to apply an adaptive strategy based on a posteriori error esti-
mates. These are usually represented by global quantities @ that are expressed in terms of local
estimators 7 defined on each element T' of a given triangulation of the domain. The estimator
0 is said to be reliable (resp. efficient) if there exists Cre1 > 0 (resp. Cegs > 0), independent of

the meshsizes, such that
Cets 0 + hoot. < |lerror|| < Cre1 0 + h.o.t.,

where h.o.t. is a generic expression denoting one or several terms of higher order. Concerning the
Helmholtz and elasticity equations, several approaches have already been developed indepen-
dently in the literature. In particular, a posteriori error analyses for interior Helmholtz problems,
which are based on local computations or explicit residuals, can be found in [15] and [56], re-
spectively. In addition, a reliable residual-based a posteriori error estimator, which follows the
nowadays standard approach from [72], is proposed in [57]. In turn, a posteriori error estimators
for the mixed finite element formulation of the linear elasticity problem, which are based on
residuals and on the solution of local problems, are provided in [2]. The main novelty of the
approach there has to do with the utilization of a Helmholtz decomposition of the stress-type
unknown to derive the corresponding reliability and efficiency estimates. For related approaches

employing the Helmholtz decomposition technique as well we refer to [22] and [61].

Furtermore, to the best of our knowledge, [35] is the only work available in the literature deal-
ing with the a posteriori error analysis of fluid-solid interaction problems involving the acoustic
and elastodynamic equations in time-harmonic regime. In fact, a reliable and efficient residual-
based a posteriori error estimator for the dual-mixed/primal formulation of the model problem
analyzed in [37] was derived in [35]. More precisely, suitable auxiliary problems, the continuous
inf-sup conditions satisfied by the bilinear forms involved, a discrete Helmholtz decomposition,

and the local approximation properties of the Clément interpolant and Raviart-Thomas oper-



4.1 Introduction 86

ator are the main tools for proving the reliability of the estimator in [35]. Then, Helmholtz
decomposition, inverse inequalities, and the localization technique based on triangle-bubble and
edge-bubble functions are employed to show the efficiency. According to the preceding remarks,
and in order to additionaly contribute in this direction, the main purpose of the present paper
is to derive a reliable and efficient residual-based a posteriori error estimator for the fully-mixed
formulation introduced and analyzed in [28]. The rest of this work is organized as follows. In
Section 4.2 we recall from [28] the fluid-solid interaction problem and its continuous and dis-
crete fully-mixed variational formulations. The kernel of the present work is given by Section 4.3,
where we develop the a posteriori error analysis. Our tools for showing reliability and efficiency
are basically the same ones utilized in [35]. More precisely, in Section 4.3.1 we employ the global
inf-sup condition for the continuous variational formulation, discrete Helmholtz decompositions
in both domains, and the above mentioned properties of the Clément interpolant and Raviart-
Thomas operator, to derive a reliable residual-based a posteriori error estimator. Even, at some
point of this analysis we are able to identify independent terms related to the fluid and solid,
respectively, which allows us to apply, separately, some of the arguments employed for the a
posteriori error analyses of each equation. Next, in Section 4.3.2 we apply discrete trace and
inverse inequalities, and the localization technique based on triangle-bubble and edge-bubble
functions to show the efficiency of the estimator. In this part we take advantage of the fact that
either the efficiency estimates for some terms or the way to derive them, are already available
in the literature (see, e.g. [22], [35], and [72]). However, and for sake of completeness, we sketch
at least most of the corresponding proofs. For the remaining terms defining the a posteriori er-
ror estimator we certainly provide full proofs. Finally, some numerical examples confirming the
reliability and efficiency of the a posteriori error estimator, and showing the good performance

of the associated adaptive algorithm are provided in Section 4.4.

We end this section with further notations to be used below. Since in the sequel we deal
with complex valued functions, we let C be the set of complex numbers, use the symbol ¢ for
v/—1, denote by z and |z| the conjugate and modulus, respectively, of each z € C, and let I
be the identity matrix of C2*2. On the other hand, in what follows tr denotes the matrix trace

and ® stands for the transpose of a matrix. Also, given 74 := (73;), ¢, := (¢i;) € C**2, we define

the deviator tensor 7¢ := 74 — %tr(TS) I, the tensor product 75 : ¢, := Z?J-ZI Tij Gij» and the
conjugate tensor T := (7;;). In turn, in what follows we utilize standard simplified terminology

for Sobolev spaces and norms. In particular, if O is a domain, S is a closed Lipschitz curve, and

r € R, we define

H'(0) := [H"(0)2, H'(0) := [H"(O)]>2, and H'(S) := [H"(S)?.
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However, when 7 = 0 we usually write L2(0), L?(0), and L?(S) instead of H°(0), H(0), and
HY(S), respectively. The corresponding norms are denoted by || - ||, 0 (for H"(0), H"(O), and
H"(0)) and || - ||,s (for H"(S) and H"(S)). In general, given any Hilbert space H, we use H and
H to denote H? and H?*2, respectively. In addition, we use (-,-)s to denote the usual duality
pairings between H~'/2(S) and H'/%(S), and between H~/2(S) and H'/?(S). Furthermore, the
Hilbert space

H(div;0) := {w e L*(0): divw e L*(0)},

is standard in the realm of mixed problems (see [19], [47]). The space of matrix valued functions
whose rows belong to H(div; O) will be denoted H(div; Q). Note that if 7 € H(div;O), then
div T € L?(0), where div stands for the usual divergence operator div acting on each row of the
tensor, The Hilbert norms of H(div; O) and H(div; O) are denoted by || - ||dgiv:0 and || - ||div;0,
respectively. Finally, we employ 0 to denote a generic null vector (including the null functional
and operator), and use C and ¢, with or without subscripts, bars, tildes or hats, to denote
generic constants independent of the discretization parameters, which may take different values

at different places.

4.2 The fluid-solid interaction problem

For the benefit of reader, we repeat here some of the main features in Chapter 2.

4.2.1 The model problem

We consider the two-dimensional fluid-solid interaction problem whose a priori error analysis
was provided recently in [28] (see also [37] for a previous analysis of this problem). In other
words, given an incident acoustic wave upon a bounded elastic body (obstacle) fully surrounded
by a fluid, we are interested in determining both the response of the body and the scattered
wave. The obstacle is supposed to be a long cylinder parallel to the x3-axis whose cross-section is
5. The boundary of €2 is denoted by . The incident wave and the volume force acting on the

—tw! ansatz and phasors p; and f,

body are assumed to exhibit a time-harmonic behaviour with e
respectively, so that p; satisfies the Helmholtz equation in R?\ Q. Hence, since the phenomenon is
supposed to be invariant under a translation in the x3-direction, we may consider a bidimensional
interaction problem posed in the frequency domain. In this way, and since we employ mixed
formulations in both domains (solid and fluid), the main unknowns of our interaction problem
are given by o5 : Q5 — C>*2, u: Q, — C%,p: R?\Q, — C, and o5 R2\Q, — C2, corresponding
to the amplitudes of the Cauchy stress tensor, the displacement field, the total (incident +

scattered) pressure, and the gradient of p, respectively.
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The fluid is assumed to be perfect, compressible, and homogeneous, with density p; and
wave number Ky 1= vi’ where v is the speed of sound in the linearized fluid, whereas the solid
is supposed to be isotropic and linearly elastic with density ps and Lamé constants p and .
The latter means, in particular, that the corresponding constitutive equation is given by Hooke’s
law, that is

os = AMre(u)I + 2pe(u) in Q,

where e(u) := 3 (Vu+ (Vu)*) is the strain tensor of small deformations and V is the gradient
tensor. Consequently, under the hypotheses of small oscillations, both in the solid and the
fluid, the unknowns o, u, o, and p satisfy the elastodynamic and acoustic equations in time-

harmonic regime, that is:

divo's—l—/-igu = —f in Q)

divey + k5p = 0 in R2\Q,,

where kg is defined by ,/psw, together with the transmission conditions:

oV = —pv on X,
(4.1)
of-v = pfwgu-u on .
and the Sommerfeld radiation condition
A(p — pi) -
) k) = oY), (4.2)
as r := [|x|| — 400, uniformly for all directions ﬁ Hereafter, ||x|| is the euclidean norm
X

of a vector x := (r1,22)"* € R?, and v denotes the unit outward normal on ¥, that is pointing
toward R2\(),.

Next, according to the condition at infinity given by (4.2), which basically says that the
outgoing waves are absorbed by the far field, and in order to obtain a convenient simplification
of our model, we now proceed as in [28] and [37] and introduce a sufficiently large polyhedral
surface I' approximating a sphere centered at the origin, whose interior contains €25. Then, we

define 25 as the annular region bounded by X and I', and consider the Robin boundary condition:
of-v —1kgp =g :=Vp;-v —1kyp; on I, (4.3)

where v denotes the unit outward normal on I' as well. Therefore, given f € L?(Q,) and ¢ €
H~1/2(T"), we are now interested in the following fluid-solid interaction problem: Find o, €
H(div;Qs), u € HY(Q,), o5 € H(div;Qy), and p € H'(Qy), such that there hold in the



4.2 The fluid-solid interaction problem 89

distributional sense:

o; = Ce(u) in Q,
divo, + k2u = —f in Q,
of = Vp in Qp,

divey + w3p = 0 in Qf, (4.4)
oV = —pv on X,
ofv = pfw2u-u on X,
of VvV —1Kkfp = ¢ on I'.

4.2.2 The fully-mixed variational formulation

In order to recall from [28] the fully-mixed variational formulation of (4.4), we need to

introduce the auxiliary unknowns given by the trace of the displacement
¢, == uly € H/X(3),
the traces of the pressure

@; = (o, 00) = (pls,plr) € HYA(Z) x HYA(T),

and the rotation
1
v = 5(Vu— (Vu)') € L (9)

where L2

2 o(Qs) denotes the space of skew-symmetric tensors with entries in L?(£2,). In addition,

we let

H = H(div; Q) x H(div; 7) and Q = L2, () x HY2(2) x H/2(00y)

endowed with the usual product norms. Hereafter, given ¢t € R, we make the identification
H'(0Qy) = HYX) x HYT) with the norm [[9¢ls00, = [¢xles + [Upller for each 4, :=
(Vy: %) € HY(09y).

Next, as explained in [28], we employ a dual-mixed approach in the solid 2, as well as in
the fluid ¢, and observe that both transmission conditions (cf. (4.1)) and the Robin boundary
condition (4.3) become now essential. In addition, we use the elastodynamic and the Helmholtz
equations (cf. second and fourth equation of (4.4)), respectively, to eliminate u and p according
to the formulae

1
u=-—(f+divoy), (4.5)

K
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and

1
= — —di in Qf. 4.6
D ﬁ? ive; in Qf (4.6)
In this way, we arrive at the following fully-mixed variational formulation of (4.4): Find & :=

(0s,07) € Hand 4 := (v,p,,¢5) € Q such that

A(e,7) + B(T,y) = F(7) VT = (15,7f) € H,
(4.7)
B(&aﬁ) + K(;)\lvﬁ) = G(ﬁ) Vﬁ = (’r]a'lpsv'l:bf) € Qa
where F': H — C and G : Q — C are the linear functionals
~ 1 ~
F(T) = — f-divry V7T := (1,,7¢) € H,
Ks Jq, (48)

G(ﬁ) = _<g> ’(Z}[‘ >F Vﬁ = (n’¢sa¢f) = (nvwsv(wza¢r)) € Q7
and A:HxH—>C, B:HxQ—C, and K : Q x Q — C are the bilinear forms defined by

A, T) = /Q C—lcs:‘rs — RQ/Q div ¢, - div Ty —l—/Q Cf-'rf—/iQ/Q div ¢y div Ty
s S s f f f

v (Zv?) = ((Csvcf)a(TS’Tf)) € HxH,
B(T,n) = Bs(rs, (%)) + By(rs, %) V(T,m) = (75, 77), (0, %, 4p)) € HxQ,

BS(T57(7771/)5)) = /Q Ts:T — <Ts I/,'l/)s>2,

Bf(va"pf) = (17 V,¥g)n — (T V,¥o)r,
and

K(S\Caﬁ) = _<§2 V7¢s>2 - pfw2 <£s 'Va¢2>2 + 1K <§F7¢F>F

v& = (X’ss?&f) = (X?ES’ (52751—‘)) 6 Q7
v = (Uﬂﬁsﬂ/’f) = (n7¢57(¢27wr)) €Q.

The main result concerning the solvability analysis of (4.7) is stated as follows. To this
respect, notice that irrespective of the particular functionals defined in (4.8), the following result

is actually valid for any pair (F,G) € H x Q.

Theorem 4.1 Assume that the homogeneous problem associated to (4.7) has only the trivial
solution. Then, given F € H' and G € Q, there exists a unique (a,74) € H x Q solution to
(4.7). In addition, there exists Ccq > 0 such that

1@ Plxq < Cea{ Il + [Gllqr }- (4.9)
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Proof. The proof basically consists of showing that the left hand side of (4.7) constitutes a Fred-
holm operator of index zero. We omit further details and refer to the whole analysis developed

in [28, Section 3]. O

We end this section with the converse of the derivation of (4.7). Indeed, the following theorem
establishes that the unique solution of (4.7) together with u and p given by (4.5) and (4.6),
respectively, solves the original fluid-solid interaction problem (4.4). This result will be used
later on in Section 4.3.2 to prove the efficiency of the a posteriori error estimator. Note that no
extra regularity assumptions on the data, but only f € L2(€,) and g € H~'/2(I'), are needed

here.

Theorem 4.2 Let ((05,07), (7, s, ) € HxQ be the unique solution of (4.7), where gy =
(pg, ¢r) € HY2(X) x HY(T), and let u € L2(Q5) and p € L*(Qy) be defined according to (4.5)
and (4.6). Then Vu = C lo, + v in Qg (which yields u € H'(Qy)), u = ¢, on the interface
Y, 05 = ol in€Q, andy = 5 (Vu— (Vu)®) in Q (which yields o5 = Ce(u)). In addition,
there hold oy = Vp in Q (which yields p € H (Qy)), divey + /-{?p = 0in Qf, ¢y, =plx on
Y, ¢ =plr onT, and henceosv = —p v = —pr on ¥, op-v = pfw2<p5-l/ = pfw2u~u

onY,andof v —1kpp. = 0f-V —1kpp = g onT.

Proof. It basically follows by applying integration by parts backwardly in (4.7) and using suitable

test functions. We omit further details. O

4.2.3 The Galerkin scheme

In this section we recall from [28] the definition of the Galerkin approximation of (4.7). To
this end, we first let {7}5 }h . and {7;30 }h . be regular families of triangulations of the polygonal
_ _ > >

regions ) and {1, respectively, by triangles T' of diameter hp, with global mesh sizes
hs ::max{hT: Te7}f}, hy ::max{hT: Teﬁbf}, and h := max{hs, hf},

such that they are quasi-uniform around ¥ and I', and so that their vertices coincide on 3. In
what follows, given an integer ¢ > 0 and a subset S of R?, P,(S) denotes the space of polynomials
defined in S of total degree < ¢. According to the notation convention given in the introduction,
we denote Py(S) = [Py(S)]?. Furthermore, given T € T, U 7;{ and x := (x1,22)* a generic
vector of R?, we let RTo(T) := span {(1, 0),(0,1), (x1, mg)} be the local Raviart-Thomas space
of order 0 (cf. [19], [69]), and let curl® by = (21’772”, — %), where by is the usual cubic bubble
function on T'. Then we define

. {vs,h € H(div; Q) :  vaplr € RTo(T) @ Ry(T) curlt by VT € T7° }
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g = {Ts,h € H(div; Q) : ct71,, € H) Vce R2}, (4.10)

H£ = {Tﬂh S H(diV;Qf) : Tfﬁ‘T € RT()(T) VT € 771]0 }, (4.11)

0 _
Qj = {Tlh = ( TE)h ) o € C(Qs), mulr € PA(T) VT € 7;5} . (4.12)
—h

Next, in order to set the finite dimensional subspaces on the boundaries of the domains, we let
¥ and I'y, be the partitions of ¥ and I', respectively, inherited from the triangulations, and
suppose, without loss generality, that the numbers of edges of ¥, and I'j, are both even. The
case of an odd number of edges is easily reduced to the even case (see [45]). Then, we let Yo
(resp. I'yp) be the partition of 3 (resp. I') arising by joining pairs of adjacent edges of 3, (resp.
I'1,). Because of the assumptions on the triangulations, ¥; and I'j, are automatically of bounded

variation, and, therefore, so are 95, and I'yy,. Hence, we now define

AR(E) = {wh €C(T): Unle € Pile) Ve edge of Ty}, (4.13)
Ap(T) = {zph cOM): Pnle € Pie) Ve edge of FQh} , (4.14)
Q= An(D) x An(D), (4.15)
Q) = An(D) x An(D), (4.16)

and introduce the global finite element spaces

H), = H, x Hl  and Q,:=Q} x Q x QJ. (4.17)
In addition, our analysis below will also require the subspaces

U = {vh e LX) valr € Po(T) VT ¢ Th} (4.18)
and

Ul = {vh € LX) : wlr € Po(T) VT € 7;{}. (4.19)

Notice here that Hj x Uj x Qj constitutes the well known PEERS space introduced in [4] for a
mixed finite element aproximation of the linear elasticity problem in the plane. In turn, H{L x U, }{
is the lowest order Raviart-Thomas mixed finite element approximation of the Poisson problem

for the Laplace equation (see [19], [69]).

According to the above, the Galerkin scheme associated with our continuous problem (4.7)
reduces to: Find &, := (osp,05n) € Hy, and 7y, 1= (Y4, Psp:Prn) € Qn such that
A(oh,Th) + B(Th,7p) = F(Th) VTh = (TspTrn) € Hi,
(4.20)
B(on,ny) + KA, n,) = G@y) V0 = M Ysp¥rn) € Qn.
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The following theorem establishes the well-posedness and convergence of the discrete scheme
(4.20).

Theorem 4.3 Assume that the homogeneous problem associated to (4.7) has only the trivial
solution, and let hg > 0 be the constant provided by [28, Lemma 4.10]. Then there exists hy €
(0, ho] such that for each h € (0, h1], the fully-mized finite element scheme (4.20) has a unique
solution (F1,71) = (Tom & 1), (Vs Poss©1)) € Hiy X Qu, with @y = (95,00, €
Ap(2) x Ap(T). In addition, there exist C1, Co > 0, independent of h, such that for each
h € (0, hy] there hold

o~ F(t G(n
1@h,An)lHxQ < C1 sup L, 1GEIL C’l{Hf
T, cHL\{0} 17 nlle 1, € Qn\{0} 7nllQ

o, +llgll-12r }

and

[(@,7) = (@nAn)llaxq < C2 __inf 1(@,7) — (Th,p)lExQ
(Tw,My,)EHRXQp

where (0,7) = ((0s5,0¢), (7, s, py)) € Hx Q is the unique solution of (4.7). Furthermore, if
there ezists § € (0,1] such that o € H2(Q), dives € HY(Qy), oy € H(Qy), dive s € HY(Qy),
v € HY(Qy), ¢, € HY2H(X), and pr € HY2+3(9Q), then there exists C3 > 0, independent of
h, such that for each h € (0, hy] there holds

1(@,79) — (Gn7n)llHxQ < C3 h5{||05||6,95 + [[diveosllsa, + [loflsq;

+ [ldiveyllso, + 1vllse. + ll@slijzrsx + H‘Pf”l/?Jr(S,aﬁf}-

Proof. See [28, Theorem 4.1] and the whole analysis in [28, Section 4] for full details. 0

4.3 A residual-based a posteriori error estimator

In this section we derive reliable and efficient residual based a posteriori error estimators for
(4.20). We begin by introducing further notations. Given T' € 7, U 7;Lf, we let £(T') be the set
of edges of T', and denote by &}, be the set of all edges of 7,;° U 7;lf . Then we can write

En = En(Qs) UEL(X) UER(Qy) UELT), (4.21)

where £,(Q) :={e € & : e CQ}, En(E) :={e €&, e C X}, and similarly for £,(Qy) and
En(I). In what follows, h. stands for the length of the edge e € &;,. Also, for each edge e € &,
we fix a unit normal vector v := (v1,15)%, and let s := (—wo,11)* be the corresponding fixed
unit tangential vector along e. Now, let w, € L2(€) such that w|r € C(T) for each T € T
Then, given T' € 77 and e € £(T) N EL(§L), we denote by [w,] the jump of w, across e, that
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is [wg] := (Ws|1)]e — (Ws|77)|e, where T and 1" are the triangles of 7,° having e as a common
edge. Also, given e € &,(Qs) and 75 € L(€Q,) such that 74|7 € C(T) on each T' € 7,7, we let
[758] := (Ts|r — Ts|7v)|e s. Similar definitions hold for v§ € L*(Qy) such that v¢|r € C(T) for
each T € 7;Lf. In fact, given e € E(T) N Ex(Qy), we define [vy -] := ((vi|r)le — (Vilrr)]e)]e - v

Finally, given a scalar function ¢, a vector x := (X1, X2) and a tensor 7 := (7;;), we let

9. N X
Oxo O0xo o1
curl(q) := , curl(x) = ,
_9q Xy _9Xo
Ox1 Ox2 01
9 9 Oti2 9711
o1 0z
rotx = Xz X1 and curl(t) :=
Dy dio Oto2 _ Oton
8901 81’2

Next, letting (,7;) == (s Trn), (Yn PsnsPrn)) € Hp x Qp be the unique solution of
(4.20), with @), = (¢y,,¢r,) € Ap(E) x Ay(T), and denoting by Pj; the L?(Q)-orthogonal
projector onto U; (cf. (4.18)), we define for each T' € 7,°, and for each T" € Tf, respectively, the

a posteriori error indicators:

9%,5 = HUS,h - G:,h

o + IX=P)EIGr + W7l osn +illor

+ hi lewrl(C  ogn + )6 + > hellC o+ v)slGe,  (4.22)
e€E(T)NER(2s)

07.; = hillosnlsr + b vot(asn)llor + > hellogn-sllg, - (4.23)
e€€(T)NER ()

Similarly, for each e € &,(X) we define

93,2 = he ||(‘Ps,h - uh”%,e + he Ha.f,h V= pfwzgos,h ’ V”%,e + he Has,h v+ Ps.n V”%,e

de 2 dy 2
-1 _ s,h e 5,k o 2
+ he ||(C Osh+ V) S ds ’ 0. + he ||ofh S ds lloe + he HSOz,h ph”O,e )
(4.24)
where, resembling (4.5) and (4.6) (see also [28]), we set
1
w, = — — (Pg(f) +div 0'37h> i Q (4.25)
and
L. .
ph = — FTZdIV o in Qp. (4.26)

!
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In addition, assuming that the Robin datum g € L?(I"), we set for each e € &,(T)

der, |2

ds

021 = he

Ofh-S — + hellr, —pullge + hellogn-v—1rron, —glg.. (4.27)

0,e

Therefore, we introduce the global a posteriori error estimator

1/2
0::{ D 0r+ > 0+ D> s+ ) egr} , (4.28)

TEeT? TEThf e€lp(X) e€&y(T)
and state the main result of this section as follows.

Theorem 4.4 Assume that the homogeneous problem associated to (4.7) has only the trivial
solution, and let (,7) := ((0s,0¢), (v, @5, ¢;)) € Hx Q and (61,7;) := ((0sh,044),

(Yhs Ps s cpf,h)) € H;, xQy, be the unique solutions of (4.7) and (4.20), respectively. In addition,
let u € L) and p € L*(Q) be defined according to (4.5) and (4.6), respectively, that is
u:= fé(erdiv o’s) and p = fédiv o ¢, and assume that the Robin datum g belongs to L3(I).
Then, there exist Ceg, Crel > 0 independent of h, such that

Cet 0 < [[u—wplloq, + [P —prllog; + |60 —anllm + 7 —Frllqg < Cra 0. (4.29)

The lower and upper estimates given by (4.29) constitute what we call the efficiency and

reliability of 6, respectively.

4.3.1 Reliability of the a posteriori error estimator

We begin with the upper bounds for |[u—uyllo,o, and |[p —pr|lo.o,- In fact, according to the

definitions of u (cf. (4.5)), p (cf. (4.6)), up, (cf. (4.25)), and pp, (cf. (4.26)), we easily find that

1
Ju=wiloe. < — {IT-PDEloa, + low — ounlaivie, (4:30)
S

and

1
lp = prllog; < = llos — osnllavie, - (4.31)
f

We continue our analysis by recalling that the continuous dependence result given by (4.9) (cf.
Theorem 4.1) is equivalent to the global inf-sup condition for the continuous formulation (4.7)
with the constant a = C%d > 0. Then, by applying this estimate to the error (&,7) — (h,7}) €
H x Q, we obtain

S E(.5
all.3) — GrAnlaxg < sup oD
(T,1)eHxQ\{0} (7, 1) laxq
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where
E(T,n) = A(G —0on,T) + B(T,¥—7,) + B(@—0onn) + K& —-7,,1),

for all (7,7) = ((T0,70), (0,0, 7)) € Hx Q, with b = (i05,0,) € HY2(S) x HY2(T),
More precisely, thanks to the equations of the continuous variational formulation (4.7), we deduce
that

E(F,5) = Bu(rs) + Ba(ry) + Es(n) + Ea(w,) + Bs(y) + Bs(t,),  (432)

where E7 up to Eg are the linear functionals defined by

1
Ei(1s) = 192/9 {f—kdivo-&h}divq-s—/Q {C*1 0'87h+'yh} cTs+ (TS u,cps’h)g, (4.33)

1 . .
Ey(tyf) = 2/ divospdivry — / Orn Ty — Ty V,pg,)s + (Tpv,00,)r, (4.34)
Ky Jag Qy

Ba(m) i= ~ [ ounin,
Qs
E4(’¢)5) = <US,hV+§Oz,h V7¢S>Z7

E5(w2) = _<0-f,h'y - pfw2¢s,h'ya¢g>27

and

Ee(yr) = <0'f,h"/ - in¢F,h = g,%p)r -

In addition, it is not difficult to see that

TN E
@ menxq\o} [T MHExQ ~ 7.en@ivioonoy ITsllaivie.  7renivion oy 17 ¢llaivio;
E E
+ sup |Es(n)| sup M
neiza o) 1Mooy crrze) oy 1¥slhy2s
L e B0, I

eper2enoy [Wsllyzs  woemeapgoy 1¥ellyzr
(4.35)

Furthermore, the “Galerkin orthogonality condition” arising from (4.7) and (4.20) establishes
that
E(?haﬁh) =0 v(?h)ﬁh) € Hh X Qh7

and hence, in order to estimate the above norms of the six functionals defining F (7, ), we could
replace (Tsa T M, /lpsa w27¢[*) by (TS —Ts,h T — TR N — TNy, 'l:bs - /l;bs,ha wz - 1/}27}17 1/}1“ - wr,h)
with any suitable choice of Ty, := (Tsn, Tsn) € Hp and 0y, := (M, Yy (Vg5 ¥r)) € Qn,
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whenever it is necessary. However, this procedure is applied in what follows only to estimate the

first two suprema on the right hand side of (4.35).

We begin the estimates of all these suprema with the last four of them.

Lemma 4.1 There holds

E5 1
TN R L 1 ) R P

nerz, )\{oy Imllog, — 2

5.0, - (4.36)

Proof. It suffices to see that o5 = %(0'37;1 +ot,)+ %(0'37;1 — ot ), which yields

1
/ Osh 1 = 35 / (0'37}1 - 0'2 h) 'n V"? € szew(gs) )

Qs 2 Ja, ’
and hence the Cauchy-Schwarz inequality completes the proof. O

The upper bounds for the norms of E4, E5, and Eg, being all consequence of the same

arguments, are collected in the following lemma.

Lemma 4.2 There exist Cy, Cs, Cg > 0, independent of h, such that

1/2
E4 ’(/)s
TR — W <Ci ! Y hellowv e, vl s (4.37)
¢S€H1/2(g)\{0} sl11/2,2 c€En(E)
1/2
Es(y
1B = sup W <C 4 S hellognov—prten vl s L (438)
P €H/2(D)\{0} 1P=ll1/2,8 c€En()
and
1/2
E .
1Bl = swp 29Ol oSS o v ingen, —ald. b . (439)
wrem/2on{oy 1¥rll/zr o)

Proof. It follows easily from the definitions of the functionals involved that

B4l = llospv + oy, v-1/25,
1E5] = llogn-v — wa2 PonVl—12,5
and
1Esll = llogn-v —ikger, —gll-1/2r-

Next, we observe from the equations forming the Galerkin scheme (4.20), that the discrete

versions of the transmission and Robin boundary conditions become, respectively,

<‘78,h v+ P Vs ¢s,h>2 =0 v1»bs,h € Ah(z) X Ah(z) )
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<0-f,h v o= pf w? Ps,h V’wil,h)E vwz,h € Ap(2),

and

(Ofh-v =ik, —g:¥p,)r Vi, € An(T),
which say, equivalently, that each expression on the left hand side of the above dualities is
orthogonal to the corresponding finite element subspace indicated at the end of each equation. In
particular, o, v+, , v is L?(X)-orthogonal to Ay () x A, (X), and therefore, a straightforward
application of [20, Theorem 2] and the fact that ¥; and g, are of bounded variation, yield the

existence of a constant Cy > 0, independent of h, such that, denoting by &9, (%) the set of edges
of ¥op, there holds

||US7hV+(pE,hVH—1/2,E <C Z heHUS,hV—*—SDE,h VH(Q),e < Cy Z heHO-S,hV"i_(Pz,hVH(Q),e?
e€g2h(2) eES;L(E)

which shows (4.37). The proofs of (4.38) and (4.39), being also based on [20, Theorem 2] and

the above mentioned properties of ¥ and Yo, are derived similarly. We omit further details. O

We now aim to establish the upper bounds of || E1|| and || F2||, for which, as announced before,

we plan to use that

Ei(1s) = Ei(1s —Tspn) and Ea(1y) = Eo(Tf —T4p) VTy = (Tsh, Trn) € Hy.
(4.40)
To this end, we also need to consider the space of pure Raviart-Thomas tensors of order 0, that
is

RTS = {Ts,h € H(div; Q) : c Toulr € RTG(T) VT €T, Vee ]118},

which is clearly contained in Hj (cf. (4.10)). Then, we let II§ : H'(2,) — RT; and H£ :
H'(Q §) = Hi be the usual Raviart-Thomas interpolation operators, which are characterized
by the identities

/H;(cs)u:/CSV Vec T, V¢, €HY(Q), (4.41)
and
/H{L(cf).uz/gf-u Vee T/, V¢, e H (). (4.42)
It is easy to show, using (4.41) and (4.42), that

div(IL;(¢,)) = Pi(dive,) and  div(I(¢,) = Pl(divey), (4.43)
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where, as said before, P; is the L?(Q;)-orthogonal projector onto U$ (cf. (4.18)), and 73/; is the
L%(Qy)-orthogonal projector onto U,{ (cf. (4.19)). In addition, it is well known (see, e.g. [19],
[69], and [44, Theorem 4.5]) that II; and H£ satisfy the following approximation properties:

¢, = T5C)llor < Chrlle e YT Ty, V¢, € HYQ,), (4.44)

1(¢s =T (¢ vloe < CRPICIhm VeeTy, V¢, e HY (), (4.45)
¢, = T Cllor < Chrliéslhr YT T, V¢ e HI(Qy), (4.46)

¢y =T (Cp)) - vlloe < CRY2C hr VeeT!, V¢, e HY(Q)), (4.47)

where T¢ in (4.45) (resp. in (4.47)) is a triangle of T;* (resp. ’7;lf ) containing e on its boundary.

We now let I, : H' Q) — Xopand Iy : Hl(Qf) — Xy, be the usual Clément interpola-

tion operators (cf. [23]), where

Xs,h::{vec(ﬁs): vl € P(T), v:r’eﬁf},

Xf,h = {’UEC(Qf) : ’U|T€P1(T), VTG'Elf}.

A vectorial version of I p,, say I : H'(Q,) — Xsn = XsnxXsp, which is defined componen-
twise by I p,, is also required. The following lemma provides the local approximation properties

of I . Analogue estimates hold for the operator Iy j,.

Lemma 4.3 There exist constants c1, co > 0, independent of hs, such that for all v € H'(Qy)
there holds

v = Lsn()llor < e1 hr|lvliaay VT €T
and

lo = Ton(@)loe < e2 e oliae Ve € En(Q) UE(E),
where A(T) = U{T" € T7: T'NT#0} and Ale) :== H{T' €T : T Ne#0}.
Proof. See [23]. O

Next, in order to define a suitable Ty, = (744, 7¢n) € Hj to be employed in (4.40), we
first demonstrate the existence of continuous Helmholtz decompositions of the spaces H(div; (2y)
and H(div;€f). More precisely, we adapt the analysis from [35, Section 3.2.2] to establish the

following result.
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Lemma 4.4 For each T4 € H(div; () there emist ¢, € H' () and x, = (x1,x2)* € H(Qy),
with [o x1 = Jo, x2 =0, such that T = ¢, + curlx, in Qs and

I1€s M0, + Ixsla, < CslITsllaivia, (4.48)

where Cs is a positive constant independent of T,. In turn, for each T € H(div;Qy) there exist

wr € HY (Qy) and ¢f € HY(Q), such that Ty = wy + curlgs in Qs and
Iwelle, + Iorlle, < CrlliTillave, (4.49)
where C is a positive constant independent of T .

Proof. We proceed as in [35, Section 3.2.2] by considering first a convex domain O containing

Q,. Then, given 74 € H(div; (), we define the auxiliary function q € L2(Q) by

divr, in
q = ~ .
0 in Q\Qg

and let z € H}(2) be the unique weak solution of the boundary value problem:
Az = q in (~2, z=0 on O9Q.
The elliptic regularity result for the above problem guarantees that z & H2(§~2) and
lzllg < Cllallyg = lldivrslog,
It follows that ¢, := Vz|o, belongs to H'(£),
div(, = divrs in Q,, (4.50)

and

€5l < Cllzllag, < ClldivTs

0,0 - (4.51)

In this way, since div(Ts — ¢,) = 0 in Q,, and €5 is connected, there exist x, := (x1,x2)* €
H!(Q,), with Jo.xa = Jo, x2 = 0, such that 75 — {, = curlx,. Note that this identity, the
generalized Poincaré inequality, and (4.51) imply that

Xl < Clxsha, = Clirs = ¢lloe, < C{lmslloa. + 1¢lo0.} < Clirsllaiva. -

which, together with (4.51) again, yields (4.48).



4.3 A residual-based a posteriori error estimator 101

In turn, given 7y € H(div; ), and since 2y is not connected, we first need to perform a
suitable extension of 7 to the domain  := Qg U £ N Q. To this end, we now let v € H'(€2)

be the unique solution of the Neumann problem:

(Ty-v, )y . ov /
Ay = -~ 0= Qs, o =74- 2z, =0
v |Qs| 1 81/ Tf vV on QSU

The unique solvability of the above problem is guaranteed by the Lax-Milgram Lemma, whose

corresponding continuous dependence result establishes that

lvlle, < cllrp-v-12s. (4.52)
Then we define
Ty in Qp,
T =
Vo in ),

which clearly belongs to H(div; ), and observe, using (4.52), that
1Tllaivie < [I7fllavie, + [[Vollaive, < I7ellavie, + ¢llmp-viciyzs < CllTfllave;, -

In this way, proceeding as in the first part of the present proof, but now applied to 7 € H(div; ),
we deduce the existence of w € HY(Q) and ¢ € H'(Q), with fQQE = 0, such that 7 = w +

curl(¢) in Q and

Iwlhe + 6o < ClFlave < Clirsllave, -

Finally, the proof is completed by defining wy := W|g, and ¢y := $|Qf O

Estimating || E ||

Given T4 € H(div; ), we use (4.40) to estimate Ey(7,) = E1(Ts — T55) with a suitable
chosen 7,5, € Hj. More precisely, as suggested by the Helmholtz decomposition for 7, provided
by Lemma 4.4, that is 75 = ¢, + curl(x,), with ¢, € H*(Q) and x, € H(€s), we consider in

what follows
Xsph = Lsn(xs) € Xsp and 755 = II;((,) + curl(x,,) € RTj, C Hj,

which yields
Ts — Ts,h = Cs - HZ(CS) + M(Xs - Xs,h) .

In particular, using (4.43) and (4.50) we find from the above identity that

div(rs — 75) = (I-Pj)(div¢,) = (I-P;)(divry),
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and hence, according to the definition of F; (cf. (4.33)), we find that

Ey(1s — Tsp) = Eu(7s) + E12(¢;) + Eis(Xs)

where

Bulr) = [ {f+ diveu}I-Pive) = 5 [ @- P (divr.).

S QS S s

E12(Cs) = - 0 {C_l Os,h + 7h} : (Cs - HZ(CS)) + <(Cs - H?L(Cs)) v, ¢s,h>27

and

Fis(x,) = — /Q [C oun+vn )} curl(x, — Xon) + (€Url(x, — Xon) Vs @o )5 -

Note that the second expression defining Eq1(7) follows from the fact that P} is self-adjoint and
that, according to the definitions of Hj (cf. (4.10)) and Uj (cf. (4.18)), there holds div (Hj) C
U;, whence (I — 732) (divesp) = 0.

The following three lemmata provide the upper bounds for F11(7s), E12(¢,), and Ei3(x;)-

Lemma 4.5 There holds

1/2
1 .
[Bu(Ts)l = = Yo IA=P)Elrp  ldivrsog, -
S TEES
Proof. 1t follows from a straightforward application of the Cauchy-Schwarz inequality. O

Lemma 4.6 There exists C' > 0, independent of p, \, and ks, such that
1/2

[Bia(C)l < O D hplC osntwlie + D0 hellpan —wnlde o Ildivrsog, .
TET? e€én(%)

Proof. The present estimate was actually proved in [35, Lemma 5]. For sake of completeness we
provide here the main aspects of the corresponding proof. We first observe, thanks to the fact
that ¢, belongs to H'(Q;), that (¢, — I (¢,)) v|s € L?(X), and hence

(€~ vps = > [eu € -TE)v. (4.59
) €

eeé‘h(E

Next, it is clear from (4.25) that u;, € Uj, which means, in particular, that for each e € &,(%)
there holds uy|. € Py(e), and therefore the identity (4.41) yields

> [we e - M)y = o.
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Thus, by introducing the above null expression in the right hand side of (4.53), and then re-
incorporating the resulting equation in the definition of E;s5, we find that

Era(¢ Z/{C TontTn) Z /S"sh w) - (¢~ I (CL) v,

TeT? e€&p(

where we have replaced the original integration / by Z / In this way, the rest of the

2 TET;?
proof reduces to apply the Cauchy-Schwarz inequality, the approximation properties (4.44) and
(4.45), and finally the upper bound given by (4.51). We omit further details. O

Lemma 4.7 There exists C' > 0, independent of pu, A and ks, such that

Ei(x)| < C QY hpllewlC own +vu)llir + D ke llC asn+m) sl

TeT? e€ER(0s)
1/2
dpg p (|2
+ )s — T; 0 HTstiV;Qs ‘
665h(2

Proof. While this result is also available in several places (see, e.g. [35, Lemma 6]), here we

proceed similarly as for the previous lemma and provide an sketch of its proof. Indeed, since

d d(ps h

curl(x, = Xou) ¥ = — - (Xs = Xop) and  — = €LA(D),
we deduce, using integration by parts on X, that
d deos
feurlix, ) v @anls = = ( Go0c —xihoon) = [ o). (45)
S 5 » S
In turn, integrating by parts on each T € 7,°, we obtain that
_/ {Cil Os,h + 7h} : 7CUI'1(X8 — Xs, h = Z / {C Os.h + 7h} curl Xs,h)
2 TeT;
= > {/ curl(C oo +71) - (Xs — Xop) — / Closn+n)s: (xs— Xs,h)}
Ters T or
= Z / curl(C™ osn +v1) - (Xs — Xsp) — Z / (€ osn+n)s] - (s — Xsn)
TeT? e€&p(Qs)
- Z / C Ush"”’)’h) (Xs_Xs,h)a
ec&p ()

which, together with (4.54), yields

Eis(x,) = Y /curl Cloantan) O —Xsp) = D /[(C_lo's,h+7h) s] - (Xs — Xsn)

TETy: et ()7 °

d
- X / {(C ron+mm)s = 2 (= xan)

e€&p (X
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In this way, and recalling that x,, = Isn(X;), the rest of the proof follows from obvious
applications of the Cauchy-Schwarz inequality and the approximation properties of the Clément
interpolation operator Iy, (cf. Lemma 4.3), taking into account as well that the number of
elements in A(T") and A(e) are bounded and that ||x,|1.0, < Cs|Ts|laiv,o, (cf. (4.48)). Further

details are omitted. O

As a direct consequence of Lemmata 4.5, 4.6, and 4.7, the norm of the functional F; (cf.

(4.33)) is estimated as follows.

Lemma 4.8 There exists C > 0, independent of pu, A and ks, such that

B < C Z (T =PF) f||0T + Z hz|lc™ Ush+‘>’h||0T
s TET; TET;
+ Y hellean —wilse + Y P llewlC oun+ )3 r
€l (3) TeTy:
1/2
- dps 12
D DR (Gl TR [ )s— 2t

e€&n(Qs) e€&p(3)

Estimating | Es|

We proceed analogously to the case of ||Ei||. This means that, given 7 € H(div;Qy),
we consider from Lemma 4.4 its Helmholtz decomposition 7y = w; + curl¢y in 0, with
ws € HY(Qf) and ¢ € H' (), and define

¢f,h = If’h(¢f) and Tfh = Hg(Wf) —i—curl((ﬁf’h),

so that, using the second equality in (4.40), we can write Ea(Tf) = Fo (Tf - Tf7h). It follows
that

Ty — Tfh = Wy —Hi(w]c) + curl(¢r — drn),
from which, employing the second identity in (4.43), and noting from the definitions (4.11) and
(4.19) that diveyy € U}{, we find that

/ diVO’fﬁdiV(Tf—Tfﬁ) =/ diVO'f,h (I—'P}{)(diVWf) = 0.
Qy 2

Hence, according to (4.34) and the above computation, we get

Ex(ty—Tsn) = Ea(wy) + Ea(¢y),

where

Bay(wy) = — /Q o n- (Wy =T (wp)) — (wy =TI (wp) v, 5, ) s+ (Wy — L (wp)) v, o)1
f



4.3 A residual-based a posteriori error estimator 105

and

Ea(¢5) = —/ arn-curl(gr — ¢pp) — (curl(¢r — ¢rp) -V, 05, )s

Q2
+  (curl(¢y — dfn) - Vo ,)T
The following two lemmata establish the upper bounds for |Eai(wy)| and [Eaa(¢y)|.

Lemma 4.9 There exists C' > 0, independent of ky and h, such that

|Ear(wy)| < C

2
- thO,e
TEThf ec&p (%)

+ D heler, —pullfe ¢ ITslaivie, -
eegh(l“)

Proof. We proceed as in the proof of Lemma 4.6. Indeed, since w; € H'(Qy) it is clear that
(W =T (wy)) -v|s € LA(2) and  (wy — I (wy)) - v|r € LA(T),

which, together with the fact that pyle € Po(e) Ve € E(X) U E,(T) (cf. (4.26) and (4.11)), and
thanks to the characterization property (4.42), allow to show that
(wy =) - veps = 30w =) (wy =T (wp) -
e€&p (%)

and

(s = T(wp) - vgdr = 2 / er =) (wy =T (wp) -

EEgh
In this way, we find that

Eoi(wy) Z/"'fh wy —IIf (wy)) - > /wgh pn) (wy — L (wy)) - v

Te 7-f e€&p (2
+ > /%h ph) Wf—Hf(Wf))
ec&y(T)
and hence, the proof is completed by applying the Cauchy-Schwarz inequality, the approximation
properties (4.46) and (4.47), and the fact that ||lwyll10, < Cfl|l7sllaivi, (cf. (4.49)). We omit
further details. O

Lemma 4.10 There exists C' > 0, independent of ky and h, such that

|Eaa(é5)l < € D hplrot(apmlor + D hellosn-slli.
TEThf e€&EL(Qy)
1/2
dpr |2
ds O,e

dwzh

heS— 17 ¢ laiv;2, -

e€Er(X)
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Proof. The analysis here is analogous to the proof of Lemma 4.7. In fact, we begin by noticing

that

d d@z h 2 d@r h 2
1 — . - —— — i L4 T 2 LA(T
curl(¢f — ¢rpn) - v (05 —0pn), — = € L), and —-= € LI,

which, together with integration by parts procedures on ¥, I', and on each T' € 77 , yield

Ex(dp) = — Y /rot orn) (b —drn) + Y /Ufh s|(¢f — &rn)

Te 'Tf ec&n(Qy)
- Z /th E’h)(ﬁbf—<bfh Z /Ufh F’h)(<l>f—¢5f,h)-
ec&n (B ec&y ()

Consequently, and similarly as for Lemma 4.7, the rest of the proof follows from straightforward
applications of the Cauchy-Schwarz inequality, the approximation properties of the Clément
interpolator ¢, := I p(¢y) (cf. Lemma 4.3), the fact that the cardinalities of A(T") and A(e)
< Cyltsllaivie, (cf. (4.49)). We omit further
details. O

The norm of Ey (cf. (4.34) is bounded now as a consequence of Lemmata 4.9 and 4.10.

Lemma 4.11 There exists C' > 0, independent of ky and h, such that

1Bl < C <Y hillosaler + D heles, —pulloe

TG'Thf e€lp(X)
+ > heler, —mllse + Y PElvot(o )i + D helllosn-sllge
eGgh(F) T€7‘hf eGSh(Qf)
1/2
d@z,h 2 d‘Pr,h
ds lloe ds
e€lp (X ec&p(T)

We end this section by observing that the reliability estimate (cf. Theorem 4.4) is a direct
consequence of (4.30) and (4.31), together with Lemmata 4.1, 4.2, 4.8, and 4.11.

4.3.2 Efficiency of the a posteriori error estimator

In this section we prove the efficiency of our a posteriori error estimator € (lower bound in
(4.29)). We begin with the first two terms defining 67, (cf. (4.22)). In fact, since o is symmetric

in g, we easily notice, adding and substracting o, that there holds

losh —otulldr < 4llos —osnlldr- (4.55)
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Next, according to the definitions of u (cf. (4.5)) and wuy, (cf. (4.25)), we find that

IE=PERr < 26t la— w3y + 2]ldivio — oun)lRr- (4.56)

Throughout the rest of the section we provide the corresponding upper bounds for the terms
in (4.22), (4.23), (4.24), and (4.27) that involve the mesh parameters hr and h.. Actually, most
of these estimates are already available in the literature (see, e.g. [21], [22], [35], and [43]), but for
sake of completeness we sketch here some of their proofs, which employ the localization technique
based on triangle-bubble and edge-bubble functions, together with extension operators, discrete
trace and inverse inequalities, and certainly the original identities recovered by Theorem 4.2. To
this end, we now introduce further notations and preliminary results. Given 7" € 7, U 7;Lf and
e € E(T), we let ¢r and 1. be the usual triangle-bubble and edge-bubble functions, respectively
(see [72, egs. (1.5) and (1.6)]), which satisfy:

ii) Y € P3(T), Yr =0o0n 0T, supp(¢pr) CT,and 0 < ¢p < 1in T\

ii) Ye|r € Po(T), tbe = 0 on OT \ €, supp(ve) C we := U{T" € T} U’Elf : e€&(T)}, and
0 <Y, <1in we.

We also recall from [71] that, given k& € N U {0}, there exists an extension operator L :
C(e) — C(T) that satisfies L(p) € Py(T) and L(p)|e = p for all p € Pi(e). Additional properties

of ¥, 1. and L are collected in the following lemma.

Lemma 4.12 Given k € NU{0}, there exist positive constants c1, ca and cs, depending only on
k and the shape regularity of the triangulations (minimun angle condition), such that for each

TeTru ’7;Lf and e € E(T), there hold

lgl3r < elv*alds  Va € Pu(T) (4.57)
Ipl3.e < callvd?p2.  ¥p € Pile) (4.58)
and
10 2LP)E 7 < s helpld . Vp € Py(e) (4.59)
Proof. See [71, Lemma 1.3]. O

The following inverse and discrete trace inequalities will also be used.

Lemma 4.13 Let k, I, m € NU {0} such that | < m. Then there exists ¢ > 0, depending only
on k, I, m and the shape regularity of the triangulations, such that for each T' € T;’ U 77{ there
holds

(gl < ch ™ lglr Vg€ Pu(T). (4.60)
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Proof. See [24, Theorem 3.2.6]. O

Lemma 4.14 There exists C' > 0, depending only on the shape reqularity of the triangulations,
such that for each T € T;? U 7;Lf and e € E(T), there holds

lv

5o < CL{h IWIG7 + helv]ir} YveHNT). (4.61)

Proof. See [1, Theorem 3.10] or [3, eq. (2.4)]. O

The following three lemmas, whose proofs make use of the techniques and results described

above, provide the upper bounds for the remaining terms defining (9%’ ¢ (cf. (4.22)).

Lemma 4.15 There exists C > 0, independent of h and X\, such that for each T € T,° there
holds

Pl on +lr < C{lu—wlir + Wllos — ol

B+ Wy =)
Proof. See [22, Lemma 6.6]. ]

Lemma 4.16 There exists C > 0, independent of h and A, such that for each T € T;’ there
holds

B llewl (€ o + vl < C{llos - o

2r+ Iy —mldr}-
Proof. See [22, Lemma 6.3] or [13, Lemma 4.7]. O

Lemma 4.17 There ezists C > 0, independent of h and X, such that for each e € E,(S)s) there
holds

he (C S Y 0 S y yh

where we == U{T" € T : ec&(T)}.
Proof. See [22, Lemma 6.4]. O

The analogue of the above three lemmas for the terms defining 62 s (cf. (4.23)) are stated

next.

Lemma 4.18 There exists C' > 0, independent of h, such that for each T € Ef there holds

W llo sl < C{hhllos —opnlir + Ilp—pullir }-
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Proof. 1t is a slight modification of [21, Lemma 6.3] (see also [43, Lemma 4.13]). In fact, given
T € 7;lf, we apply (4.57), use that oy = Vp in Qf and Vp, = 0 in T (which follows from the
fact that pj is piecewise constant in virtue of (4.11) and (4.26)), and then integrate by parts. In
this way, we find that

losalpr < Cllr*opnler = C /T brozn - {(rn— o) = Vion —p)}

= C{/TQpTW-(am—af) + /:Fdiv(¢T07Jz) (P—ph)}-

Then, employing the Cauchy- Schwarz inequality, the inverse estimate (4.60) (cf. Lemma 4.13),
and the fact that 0 < ¢ < 1, we get

losallor < C{lloy —osaldr + bt lIp—pldr}
which implies the required bound and completes the proof. O

Lemma 4.19 There exists C' > 0, independent of h, such that for each T € 7;Lf there holds

hillrotoppllsr < Clloy—opnllbr-

Proof. 1t basically follows from the general estimate provided by [13, Lemma 4.3]. Indeed, a row-
wise interpretation of this result allows to show that, given a piecewise polynomial p;, € L?(Q )
of degree k > 0 on each T € Tf, and p € L?(Qy) such that rot p = 0 in Qy, there exists ¢ > 0,
independent of h, such that

hr |rot pullor < cllo—pullor YT €T (4.62)
Hence, since rot oy = rot(Vp) = 0, it suffices to apply (4.62) to p, = o and p = oy. O
Lemma 4.20 There exists C > 0, independent of h, such that for each e € E,(Qy) there holds
helllogn-sllge < Clloy — ol -
where we := U{T" € 7;Lf : ec&(T)}.

Proof. We first observe that a slight modification of the proof of [13, Lemma 4.4] allows to
show that, under the same hypotheses leading to (4.62), that is given a piecewise polynomial
pn € L2(Qy) of degree k > 0 on each T € Ef, and p € L?(Q) such that rot p = 0 in Qy, there
exists ¢ > 0, independent of h, such that for each e € &,(£2) there holds

helllon - slllg.e < cllp = pnl3e, - (4.63)

Hence, the present proof is a straightforward application of (4.63) to p, = o5 and p = oy = Vp.
Od

We now aim to bound the first three terms defining 0372 (cf. (4.24)).
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Lemma 4.21 There exists C > 0, independent of h and X\, such that for each e € E,(X) there
holds

helloan—unle < € {lu—unliz + b} los—oanliz + b Iy =valdr + he les—eunlde }
where T' is the triangle of T, having e as an edge.

Proof. It is based mainly on the discrete trace inequality (4.61), the fact that Vu =C lo, +~
in g, and the upper bound for h% ||C~ 1o s, + 74|13 7 provided by Lemma 4.15. We omit further
details and refer to [35, Lemma 22]. O

Lemma 4.22 There exists C > 0, independent of h and X\, such that for each e € E,(X) there
holds

hellognv—rprw? e vl < C{loj—o s+ laivie—om)Er +he le.—eunld. }
where T is the triangle of 7;Lf having e as an edge.

Proof. We proceed similarly as in [12, Lemma 4.7] (see also [46, Lemma 3.15]). Indeed, given
e € &(X), we let T be the triangle of Ef having e as an edge, define v, := o f - v —prw? @ ), v
on e, and consider the extension operator L : C(e) — C(T). Then, applying (4.58), recalling

that 1. = 0 on 0T \e, extending v, L(v.) by zero in Q¢\T so that the resulting function belongs
to H'(Qy), and adding and substracting o - v = prw? ¢, - v on I, we get

loel2, < ca 62 wellZ, = e / GeTz (0 h v — prw? pup V)
e
= 2 (opn-v—prd oy v, L(ve)s (4.64)

= { = (o7 = 0pa) v 0 L5 + pre? (s = @) v (e

where, as indicated in Section 4.1, (-,-)x. stands here for the duality pairing between H~/2(%)
and H'/2(X). Next, integrating by parts in Q t, and then employing the Cauchy-Schwarz in-
equality, the inverse estimate (4.60) (cf. Lemma 4.13), and (4.59), we find that

((0f—opn) v,geL(ve))s = /TV(%L(%)) (op—opn) + /T%Z)eL(ve)diV(Uf —ofn)

IN

Ve L(ve))l1rllof = o pallor + llve Lve) o, [|div(es — o pp)llor

IN

¢ {hEI W2 oy —appllor + h/?|div(es — Uf,h)Ho,T} [vello,e - (4.65)
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In turn, noting that (¢, — ;) v € L?(¥), recalling that 0 < 9, < 1 in w,, and applying again

the Cauchy-Schwarz inequality, we obtain

(@5 — Do) - vrtbe L(0))s = / Py — Pun) v Te e

< l(ps = @sn) - Vloe e velloe < lles = @snlloellvelloe -

Finally, inserting the estimates (4.65) and (4.66) into (4.64), and using that h. < hr, we get

after minor simplifications the required upper bound for h. |0 ¢ - v — ppw? Psh” 1/||(2),e. O

Lemma 4.23 There exists C > 0, independent of h and X\, such that for each e € E,(X) there
holds

hellosn v + ¢, vlfe < C{los =l + B ldivies —oun)lBr + hellos = es,llie)
where T' is the triangle of T,’ having e as an edge.

Proof. Tt proceeds similarly as for Lemma 4.22. This means that given e € &,(X), we now let T
be the triangle of 7,;” having e as an edge, consider the extension operator L : C(e) — C(T),
define ve 1= o5} -V + ¢, , v on e, and extend e L(ve) by zero in Q,\T' so that the resulting
function belongs to H'(Qs). The rest of the proof follows basically by applying (4.58), using that
o5V = p, v on X, integrating by parts and applying Cauchy-Schwarz and inverse inequalities.
We omit further details.

O

The upper bounds for the terms of 922 and 931“ involving tangential derivatives are given

now.

Lemma 4.24 There exists C > 0, independent of h and X\, such that

2

- desp
S he||€ s — o
S 0,e
e€&p () )
<8 Y Aloe ol + Iy =wlz} + lles = anlBos | -

eegh(E)
where, given e € Ex(X), T, is the triangle of T;? having e as an edge.
Proof. Tt makes use of the extension operator L : C(e) — C(T) (vector version of L : C(e) —

C(T)), the fact that Vu = C los + v in Qs the boundedness of the tangential derivative
% - H/2(%) — H'/2(%), the inverse and the Cauchy-Schwarz inequalities, and the upper
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bound for h7, |lcurl (C oy + 'Yh)H%,Te (cf. Lemma 4.16). We omit further details and refer to

[35, Lemma 20] where this result was established and proved. O

We remark that the upper bound provided by Lemma 4.24 is one of the three non-local
estimates of the present efficiency analysis (see Lemma 4.26 below for the other two). How-
ever, the following lemma establishes that, under an additional regularity assumption on ¢, a

corresponding local estimate can also be obtained.

Lemma 4.25 Assume that ¢ . € Hl(e) for each e € £,(X). Then there exists C > 0, inde-
pendent of h and A, such that

de, |
he ||(CThosh+p)s — —2
ds 0.
d 2
<C {Ho's —Osh %,Te + ||7_7h||g,Te + he £(<Ps — ®sh) } )
0,e

where, given e € Ex(X), T, is the triangle of T;? having e as an edge.

Proof. See [35, Lemma 21]. O

Lemma 4.26 There exist C1,Co > 0, independent of h, such that

2

de
D hellogns— =2 < Ciq D0 llop—opalin + les —enlli s
e€ER(T) O e€ER(T)
and
2

he ||lo -s—dwr’h < C los —ornllir + e — |12

e fih ds =~ L2 f fhllo,Te Yr — Praullij2r (o
ecER(T) O, ecE(T)

where, given e € E(X) U Ep(T), Te is the triangle of '771f having e as an edge.

Proof. Having the same structure of the estimate provided by Lemma 4.24, the present bounds

follow from slight modifications of the proof of [35, Lemma 20]. O

Similarly as for Lemma 4.25, the following result establishes that, under additional regularity

assumptions on ¢ and ¢, corresponding local estimates can also be obtained.

Lemma 4.27 Assume that ¢g|. € H'(e) for each e € E,(X) and ¢.|. € H'(e) for each e €
En(T). Then there exist Cp,Cy > 0, independent of h, such that

2

O,e}

dsoz,h 2

ds

he

d
Ofh-S— I (Ps = Px1)

<G {|0'f —ornlldn, + he
0,e
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2
b
0,e

Proof. These bounds follow from slight modifications of the proof of [35, Lemma 21]. O

and )
dor,

ds

d
he % (301“ - QOF,}L)

2
Ofh"S— 01, T he

< Oy {Ho'f — ol
0,e

where, given e € E,(X) U E(T), Te is the triangle of ’7;Lf having e as an edge.

The remaining three terms defining 9272 and 0371“ are bounded in what follows.

Lemma 4.28 There exists C > 0, independent of h, such that for each e € E,(X) there holds

3}
O,e (>

2 2 2 2
he llps, — pulloe < C{hT lor—oarnllor + Ilp—pullor + helles — s,
where T is the triangle of 771f having e as an edge.

Proof. Adding and substracting ¢, = p on ¥, and then employing the discrete trace inequality
(4.61) (cf. Lemma 4.14), we obtain for each e € &, (%)

helpss, = onlite < 20 {llen, = eslfe + Ip =l }
(4.67)

< C{hellgsn = eslBe + Ip—pulir + W lp— s},

where the last term uses that h. < hy. Then, recalling that pj, is piecewise constant (cf. (4.26)),
using that oy = Vp in ¢, adding and substracting o ¢, and employing the upper bound from
Lemma 4.18, we find that

W lp—pnllr = B3 IVplR = b3 loslBr < 203 {lloy = orallr + losaldr)
(4.68)
< c{nlloy—osmldz + Ip—paldz}-

Finally, (4.67) and (4.68) yield the required estimate and finish the proof. 0
Lemma 4.29 There ezists C' > 0, independent of h, such that for each e € E,(I") there holds
he e, = pulge < Cihtllos —opnllor + lp—pal§r + hellor = op,llf
ellPrn, — Phlloe = T 1O f — O fhlloT P — DPnllo,T ellPr = Prrlloe [
where T is the triangle of 7;Lf having e as an edge.

Proof. Tt follows exactly as in the proof of Lemma 4.28 replacing 3 by I' everywhere. O

We complete the efficiency analysis of the a posteriori error estimator 8 with the upper bound
for the term concerning the Robin boundary condition on I'. To this end, and for simplicity, we
assume that ¢ is piecewise polynomial on I'. Otherwise, one would proceed as in the proof of

[35, Lemma 23] by adding and substracting a suitable projection of g onto a polynomial space.
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Lemma 4.30 There ezists C' > 0, independent of h, such that for each e € E,(T") there holds

hellognv —1npor,=gle < C{llos—oaldr+ 3 ldivier—apn)ldr +heler—eralfe }

where T is the triangle of 7;1]0 having e as an edge.

Proof. We proceed analogously to the proofs of Lemmas 4.22 and 4.23. In fact, given e € &,(T),
we let T be the triangle of 771f having e as an edge, define v, 1= of) -V — 167pL, — g on
e, and consider the extension operator L : C(e) — C(T'). Then, applying (4.58), recalling that

e = 0 on 0T \e, extending 1. L(ve) by zero in Q\T so that the resulting function belongs to
H'(Qy), and replacing the datum g by o¢-v — 17 ¢, on I, we get

Hve”g,e < e /'(/Je"l)e(o'f,h V= UK P, _g) = C2<Gf,h V= 1KfPrp, — g, Ye L(U€)>F
e

= 62{ —((of —0osn) Ve L(ve))r + 1h5 (o — %,MbeL(ve»F}

The rest of the proof proceeds exactly as in Lemma 4.22, that is integrating by parts in {1,
and then employing the Cauchy-Schwarz and inverse inequalities, the estimate (4.59), and the

obvious fact that p. — ¢, € L*(T"). We omit further details here and refer to that lemma. O

We end this section by remarking that the efficiency of 8 follows straightforwardly from
estimates (4.55) and (4.56), together with Lemmas 4.15 - 4.24, 4.26, 4.28 - 4.30, after summing
up over triangles T' € 7,°U7,’ and edges e € &, (cf. (4.21)), and using that the number of triangles
on each domain w, is bounded by two. In particular, note that the global efficiency estimates
induced by the terms of the form A [l@, — @y 4l2er he s — 9un 3o and he oy — o, I3,
(cf. Lemmas 4.21, 4.22, 4.23, 4.28, and 4.29), follow easily from the fact that

Z he ||<Ps — Psh

e€&r(X)

(2),6 < h ||Sos - Sas,h||(2],2 < Ch ||<ps - (ps,hH%/Q,E ’

Z he H‘Pz - Wz,h”%,e < h H‘Pz - Wz,hnaz < Ch ”502 - 902,}1”%/2,2’
eegh(z)

Z he ||901“ —Prn

ecéy (F)

and

2 2 2
0,e < h HSOF - (PF,hHO,F < Ch H(PF - 90F,hH1/2,E'

4.4 Numerical results

In this section we present some numerical results confirming the reliability and efficiency of
the a posteriori error estimator @ analyzed in Section 4.3. We begin by introducing additional

notations. The variable NV stands for the number of degrees of freedom defining the finite element
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subspaces Hy, and Qp, (equivalently, the number of unknowns of (4.20)), and the individual and

global errors are denoted by:

e(os) = [los —osnlaivia,, eloy) = llof—orullave,, e(¥) = v —ullog,

e(sos) = H‘PS - ¢s,h”1/2,27 e(@x) = HSOZ - (pz,h||1/2,27 e(gor) = H‘tOF - @r,h”l/Z,Fv

1/2 1/2

e@) = {le(@)2 + le(ap)P} . (7)== {le(M? + [l ) + [l + [e(er )}

e(u) := lu—wnlloo,, e(@) = llp—puloq,, and

e i= {[e(@) + [e(F) + [e(w)? + [e<p>12}1/2’

where ¢ = (py, ) € HYA(E)x HYA(T) and ¢y, = (y,,¢,,) € Qf 1= A(E) x Ap(T),
Bear in mind here that uy and pp, are the postprocessed variables computed according to (4.25)
and (4.26). Also, we define the effectivity index

eff(0) := e/6.

In turn, we let 7(oy), r(oy), (), r(es), 7(¢s), (), r(u), 7(p), and r be the experimental
rates of convergence given by

_ log (e(%)/€'(%))

log (e/e’)
T(%) : 10g(h/h’) V% e {0-87 of 7 Psy Py Prs Wy p}: and 7 =

log(h/1)’

where h and h’ denote two consecutive meshsizes with corresponding individual errors e(%) and

e’'(%), and global errors e and €/, respectively. However, when the adaptive algorithm is applied
(see details below), the expression log(h/h') is replaced by — 3 log(N/N'), where N and N’

denote the corresponding degrees of freedom of each triangulation.

In what follows we describe the examples to be considered. We first consider Q25:= (—0.2,0.2) x
(—0.4,0.4) and let the artificial boundary I" be the ellipse centered at the origin with minor and

major semiaxis given by 0.4 and 0.6, respectively, that is

2 2
Qf = (1'1 .’L‘Q)t e R?: 1 + 2 <1 \ﬁs
’ 0.42 ~ 0.62

We take ps = py = A = p = 1, and the rest of parameters are given by the sets
{ngl;w:5; Ks = D /{f:5} and {voz().?;w:?; ks = T; /{le()},

which define Examples 1 and 2, respectively. Furthermore, let Kg, K1 and K5 be the modified
Bessel functions of the second kind and order 0, 1, and 2, respectively, and let Hél) be the Hankel
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function of the first kind and order zero. Then, we choose the data in such a way that the exact

solution of (4.4) (or (4.7)) is determined by

1 — 1)
) — o
u(x) = ! Vx = (z1,72)" € Qs, and p(x) = H(()l)(lif Ix|) Vx € Qy,
(.21?1 — 1) T2
_TX(X)

where 1 == /(z1 —1)2 + 23, (x) = Ko(rwry) + ﬁ{Kl(zwrl) - %Kl (z%l>},

and x(x) = Ky(rwry) — %Kg (“’\J/gl>. Actually, u is the fundamental solution, centered at

(1,0)*, of the elastodynamic equation, which yields f = 0 in €, and p is the fundamental

solution, centered at the origin, of the Helmholtz equation in €.

Then, for Example 3 we let Q4 be the L-shaped domain (—0.3,0.3)%\ (0,0.3)? and consider
I' as the boundary of the unit circle B(0,1). In addition, we take p; = py = X = p = 1,
vo = 10, and w = 10, so that ks = 10 and k7 = 1. Then, we choose the data in such a way that
the exact solution of (4.4) (or (4.7)) is given by
1+

u(r, ) = r’3 sin (26 — 7)/3) V(r,0) € Q,
1+

in polar coordinates, and
p(x) = HY (ks x4 (0.15,0)))  ¥x € Qy,

Note that u becomes singular at the origin, the corner of the L. More precisely, it is not difficult
to see that around this singularity div o behaves of order r—1/3. It follows that div o5 belongs
to H%/ 3=¢(Qy) for each € > 0, and hence, according to Theorem 4.3, we expect experimental
rates of convergence, particularly r(o;), close to 2/3. According to the preceding remarks, this
example is utilized to illustrate the behavior of the adaptive algorithm associated with @, which

applies the following procedure from [72]:
1) Start with coarse meshes 7, and 7;Lf .
2) Solve the discrete problem (4.20) for the actual meshes 7,° and ’Ef .

3) Compute the error indicators 67 on each triangle 7' € 7,° U 7;lf as follows:
1
9%75 + 5 Z 9272 if T e 7;;9,
e€E(T)NER(E)

1
0% + 5 ooy > 0 it TeT!
e€E(T)NEL(T) e€E(T)NER(T)
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4) Evaluate stopping criterion and decide to finish or go to next step.

5) Use blue-green procedure to refine each 7" € T U Ef whose local error indicator 67/
satisfies
1

O > imax{HT: T € 7}L8U7;Lf}.

6) Define resulting meshes as actual meshes 7,° and ’Elf , and go to step 2.

The numerical results shown below were obtained using a MATLAB code. In Tables 4.1 up
to 4.6 we summarize the convergence history of our fully-mixed finite element scheme (4.20)
as applied to Examples 1 and 2, for finite sequences of quasi-uniform triangulations of the
computational domain Q, U ﬁf. While these examples coincide with the ones presented in [28,
Section 5], the novelty now is certainly the computation of the effectivity indexes. We observe
in those tables, looking at the corresponding experimental rates of convergence, that the O(h)
predicted by Theorem 4.3 when § = 1 (see [28, Theorem 4.1]) is attained in all the unknowns
for both examples. In addition, we notice from the last columns of Tables 4.3 and 4.6 that the
effectivity indexes eff(0) remain always in neighborhoods of 0.74 and 1.75 for Examples 1 and

2, respectively, which illustrates the reliability and efficiency of 8 in the case of regular solutions.

Then, in Tables 4.7 up to 4.12 we provide the convergence history of the quasi-uniform and
adaptive refinements, as applied to Example 3. As already announced, we notice in the quasi-
uniform case that r(os) oscillates in fact around 2/3, whereas the rates of convergence of the
other unknowns are not affected by the lack of regularity of os. However, since e(o) is the
dominant component of the total error e, the above feature is also reflected in the global rate
of convergence r (see Table 4.9). Furthermore, it is clear from these tables that the total errors
of the adaptive scheme decrease faster than those obtained by the quasi-uniform one, which is
confirmed by the global experimental rates of convergence provided in Table 4.12. This fact is also
illustrated by Figure 4.1 where we display the total errors e vs. the number of degrees of freedom
N for both refinements. Moreover, as shown by these values of r, the adaptive method is able
to recover the quasi-optimal rate of convergence O(h) for e. On the other hand, the effectivity
indexes remain bounded from above and below for both the quasi-uniform and adaptive schemes,
which confirms the reliability and efficiency of @ in the present case of a non-smooth solution.
Intermediate meshes obtained with the adaptive refinement are displayed in Figure 4.2. We
remark from there that the method is able to recognize the origin as a singularity of the solution
of this example. Finally, some components of the approximate (left) and exact (right) solutions
for Example 3 are displayed in Figures 4.3 up to 4.8. Note in the case of the unknowns on the

boundaries, that they are depicted along straight lines beginning at the points (0.3,0) and (0, 1),
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and then continuing clockwise and counterclockwise, for ¥ and I', respectively. The fact that
the approximate and exact solutions do not distinguish from each other in all the components
shown illustrates the accurateness of the proposed fully-mixed method and the corresponding

adaptive scheme.

h N o) |r@) | eep [rep| e | row
27r/64 1117 6.150E—02 — 8.865E—01 — 6.642E—03 —
27 /96 2090 4.264E—-02 | 0.903 || 5.996E—01 | 0.964 | 3.975E—03 | 1.266
27T/128 3686 3.112E—-02 | 1.095 || 4.414E—01 | 1.065 || 2.570E—03 | 1.516
27/192 7869 2.107E—02 | 0.962 | 3.044E—01 | 0.917 || 1.530E—03 | 1.279
27 /256 13666 1.586E—-02 | 0.987 || 2.249E—-01 | 1.053 || 1.018E—-03 | 1.415
27r/384 31282 1.038E—02 | 1.046 || 1.489E—01 | 1.017 || 6.623E—04 | 1.061
27 /512 55438 7.784E—03 | 1.000 || 1.106E—01 | 1.035 || 4.324E—04 | 1.482
27 /768 | 125069 || 5.152E—03 | 1.017 || 7.397E—02 | 0.991 | 2.745E—04 | 1.121
27r/1024 221848 || 3.871E—03 | 0.994 | 5.540E—02 | 1.005 | 2.034E—04 | 1.041
27 /1536 | 498545 || 2.579E—03 | 1.001 || 3.670E—02 | 1.016 | 1.298E—04 | 1.109
27?/2048 887629 || 1.927E—-03 | 1.014 || 2.770E—02 | 0.978 || 9.678E—05 | 1.019

Table 4.1: Convergence history for o, o, and v (EXAMPLE 1)
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N e(ps) () e(py) 7(py) e(r) r(¢r)
1117 | 9.684E—03 | — | 1.680E—01| — | 4.819E—02| —

2090 4.899E—-03 | 1.681 || 7.439E—-02 | 2.022 || 2.030E—-02 | 2.133
3686 2.727TE—03 | 2.037 || 4.415E-02 | 1.813 || 1.226E—-02 | 1.752
7869 1.427E—-03 | 1.598 || 2.362E—02 | 1.542 || 5.610E—03 | 1.928
13666 | 8.446E—04 | 1.822 | 1.348E—02 | 1.951 || 3.850E—03 | 1.308
31282 || 4.023E—04 | 1.829 || 6.741E—03 | 1.708 || 1.834E—03 | 1.830
595438 || 2.521E—04 | 1.625 || 3.849E—03 | 1.948 | 1.187E—03 | 1.511
125069 || 1.266E—04 | 1.699 | 1.896E—03 | 1.746 || 6.280E—04 | 1.571
221848 || 8.236E—05 | 1.494 || 1.290E—03 | 1.339 | 4.437TE—04 | 1.208
498545 || 4.112E—-05 | 1.713 || 6.765E—04 | 1.592 || 2.231E—-04 | 1.695
887629 || 2.633E—05 | 1.550 || 4.455E—04 | 1.452 | 1.533E—04 | 1.305

Table 4.2: Convergence history for ¢,, ¢, and ¢. (EXAMPLE 1)

N e(u) r(u) e(p) r(p) e r eff(0)
1117 2.207E—-03 - 3.419E—-02 - 9.065E—01 — 0.7495
2090 1.547E—-03 | 0.877 || 2.317TE—02 | 0.960 || 6.065E—01 | 0.991 || 0.7315
3686 1.131E—-03 | 1.087 || 1.7T06E—02 | 1.064 || 4.452E—01 | 1.075 || 0.7424
7869 || 7.671E—04 | 0.958 || 1.177TE—02 | 0.916 || 3.063E—01 | 0.922 || 0.7328
13666 || 5.781E—04 | 0.983 || 8.700E—03 | 1.050 || 2.260E—01 | 1.057 || 0.7437
31282 || 3.781E—04 | 1.044 || 5.760E—-03 | 1.017 || 1.495E—-01 | 1.019 || 0.7417
55438 || 2.840E—04 | 0.999 | 4.277E—-03 | 1.035 || 1.110E—-01 | 1.036 || 0.7377

125069 || 1.881E—04 | 1.018 || 2.863E—03 | 0.991 || 7.423E—02 | 0.992 | 0.7445
221848 || 1.413E—-04 | 0.993 || 2.144E—-03 | 1.005 || 5.559E—02 | 1.005 || 0.7413
498545 || 9.417E—05 | 1.001 || 1.420E—03 | 1.016 || 3.682E—02 | 1.016 || 0.7366
887629 || 7.036E—05 | 1.013 || 1.072E—03 | 0.978 || 2.779E—02 | 0.978 || 0.7360

Table 4.3: Convergence history for u, p, e, and effectivity index (EXAMPLE 1)
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h

N

e(os)

r(os)

e(oy)

r(oy)

e(y)

o /64

27 /96

27 /128
27/192
27 /256
27/384
21 /512
2 /768
21 /1024
2 /1536
21 /2048

1117
2090
3686
7869
13666
31282
55438
125069
221848
498545
887629

1.592E—-01
8.706E—02
6.061E—-02
3.967E—-02
2.927TE-02
1.893E—-02
1.416E—-02
9.337E-03
7.007TE-03
4.664E—-03
3.486E—-03

1.489
1.259
1.045
1.057
1.074
1.010
1.027
0.998
1.004
1.012

4.981E—-00
3.252E-00
2.371E-00
1.626E—00
1.199E—-00
7.931E-01
5.886E—01
3.937E-01
2.949E—-01
1.954E-01
1.474E—-01

1.052
1.098
0.931
1.057
1.020
1.036
0.992
1.004
1.016
0.979

1.422E-02
6.901E—-03
4.045E-03
2.231E-03
1.458E—-03
9.090E—-04
5.821E—-04
3.642E—-04
2.673E-04
1.685E—-04
1.248E-04

Table 4.4: Convergence history for o, o, and v (EXAMPLE 2)

N

e(p,)

r(ps)

e(py)

()

e(¢r)

r(er)

1117
2090
3686
7869
13666
31282
55438
125069
221848
498545
887629

2.843E—-02
1.217E-02
6.413E—-03
3.053E-03
1.722E—-03
8.131E—-04
5.253E—-04
2.394E—-04
1.605E—-04
8.008E—05
5.000E—-05

2.092
2.228
1.831
1.990
1.851
1.518
1.938
1.391
1.714
1.633

4.104E-01
1.898E—01
1.085E—01
5.654E—02
3.159E-02
1.560E—02
8.850E—03
4.339E-03
2.868E—-03
1.438E—-03
9.361E—04

1.901
1.945
1.607
2.023
1.740
1.970
1.758
1.440
1.703
1.492

1.388E—-01
5.923E-02
3.262E-02
1.517E—-02
9.679E—-03
4.454E-03
2.832E-03
1.512E—-03
9.982E—04
5.174E—-04
3.530E-04

2.100
2.073
1.888
1.562
1.914
1.575
1.547
1.444
1.621
1.329

Table 4.5: Convergence history for ¢,, ¢, and ¢. (EXAMPLE 2)
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N e(u) r(u) e(p) r(p) e r eff(0)
1117 3.080E—-03 — 4.950E—-02 — 5.003E—00 — 1.8347
2090 || 1.686E—03 | 1.486 || 3.232E—02 | 1.051 || 3.259E—00 | 1.057 || 1.7396
3686 1.178E—-03 | 1.247 || 2.356E—02 | 1.098 | 2.374E—00 | 1.101 || 1.7641
7869 7.713E—04 | 1.044 || 1.616E—-02 | 0.930 || 1.627E—00 | 0.932 || 1.7431
13666 | 5.694E—04 | 1.055 || 1.192E—02 | 1.056 | 1.200E—00 | 1.058 || 1.7676
31282 || 3.686E—04 | 1.072 || 7.885E—03 | 1.020 || 7.935E—01 | 1.021 | 1.7623
55438 | 2.758E—04 | 1.009 || 5.852E—03 | 1.036 || 5.889E—01 | 1.037 || 1.7586

125069 || 1.819E—04 | 1.027 || 3.915E—-03 | 0.992 || 3.939E—01 | 0.992 | 1.7698
221848 || 1.365E—04 | 0.997 || 2.932E—03 | 1.004 || 2.951E—01 | 1.005 || 1.7655
498545 || 9.086E—05 | 1.004 || 1.943E—03 | 1.016 | 1.955E—01 | 1.016 || 1.7601
887629 || 6.790E—05 | 1.012 || 1.466E—03 | 0.978 || 1.475E—01 | 0.979 || 1.7611

Table 4.6: Convergence history for u, p, e, and effectivity index (EXAMPLE 2)

h N e(os) r(os) e(oy) r(oy) e(7) r(y)

27 /64 2215 9.127TE-01 - 4.267E-01 - 3.210E—-02 -
27 /96 4767 6.802E—01 | 0.725 || 1.896E—01 | 2.000 || 1.371E—-02 | 2.098
27 /128 8495 5.408E—01 | 0.797 || 1.185E—01 | 1.634 || 9.156E—03 | 1.403
27 /192 19067 4.465E-01 | 0.472 || 6.492E—02 | 1.484 | 4.033E—-03 | 2.022
27 /256 33331 3.898E—-01 | 0.472 || 4.851E—02 | 1.013 | 2.828E—-03 | 1.234
27/384 75077 2.800E—01 | 0.816 || 3.053E—02 | 1.142 || 1.630E—03 | 1.359
27w /512 | 133497 | 2.351E—01 | 0.607 || 2.317TE—02 | 0.960 || 1.049E—03 | 1.532
27 /768 | 299000 | 1.883E—01 | 0.547 || 1.528E—02 | 1.026 | 6.357TE—04 | 1.235
27/1024 | 534105 || 1.493E—01 | 0.807 || 1.139E—02 | 1.023 || 4.391E—04 | 1.286
27 /1536 | 1199275 || 1.109E—01 | 0.735 || 7.601E—03 | 0.997 || 2.663E—04 | 1.233

Table 4.7: Convergence history for o, o, and v (quasi-uniform scheme, EXAMPLE 3)
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N e(ps) | r(es) e(ps) | rles) e(er) | rler)
2215 || 6.895E—02 | — | 5.538E—01 | — | 5.233E—02 | —
4767 || 2.300E—02 | 2.708 | 2.027E—01 | 2.479 || 1.786E—02 | 2.652
8495 || 1.417E—02 | 1.683 | 1.066E—01 | 2.232 || 8.300E—03 | 2.663
19067 | 4.631E—03 | 2.759 || 3.555E—02 | 2.710 | 2.920E—03 | 2.576
33331 || 3.500E—03 | 0.974 | 2.082E—02 | 1.859 || 1.396E—03 | 2.565
75077 || 1.520E—03 | 2.056 | 1.028E—02 | 1.741 || 6.814E—04 | 1.769

133497 | 1.019E—03 | 1.390 | 6.675E—03 | 1.501 | 3.776E—04 | 2.052
299000 | 4.515E—04 | 2.008 | 3.018E—03 | 1.958 || 2.102E—04 | 1.444
534105 | 3.266E—04 | 1.126 | 1.975E—03 | 1.473 || 1.564E—04 | 1.029
1199275 || 1.523E—04 | 1.882 || 9.444E—04 | 1.820 | 6.877E—05 | 2.026

Table 4.8: Convergence history for ¢,, ¢, and ¢, (quasi-uniform scheme, EXAMPLE 3)

N e(u) r(u) e(p) r(p) e r eff(0)
2215 9.444E—-03 — 5.476E—02 — 1.155E—-00 - 0.6179
4767 5.899E—03 | 1.161 || 2.980E—02 | 1.501 || 7.360E—01 | 1.111 || 0.6313
8495 4.430E—-03 | 0.996 || 2.024E—-02 | 1.345 || 5.645E—01 | 0.922 || 0.6546
19067 2.942E—03 | 1.010 || 1.292E—02 | 1.107 || 4.529E—01 | 0.543 || 0.7241
33331 || 2.189E—-03 | 1.028 || 9.722E—03 | 0.988 || 3.935E—01 | 0.488 || 0.7679
75077 1.459E—-03 | 1.000 || 6.359E—03 | 1.047 || 2.819E—-01 | 0.823 || 0.7943

133497 || 1.091E—03 | 1.009 || 4.801E—03 | 0.977 || 2.364E—01 | 0.612 || 0.8232
299000 | 7.360E—04 | 0.971 || 3.191E—-03 | 1.008 || 1.890E—-01 | 0.552 || 0.8679
534105 | 5.567E—04 | 0.971 || 2.388E—03 | 1.008 || 1.498E—01 | 0.809 || 0.8806
1199275 || 3.685E—04 | 1.018 || 1.594E—03 | 0.996 || 1.111E—01 | 0.736 || 0.9004

Table 4.9: Convergence history for u, p, e, and effectivity index (quasi-uniform scheme, EXAMPLE

3)
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oW elw) [rle) ]| elep) [rep ]| e | et
0.1169 2215 9.127E—-01 — 4.267E—01 — 3.210E—02 —
0.1169 2503 7.145E—01 | 4.006 || 2.996E—01 | 5.786 || 2.589E—02 | 3.520
0.1169 3471 5.377TE—01 | 1.739 || 2.607E—01 | 0.851 || 2.394E—02 | 0.478
0.1169 4459 4.417E-01 | 1.570 || 1.713E—01 | 3.354 || 1.472E—02 | 3.883
0.1169 6355 3.477E—01 | 1.351 || 1.401E—01 | 1.134 || 1.299E—02 | 0.707
0.1169 9410 2.753E—01 | 1.189 || 1.088E—01 | 1.287 || 9.272E—-03 | 1.717
0.1169 11985 2.411E—-01 | 1.097 || 9.418E—02 | 1.196 || 8.363E—03 | 0.853
0.1169 19655 1.882E—01 | 1.002 || 7.556E—02 | 0.890 | 5.892E—03 | 1.416
0.0934 38391 1.406E—01 | 0.870 || 5.126E—02 | 1.159 || 4.545E—03 | 0.775
0.0832 65934 1.058E—01 | 1.051 || 4.117TE—02 | 0.810 || 3.321E—03 | 1.161
0.0832 98472 9.131E—02 | 0.736 || 3.519E—-02 | 0.783 || 3.022E—03 | 0.470
0.0622 | 125924 || 8.021E—02 | 1.055 || 3.056E—02 | 1.146 || 2.723E—03 | 0.847
0.0511 | 151119 7.225E—02 | 1.146 || 2.681E—02 | 1.436 || 2.25TE—03 | 2.060
0.0493 | 196274 | 6.617TE—02 | 0.673 || 2.456E—-02 | 0.670 || 2.161E—03 | 0.331
0.0471 | 241916 | 6.067E—02 | 0.830 || 2.287E—02 | 0.684 || 2.065E—03 | 0.436
0.0467 | 282385 || 5.684E—02 | 0.843 || 2.144E—-02 | 0.830 || 1.904E—03 | 1.051
0.0400 | 343470 | 4.852E—02 | 1.617 || 1.836E—02 | 1.586 || 1.581E—03 | 1.900
0.0298 | 570415 || 3.694E—02 | 1.075 || 1.382E—02 | 1.120 || 1.177TE—03 | 1.162
0.0244 | 894088 || 3.037E—02 | 0.872 || 1.139E—-02 | 0.861 || 9.605E—04 | 0.905
0.0240 | 1269053 || 2.654E—02 | 0.769 || 9.882E—03 | 0.811 || 8.686E—04 | 0.574
0.0234 | 1635325 || 2.360E—02 | 0.926 || 8.777E—03 | 0.935 || 7.831E—04 | 0.817

Table 4.10: Convergence history for o, o, and v (adaptive scheme, EXAMPLE 3)
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N (e | e | eles) [rien) | eler) | rien)
2215 6.895E—02 — 5.538E—-01 — 5.233E—-02 —
2503 5.104E—-02 | 4.921 || 3.576E—01 | 7.157 || 4.086E—02 | 4.037
3471 3.138E—-02 | 2.975 || 2.942E—-01 | 1.195 || 3.051E—02 | 1.787
4459 1.530E—-02 | 5.738 || 1.346E—01 | 6.243 || 2.099E—02 | 2.986
6355 1.124E—-02 | 1.741 || 8.971E—02 | 2.290 || 1.954E—02 | 0.405
9410 5.915E—-03 | 3.270 || 4.522E—02 | 3.491 || 7.613E—03 | 4.803
11985 4.596E—03 | 2.085 || 3.356E—-02 | 2.465 || 7.385E—03 | 0.251
19655 3.352E—03 | 1.277 || 2.590E—-02 | 1.048 || 7.867TE—03 | -0.255
38391 1.735E—-03 | 1.967 || 1.118E—02 | 2.510 || 3.919E—03 | 2.082
65934 1.229E—-03 | 1.276 || 8.728E—03 | 0.915 || 3.104E—03 | 0.863
98472 9.169E—04 | 1.459 || 6.057E—-03 | 1.821 || 2.989E—-03 | 0.188
125924 7.763E—04 | 1.355 || 4.871E—-03 | 1.772 || 2.240E—-03 | 2.344
151119 5.946E—04 | 2.923 || 3.680E—03 | 3.074 || 1.914E—-03 | 1.726
196274 5.925E—04 | 0.028 || 3.390E—03 | 0.628 || 1.738E—03 | 0.738
241916 5497E—04 | 0.717 || 3.330E—03 | 0.171 || 1.583E—03 | 0.896
282385 4.916E—04 | 1.443 || 3.101E—-03 | 0.921 || 1.455E—-03 | 1.088
343470 4.137E—-04 | 1.763 || 2.400E—-03 | 2.617 || 1.007TE—-03 | 3.763
570415 || 2.366E—04 | 2.204 || 1.307E—03 | 2.395 || 6.893E—04 | 1.493
894088 1.835E—04 | 1.130 || 9.845E—04 | 1.262 | 4.778E—04 | 1.630

1269053 || 1.606E—04 | 0.763 || 9.044E—04 | 0.485 || 4.672E—04 | 0.129
1635325 || 1.343E—-04 | 1.411 || 7.551E—-04 | 1.423 | 3.758E—04 | 1.716

Table 4.11: Convergence history for ¢, ¢,,, and ¢, (adaptive scheme, EXAMPLE 3)
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N e(u) r(u) e(p) r(p) e r eff(0)
2215 9.444E—-03 — 5.476E—02 — 1.155E—-00 — 0.6179
2503 8.923E—03 | 0.928 || 4.779E-02 | 2.229 || 8.576E—01 | 4.868 || 0.5530
3471 6.348E—03 | 2.083 | 4.289E—02 | 0.661 || 6.693E—01 | 1.516 || 0.5277
4459 5.179E—03 | 1.625 || 3.797E—-02 | 0.974 || 4.949E—-01 | 2.411 || 0.4727
6355 4.091E-03 | 1.332 || 3.583E—02 | 0.328 || 3.880E—01 | 1.374 || 0.4537
9410 3.008E—03 | 1.566 || 3.101E—02 | 0.735 || 3.014E—01 | 1.287 || 0.4249
11985 2.772E—-03 | 0.678 || 2.814E—-02 | 0.803 || 2.628E—01 | 1.133 || 0.4205
19655 2.196E—-03 | 0.942 | 2.250E—-02 | 0.904 || 2.059E—01 | 0.986 | 0.4089
38391 1.5649E—-03 | 1.042 || 1.499E—-02 | 1.214 || 1.510E—-01 | 0.927 || 0.4300
65934 1.215E—-03 | 0.899 || 1.223E—02 | 0.752 || 1.146E—01 | 1.018 || 0.3973
98472 || 1.013E—03 | 0.908 || 1.045E—02 | 0.786 || 9.870E—02 | 0.747 || 0.4051

125924 || 9.1562E—04 | 0.822 || 9.149E—-03 | 1.077 || 8.653E—02 | 1.070 || 0.4050
151119 || 8.144E—04 | 1.280 | 7.918E—03 | 1.585 || 7.762E—02 | 1.192 || 0.4108
196274 || 7.452E—04 | 0.679 || 7.221E—-03 | 0.704 || 7.109E—-02 | 0.672 | 0.4082
241916 | 6.858E—04 | 0.795 || 6.727TE—03 | 0.678 || 6.532E—02 | 0.809 || 0.3933
282385 | 6.388E—04 | 0.917 || 6.308E—03 | 0.832 || 6.121E—02 | 0.842 || 0.4030
343470 || 5.594E—-04 | 1.356 || 5.398E—03 | 1.591 || 5.2256E—02 | 1.616 | 0.4038
570415 || 4.196E—-04 | 1.134 || 4.004E—03 | 1.178 || 3.969E—02 | 1.084 || 0.4075
894088 | 3.470E—04 | 0.846 || 3.315E—-03 | 0.840 || 3.264E—02 | 0.871 || 0.4025
1269053 || 3.032E—04 | 0.770 | 2.886E—03 | 0.792 || 2.850E—02 | 0.773 || 0.3792
1635325 || 2.680E—04 | 0.972 || 2.565E—03 | 0.931 || 2.534E—02 | 0.928 | 0.4013

Table 4.12: Convergence history for u, p, e, and effectivity index (adaptive scheme, EXAMPLE
3)
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Figure 4.3: Approximate and exact real part of o521 (EXAMPLE 3)
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Figure 4.4: Approximate and exact imaginary part of o522 (EXAMPLE 3)
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Figure 4.5: Approximate and exact imaginary part of o7 (EXAMPLE 3)
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Figure 4.6: Approximate and exact imaginary part of oo (EXAMPLE 3)
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Chapter 5

Conclusiones y trabajo futuro

5.1 Conclusiones

El objetivo principal de esta tesis ha sido el desarrollo de un analisis de error a priori y
a posteriori de un método de elementos finitos completamente mixto para un problema de
interaccion sélido-fluido bidimensional. Las conclusiones principales de esta tesis, en orden de

desarrollo, son:

e Se realizé una extension de los resultados obtenidos en [37]. En efecto, en [37] se consideré
una formulacién variacional mixta en el sélido y primal en el fluido, mientras que en el
Capitulo 2 de nuestro trabajo se planteé una formulacién variacional mixta en ambos do-
minios. Ello se logré introduciendo una nueva incégnita dada por el gradiente de presiones

en el fluido, la cual se aproxim¢ directamente en el esquema de Galerkin asociado.

e En el andlisis del error a priori del problema acoplado se obtuvo, tanto en el esquema con-
tinuo como discreto, una estructura de punto silla por bloques en la diagonal y la presencia
de una perturbacion compacta. Lo anterior permitié aplicar la teoria de Babuska-Brezzi
en cada uno de los bloques, y de esta manera se logré probar que el esquema de Galerkin
asociado es estable y bien propuesto. Para ello, se aplicaron las técnicas de levantamientos
estables para probar la condicién inf-sup discreta en cada dominio. Finalmente, debido
a la perturbacién compacta, se aplico un resultado clasico de métodos de proyeccién de

operadores de Fredhoml con indice cero.

e En el problema acoplado, la formulacion dual mixta en el sélido y en el fluido simplificd
el cédigo computacional correspondiente al permitir la utilizacién de los subespacios de

elementos finitos de Raviart-Thomas en ambos dominios.
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e Se obtuvo un estimador de error a posteriori residual, confiable y eficiente, para el problema
de elasticidad lineal con condiciones de frontera de tracciéon pura. Los subespacios de
elementos finitos utilizados fueron Raviart-Thomas + rotacional de las funciones burbuja
en el tensor de esfuerzos, las funciones constantes a trozos en el desplazamiento, y las
funciones lineales a trozos y continuas para la rotacién y el multiplicador de Lagrange
sobre la frontera. Finalmente, varios resultados numéricos confirmaron la confiabilidad
y eficiencia del estimador, e ilustraron el buen comportamiento del esquema adaptivo

asociado.

e Se obtuvo un estimador de error a posteriori residual, confiable y eficiente para el problema
de interacién solido-fluido descrito por las ecuaciones de Lamé-Helmholtz. Los elementos
finitos considerados fueron PEERS en el sélido, Raviart-Thomas de bajo orden en el fluido,

v las funciones lineales a trozos y continuas sobre la interfase y la frontera.

5.2 Trabajo futuro

Se realizard un andlisis de error a posteriori del acoplamiento entre los elementos finitos de
Arnold-Falk-Winther y Lagrange para un problema de interaccién sélido-fluido tridimensional.
El modelo se rige por las ecuaciones de la actustica y la elastodindmica en régimen de tiempo
armoénico y las condiciones de transmision estan dadas por el equilibrio de fuerzas y la igualdad
de los desplazamientos normales correspondientes. Se empleard una formulacién variacional dual
mixta en el sélido y primal en el fluido, tal cual como se planteé en [41], introduciendo la primera
condicion de transmision como parte de la definicién del espacio al cual pertenecen los esfuerzos
en el sélido y la presién en el fluido. La principal dificultad que se vislumbra es la incorporacién de
dicha condicién de transmisién en la descomposicién de Helmholtz discreta del espacio producto

correspondiente.
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