EL UNIVERSO SEGÚN G (On Goles Universal Machines)

B. Martin

University Nice-Sophia Antipolis, I3S

DISCO 2011, Valparaiso, Chile For Eric's 60th Birthday

Foreword

What do they share with ?

Turing machines

Register machines

Cellular automata

Boolean circuits

Universality

Contents

1 Universality

- 2 Goal of the talk
- **3** Universality howto
- 4 El universo según G.

Computability basics

 $\varphi_0, \varphi_1, \dots$ programming system: listing which includes all the partial recursive functions of one argument over \mathbb{N} .

A programming system is *universal* if the partial function φ_{univ} s.t. $\varphi_{univ}(i, x) = \varphi_i(x) \quad \forall i, x \in \mathbb{N} \text{ is a p.r. function}$ (*ie.* if the system has a universal p.r. function)

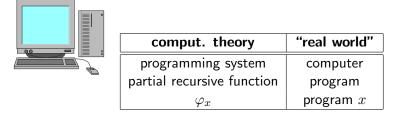
Well known universal programming systems:

• Turing machines

Circuits

Cellular automata

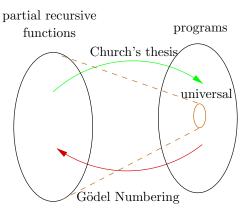
Some terminology



Universality

Definition

A program is computation universal if it can compute any p.r. function.



Universality - More Details

Theorem

Given an indexing of the programs, there is a univ. p.r. function φ_{univ} s.t. if φ_x is the p.r. function computed by P_x , then, $\forall x, y$,

 $\varphi_x(y) = \varphi_{\textit{univ}}(x,y)$

 φ_{univ} p.r. function \Rightarrow there is a universal program.

Contents

1 Universality

2 Goal of the talk

3 Universality howto

4 El universo según G.

Goal of the talk

- Provide a "universality howto"
- Illustrations with constructions by Goles et al.

Contents

1 Universality

2 Goal of the talk

3 Universality howto

4 El universo según G.

5 Conclusion

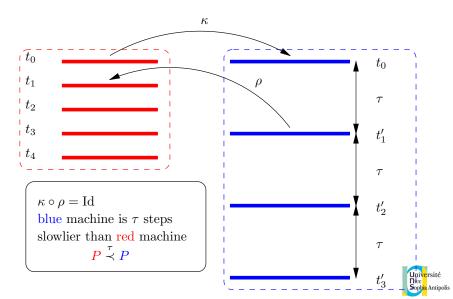
Universality for Minsky

From Minsky's famous book (1967):

The universal machine as an interpretive computer

The universal machine will be given just the necessary materials: a description, on its tape, of T and of s_x (string of symbols corresponding to the entry); some working space; and the built-in capacity to interpret correctly the rules of operation as given in the description of T. Its behavior is very simple. U will simulate the behavior of T one step at a time...

Simulations



A classification

The M-machine P_U

- given the code i of any M'-machine and an input x can simulate $P'_i(x)$ simulation universal
- simulates the behavior of a universal M'-machine

hereditary universal

- given an encoding $\chi(i)$ of a $M'\text{-machine, constructs a simulator of }P'_i$ construction universal

The computational equivalence

Theorem

If there is an M-program P_U which is either simulation-universal or hereditary-universal or construction-universal, then there is also an M-computation-universal program.

- *M* has a simulation-universal program simulating any *M'*-program. *M'* has a computation-universal program. A *M*-program just has to simulate a computation-universal *M'*-program.
- From the computational point of view, simulation universality and hereditary universality coincide.
- by definition.

Universal Programs Howto

First choose a computer M. Two cases:

- from scratch (fixing the bootstap problem):
 - propose an indexing of the $M\mbox{-}{\rm programs}$
 - build a $M\operatorname{-program}$ which can simulate any other $M\operatorname{-program}$
- refer to an existing computer M'-with a universal program; construct either:
 - a $M\operatorname{-program}$ which simulates any $M'\operatorname{-program}$
 - a M-program which simulates a universal M'-program.

Often, a chain of simulations is needed

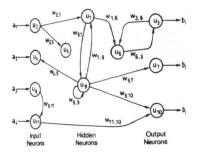
Contents

1 Universality

- 2 Goal of the talk
- **3** Universality howto
- 4 El universo según G.

5 Conclusion

Neural networks



- binary states to the neurons x_i
- square matrix A
- binary vector b

•
$$x'_i = \mathbf{1}\left(\sum_{j \in V_i} a_{ij} x_j - b_i\right)$$

Theorem (G., Matamala, 1997)

Any neural network N of size n can be simulated by a symmetric reaction-diffusion automaton with 3 states and of size 3(n + 1).

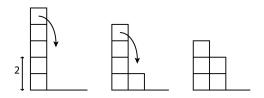
Comments

- Change of the original graph structure (asymmetric)
- Careful weighting of the connecting edges
- Add a clock to the RDA

Universality comes from the universality of the Neural Networks (which is construction-universal).

Thus, 3-RDA are hereditary-universal.

Sand Piles - Chip Firing Game



Theorem (G., Gajardo, 2005)

The sandpile over \mathbb{Z}^2 with the von Neumann neighborhood of radius $k \geq 2$ is Turing universal.

Using a graph connecting nodes: Chip Firing Game.

Theorem (G., Margenstern, 1997)

There is a universal parallel chip-firing game on an infinite connected undirected graph.

Comments

For Sand Piles:

- Construct logical gates, wires + crossing information
- Sand pile logics follows Bank's construction connecting logic elements to create FSM used to simulate any Turing machine.

For Chip Firing Game:

- Construction of logical gates, controller and registers
- Simulation of a two register machine (which simulates a universal Turing machine)

Both machines are hereditary universal

Ants

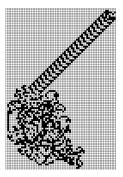
DDS moving an ant on a grid with states: {to-left, to-right}

- ant=arrow between 2 adjacent cells
- ant moves one cell forward at each time in the direction of its heading
- ant direction changes according to the cell where the ant arrives
- changes cell's state after the ant's visit

Single ant, all cells starting in to-left state, has a more or less symmetric trajectory in the first steps; then moves seemingly randomly until it starts building an infinite diagonal "highway".

Theorem (G., Moreira, Gajardo, 2002)

There is a universal single ant system over \mathbb{Z}^2 .



Comments

- Construction of logical gates and crossing information
- Ant's logics follows B.Durand's construction connecting logic elements to create FSM and uses them to simulate a CA.

Generalisation to $\Gamma(k,d)$ planar regular graphs of cardinality k and degree d as soon as d = 3 or 4.

Ant system is hereditary universal

Outline

1 Universality

- 2 Goal of the talk
- **3** Universality howto
- 4 El universo según G.

Conclusion

Simulation, hereditary and construction universality:

- General framework for constructing universal machines
- Allows P-completeness results, defines Chaitin complexity
- EL UNIVERSO SEGÚN G.
 - provides hereditary universal machines
 - chains of simulations
 - underlying simulations are of various types:
 - 2-Register machines
 - Circuits
 - Cellular automata

with simple local interactions capable of complex global behaviors

Thanks you for listening

Eric: Thanks for the results and... Bon anniversaire!

