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Talk Overview — Dynamics Groups

» Using tools from group theory to assess long-term dynamics of asynchronous discrete
dynamical systems.

m The notion of update sequence independence.
m The dynamics group of an update sequence independent system.
m Relations to Coxeter theory and Coxeter groups.

m Outlook and open questions.
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Background and Terminology

Sequential Dynamical Systems
SDS Example

Sequential Dynamical Systems (SDS)

» A subclass of graph dynamical systems (GDS). Constructed from:

m A (dependency) graph X with vertex set v[X] = {1,2,...,n}.

m For each vertex v a state x, € K (e.g. K =F, = {0,1}) and 1

3\;zl4r<3.4,5.x)
an X-local function F,: K" — K" & S xoro )

)

FV(X17X27 s 7XI7) = (X17 ceey fV(X[V])7 PR 7Xn) .
——

vertex function v

m A word w = wyws - - - wy over the vertex set of X.
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Background and Terminology

Sequential Dynamical Systems
SDS Example

Sequential Dynamical Systems (SDS)

» A subclass of graph dynamical systems (GDS). Constructed from:

m A (dependency) graph X with vertex set v[X] = {1,2,...,n}.

m For each vertex v a state x, € K (e.g. K =F, = {0,1}) and 1

3\;zl4r<3.4,5.x)
an X-local function F,: K" — K" & S xoro )

FV(X17X27 s 7XI7) = (X17 ceey fV(X[V])7 PR 7Xn) .
——

)

vertex function v

m A word w = wyws - - - wy over the vertex set of X.

» The SDS map Fy,: K" — K" is:

FW = Fw(k) o] Fw(kfl) O--+0 Fw(l)
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Background and Terminology

Sequential Dynamical Systems
SDS Example

SDS — An example

» System components:

m Circle graph on 4 vertices: X = Circles

m Update sequence: m = (1,2,3,4)

m Vertex functions:

norz(xi, x2,x3) = (1 + x1)(1 + x2)(1 + x3)

m The X-local map for vertex 1:

F1(x1,x2,X3,X4) = (nors(x1, x2,x4), X2, X3, Xa) Dependency graph
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Background and Terminology

Sequential Dynamical Systems
SDS Example

SDS — An example

» System components:

m Circle graph on 4 vertices: X = Circles

m Update sequence: m = (1,2,3,4)

m Vertex functions:
norz(xi, x2,x3) = (1 + x1)(1 + x2)(1 + x3)

m The X-local map for vertex 1:

F1(x1,x2,X3,X4) = (nors(x1, x2,x4), X2, X3, Xa) Dependency graph

» System update:

(X1,X2,X3,X4) (0 0 0 0) (1 0 0 0) and

(1,0,0,0) 2 (1,0,0,0) 22 (1,0,1,0) % (1,0,1,0)
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Background and Terminology

Sequential Dynamical Systems
SDS Example

SDS — An example

» System components:

m Circle graph on 4 vertices: X = Circles

m Update sequence: m = (1,2,3,4)

m Vertex functions:
norz(xi, x2,x3) = (1 + x1)(1 + x2)(1 + x3)

m The X-local map for vertex 1:

F1(x1,x2,X3,X4) = (nors(x1, x2,x4), X2, X3, Xa) Dependency graph

» System update:

(1234) WT/ ””’”\“M/ 1100
(X1, X2, X3, X8) = (0 0,0,0) &2 (1 0,0,0) and 2, o~ 1
"N
(1,0,0,0) 2 (1,0,0,0) 2 (1,0,1,0) & (1,0,1,0) ol

|
o110 1110

» SDS map:

Ph
Fﬂ'(07070>0) = (17071~0) a5 space
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Introduction
Background and Tern Basic Properties
Update Sequence Independent SDS The Dynamics Group
Closing Ren and Outlook Coxeter Groups
Dynamics Groups over Circlep

Definition (Update sequence independence)

A sequence F = (F;)?_; of X-local maps over a finite state space K" are word (resp.
permutation) update sequence independent, if there exists P C K" such that for all fair words
w € W (resp. w € Sx) we have

Per(Fy) =P.
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Definition (Update sequence independence)

A sequence F = (F;)?_; of X-local maps over a finite state space K" are word (resp.
permutation) update sequence independent, if there exists P C K" such that for all fair words
w € W (resp. w € Sx) we have

Per(Fy) =P.

» We usually just say that F = (F;); is m-independent or w-independent.

» Clearly, word independence implies permutation independence; the converse is false.
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Definition (Update sequence independence)

A sequence F = (F;)?_; of X-local maps over a finite state space K" are word (resp.
permutation) update sequence independent, if there exists P C K" such that for all fair words
w € W (resp. w € Sx) we have

Per(Fy) =P.

» We usually just say that F = (F;); is m-independent or w-independent.
» Clearly, word independence implies permutation independence; the converse is false.

» Questions:

m Are there word independent SDSs, and is this a common property?

m Why should we care about this in the first place?
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Basic Properties
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Coxeter Groups

Dynamics Groups over Circlep

Properties of m-independent SDS

Proposition

Let X be a graph and F = (F;); a w-independent sequence of X-local functions with periodic
points P. Then each restricted function

Filp: P— P

is a well-defined bijection.

] TarRe
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Properties of m-independent SDS

Proposition

Let X be a graph and F = (F;); a w-independent sequence of X-local functions with periodic
points P. Then each restricted function

Filp: P— P

is a well-defined bijection.

Proof.

» Let 7 be a permutation with 7(1) = i, let P = Per(Fx) and P’ = Per(F, () [cyclic 1-shift].

] RN
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Properties of m-independent SDS

Proposition

Let X be a graph and F = (F;); a w-independent sequence of X-local functions with periodic
points P. Then each restricted function

Filp: P— P

is a well-defined bijection.

Proof.

» Let 7 be a permutation with 7(1) = i, let P = Per(Fx) and P’ = Per(F, () [cyclic 1-shift].
» We have that Fj|p: P — F;(P) is a bijection.
» From Fr(1y o Fr = F (x) 0 Frq) it follows that F;(P) C P'.
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Properties of m-independent SDS

Proposition

Let X be a graph and F = (F;); a w-independent sequence of X-local functions with periodic
points P. Then each restricted function

Filp: P— P

is a well-defined bijection.

Proof.

» Let 7 be a permutation with 7(1) = i, let P = Per(Fx) and P’ = Per(F, () [cyclic 1-shift].
» We have that Fj|p: P — F;(P) is a bijection.

» From Fr(1y o Fr = F (x) 0 Frq) it follows that F;(P) C P'.

» Repeated application of this n times yields |P| = |P’|.

» Upshot: F;(P) = P’ and by m-independence we have P = P’.

] RN
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Dynamics Group — A first look

» For m-independent SDS each F;|p is a permutation P.

» We set
Fi* = F,'lp

» If |P| = m and we label the periodic points 1,2,...,m, then each F* < n; € Sp.
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Dynamics Group — A first look

» For m-independent SDS each F;|p is a permutation P.

» We set
Fi* = F,'lp

» If |P| = m and we label the periodic points 1,2,...,m, then each F* < n; € Sp.

Definition (Dynamics group)

Let K be a finite set and F = (F;); be a m-independent sequence of X-local functions. The
dynamics group of F is
G(F)=(Fl,....Fy) -
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Dynamics Group — A first look

» For m-independent SDS each F;|p is a permutation P.

» We set
Fi* = F,'lp

» If |P| = m and we label the periodic points 1,2,...,m, then each F* < n; € Sp.

Definition (Dynamics group)
Let K be a finite set and F = (F;); be a m-independent sequence of X-local functions. The

dynamics group of F is
G(F)=(F’,....F3) .

» Clearly, G(F) is isomorphic to a subgroup of Sp,.

» Sometimes more convenient to consider the group generated by the permutations n; — it is
denoted by G(F).
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An Example of w-Independence

Proposition

Introduction

Basic Properties

The Dynamics Group

Coxeter Groups

Dynamics Groups over Circlep

SDS induced by Nor-functions are w-independent for any graph X.
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An Example of w-Independence

Proposition

SDS induced by Nor-functions are w-independent for any graph X.

Proof idea.

Establish a 1-1 correspondence between Per(Nor, ) and the set of independent sets of X. Of
course, the latter quantity does not depend on w.
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Example (brute force)

Take X = K3 (complete graph on 3 vertices) and F = Nor = (Nor;);.

Periodic point Label Nor; Nor; Norsz
(0,0,0) 0 (1,0,0) (0,1,0) (0,0,1)
(1,0,0) 1 (0,0,0) (1,0,0) (1,0,0)
(0,1,0) 2 (0,1,0) (0,0,0) (0,1,0)
(0,0,1) 3 (0,0,1) (0,0,1) (0,0,0)

Permutation repr. n = (0,1) | no=(0,2) | n3 =(0,3)

] RIS
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Example (brute force)

Take X = K3 (complete graph on 3 vertices) and F = Nor = (Nor;);.

Periodic point Label Nor; Nor; Norsz
(0,0,0) 0 (1,0,0) (0,1,0) (0,0,1)
(1,0,0) 1 (0,0,0) (1,0,0) (1,0,0)
(0,1,0) 2 (0,1,0) (0,0,0) (0,1,0)
(0,0,1) 3 (0,0,1) (0,0,1) (0,0,0)

Permutation repr. n = (0,1) | no=(0,2) | n3 =(0,3)

» Clearly, E(Nor) < S4. From n3myn; = (0,1,2,3), and the fact that
Ss = ({(0,1),(0,1,2,3)}) it follows that S4 < G(Nor).

» Hence G(Nor) = S,.

] RIS



Introduction

Basic Properties

The Dynamics Group

Coxeter Groups

Dynamics Groups over Circlep

Example (brute force)

Take X = K3 (complete graph on 3 vertices) and F = Nor = (Nor;);.

Periodic point Label Nor; Nor; Norsz
(0,0,0) 0 (1,0,0) (0,1,0) (0,0,1)
(1,0,0) 1 (0,0,0) (1,0,0) (1,0,0)
(0,1,0) 2 (0,1,0) (0,0,0) (0,1,0)
(0,0,1) 3 (0,0,1) (0,0,1) (0,0,0)

Permutation repr. n = (0,1) | no=(0,2) | n3 =(0,3)

» Clearly, E(Nor) < S4. From n3myn; = (0,1,2,3), and the fact that
Ss = ({(0,1),(0,1,2,3)}) it follows that S4 < G(Nor).

» Hence G(Nor) = S,.

» Significance: We can organize the periodic points in any cycle configuration we like by a
suitable choice of update sequence w.
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How common is m-independence?

Theorem (Theorem [1])

For SDS over X = Circle,, precisely 104 of the 256 elementary cellular automaton rules induce

sequences (F;); that are m-independent for any n > 3. Of these, 86 are w-independent for any
n>3.
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How common is m-independence?

Theorem (Theorem [1])

For SDS over X = Circle,, precisely 104 of the 256 elementary cellular automaton rules induce

sequences (F;); that are m-independent for any n > 3. Of these, 86 are w-independent for any
n>3.

» Thus, roughly 40% of ECA SDS over Circle, are w-independent.

» Currently, it is unclear how this generalizes to other graph classes.

e EEEEEE— ‘o oae



Introduction

ound and Terminolog Basic Properties

The Dynamics Group

Coxeter Groups

Dynamics Groups over Circlep

How common is m-independence?

Theorem (Theorem [1])

For SDS over X = Circle,, precisely 104 of the 256 elementary cellular automaton rules induce
sequences (F;); that are m-independent for any n > 3. Of these, 86 are w-independent for any
n>3.

» Thus, roughly 40% of ECA SDS over Circle, are w-independent.

» Currently, it is unclear how this generalizes to other graph classes.

» The following classes have been analyzed more generally:

m Invertible SDS are (of course) w-independent.

m Nor-SDS, Nand-SDS, (Nor + Nand)-SDS, threshold SDS, and trivial SDS are all
w-independent.

m SDS with monotone functions are not necessarily w-independent (example, ECA rule 240).
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m-independence does not imply w-independence

» Example due to Kevin Ahrendt and Collin Bleak.
» Take X = Circle, and let F be induced by ECA 32 which has function table

(X,‘,l,X,',XH,l) 111 110 101 100 011 010 001 000
f 0 0 1 0 0 0 0 0

» Claim: Per(F32) = {0} for any permutation 7 € Sx.

» The state x = 0 is the only fixed point (use local fixed point graph).
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m-independence does not imply w-independence

» Example due to Kevin Ahrendt and Collin Bleak.
» Take X = Circle, and let F be induced by ECA 32 which has function table

(xi—1,xi,xi+1) | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O
3 0 0 1 0 0 0 0 0

» Claim: Per(F32) = {0} for any permutation 7 € Sx.
» The state x = 0 is the only fixed point (use local fixed point graph).

» Non-isolated 0-blocks will persist and grow by each application of F32 since

-0
~~
...10000001... ,
<~
—0
and
-0 —0
~~ =~
...10000011... and ...10000010...
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m-independence does not imply w-independence - cont.

» A state x € ] where each 0-block is isolated will eventually map to a state containing a
non-isolated zero-block. Consider the the configuration ...101... around vertex i.

Case 1: if i— 1 <z iori+ 1<, ithen a non-isolated O-block is created immediately.

Case 2: if i < i — 1 then a 0-block of length > 2 appears after two iterations. Here it is crucial
that 7 is a permutation and not a fair word.
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m-independence does not imply w-independence - cont.

» A state x € ] where each 0-block is isolated will eventually map to a state containing a
non-isolated zero-block. Consider the the configuration ...101... around vertex i.

Case 1: if i— 1 <z iori+ 1<, ithen a non-isolated O-block is created immediately.

Case 2: if i < i — 1 then a 0-block of length > 2 appears after two iterations. Here it is crucial
that 7 is a permutation and not a fair word.

» However, F32 is not w-independent: take x = (1,1,...,1) and update sequence
w=(1,1,2,2,...,n,n).
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m-independence does not imply w-independence - cont.

» A state x € ] where each 0-block is isolated will eventually map to a state containing a
non-isolated zero-block. Consider the the configuration ...101... around vertex i.

Case 1: if i— 1 <z iori+ 1<, ithen a non-isolated O-block is created immediately.

Case 2: if i < i — 1 then a 0-block of length > 2 appears after two iterations. Here it is crucial
that 7 is a permutation and not a fair word.

» However, F32 is not w-independent: take x = (1,1,...,1) and update sequence
w=(1,1,2,2,...,n,n).

» Observation:

m If (F;); is m-independent with periodic points P then there may be states in K"\ P that are
“locally periodic”: F; applied to x two or more times in succession gives x.

m Can still form the dynamics group, but in this case it only gives information about the
points in P (the “permutation periodic” points).
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Relations to Coxeter Theory

» A (finitely generated) Coxeter group with generating set S = {si,..., s} and symmetric
Coxeter matrix M = [mjj];; where mj; € NU {oo} and mj; = 1 iff i = j is the group with

presentation
W(S) = (s, snl(sis;)™) -

» Every group G generated by a finite set of involutions can therefore be viewed as a quotient of
a Coxeter group. One defines mj; to be the order of the product of the corresponding generators.

e EEEEEE— ‘o oace
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Relations to Coxeter Theory

» A (finitely generated) Coxeter group with generating set S = {si,..., s} and symmetric
Coxeter matrix M = [mjj];; where mj; € NU {oo} and mj; = 1 iff i = j is the group with
presentation

W(S) = (s1, ..., snl(sis)™) -

» Every group G generated by a finite set of involutions can therefore be viewed as a quotient of
a Coxeter group. One defines mj; to be the order of the product of the corresponding generators.

» Artin groups
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Relations to Coxeter Theory

» A (finitely generated) Coxeter group with generating set S = {s1,...,5s} and symmetric
Coxeter matrix M = [mjj];; where mj; € NU {oo} and mj; = 1 iff i = j is the group with
presentation

W(S) = (51, sal(sr5)™) -

» Every group G generated by a finite set of involutions can therefore be viewed as a quotient of
a Coxeter group. One defines mj; to be the order of the product of the corresponding generators.

» Artin groups

Theorem

If F = (F;); is m-independent and K = {0, 1}, then each F* is either trivial or an involution. As

1
a result, G(F) is either trivial or a quotient of a Coxeter group.
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Orders of F o FJ* for X = Circle,

» Let X = Circle, and consider induced sequences (F;);. What are the possible values for mj;,
the order of F* o Fj*?

» Clearly, i and j must differ by 1 for this to be interesting. Since F ; o F may only change
the states x; and x;y1, and since there are only four sub-configuration for these, we see that any
x € P under F ;o F* must have period 1 < p < 4.
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Orders of F o FJ* for X = Circle,

» Let X = Circle, and consider induced sequences (F;);. What are the possible values for mj;,
the order of F* o Fj*?

» Clearly, i and j must differ by 1 for this to be interesting. Since F ; o F may only change
the states x; and x;y1, and since there are only four sub-configuration for these, we see that any
x € P under F ;o F* must have period 1 < p < 4.

» The order F,; o F* must be a divisor of 12. As shown in [2], all possible divisors of 12 are
realized.
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Orders of F o FJ* for X = Circle,

» Let X = Circle, and consider induced sequences (F;);. What are the possible values for mj;,
the order of F* o Fj*?

» Clearly, i and j must differ by 1 for this to be interesting. Since F ; o F may only change
the states x; and x;y1, and since there are only four sub-configuration for these, we see that any
x € P under F ;o F* must have period 1 < p < 4.

» The order F,; o F* must be a divisor of 12. As shown in [2], all possible divisors of 12 are

realized.

Example (m; i+1 in the case of the parity function)

| i—1 i i+1 i+2
0 [ xi—1 Xi Xj41 X2
1| xj—1 Xji—1 + Xi + Xit1 Xi—1+ Xi + Xit2  Xit2
2 | Xj—1  Xi—1+Xig1+ X2 X+ Xig1+ X2 Xig2
3| Xi—1 Xi Xj+1 Xi+2

and conclude that mj ;11 = 3. (Actually, we computed the order of Fj ;o F;. Why is that okay?)
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Theorem

Let (F;); be m-independent with periodic points P. Then: (i) G(F) =1 if and only if all x € P
are fixed points. (ii) If G(F) acts transitively on P and p is a prime dividing |P|, then there
exists a word w € W such that (a) |Fix(Fy)| is divisible by p, and (b) all periodic orbits of
length > 2 of F,, have length p.

e EEEEEE— ‘oroae
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Theorem

Let (F;); be m-independent with periodic points P. Then: (i) G(F) =1 if and only if all x € P
are fixed points. (ii) If G(F) acts transitively on P and p is a prime dividing |P|, then there
exists a word w € W such that (a) |Fix(Fy)| is divisible by p, and (b) all periodic orbits of
length > 2 of F,, have length p.

Proof.

» The dynamics group is trivial if and only if each generator is trivial which happens precisely
when every periodic point is a fixed point.

] RIS
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Theorem

Let (F;); be m-independent with periodic points P. Then: (i) G(F) =1 if and only if all x € P
are fixed points. (ii) If G(F) acts transitively on P and p is a prime dividing |P|, then there
exists a word w € W such that (a) |Fix(Fy)| is divisible by p, and (b) all periodic orbits of
length > 2 of F,, have length p.

Proof.

» The dynamics group is trivial if and only if each generator is trivial which happens precisely
when every periodic point is a fixed point.

» Let x € P. For a finite group acting on a set X we always have |Gx| = [G : Gx] = |G|/| G|
where Gx = {¢ € G|¢(x) = x}. Since the action is assumed to be transitive, we conclude that
Gx = P and derive

|G| = [P Gx] ,
and thus that p divides |G|. By Cauchy’s Theorem, it follows that G has a subgroup of order p,
and this subgroup is cyclic with generator ¢ = [7]; F:;(I.), say. Let n € G be the corresponding
permutation representation of ¢. It is clear that n is a product of cycles of length either 1 or p,
and also that at least one cycle of length p must exists.

] RIS
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d O

Proposition ([3])

The group G(Nor) acts transitively on Per(Nor).
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Example (X = Circleq and (Nor;);)

» Periodic points 0 < (0,0,0,0), 1 < (1,0,0,0), 2 < (0,1,0,0), 3 < (0,0,1,0),
4« (1,0,1,0), 5 < (0,0,0,1) and 6 < (0,1,0,1).

» Permutation representations n; of Nor; for 0 < i < 3 (cycle form): ng = (0,1)(3,4),
n1 = (0,2)(5,6), n2 = (0,3)(1,4) and n3 = (0,5)(2,6).

» A7 has a presentation (x,y |x3 = y® = (xy)" = (xy~1xy)? = (xy ~2xy?) = 1), and
a=(0,1,2) and b = (2,3,4,5,6) are two elements of Sy that will generate Ay7.

» Now, a’ = np(ngn3n1)? = (0,4,1,6,3) and b’ = (n3n2)?(n2n1)? = (2,5,3), and after
relabeling of the periodic points using the permutation (0, 3,2)(1,5) we transform a’ into a and
b’ into b.

» Since every generator n; is even we conclude that G(Nor) = Ay7.
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Example (X = Circleq and (Nor;);)

» Periodic points 0 < (0,0,0,0), 1 < (1,0,0,0), 2 < (0,1,0,0), 3 < (0,0,1,0),
4« (1,0,1,0), 5 < (0,0,0,1) and 6 < (0,1,0,1).

» Permutation representations n; of Nor; for 0 < i < 3 (cycle form): ng = (0,1)(3,4),
n1 = (0,2)(5,6), n2 = (0,3)(1,4) and n3 = (0,5)(2,6).

» A7 has a presentation (x,y |x3 = y® = (xy)" = (xy~1xy)? = (xy ~2xy?) = 1), and
a=(0,1,2) and b = (2,3,4,5,6) are two elements of Sy that will generate Ay7.

» Now, a’ = np(ngn3n1)? = (0,4,1,6,3) and b’ = (n3n2)?(n2n1)? = (2,5,3), and after
relabeling of the periodic points using the permutation (0, 3,2)(1,5) we transform a’ into a and
b’ into b.

» Since every generator n; is even we conclude that G(Nor) = Ay7.

» Is there a sequence w such that the map Nor,, above has (a) two 3-cycles and a fixed
point, (b) five fixed points and a 2-cycle, (c) a 3-cycle, a 2-cycle and two fixed points?
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Example (Function F?32)

This function has table

(xi—1,xi,xi+1) | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
3
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Example (Function F?32)

This function has table

(xi—1,%,%i+1) | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
f 1 1 1 0 1 0 0 0

» Isolated zeroes are removed but never introduced, and non-isolated 0-blocks may never shrink.

» The function assigning to x the number of non-isolated zeros minus the number of isolated
zeroes is a non-decreasing potential function.

» All periodic points are fixed points for any w € W)’( and thus the dynamics group is trivial.

» The same argument allows us to conclude that functions 160, 164, 168 and 172 are
w-independent as well.
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Example (G(F®!))

Since F°! is invertible we have P = [F7. The function table is

(X,‘,l,X;,XH,]_) 111 110 101 100 011 010 001 000
f 0 0 1 1 0 0 1 1
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Example (G(F®!))

Since F°! is invertible we have P = [F7. The function table is

(X,‘,l,X;,XH,]_) 111 110 101 100 011 010 001 000
f 0 0 1 1 0 0 1 1

» Every generator is an involution and m; ;11 = 2.

» It follows directly that G(F5!) is a quotient of 73. Since every composition of distinct sets of
generators toggles a different subset of vertex states, it follows that G(F°!) contains at least 2"
elements, and we conclude that this dynamics group is isomorphic to Z3.
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Example (G(F®°))

ECA rule 60 has table

(Xi—1, Xis Xi+1) 111 110 101 100 011 010 001 000
f 0 0 1 1 1 1 0 0

It is the linear function given by (xi—1, i, Xi+1) — Xi—1 + X;.
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Example (G(F®°))

ECA rule 60 has table

(Xi—1, Xis Xi+1) 111 110 101 100 011 010 001 000
f 0 0 1 1 1 1 0 0

It is the linear function given by (xi—1, i, Xi+1) — Xi—1 + X;.

» Since the vertex functions are linear so are the X-local functions — may represent each of
them as a matrix. That is, F; has matrix representation A; := | + E; j_1 (standard basis.

» Each matrix A; has determinant 1, so the matrix group generated by A = {Ay,..., A} is a
subgroup of SL, (7).

» It is a known fact that A generates the entire SL,(F2), so G(F®°) is isomorphic to SL,(F2).

» For F we have mi i1 = 4.
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Example (G(F®°))

ECA rule 60 has table

(Xi—1, Xis Xi+1) 111 110 101 100 011 010 001 000
f 0 0 1 1 1 1 0 0

It is the linear function given by (xi—1, i, Xi+1) — Xi—1 + X;.

» Since the vertex functions are linear so are the X-local functions — may represent each of
them as a matrix. That is, F; has matrix representation A; := | + E; j_1 (standard basis.

» Each matrix A; has determinant 1, so the matrix group generated by A = {Ay,..., A} is a
subgroup of SL, (7).

» It is a known fact that A generates the entire SL,(F2), so G(F®°) is isomorphic to SL,(F2).

» For F we have mi i1 = 4.

» G(F'0) isomorphic to group with GAP index (96,227). G. Miller: 230/231.
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Summary and Some Open Questions

» Have seen how one may obtain insight into periodic orbits structure for asynchronous,
sequential systems.
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Summary and Some Open Questions

» Have seen how one may obtain insight into periodic orbits structure for asynchronous,
sequential systems.

» One can construct more general groups than G(F). One approach is to take Q C W to be a
set of update sequences and then consider

G(F,Q) = (Fu|w € Q) .

What choices of Q are useful?
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Summary and Some Open Questions

» Have seen how one may obtain insight into periodic orbits structure for asynchronous,
sequential systems.

» One can construct more general groups than G(F). One approach is to take Q C W to be a
set of update sequences and then consider

G(F,Q) = (Fu|w € Q).
What choices of Q are useful?
» How do we compute dynamics groups efficiently?

m if X is a graph union of X; and X3, can we derive the dynamics group for X from those
over X; and X when functions are suitably defined?

m |s there a result analogous to the Seifert/van Kampen Theorem from algebraic topology?
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