Faulty Universality

Bruno Durand

LIRMM – CNRS – Université de Montpellier II

November 26th 2011

1. introduction

One can compute in a faulty medium

An informal statement derived from real theorems

Peter Gàcs

There exists a Universal cellular fault tolerant cellular automaton in

- 3D + time easy
- 2D + time less easy
- 1D + time difficult

A set of theorems with *deep* consequences (e.g. ergodicity)

The author excepted:

- only one person (Lawrence Gray) says he understands the proofs
- a few people say they think the proofs are correct
- nobody is willing to explain the proofs

We (B.D., A. Romashchenko, A. Shen) can reconstruct a proof for 2D by using several powerful techniques combined.

A model for faults

We alternate

- 1. an iteration of the Cellular automaton
- 2. a perturbation with a small probability

A model for faults

We alternate

- 1. an iteration of the Cellular automaton
- 2. a perturbation with a small probability

Several models are possible

"For almost all fault sequence..."

A model for faults

We alternate

- 1. an iteration of the Cellular automaton
- 2. a perturbation with a small probability

Several models are possible

"For almost all fault sequence..."

A model for universality

Several possibilities :

- Turing universality
- intrinsic universality among CA

A model for faults

We alternate

- 1. an iteration of the Cellular automaton
- 2. a perturbation with a small probability

Several models are possible "For almost all fault sequence..."

A model for universality

Several possibilities :

- Turing universality
- intrinsic universality among CA

Problem: if the computation model is too complex, then one can cheat.

What we would like to explain in this talk

Fault tolerance **implies** a complex computation model (necessary condition independent of proofs)

- an encoding fonction
- a halting condition
- a decoding fonction

If the computation model allows too complex encoding, halting, or decoding, then one can cheat. Examples :

What we would like to explain in this talk

Fault tolerance **implies** a complex computation model (necessary condition independent of proofs)

- an encoding fonction
- a halting condition
- a decoding fonction

If the computation model allows too complex encoding, halting, or decoding, then one can cheat. Examples :

- the encoding computes (instead of our CA)
- the halting condition computes
- the decoding computes

The situation without faults is much more

- an encoding function maps a finite object into a finite zone
- a finitary halting condition : appearance of a state or bounded pattern
- a decoding fonction that reads a finite word in the medium

Example :

A. Gajardo, E. Goles, A. Moreira The *Langton ant* in the plane is Turinguniversal

Many others :

J. Conway The *Game of Life* is Turing-universal

But more and more complex models are needed (Damien Woods' talk). See N. Ollinger *Universalities in Cellular Automata*. 2. remembering one bit forever

Toom's rule

A cellular automaton

- binary alphabet
- in the plane
- majority of center, top, right

Finite patterns disappear :

Jeudi 27 Mars 2008 Aoia l'amitié peur bannièse Me Neur veici aujeurd'hui vàunis, vàunis Neur savons que neur semmes Teur des frées Et que ça va bien la vie,

Toom's rule is fault tolerant

Easy to be convinced Not trivial to prove Does not work in 1D Our technique (with A. Romashchenko): a hierarchy of islands of errors in the space-time diagram

> Juudi 27 Mais 2008 Avec l'amithé peur bannière Neus voici aujourd'hui réunis, véunis Neus zwors que neus sommes Teus des fières Et que ça va bien la vie.

Toom's game :

- Martin chooses x = 0 or x = 1
- Marcos fills the plane with x
- Ivan alternates

Toom/faults/Toom/faults/... as many times as he wants

Eric would like to find *x* with probability 1

Toom's game :

- Martin chooses x = 0 or x = 1
- Marcos fills the plane with x
- Ivan alternates Toom/faults/Toom/faults/... as

many times as he wants

Eric would like to find *x* with probability 1

Alexandro's sourcon. "The measure ...ergodicity ...convergence..."

True but not constructive enough

Toom's game :

- Martin chooses x = 0 or x = 1
- Marcos fills the plane with x
- Ivan alternates Toom/faults/Toom/faults/... as many times as he wants

Eric would like to find *x* with probability 1

Alexandro's solution . "The measure ...ergodicity ...convergence..."

True but not constructive enough

Anahi's solution :

"Let's put there an ant and see the limit frequency of what it observes"

Much better !

Toom's game :

- Martin chooses x = 0 or x = 1
- Marcos fills the plane with x
- B.D. A.R.

 Any constructive asymptotic solution is OK
 Inany times as ne wants
 Inrequency of what it observes

gence..."

Alexandro's solution.

True but not constructive enough

Much better !

Eric would like to find *x* with probability 1

remembering one bit forever

Reading the conserved bit Alexandro's solution . "The measure ... ergodicity ... conver-Toom's game : gence..." Martin chooses x = 0 or x = 1True but not constructive enough Marcos fills the plane with x A.R. This hierarchical construction can be used to prove theorems in perlimit colation theory Eric would like to find x Much better ! with probability 1

3. fault tolerance and models of computation

Computation models with faults

Encoding

The code of the simulated machine and its imput *must be duplicated in an infinite number of locations*

Neither constant nor (fully) periodic at infinity

If you want to specify that the input and the machine are independent in the encoding you need 2 dimensions for encoding

Halting and Decoding

Halting : the appearance of a finite pattern is not enough since any patterns appear infinitely often because of faults. We need at least a limit frequency (see Toom's game).

Decoding : if dimension less than 2, *the reading zone cannot be bounded* (and even cannot be uniform). The reason is that if the output may (must!) be partially destroyed...

Faulty universality

In dimension 2:

We have a construction with a very complex encoding/decoding.

It seems that the computation is performed by the cellular automaton. We would like to *prove* it

For this, the standard solution is to give properties of the encoding and decoding function that ensure this

Open problem: find such properties

In dimension 1:

Faulty universality

In dimension 2:

We have a construction with a very complex encoding/decoding.

It seems that the computation is performed by the cellular automaton. We would like to *prove* it

For this, the standard solution is to give properties of the encoding and decoding function that ensure this

Open problem: find such properties

In dimension 1: Maybe for Eric's 65th birthday !

Faulty universality

In dimension 2:

We have a construction with a very complex encoding/decoding.

It seems that the computation is performed by the cellular automaton. We would like to *prove* it

For this, the standard solution is to give properties of the encoding and decoding function that ensure this

Open problem: find such properties

In dimension 1: Maybe for Eric's 65th birthday !

The end.