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Santiago, Junio 28 - 30, 2017

PROGRAM and ABSTRACTS

Contents

1 Introduction 2

2 Wednesday, June 28 3

3 Thursday, June 29 4

4 Friday, June 30 5

5 Abstracts 6

1



1 Introduction

The Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Par-
ciales has been organized in sequential talks of 45, 30 and 15 minutes length (40, 25 and
10 minutes for the presentation, respectively, and 5 minutes for questions and comments).
All the talks will be given at Auditorium Erika Himmel König of Centro Mide UC.

In the following pages, we describe the corresponding program. In case of a multi-authored
contribution, the speaker is underlined.

The organizers acknowledge financial support by:

• Centro de Modelamiento Matemático (CMM) de la Universidad de Chile,

• Vicerrectoŕıa de Investigación de la Pontificia Universidad Católica de Chile,

• Facultad de Matemáticas de la Pontificia Universidad Católica de Chile,

• Centro de Investigación en Ingenieŕıa Matemática (CI2MA) de la Universidad de Con-
cepción.

In addition, we express our recognition and gratitude to all speakers for making Santiago
Numérico III possible.

Organizing Committee
Jessika Camaño

Gabriel N. Gatica
Norbert Heuer

Ricardo Oyarzúa

Santiago, June 2017
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2 Wednesday, June 28

8.30-9.15 REGISTRATION

9.15-9.30 WELCOME SPEECH
[Chairman: N. HEUER]

9.30-10.15 Ilona Ambartsumyan, Vince J. Ervin, Truong Nguyen,
Ivan Yotov: A nonlinear Biot-Stokes model for the interaction
of a non-Newtonian fluid with a poroelastic medium.

10.15-10.45 Gabriel Acosta, Juan Pablo Borthagaray, Norbert
Heuer: FE approximations of the nonhomogeneous fractional
Dirichlet problem.

10.45-11.00 Ricardo Oyarzúa, Manuel Solano, Paulo Zúñiga: A high
order mixed-FEM for the Stokes problem on curved domains.

11.00-11.30 COFFEE BREAK

11.30-12.00 Christopher Feuillade, Carlos Jerez-Hanckes,
Elwin van ’t Wout: The low-frequency resonance of acoustic
scattering at bubble clouds.

12.00-12.30 Raimund Bürger, Sudarshan K. Kenettinkara, David
Zoŕıo: Approximate Lax-Wendroff discontinuous Galerkin meth-
ods for hyperbolic conservation laws.

12.30-13.00 Jessika Camaño, Ricardo Oyarzúa, Ricardo Ruiz-Baier,
Giordano Tierra: Error analysis of an augmented mixed method
for the Navier-Stokes problem with mixed boundary conditions.

13.00-15.00 LUNCH

[Chairman: C. JEREZ-HANCKES]

15.00-15.45 Tan Bui-Thanh: The upwind hybridized discontinuous Galerkin
(HDG) framework: Theory and application to magnetohydrody-
namic and atmospheric applications.

15.45-16.15 Thomas Führer, Norbert Heuer, Ernst P. Stephan: On
the DPG method for Signorini problems.

16.15-16.45 Alexis Jawtuschenko, Ariel Lombardi: A mixed VEM
scheme for a problem with edge and vertex singularities.

16.45-17.15 COFFEE BREAK

17.15-17.30 Felipe Lepe, Salim Meddahi, David Mora, Rodolfo
Rodŕıguez: Acoustic interaction between dissipative fluids.

17.30-18.00 Nelson O. Moraga, Roberto C. Cabrales, Marcelo A.
Marambio: Solving unsteady coupled fluid mechanics and convec-
tive heat transfer problems by a geometric multigrid finite volume
method.

18.00-18.30 Michael Karkulik: Variational formulation of time-fractional
parabolic equations.

18.30-19.00 Fernando Henŕıquez, Carlos Jerez-Hanckes: Multiple
traces formulation and semi-implicit scheme for modeling packed
cells under electrical stimulation.

19.30 WELCOME COCKTAIL
3



3 Thursday, June 29
[Chairman: G. GATICA]

9.30-10.15 Erik Burman: Stabilized finite element methods for ill-posed prob-
lems with conditional stability.

10.15-10.45 Enrique Otárola: Optimization with respect to order in a frac-
tional diffusion model: analysis, approximation and algorithmic
aspects.

10.45-11.00 Raimund Bürger, Enrique Fernández-Nieto,
V́ıctor Osores: Polydisperse sedimentation in inclined channels.

11.00-11.30 COFFEE BREAK

11.30-12.00 Sergio González-Andrade, Sof́ıa López: A multigrid ap-
proach for a class of quasilinear PDEs arising in optimization prob-
lems.

12.00-12.30 Pedro Merino, Alexander Nenjer: FEM approximation of
sparse optimal control problems with finite–dimensional control
space.

12.30-13.00 Antti Niemi: Simple triangular shell finite elements based on shell
theory.

13.00-15.00 OFFICIAL PICTURE/LUNCH
[Chairman: R. BÜRGER]

15.00-15.45 Martin Costabel, Monique Dauge, Serge Nicaise, Jérôme
Tomezyk: The time-harmonic Maxwell equations with impedance
boundary conditions.

15.45-16.15 Ana Alonso Rodŕıguez, Francesca Rapetti: The discrete
relations between fields and potentials with high order Whitney
forms.

16.15-16.45 Jérôme Bonelle, Pierre Cantin, Erik Burman, Alexandre
Ern: A compact-stencil scheme on polyhedral meshes for steady
transport equations.

16.45-17.15 COFFEE BREAK

17.15-17.30 Carlos Garcia Vera, Gabriel N. Gatica, Antonio
Márquez, Salim Meddahi: A fully discrete scheme for the
pressure-stress formulation of a time-domain fluid-structure
interaction problem.

17.30-18.00 Jessika Camaño, Gabriel N. Gatica, Ricardo Oyarzúa, Ri-
cardo Ruiz-Baier: An augmented stress-based mixed finite ele-
ment method for the Navier-Stokes equations with nonlinear vis-
cosity.

18.00-18.30 Ernesto Cáceres, Gabriel N. Gatica,
Filánder A. Sequeira: A mixed virtual element method
for a pseudostress-based formulation of linear elasticity.

20.30 CONFERENCE DINNER: Restaurant El Mesón Nerudiano

4



4 Friday, June 30

[Chairman: R. OYARZÚA]

9.30-10.15 Maxim Olshanskii, Arnold Reusken, Xianmin Xu: Unfitted
finite element methods for PDEs on evolving surfaces.

10.15-10.45 Gabriel Acosta, Francisco Bersetche,
Juan Pablo Borthagaray: A finite element method for
fractional evolution problems.

10.45-11.00 Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa:
Analysis of an augmented fully-mixed formulation for the non-
isothermal Oldroyd–Stokes problem.

11.00-11.30 COFFEE BREAK

11.30-12.00 Raimund Bürger, Stefan Diehl, M. Carmen Mart́ı, Pep
Mulet, Ingmar Nopens, Elena Torfs, Peter A. Vanrol-
leghem: A multi-class model for batch settling in WRRFs.

12.00-12.30 Andrés I. Ávila, Andreas Meister, Martin Steigemann:
An adaptive Galerkin method for the time-dependent complex
Schrödinger equation.

12.30-13.00 Jaime E. Muñoz-Rivera, Reinhard Racke,
Mauricio Sepúlveda: On exponential stability for thermoelastic
plates – a comparison of different models.

13.00-15.00 LUNCH

[Chairman: N. HEUER]

15.00-15.45 Steffen Börm, Jens M. Melenk: Directional H2-matrices for
Helmholtz integral operators.

15.45-16.15 Carlos Pérez Arancibia, Catalin Turc: A high-order singu-
larity subtraction method for the Nyström discretization of bound-
ary integral equations.

16.15-16.45 Mario Álvarez, Gabriel N. Gatica, Ricardo Ruiz-Baier:
A posteriori error analysis of a fully-mixed formulation for the
Brinkman-Darcy problem.

16.45-17.15 COFFEE BREAK

17.15-17.30 Gabriel N. Gatica, Mauricio Munar, Filánder Sequeira:
A mixed virtual element method for the Navier-Stokes equations.

17.30-18.00 Roberto C. Cabrales, Francisco Guillén-González, Juan
Jaime, Nelson O. Moraga: A finite volume method for 3D con-
vective solidification.

18.00-18.30 Paul Escapil-Inchauspé, Carlos Jerez-Hanckes: Wave
diffraction by random surfaces: Uncertainty quantification via
sparse tensor boundary elements.

18.30-19.00 Eligio Colmenares, Gabriel N. Gatica, Ricardo Oyarzúa:
A posteriori error analyses for augmented mixed formulations of
the Boussinesq model.

19.00 CLOSING WORDS.
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5 Abstracts

Gabriel Acosta, Francisco Bersetche, Juan P. Borthagaray: A finite el-
ement method for fractional evolution problems. 09

Gabriel Acosta, Juan p. Borthagaray, Norbert Heuer: FE approximations
of the nonhomogeneous fractional Dirichlet problem. 10

Ana Alonso-Rodŕıguez, Francesca Rapetti: The discrete relations between
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Mario Álvarez, Gabriel N. Gatica, Ricardo Ruiz-Baier: A posteriori error
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Jessika Camaño, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-
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S A N T I A G O N U M É R I C O III
Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales

Departamento de Matemática, Pontificia Universidad Católica de Chile

SANTIAGO, CHILE, JUNIO 28 - 30, 2017

A finite element method for fractional evolution

problems

Gabriel Acosta∗ Francisco Bersetche† Juan Pablo Borthagaray‡

Abstract

In this work we introduce and analyze a finite element scheme for fractional-in-time
and in-space evolution problems. The left-sided fractional order derivative in time we
consider is employed to represent memory effects, while a non-local differentiation op-
erator in space accounts for long-range dispersion processes. We discuss well-posedness
and obtain regularity estimates for the evolution problems under consideration. The
discrete scheme we develop is based on piecewise linear elements for the space variable
and a convolution quadrature for the time component. The numerical experiments that
we have carried out show a good agreement with our theoretical estimates.

Key words: fractional Laplacian, Caputo derivative, evolution problems

Mathematics subject classifications (2010): 65R20, 65M60, 35R11

∗IMAS - CONICET y Departamento de Matemática, FCEyN - Universidad de Buenos Aires, Ciudad
Universitaria, Pabellón I Buenos Aires, Argentina, email: gacosta@dm.uba.ar.
†IMAS - CONICET y Departamento de Matemática, FCEyN - Universidad de Buenos Aires, Ciudad

Universitaria, Pabellón I Buenos Aires, Argentina, email: fbersetche@dm.uba.ar.
‡IMAS - CONICET y Departamento de Matemática, FCEyN - Universidad de Buenos Aires, Ciudad

Universitaria, Pabellón I Buenos Aires, Argentina, email: jpbortha@dm.uba.ar.
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S A N T I A G O N U M É R I C O III
Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales

Departamento de Matemática, Pontificia Universidad Católica de Chile

SANTIAGO, CHILE, JUNIO 28 - 30, 2017

FE approximations of the nonhomogeneous

fractional Dirichlet problem ∗

Gabriel Acosta† Juan Pablo Borthagaray‡ Norbert Heuer§

Abstract

We study finite element approximations of the following non-homogeneous Dirichlet
problem {

(−∆)su = f in Ω,
u = g in Ωc,

(1)

on a bounded domain Ω ⊂ Rn. The operator (−∆)s stands for the Fractional Laplacian
and the functions f and g belong to suitable spaces. Our approach is based on weak
imposition of the Dirichlet condition and incorporating a nonlocal analogous of the
normal derivative as a Lagrange multiplier in the formulation of the problem. In order
to obtain convergence orders for our scheme, regularity estimates are developed, both
for the solution and its nonlocal derivative. The method we propose requires that, as
meshes are refined, the discrete problems be solved in a family of domains of growing
diameter.

Key words: Fractional Laplacian, Mixed Methods, a priori error analysis

Mathematics subject classifications (1991): 65N30, 65N12, 35S15

∗This work was partially supported by CONICET, ANPCYT and UBA under grants PIP 2014
1220130100034CO, PICT 2014-1771 and UBACYT 20020130100205BA, and CONICYT project Fondecyt
1150056
†IMAS-CONICET y Depto. de Matemática, Universidad de Buenos Aires, Argentina, email:

gacosta@dm.uba.ar
‡IMAS-CONICET y Depto. de Matemática, Universidad de Buenos Aires, Argentina, email:

jpbortha@dm.uba.ar
§Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860,

Santiago, Chile, email: nheuer@mat.uc.cl
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S A N T I A G O N U M É R I C O III
Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales

Departamento de Matemática, Pontificia Universidad Católica de Chile

SANTIAGO, CHILE, JUNIO 28 - 30, 2017

The discrete relations between fields and potentials with high

order Whitney forms

Ana Alonso Rodŕıguez∗ Francesca Rapetti†

Abstract

Besides the list of nodes and of their positions, the mesh data structure also contains in-
cidence matrices, saying which node belongs to which oriented edge, which oriented edge
bounds which oriented face and so on. These matrices contain all the information about
the topology of the domain. Moreover, when using Whitney elements on simplices [2],
they connect the dofs describing potentials to dofs describing fields. As an example,
the relation E = −gradV between the electric field E and the scalar electric potential
V become at the discrete level e = −Gv where G is the transpost of the node-to-edge
incidence matrix and e and v are the vectors of edge circulations and values at nodes
of E and V respectively. When fields and potentials are approximated by polynomial
differential forms of higher degree, the discrete equivalent of the field/potential relation
is more structured. The involved matrices present a structure by blocks, each block tak-
ing into account of the transmission of dofs associated to a geometrical dimension. We
wish to investigate the block-structure of these matrices, when fields and potentials are
approximated by high order Whitney forms [5], with dofs given either by the wellknown
moments [4, 1] or by the more recent weights on the small simplices [3].

Key words: Discrete potentials, Whitney forms, inicidence matrices, high order approxi-
mations.

Mathematics subject classifications (1991): 78M10, 65N30, 68U20

References

[1] D. N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, ho-
mological techniques, and applications. Acta Numerica 15 (2006), 1–155.

[2] A. Bossavit, Computational Electromagnetism. Academic Press, New York, 1998.

∗Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123 Povo (TN)
Italy, email: ana.alonso@unitn.it.
†Laboratoire de Mathématiques, Université Côte d’Azur, Parc Valrose, 06108 Nice cedex 02, France,

email: frapetti@unice.fr
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S A N T I A G O N U M É R I C O III
Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales

Departamento de Matemática, Pontificia Universidad Católica de Chile

SANTIAGO, CHILE, JUNIO 28 - 30, 2017

A posteriori error analysis of a fully-mixed formulation

for the Brinkman-Darcy problem∗

Mario Álvarez† Gabriel N. Gatica‡ Ricardo Ruiz-Baier§

Abstract

We develop the a posteriori error analysis for a mixed finite element method applied
to the coupling of Brinkman and Darcy equations in 3D, modelling the interaction of
viscous and non-viscous flow effects across a given interface. The system is formulated
in terms of velocity and pressure within the Darcy subdomain, together with vorticity,
velocity and pressure of the fluid in the Brinkman region, and a Lagrange multiplier
enforcing pressure continuity across the interface. The solvability of the fully-mixed
formulation along with a priori error estimates for a finite element method have been
recently established in [M. Alvarez et al., Comput. Methods Appl. Mech. Engrg.
307 (2016) 68–95]. Here we derive a residual-based a posteriori error estimator for
such a scheme, and we prove its reliability exploiting a global inf-sup condition in
combination with suitable Helmholtz decompositions, and properties of Clément and
Raviart-Thomas operators. The estimator is also shown to be efficient, following a
localisation strategy and appropriate inverse inequalities. We present some numerical
tests to confirm the features of the estimator and to illustrate the performance of the
method in a number of application-oriented problems.

Key words: Brinkman-Darcy equations, vorticity-based formulation, mixed finite element
methods, a posteriori error analysis.

Mathematics subject classifications (1991): 65N30, 65N12, 76D07, 65N15

∗This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de
Chile; and by Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción.
†Sección de Matemática, Departamento de Ciencias Naturales, Sede de Occidente, Universidad de Costa

Rica, Costa Rica, email: mario.alvarezguadamuz@ucr.ac.cr.
‡CI2MA and Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C, Con-

cepción, Chile, email: ggatica@ci2ma.udec.cl.
§Mathematical Institute, Oxford University, Andrew Wiles Building, Woodstock Road, Oxford, UK,

email: ruizbaier@maths.ox.ac.uk.
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A nonlinear Biot-Stokes model for the interaction of a

non-Newtonian fluid with a poroelastic medium

Ilona Ambartsumyan∗ Vince J. Ervin† Truong Nguyen‡ Ivan Yotov§

Abstract

We develop and analyze a nonlinear model for the interaction of a quasi-Newtonian
free fluid with a poroelastic medium. The flow in the fluid region is described by
the Stokes equations and in the poroelastic medium by the quasi-static Biot model.
We estabilish existence and uniqueness of a weak solution. A mixed finite element
method is developed and analyzed for the approximation of the model, using a Lagrange
multiplier to enforce weakly the continuity of flux on the interface. We establish stability
and optimal order a priori error estimates. Computational experiments confirming the
theoretical convergence rates, as well as applications to flows in filters and hydraulic
fracturing are presented.

Key words: nonlinear Biot-Stokes equations, non-Newtonial fluid, fluid-structure interac-
tion

Mathematics subject classifications (2010): 35M13, 65M12, 65M60, 76D07, 76S05
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An adaptive Galerkin method for the time-dependent complex

Schrödinger equation ∗

Andrés I. Ávila† Andreas Meister‡ Martin Steigemann§.

Abstract

Nonlinear time-dependent Schrödinger equations (NLSE) model several important prob-
lems in quantum physics and morphogenesis. Recently, vortex lattice formation were
experimentally found in Bose-Einstein condensate and Fermi superfluids, which are
modeled by adding a rotational term in the NLSE equation. Numerical solutions have
been computed by using separate approaches for time and space variables. If we see the
complex equation as a system, wave methods can be used. In this article, we consider
finite element approximations using continuous Galerkin schemes in time and space by
adaptive mesh balancing both errors. To get this balance, we adapt the dual weighted
residual method used for wave equations and estimates of error indicators for adaptive
space-time finite element discretization. The results show how important is dynamic
refinement to control the degrees of freedom in space.

Key words: nonlinear time-dependent Schrödinger equation, dual weighted residual method,
adaptive Galerkin method
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The low-frequency resonance of acoustic scattering at bubble

clouds∗

Christopher Feuillade† Carlos Jerez-Hanckes‡ Elwin van ’t Wout§

Abstract

When air bubbles in water are excited by a low-frequency acoustic signal, they exhibit
resonant behaviour. This has a strong impact on the accuracy of underwater sonar
surveillance systems, which typically operate at frequencies close to the resonance mode
of fish with swim bladders. Even though the resonance of a single air bubble can be
calculated analytically, computational methods have to be used when considering a
cloud of bubbles. In the case of bubbles situated close to each other, the standard
techniques based on low-frequency approximations fail to predict the pronounced fre-
quency shift accurately. In this study, a boundary integral equation of the transmission
problem is being discretized with the multi-trace formulation. The numerical results
show an accurate simulation of the low-frequency behaviour of different bubble cloud
configurations.

Key words: acoustics, resonance, boundary integral equation
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A compact-stencil scheme on polyhedral meshes for steady

transport equations∗

Jérôme Bonelle† Pierre Cantin‡ Erik Burman§ Alexandre Ern¶

Abstract

In this work [1], we present a new vertex-based scheme for the steady transport problem
on polyhedral meshes. This scheme extends the stabilized Lagrange finite element on
general meshes while containing the total number of degrees of freedom, i.e. considering
only those attached to mesh vertices. The key idea is to consider scalar degrees of free-
dom attached to both mesh vertices and mesh cells (as for VAG schemes [2]). Taking in-
spiration from the recent analysis of composite finite element schemes in [3], the scheme
is partially stabilized using the Continuous Interior Penalty approach (see [4]) so as to
not hamper the possibility to eliminate locally cell-based unknowns. Well-posedness is
obtained from an inf-sup condition and a priori error estimates are inferred for smooth
and rough solutions. Numerical results are finally presented on three-dimensional poly-
hedral meshes, and the benefit of our approach is illustrated in terms of computational
cost.

Key words: polyhedral meshes, transport equations, a priori error analysis

Mathematics subject classifications (1991): 65N12, 65N30, 65N08

References

[1] P. Cantin, J. Bonelle, E. Burman and A. Ern, A vertex-based scheme on poly-
hedral meshes for advection-reaction equations with sub-mesh stabilization. CAMWA,
2016.

[2] R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive
flows in porous media. ESAIM, 2011.

∗This work was partially supported by EDF R&D.
†EDF R&D, 6 quai de Watier, 78401 Chatou BP 49, France, email: jerome.bonelle@edf.fr
‡Facultad de Matematicas, Pontificia Univ. Catolica de Chile, Chile, email: pircantin@gmail.coml
§University College of London, Dept. of Mathematics, UK, email: e.burman@ucl.ac.uk.
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Directional H2-matrices for Helmholtz integral operators

Steffen Börm∗ Jens M. Melenk†

Abstract

Boundary Element Methods (BEM) are an important tool for the numerical solution
of acoustic and electromagnetic scattering problems. These BEM matrices are fully
populated so that data-sparse approximations are required to reduce the complexity
from quadratic to log-linear. For the high-frequency case of large wavenumber, standard
blockwise low-rank approaches are insufficient. One possible data-sparse matrix format
for this problem class that can lead to log-linear complexity are directional H2-matrices.
[1, 2, 4, 9]. We present a full analysis of a specific incarnation of this approach, [4].
Directional H2-matrices are blockwise low rank matrices, where the block structure is
determined by the so-called parabolic admissibility condition, [6]. In order to achieve
log-linear complexity with this admissibility condition, a nested multilevel structure
such as H2-matrices [7] is essential, which provides a data-sparse connection between
clusters of source and target points on different levels. We present a particular variant
of directional H2 matrices in which all pertinent objects are obtained by polynomial
interpolation. This allows us to rigorously establish exponential convergence in the
block rank in conjunction with log-linear complexity. We will also discuss the relation
of the directional H2-matrices to Butterfly Algorithms, [8, 5, 3].

Key words: Helmholtz equation, boundary element method, matrix compression, multi-
pole method
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The upwind hybridized discontinuous Galerkin (HDG)

framework: Theory and application to

magnetohydrodynamic and atmospheric applications

Tan Bui-Thanh∗

Abstract

By revisiting the classical Godunov approach for linear system of hyperbolic Partial
Differential Equations (PDEs) we show that it is hybridizable. As such, it is a natural
recipe for us to constructively and systematically establish a unified HDG framework
for a large class of PDEs including those of Friedrichs type. The unification is fourfold.
First, it provides a single constructive procedure to devise HDG schemes for elliptic,
parabolic, hyperbolic, and mixed-type PDEs. Second, it reveals the nature of the trace
unknowns as the Riemann solutions. Third, it provides a parameter free HDG frame-
work, and hence eliminating the usual complaint that HDG is a parameter-dependent
method. Fourth, it allows us to construct the existing HDG methods in a system-
atic manner. In particular, using the unified framework we can rediscover most of
the existing HDG methods and furthermore discover new ones. We present a rigorous
wellposedness of the upwind HDG framework for abstract PDEs of Friedriechs’ type.
Convergent analysis will be established for PDEs arising from Magnetohydrodynamic
and atmospheric applications. For nonlinear PDEs, we present an IMEX scheme that
exploits the HDG method to solve a single small linear system in each time step: a
tremendous advantage over traditional approaches. Part of the talk are the multilevel
HDG and iterative HDG approaches that we have developed to solve the HDG systems
efficiently on parallel supercomputers. Serial and parallel numerical results for various
PDEs will be presented to verify and demonstrate our upwind HDG framework.
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A multi-class model for batch settling in WRRFs ∗

Raimund Bürger † Stefan Diehl‡ M. Carmen Mart́ı§ Pep Mulet¶

Ingmar Nopens‖ Elena Torfs∗∗ Peter A. Vanrolleghem††

Abstract

In order to achieve a unified description of the settling processes in water resource re-
covery facilities (WRRFs) taking place in both primary settling tanks (PSTs) and sec-
ondary settling tanks (SSTs) in conventional wastewater treatment, a new framework,
based on the state of the art Bürger-Diehl settling model for SSTs [2], was introduced
in [4]. This new unified framework is built on the idea that the distributed properties
of the sludge can be captured by dividing the total sludge concentration into a num-
ber of classes, depending on the settling velocity distribution. From the mathematical
point of view, the extension to a multi-class scenario leads us to a system of nonlinear
convection-diffusion equations of the type

∂X

∂t
+

∂f(X)

∂z
=

∂

∂z

(
B(X)

∂X

∂z

)
, (1)
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††modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 Av. de la Médecine,
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where X = (X1, . . . , XN )T is the sought solution depending on the spatial position z
and time t, Xi = Xi(z, t) the mass concentration of class i, i = 1, . . . , N , where N is
the number of classes considered, f(X) = (f1(X), . . . , fN (X)) is a vector of convective
flux density functions modelling the settling of the sludge and B(X) is a given N ×N
matrix expressing the diffusive correction, in this case, due to the solids compressibil-
ity. This system has to be supplied with initial and boundary conditions. It is well
known that under the typical assumptions of sedimentation with compression, (1) is
a strongly degenerate parabolic system, while when settling effects are dominant, and
B(X) = 0, it is a first-order, nonlinear hyperbolic system of conservation laws. Due to
the nonlinearity of f as a function of X in combination with the degenerate behaviour,
discontinuities or sharp gradients are expected to develop. This property calls for spe-
cific techniques for the numerical simulations. The use of implicit-explicit Runge-Kutta
(IMEX-RK) schemes [1], along with the weighted essentially non-oscillatory (WENO)
shock-capturing technology for the discretization of the set of equations (1), is advo-
cated in [3]. These schemes combine an explicit treatment for the time discretization
of the convective terms with an implicit treatment of the diffusive ones, with the result
that the resulting IMEX scheme enjoys a less restrictive stability condition than a fully
explicit scheme. The use of high resolution shock-capturing finite difference WENO
schemes for the discretization of the convective term ensure obtaining precise numer-
ical approximations, accurately resolving the shocks arising and avoiding the spurious
oscillations that otherwise often appear.

Key words: multi-class kinematic flow model, wastewater treatment, convection-diffusion
equation, primary settling tank, secondary settling tank, settling velocity distribution
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Polydisperse sedimentation in inclined channels∗

Raimund Bürger† Enrique Fernández-Nieto‡ V́ıctor Osores§

Abstract

In this talk we consider the flow of a fluid in a channel inclined by an angle θ. The
fluid carries particulate matter consisting of small particles that belong to N different
species differing in size and density. Here, the polydisperse transport and sedimentation
process is modelled by combining a multilayer shallow water system with a polydisperse
sedimentation model. The resulting model can be written as a hyperbolic system with
nonconservative products of the form

∂t ~w +A(~w)∂x ~w + B(~w)∂y ~w = G(~w) (1)

(plus initial and boundary conditions), which we solve through finite volume techniques.
The main difficulty is the definition of the nonconservative products that appear in the
model. The unknowns of interest are the height h and the velocity field of the fluid ~v
along with the concentrations by layer of the different solid species φj,α for j = 1, . . . , N
and α = 1, . . . ,M . We show how to construct a high-order method to approximate the
present hyperbolic system with nonconservative products, and report several numerical
tests.

Key words: nonconservative products, finite volume method, hyperbolic systems
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Approximate Lax-Wendroff discontinuous Galerkin methods

for hyperbolic conservation laws ∗

Raimund Bürger† Sudarshan K. Kenettinkara‡ David Zoŕıo§

Abstract

The Lax-Wendroff time discretization [4] is an alternative method to the popular to-
tal variation diminishing Runge-Kutta time discretization of discontinuous Galerkin
schemes for the numerical solution of hyperbolic conservation laws. The resulting fully
discrete schemes are known as LWDG and RKDG methods, respectively. Although
LWDG methods are in general more compact and efficient than RKDG methods (cf.,
e.g., [2]) of comparable order of accuracy, the formulation of LWDG methods [3, 5, 6]
involves the successive computation of exact flux derivatives. This procedure allows
to construct schemes of arbitrary formal order of accuracy in space and time. A new
approximation procedure, implemented in [7] for finite difference schemes, avoids the
computation of exact flux derivatives. The resulting approximate LWDG schemes, ad-
dressed as ALDWG schemes, are easier to implement than their original LWDG versions.
Numerical results for the scalar and system cases in one and two space dimensions indi-
cate that ALWDG methods are more efficient in terms of error reduction per CPU time
than LWDG methods of the same order of accuracy. Moreover, increasing the order of
accuracy leads to substantial reductions of numerical error and gains in efficiency for
solutions that vary smoothly. This contribution summarizes results of [1].

Key words: Discontinuous Galerkin scheme, Lax-Wendroff time discretization, systems of
conservation laws
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Abstract

The design and analysis of computational methods for partial differential equations
typically relies heavily on the well-posedness of the system under study, both to prove
that the finite dimensional system resulting from discretization is invertible and for error
estimates on the discrete solution. In practice a large class of problems are indefinite,
with stability properties that are not so easily exploited for the design of numerical
methods, or even ill-posed, with only some conditional stability. In such cases typically
standard finite element methods may fail: the discrete system may not be invertible
and when it is, the solution may be inaccurate, even if the ill-posed problem admits
a unique solution in a neighbour hood of the available data. The standard way to
approach ill-posed problems is through regularisation of the continuous problem and
then discretization of the resulting, well-posed, perturbed problem, this however leads
to the need of balancing errors due to regularization and discretization.Here we will
discuss a different approach based on a stabilized primal-dual finite element formulation,
introduced in [1] for the approximation of indefinite elliptic problems. An analysis in the
ill-posed case was proposed in [2, 3]. This method is based on the discretization of the ill-
posed problem without any regularization on the continuous level , instead the discrete
system is regularized using ideas from stabilized finite element methods. Sometimes
these stabilizing terms coincide with typical Tikhonov regularizations, but in many
cases the regularizations do not have an interpretation on the continuous level. We show
that the discrete system is always invertible and that the approximate solution satisfies
(conditional) a priori and a posteriori error estimates that match the approximation
order of the finite element space and the conditional stability properties of the discrete
solution. Data perturbations also enter the analysis in a natural way. Three different
problems will be discussed to illustrate the theory: The elliptic Cauchy problem, where
Dirichlet and Neumann data are set only on a subset of the boundary; an elliptic
data assimilation problem where the solution is known in a subset of the bulk, but
no boundary data is available; finally a parabolic problem with Dirichlet boundary
conditions, where the solution is known in some space time cylinder, but the initial
data is unknown [4].
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Abstract

Solidification is a phase change problem appearing in several engineering applications
such as liquid to solid phase transformations of metals and alloys, food freezing and
freeze-drying for pharmaceutical drugs production. The mathematical model (see [1])
for this problem is formed by a system of nonlinear partial differential equations jointly
with auxiliary expressions relating the variables of the problem: the velocity of the fluid
u, the pressure p, the enthalpy H, the temperature T and the phase change function
fpc. The last variable depends on T and describes the state of every point on the
calculation domain Ω: if T is lower than the solid temperature Ts, fpc(T ) = 0 and we
are in solid phase; if T is greater than the liquid temperature Tl, fpc(T ) = 1 and we are
in liquid phase, if Ts < T < Tl, fpc(T ) = (Tl − Ts)

−1(T − Ts), and we have coexistence
of both phases. Additionally, it is assumed that the only external force acting on
the system is the gravity g. The numerical method is based on the finite volume
method. Each variable is calculated in a sequential form and the velocity-pressure
coupling is managed by using a SIMPLE-like algorithm developed in [2]. To verify
the computational implementation of the algorithm, we consider 3D natural convection
problem for several Rayleigh numbers from 103 to 106 and compare with those presented
in [3]. The investigated case is the solidification of a Al-Si alloy in a 3D cavity with a
graphite mold, extending the 2D results of [4].
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A mixed virtual element method for quasi-Newtonian

Stokes flows∗

Ernesto Cáceres† Gabriel N. Gatica‡ Filander Sequeira§

Abstract

In this paper we introduce and analyze a virtual element method (VEM) for an aug-
mented mixed variational formulation of a class of nonlinear Stokes models arising in
quasi-Newtonian fluids. While the original unknowns are given by the pseudostress,
the velocity, and the pressure, the latter is eliminated by using the incompressibility
condition, and in order to handle the nonlinearity involved, the velocity gradient is set
as an auxiliary one. In this way, and adding a redundant term arising from the consti-
tutive equation relating the psdeudostress and the velocity, an augmented formulation
showing a saddle point structure is obtained, whose well-posedness has been established
previously by using known results from nonlinear functional analysis. Then, following
the basic principles and ideas of the mixed-VEM approach, we introduce a Galerkin
scheme employing generic virtual element subspaces and projectors satisfying suitable
abstract conditions, and derive the corresponding solvability analysis, along with the
associated a priori error estimates for the virtual element solution as well as for the
fully computable projection of it. Next, we provide two specific choices of subspaces
and local projectors verifying the required hypotheses, one of them yielding an optimally
convergent mixed-VEM for the fully nonlinear problem studied here, and the other one
providing a new approach for the linear version of it, that is for the Stokes problem.
In addition, we are able to apply a second element-by-element postprocessing formula
for the pseudostress, which yields an optimally convergent approximation of it with
respect to the broken H(div)-norm. Finally, several numerical results illustrating the
good performance of the method and confirming the theoretical rates of convergence
are reported.
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A mixed virtual element method for a pseudostress-based

formulation of linear elasticity ∗

Ernesto Cáceres† Gabriel N. Gatica‡ Filánder A. Sequeira§

Abstract

In this talk we introduce and analyze a mixed virtual element method (mixed-VEM)
for a pseudostress-displacement formulation of the linear elasticity problem with non-
homogeneous Dirichlet boundary conditions. More precisely, we employ a mixed formu-
lation which does not require symmetric tensor spaces in the finite element discretiza-
tion. The main unknowns here are given by the pseudostress and the velocity, whereas
physical quantities such as the stress, the strain tensor of small deformations, and the
rotation, are computed through a simple postprocessing in terms of the pseudostress
variable. We first recall the corresponding variational formulation, and then summa-
rize the main mixed-VEM ingredients that are required for our discrete analysis. In
particular, we utilize a well-known local projector onto a suitable polynomial subspace,
in order to define a calculable version of our discrete bilinear form, whose continuous
version requires information of the variables on the interior of each element. Next,
we show that the global discrete bilinear form satisfies the hypotheses required by the
Babuška-Brezzi theory. In this way, we conclude the well-posedness of our mixed-VEM
scheme and derive the associated a priori error estimates for the virtual solution as
well as for the fully computable projection of it. Furthermore, we also introduce a
second element-by-element postprocessing formula for the pseudostress, which yields
an optimally convergent approximation of this unknown with respect to the broken
H(div)-norm. In addition, this postprocessing formula can also be applied to the stress
variable. Finally, several numerical results illustrating the good performance of the
method and confirming the theoretical rates of convergence are presented.
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§Escuela de Matemática, Universidad Nacional, Heredia, Costa Rica, email: filander.sequeira@una.cr.

38



References

[1] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, H(div) and H(curl)-
conforming VEM. Numer. Math. 133, 2 (2016), 303–332.

[2] L. Beirão da Veiga, F. Brezzi, L.D. Marini, and A. Russo, Mixed virtual element
methods for general second order elliptic problems on polygonal meshes. ESAIM Math.
Model. Numer. Anal. 50, 3 (2016), 727–747.
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An augmented stress-based mixed finite element method

for the Navier-Stokes equations with nonlinear viscosity∗

Jessika Camaño† Gabriel N. Gatica‡

Ricardo Oyarzúa§ Ricardo Ruiz-Baier¶

Abstract

A new stress-based mixed variational formulation for the Navier-Stokes equations with
constant density and variable viscosity depending on the magnitude of the strain ten-
sor, is proposed and analyzed in this work. Our approach is a natural extension of
a technique applied in a recent paper by some of the authors to the same boundary
value problem but with a viscosity that depends nonlinearly on the gradient of veloc-
ity instead of the strain tensor. In the present case, and besides remarking that the
strain-dependence for the viscosity yields a physically more meaningful model, we no-
tice that in order to handle this nonlinearity we now need to incorporate not only the
strain itself but also the vorticity as auxiliary unknowns. Furthermore, similarly as
in that previous work, and aiming to deal with a suitable space for the velocity, the
variational formulation is augmented with Galerkin type terms arising from the consti-
tutive and equilibrium equations, the relations defining the two additional unknowns,
and the Dirichlet boundary condition. In this way, and since the resulting augmented
scheme can be rewritten as a fixed point operator equation, the classical Schauder and
Banach theorems together with monotone operators theory are applied to derive the
well-posedness of the continuous and associated discrete schemes. In particular, we show
that arbitrary finite element subspaces can be utilized for the latter, and then we derive
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optimal a priori error estimates and the corresponding rates of convergence. Next, a re-
liable and efficient residual-based a posteriori error estimator on arbitrary polygonal and
polyhedral regions is proposed. The main tools employed include Raviart-Thomas and
Clément interpolation operators, inverse and discrete inequalities, and the localization
technique based on triangle-bubble and edge-bubble functions. Finally, several numer-
ical essays illustrating the good performance of the method, confirming the reliability
and efficiency of the a posteriori error estimator, and showing the desired behaviour of
the adaptive algorithm, are reported.

Key words: Navier-Stokes equations, nonlinear viscosity, augmented mixed formulation,
fixed point theory, mixed finite element methods, a priori error analysis
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Roberto C. Cabrales† Francisco Guillén-González‡
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Abstract

Solidification is a phase change problem appearing in several engineering applications
such as liquid to solid phase transformations of metals and alloys, food freezing and
freeze-drying for pharmaceutical drugs production. The mathematical model (see [1])
for this problem is formed by a system of nonlinear partial differential equations jointly
with auxiliary expressions relating the variables of the problem: the velocity of the fluid
u, the pressure p, the enthalpy H, the temperature T and the phase change function
fpc. The last variable depends on T and describes the state of every point on the
calculation domain Ω: if T is lower than the solid temperature Ts, fpc(T ) = 0 and we
are in solid phase; if T is greater than the liquid temperature Tl, fpc(T ) = 1 and we are
in liquid phase, if Ts < T < Tl, fpc(T ) = (Tl − Ts)

−1(T − Ts), and we have coexistence
of both phases. Additionally, it is assumed that the only external force acting on
the system is the gravity g. The numerical method is based on the finite volume
method. Each variable is calculated in a sequential form and the velocity-pressure
coupling is managed by using a SIMPLE-like algorithm developed in [2]. To verify
the computational implementation of the algorithm, we consider 3D natural convection
problem for several Rayleigh numbers from 103 to 106 and compare with those presented
in [3]. The investigated case is the solidification of a Al-Si alloy in a 3D cavity with a
graphite mold, extending the 2D results of [4].
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Analysis of an augmented fully-mixed formulation for the

non-isothermal Oldroyd–Stokes problem∗

Sergio Caucao† Gabriel N. Gatica‡ Ricardo Oyarzúa§

Abstract

In this work we present an augmented mixed finite element method for the Oldroyd–
Stokes problem describing the motion of a non-isothermal incompressible fluid subject
to a heat source. The model is described by a system of equations where the Stokes and
heat equations are coupled through the convective term and the viscosity of the fluid.
We introduce the strain, stress and vorticity tensors, as well as the gradient of the tem-
perature, as further unknowns, which together with the velocity, and the temperature
of the fluid, constitute the main unknowns of the system. The pressure is eliminated
from the system and can be recovered through a simple post-process of the solution.
Since the convective term in the heat equation forces both the velocity and the tem-
perature to live in a smaller space than usual, we augment the variational formulation
by using the constitutive and equilibrium equations, the relation defining the strain
and vorticity tensors, and the temperature boundary condition. Next, we combine the
well-known Schauder and Banach fixed-point theorems with the Lax–Milgram lemma
and prove existence and uniqueness of solution of the resulting augmented fully-mixed
formulation. The associated Galerkin scheme is defined by Raviart–Thomas elements of
order k for the stress tensor and the heat flux vector, continuous piecewise polynomials
of order < k + 1 for velocity and temperature, and piecewise polynomials of order < k
for the strain tensor and the vorticity, and its solvability is established similarly to its
continuous counterpart, using in this case Brouwer fixed-point theorem for the exis-
tence of solution. Finally, we derive optimal a priori error estimates and provide several
numerical results illustrating the good performance of the scheme and confirming the
theoretical rates of convergence.
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A posteriori error analyses for augmented mixed

formulations of the Boussinesq model∗

Eligio Colmenares† Gabriel N. Gatica‡ Ricardo Oyarzúa§

Abstract

In previous works of us, new augmented mixed finite element schemes were develo-
ped for the stationary Boussinesq problem describing heat driven flow. Our metho-
dologies consisted of a fixed-point strategy for the variational problems that resulted
after introducing the same modified pseudostress tensor as an auxiliary unknown in the
Navier-Stokes type system involved in the model and, separately, the normal component
of the temperature gradient and a vector depending on the temperature, its gradient and
the fluid velocity as auxiliary variables in the advection-diffusion equation describing
the heat transfer. In both cases, suitable parameterized redundant Galerkin terms were
incorporated to the schemes. The well-posedness of both the continuous and discrete
settings, the convergence of the associated Galerkin schemes, as well as a priori error
estimates of optimal order were stated there. In this talk we present the corresponding
a posteriori error analyses of our aforementioned augmented methods in two and three
dimensions. Standard arguments relying on duality techniques, and suitable Helmholtz
decompositions are used to derive global error indicators and to show their reliability.
A globally efficiency property with respect to the natural norm for each estimator is
further proved via usual localization techniques of bubble functions. Finally, adaptive
algorithms based on reliable, fully local and computable a posteriori error estimators
are proposed, and their performance and effectiveness are illustrated through a few
numerical examples in two dimensions.

Key words: Boussinesq model, augmented mixed formulation, a posteriori error analysis,
reliability, efficiency, adaptive algorithm.
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The time-harmonic Maxwell equations with impedance

boundary conditions

Martin Costabel∗ Monique Dauge†

Serge Nicaise‡ Jérôme Tomezyk§

Abstract

We review some variational formulations of the time-harmonic Maxwell equations with
impedance boundary conditions in smooth and non-smooth domains. Some regular-
ity and a priori error estimates will be presented. Numerical results illustrating our
theoretical analysis will be given.
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Wave diffraction by random surfaces: Uncertainty

quantification via sparse tensor boundary elements∗

Paul Escapil-Inchauspé† Carlos Jerez-Hanckes‡

Abstract

We consider the numerical solution of time-harmonic scattering of acoustic waves or
transverse electric polarized fields from obstacles with uncertain geometries, restrict-
ing ourselves to a large variety of small stochastic perturbations of a given relatively
smooth nominal shape. Using a first-order shape approximation, we derive determinis-
tic boundary equations for the mean field and the two-point correlation function of the
random solution for both sound-soft (resp. sound-hard) obstacle and transmission scat-
tering problems. Taking advantage of the tensor structure of the statistical moments, we
derive a sparse tensor Galerkin discretization of these equations, by the so-called com-
bination technique and we generalize this hierarchical technique to non-nested meshes
thanks to the formalism of shape calculus. At the end, we find an accurate approxima-
tion of the two-point correlation field with O(Nlog(N)) degrees of freedom instead of
O(N2).

Key words: wave scattering, shape calculus, boundary element methods, sparse tensor
approximation, uncertainty quantification
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[1] W. Śmigaj, S. Arridge, T. Betcke, J. Phillips and M. Schweiger, Solving
Boundary Integral Problems with BEM++. ACM Trans. Math. Software, no. 41, 6:1–
6:40, 2015

[2] R. Potthast, Frechet differentiability of boundary integral operators in inverse acoustic
scattering. Inverse Problems, vol. 10, no. 2, 1994

∗This work was partially supported by Fondecyt 1171491
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Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales
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On the DPG method for Signorini problems ∗

Thomas Führer† Norbert Heuer‡ Ernst P. Stephan§

Abstract

We derive and analyze discontinuous Petrov-Galerkin methods with optimal test func-
tions for Signorini-type problems as a prototype of a variational inequality of the first
kind. We present different symmetric and non-symmetric formulations where optimal
test functions are only used for the PDE part of the problem, not the boundary con-
ditions. For the symmetric case and lowest order approximations, we provide a simple
a posteriori error estimate. In a second part, we apply our technique to the singularly
perturbed case of reaction dominated diffusion. Numerical results show the performance
of our method and, in particular, its robustness in the singularly perturbed case.

Key words: contact problem, Signorini problem, variational inequality, DPG method,
optimal test functions, ultra-weak formulation, reaction-dominated diffusion
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A fully discrete scheme for the pressure-stress formulation

of a time-domain fluid-structure interaction problem∗

Carlos Garcia Vera† Gabriel N. Gatica‡

Antonio Márquez§ Salim Meddahi¶

Abstract

We propose an implicit Newmark method for the time integration of the pressure-stress
formulation of a fluid-structure interaction problem. The space Galerkin discretization
is based on the Arnold-Falk-Winther mixed finite element method with weak symmetry
in the solid and the usual Lagrange finite element method in the acoustic medium. We
prove that the resulting fully discrete scheme is well-posed and uniformly stable with
respect to the discretization parameters and Poisson ratio, and we provide asymptotic
error estimates. Finally, we present numerical tests to confirm the asymptotic error
estimates predicted by the theory.
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Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales
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A mixed virtual element method for the Navier-Stokes

equations∗

Gabriel N. Gatica† Mauricio Munar‡ Filander Sequeira§

Abstract

A mixed virtual element method (mixed-VEM) for a pseudostress-velocity formula-
tion of the Navier-Stokes equations with Dirichlet boundary conditions is proposed and
analyzed in this work. More precisely, we employ a dual-mixed approach based on
the introduction of a nonlinear pseudostress linking the usual linear one for the Stokes
equations and the convective term. In this way, the aforementioned new tensor together
with the velocity constitute the only unknowns of the problem, whereas the pressure is
computed via a postprocessing formula. In addition, the resulting continuous scheme
is augmented with Galerkin type terms arising from the constitutive and equilibrium
equations, and the Dirichlet boundary condition, all them multiplied by suitable sta-
bilization parameters, so that the Banach fixed point and Lax-Milgram theorems are
applied to conclude the well-posedness of the continuous and discrete formulations.
Next, we describe the main VEM ingredients that are required for our discrete analysis,
which, besides projectors commonly utilized for related models, include, as the main
novelty, the simultaneous use of virtual element subspaces for H1 and H(div) in order
to approximate the velocity and the pseudostress, respectively. Then, the discrete bilin-
ear and trilinear forms involved, their main properties and the associated mixed virtual
scheme are defined, and the corresponding solvability analysis is performed using again
appropriate fixed point arguments. Moreover, Strang-type estimates are applied to de-
rive the a priori error estimates for the two components of the virtual element solution
as well as for the fully computable projections of them and the postprocessed pressure.
As a consequence, the corresponding rates of convergence are also established. Finally,
we follow the same approach employed in previous works by some of the authors and
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introduce an element-by-element postprocessing formula for the fully computable pseu-
dostress, thus yielding an optimally convergent approximation of this unknown with
respect to the broken H(div)-norm.

Key words: Navier-Stokes problem, pseudostress-based formulation, augmented formula-
tion, mixed virtual element method
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A multigrid approach for a class of quasilinear PDEs arising in

optimization problems∗

Sergio González-Andrade†and Sof́ıa López‡

Abstract

In this work, we study a multigrid algorithm for the finite element solution of a class
of quasilinear PDEs arising in the numerical solution of several optimization problems.
In particular, we focus on optimality systems associated to optimal control problems
of equations involving the p-Laplacian operator and PDEs characterizing the solution
of a class of quasilinear variational inequalities of the second kind. We analyze the
performance of smoothers based on semismooth Newton algorithms and preconditioned
descent algorithms, and we discuss the convergence properties of the multigrid algorithm
linked to these smoothing algorithms. Finally, several numerical experiments are carried
out to show the main features of the proposed method.

Key words: Multigrid methods. Quasilinear PDEs. Variational inequalities. Optimal
control problems.
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SANTIAGO, CHILE, JUNIO 28 - 30, 2017

Multiple traces formulation and semi-implicit scheme

for modeling packed cells under electrical stimulation∗

Fernando Henŕıquez† Carlos Jerez-Hanckes‡

Abstract

We model the electrical behavior of several biological cells under external stimuli by
extending and computationally improving the semi-implicit multiple traces formula-
tion presented in [3]. Therein, the electric potential and current for a single cell are
retrieved through the coupling of boundary integral operators and non-linear ordinary
differential systems of equations. Yet, the low-order discretization scheme presented be-
comes impractical when accounting for interactions among multiple cells. In this note,
we consider multi-cellular systems and show existence and uniqueness of the resulting
non-linear evolution problem in finite time. Our main tools are analytic semigroup
theory along with mapping properties of boundary integral operators. Thanks to the
smoothness of cellular shapes, solutions are highly regular at a given time. Hence,
spectral spatial discretization can be employed, thereby largely reducing the number of
unknowns. Time-space coupling is achieved via a semi-implicit time-stepping scheme
shown to be stable and convergent. Numerical results in two dimensions validate our
claims and match observed biological behavior for the Hodgin-Huxley dynamical model.

Key words: semi-implicit method, multiple traces formulation, hodgin-huxley model, spec-
tral method
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A mixed VEM scheme for a problem with edge and vertex

singularities

Alexis Jawtuschenko∗ Ariel Lombardi†

Abstract

We introduce and analyze a virtual element method [4] for the mixed formulation of a
Poisson problem with right–hand side in L2 and homogeneous Dirichlet conditions in
a non-convex polyhedral domain with edge and vertex singularities, for which, in the
presence of the mentioned singularities, it is known that its solution in general is not in
H2 (cfr. [2, 3]). As a consequence, the usual Finite Elements Methods are degraded and
we do not obtain an optimal convergence order in the general case. We present a VEM
constructing a mesh that combines anisotropic prisms and tetrahedra with pyramids and
avoids the use of certain tetrahedra that do not admit anisotropic estimates, recovering
the optimal order of convergence. As stated in [1], if we make a subdivision of a general
polyhedron Ω only with tetrahedra, then we do not obtain optimal error estimates with
Mixed Raviart–Thomas Finite Elements for our problem. That is because there exists
a class of anisotropic tetrahedra for which anisotropic estimates needed in the analysis
do not hold. For that reason we propose a method which among other things avoids
the use of that kind of tetrahedra. In order to deal with general polyhedral domains we
need to use mixed meshes, so we present a VEM scheme in a polyhedral mesh Th made
of tetrahedra, triangular prisms and pyramids. This scheme can be seen as an extension
of the method with classical lowest order Raviart–Thomas elements to the case in which
the mesh contains pyramids. Besides, it is also an alternative to the generalization of
the H(div)–conforming elements on pyramids found for instance in [5], whose spaces,
in particular, contain rational functions. Incidentally, the number of mesh elements
in our method is reduced by a constant factor. We show a discretization method and
introduce the corresponding discrete bilinear forms and show that the discrete problem
is well posed by proving the discrete inf − sup condition. Next we prove that there
exists a family of graded meshes {Th}h↓0 for which we have the optimal estimation
‖u− uh‖ 6 ch‖f‖, ‖p− ph‖ 6 ch‖f‖, with h . (1/N) 1/3, where N is the number of
elements of the mesh Th. We show an example of a family of meshes for the Fichera
domain that verifies our hipothesis.

Key words: virtual element method, mixed formulation of Poisson Problem, a priori error
analysis
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Variational formulation of time-fractional parabolic equations∗

Michael Karkulik†

Abstract

We consider initial/boundary value problems for time-fractional parabolic PDE of order
1/2 < α < 1, that is, ∂αt u−∆u = f where ∂αt is a fractional time-derivative. Equations
of this kind model diffusion phenomena where the mean-square displacement of a dif-
fusing particle scales non-linear in time (as opposed to e.g., the well-known Brownian
motion). Recently, researchers have started to analyze finite element methods with re-
spect to their ability to approximate solutions of fractional PDE. In our talk, based on
the work [1], we present a variational formulation of time-fractional parabolic equations
which resembles classical results for parabolic PDE. This includes the extension of oper-
ators defined on real-valued Sobolev spaces to their Banach space-valued counterparts,
the so-called Sobolev-Bochner spaces, as well as Sobolev Embedding results. This way,
we provide a theoretical underpinning for the numerical analysis of such equations.

Key words: Fractional diffusion, Initial/boundary value problem, Well-posedness
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Acoustic interaction between dissipative fluids∗

Felipe Lepe† Salim Meddahi‡ David Mora§ Rodolfo Rodŕıguez¶

Abstract

In this talk we present a finite element method for solving a quadratic eigenvalue prob-
lem derived from the acoustic vibration problem for a heterogeneous dissipative fluid
[1, 3, 7]. The problem is shown to be equivalent to the spectral problem for a noncompact
operator and a thorough spectral characterization is given [6, 8]. The numerical dis-
cretization of the problem is based on Raviart-Thomas finite elements [2]. The method
is proved to be free of spurious modes and to converge with optimal order [4, 5]. Fi-
nally, we report numerical tests which allow us to assess the performance of the method.

Key words: Acoustics, dissipative fluids, spectral problems, error estimates, finite ele-
ments.
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FEM approximation of sparse optimal control problems with

finite–dimensional control space∗

Pedro Merino† Alexander Nenjer

Abstract

We consider the numerical approximation by the finite element method of a class of
sparse optimal control problems governed by linear partial differential equations of el-
liptic type, which involves the `1–norm in the cost function. Optimal control problems
with finite dimensional controls are motivated by many practical applications of optimal
control problems with PDEs. Here, by technological requirements, controls are finite
quantities which can be frequently identified with a vector in RN . Our research focuses
of optimal control problems which entails the following main features:

• Controls are in a finite-dimensional control space

• Sparsity inducting term is considered in order to promote ”simple solutions (those
with many null entries)

• The state of the optimal control problem is a function where fnitely many pointwise
state constraints on the state are imposed.

The problem of deriving error estimates has been addressed in [1] in the case of smooth
cost functional, where the problem is translated in terms smooth nonlinear program-
ming theory in finite dimensional and applying stability theory of generalized equations.
Since in this case the cost function is non-smooth, the extension of this theory is not
directly applicable. We bypass this difficulty by reformulating an alternative problem
by exploiting the structure of the `1-norm, which allows to split the solution into its
positive and negative parts. We are able to proof that for a parameter of discretization
h, an order of convergence of h|log(h)| is obtained. Numerical experiments are shown
to underline our theory.

Key words: Finite element approximation, error estimates, sparse optimal control prob-
lems
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Solving unsteady coupled fluid mechanics and convective heat

transfer problems by a geometric multigrid finite volume

method∗

Nelson O. Moraga† Roberto C. Cabrales‡ Marcelo A. Marambio†

Abstract

Complexity in 2D fluid mechanics and natural convection problems arises from the
coupling between continuity, linear momentum and energy equations caused by the
buoyancy forces driven by density gradients being calculated through temperature dif-
ferences. Increments on Grashof number increases the influence of the convective ac-
celeration terms in the momentum equations, with velocity and temperature gradients
being higher towards the external walls of the fluids container. Motion of the fluid is
originated by temperature differences in the container walls. One of the difficulties in
the solution of the natural convective problems using finite numerical methods with
a single grid is that a high number of nodes is required to achieve accurate solution
at high Rayleigh numbers. In such cases, the information provided by the boundary
conditions is slowly communicated toward the center of the physical domain. Therefore
the development of a novel geometric multigrid method, tested in the solution of three
problems of increasing complexity via the finite volume method, is the objective of
this paper. The cases studied in square cavities includes natural convection of air with
Ra = 103 and 104; mixed convection of air inside a cavity with an inner solid either at
the center or in the center of the right upper quarter section with Richardson numbers
of 0.1 and 10 and solidification with natural convection of a binary alloy (Al-1.7%Si)
with Ra = 104. The results of velocity profiles and streamlines are used to characterize
the fluid mechanics while the temperature distribution allows the description of the
convective heat transfer. Computing time required to solve each case with the geomet-
ric multigrid method, implemented with V, W and F restriction-prolongation cycles,
is compared with the time used to achieve the solution with the same accuracy by us-
ing a single grid method. Savings of CPU time with the multigrid geometric method
ranged from 12% for natural convection with solid-liquid phase up to 93% for natural
convection.

∗Work partially supported by CONICYT-Chile by funds provided to FONDECYT 1140074 project and
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Noveno Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales
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A mixed VEM scheme for a problem with edge and vertex

singularities

Alexis Jawtuschenko∗ Ariel Lombardi†

Abstract

We introduce and analyze a virtual element method [4] for the mixed formulation of a
Poisson problem with right–hand side in L2 and homogeneous Dirichlet conditions in
a non-convex polyhedral domain with edge and vertex singularities, for which, in the
presence of the mentioned singularities, it is known that its solution in general is not in
H2 (cfr. [2, 3]). As a consequence, the usual Finite Elements Methods are degraded and
we do not obtain an optimal convergence order in the general case. We present a VEM
constructing a mesh that combines anisotropic prisms and tetrahedra with pyramids and
avoids the use of certain tetrahedra that do not admit anisotropic estimates, recovering
the optimal order of convergence. As stated in [1], if we make a subdivision of a general
polyhedron Ω only with tetrahedra, then we do not obtain optimal error estimates with
Mixed Raviart–Thomas Finite Elements for our problem. That is because there exists
a class of anisotropic tetrahedra for which anisotropic estimates needed in the analysis
do not hold. For that reason we propose a method which among other things avoids
the use of that kind of tetrahedra. In order to deal with general polyhedral domains we
need to use mixed meshes, so we present a VEM scheme in a polyhedral mesh Th made
of tetrahedra, triangular prisms and pyramids. This scheme can be seen as an extension
of the method with classical lowest order Raviart–Thomas elements to the case in which
the mesh contains pyramids. Besides, it is also an alternative to the generalization of
the H(div)–conforming elements on pyramids found for instance in [5], whose spaces,
in particular, contain rational functions. Incidentally, the number of mesh elements
in our method is reduced by a constant factor. We show a discretization method and
introduce the corresponding discrete bilinear forms and show that the discrete problem
is well posed by proving the discrete inf − sup condition. Next we prove that there
exists a family of graded meshes {Th}h↓0 for which we have the optimal estimation
‖u− uh‖ 6 ch‖f‖, ‖p− ph‖ 6 ch‖f‖, with h . (1/N) 1/3, where N is the number of
elements of the mesh Th. We show an example of a family of meshes for the Fichera
domain that verifies our hipothesis.

Key words: virtual element method, mixed formulation of Poisson Problem, a priori error
analysis

∗Department of Mathematics, Exact and Natural Sciences Faculty,University of Buenos Aires, Argentina.
email: ajawtu@dm.uba.ar
†National University of Rosario, CONICET, Argentina. email: ariel@fceia.unr.edu.ar

59



Mathematics subject classifications (2010): 65N30, 65N50, 65N12, 65N15, 35J05

References

[1] Th. Apel, G. Acosta, R. Durán, and A. Lombardi, Error estimates for Raviart–
Thomas interpolation of any order on anisotropic tetrahedra, Math. Comp., 80, 273,
141–163, 2011.

[2] Th. Apel, A. Lombardi, and M. Winkler, Anisotropic mesh refinement in polyhe-
dral domains: Error estimates with data in L2(Ω), ESAIM: M2AN 48 (2014) 1117–1145.

[3] Th. Apel and S. Nicaise, The finite element method with anisotropic mesh grading
for elliptic problems in domains with corners and edges., Mathematical Methods in the
Applied Sciences, Vol. 21 (519–549), 1998.

[4] F. Brezzi, R.S. Falk, and L. Donatella Marini, Basic principles of mixed virtual
element methods, Mathematical Modelling and Numerical Analysis, Volume 48, Number
4, 2014.

[5] V. Gradinaru and R. Hiptmair, Whitney elements on pyramids, ETNA, 8, 154–168,
1999.

[6] A. Jawtuschenko and A. Lombardi, Anisotropic estimates for H(curl)– and
H(div)–conforming elements on prisms and applications. Proceedings of V MACI, MACI
Vol. V, 2015.

60
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Simple triangular shell finite elements based on shell theory

Antti H. Niemi∗

Abstract

In this work we introduce and analyze simple triangular finite elements for a variational
formulation of a refined shallow shell model based on the linear theory of elasticity. The
primal unknowns of the formulation are the three displacements of the shell mid-surface
and two rotations of its normal. These are defined in terms of local curvilinear coordi-
nate systems which are constructed using the nodal normal vectors assumed as input
data. We develop linear elements and employ assumed membrane and transverse shear
strain fields to alleviate the problems of membrane and shear locking which are encoun-
tered in bending-dominated deformations of shells. Unfortunately, the approach is not
uniformly convergent for general shell geometries and mesh configurations but never-
theless leads to higher accuracy than conventional formulations based on flat elements
and assumed shear strain fields. The efficiency of the proposed method is assessed nu-
merically in problems involving linear static analysis. The numerical examples feature
different shell geometries and the results are compared with analytical and numerical
reference solutions and with commercial software solutions.

Key words: assumed strain approach, finite element method, membrane locking, shear
locking
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Unfitted finite element methods for PDEs on evolving surfaces∗

Maxim Olshanskii† Arnold Reusken‡ Xianmin Xu§

Abstract

Partial differential equations posed on evolving surfaces appear in a number of appli-
cations such as two-phase incompressible flows (surfactant transport on the interface)
and flow and transport phenomena in biomembranes. Numerical approaches discussed
in this report are based on Eulerian description of the surface PDE problem and em-
ploy a time-independent background mesh that is not fitted to the surface. The time-
dependent surface Γ(t) ⊂ R3 is assumed smooth and closed for all t ∈ [0, T ]. The
evolution of the surface may be given implicitly, for example, by the level set method.
As an example of the surface PDE we consider the transport–diffusion equation mod-
elling the conservation of a scalar quantity u with a diffusive flux on Γ(t), which is
passively advected by a given smooth velocity field w : R3 × [0, T ]→ R3,

u̇+ (div Γw)u− ν∆Γu = f on Γ(t), t ∈ (0, T ], (1)

with initial condition u(x, 0) = u0(x) for x ∈ Γ0 := Γ(0). Here u̇ denotes the advective
material derivative, div Γ is the surface divergence, ∆Γ is the Laplace–Beltrami operator,
and ν > 0 is the constant diffusion coefficient. In the report, we discuss two unfitted
finite element methods based on restrictions of outer (bulk, volumetric) finite element
functions to the surface. This methodology is known as the trace finite element method
(TraceFEM), see the recent review article [4]. In the first approach from [1, 2], one
considers a weak formulation of (1) as a surface PDE on space–time manifold

S =
⋃

t∈(0,T )

Γ(t)× {t}, S ⊂ R4,

and a weak formulation of (1) as a surface PDE on S. Further, one considers space–
time prismatic elements in R4 and defines finite element counterparts of test and trial
functions as traces of outer space–time polynomial finite element spaces on a tetrahedral
reconstruction of S. It turns out that the resulting method can be implemented in an
efficient time-marching way. It has been also proved to be of the optimal first order (in
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space and time) in an energy norm and of the second order convergence in a weaker
norm.Another unfitted finite element method we discuss is the one recently proposed
in [3]. The main motivation for this method is to avoid space–time elements or any
reconstruction of the space–time manifold. The method is based on trace of time-
independent finite element spaces on a sequence od steady 2D surfaces and a hyperbolic
solve (such as the Fast-Marching method) to find an extension of a function from a 2D
surface to its 3D neighborhood.

Key words: surface PDEs, evolving surfaces, TraceFEM, level set method
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Optimization with respect to order in a fractional diffusion

model: analysis, approximation and algorithmic aspects∗

Enrique Otárola†

Abstract

We consider an identification problem, where the state u is governed by a fractional
elliptic equation and the unknown variable corresponds to the order s ∈ (0, 1) of the
underlying operator. We study the existence of an optimal pair (s̄, ū) and provide
sufficient conditions for its local uniqueness. We develop semi-discrete and fully discrete
algorithms to approximate the solutions to our identification problem and provide a
convergence analysis. We present numerical illustrations that confirm and extend our
theory.
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tion algorithm, finite elements, stability, fully–discrete methods, convergence.
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A high order mixed-FEM for the Stokes problem on curved

domains∗

Ricardo Oyarzúa† Manuel Solano‡ Paulo Zúñiga§

Abstract

In this talk we propose and analize a high order mixed finite element method for a
pseudostress-velocity formulation of the Stokes problem with Dirichlet boundary con-
dition on curved domains. The method is based on approximating the fluid domain
Ω by a polygonal/polyhedral subdomain Dh, where the Galerkin method is applied to
approximate the solution, and on a transferring technique, based on integrating the ex-
trapolated discrete gradient of the velocity, to approximate the Dirichlet boundary data
on the boundary of Dh. Considering generic finite dimensional subspaces of H(div,Dh)
for the pseudostress and of L2(Dh) for the velocity, we prove that the resulting Galerkin
scheme becomes well-posed provided suitable hypotheses on the aforementioned sub-
spaces are assumed. A feasible choice of discrete spaces is given by Raviart–Thomas
elements of order k ≥ 0 for the pseudostress and discontinuous polynomials of de-
gree k for the velocity, yielding optimal convergence whenever the distance between
both boundaries is of order h. Moreover, the pressure can be approximated optimally
through a simple post-processing of the discrete pseudostress. We also derive an error
analysis on the complement Dc

h := Ω\Dh for the extrapolated solutions. Finally, we
provide some numerical experiments illustrating the good performance of the scheme
and confirming the theoretical rates of convergence.

Key words: curved domain, high order, Stokes problem, mixed variational formulation
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A high-order singularity subtraction method for the Nyström

discretization of boundary integral equations

Carlos Pérez Arancibia∗ Catalin Turc†

Abstract

We present a high-order singularity subtraction method for the Nyström discretization
of Laplace and Helmholtz boundary integral operators and layer potentials. The pro-
posed singularity subtraction approach allows integral operators and layer potentials
to be expressed in terms of “smooth” integrands that can be easily and inexpensively
evaluated by means of standard quadrature rules. The method relies on the use of
Green’s third identity and pointwise interpolation of the surface density in terms of
homogeneous solutions of the associated PDE (harmonic polynomials in the case of
the Laplace equation and plane-waves in the case of the Helmholtz equation). Used in
conjunction with the Fast Fourier Transform, for evaluation of the surface derivatives
of the density, and the Fast Multipole Method, for evaluation of non-local interac-
tions, the proposed methodology enables second-kind integral equations to be solved
in O(N logN) operations, where N denotes the number of discretization (quadrature)
points on the boundary. A variety of numerical examples in two and three spatial
dimensions—including smooth and piecewise smooth domains—demonstrate the capa-
bilities of the proposed methodology and its advantages over high-order and spectrally
accurate Nyström methods based on specialized quadrature rules.

Key words: Laplace equation, Helmholtz equation, Nyström method, singularity subtrac-
tion, Fast Multipole Method.
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[1] C. Pérez-Arancibia, Smoothed combined field integral equations for exterior
Helmholtz problems. arXiv:1701.03672 (2017).

∗Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA , USA, email:
cperezar@mit.edu
†Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA, email:

catalin.c.turc@njit.edu.

76



[2] O. P. Bruno and L. Kunyansky, A fast, high-order algorithm for the solution of
surface scattering problems: basic implementation, tests, and applications. J. Comput.
Phys. 169 (2001), no. 1, 80–110.

[3] O. P. Bruno, T. Elling, and C. Turc, Regularized integral equations and fast high-
order solvers for sound-hard acoustic scattering problems. Int. J. Numer. Meth. Eng. 91
(2012), no. 10, 1045–1072.

[4] G. Greengard and V. Rokhlin, A fast algorithm for particle simulations. J. Comput.
Phys. 73 (1987), no. 2, 325–348.

77




