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Abstract

In this talk we propose and analize a high order mixed finite element method for a
pseudostress-velocity formulation of the Stokes problem with Dirichlet boundary con-
dition on curved domains. The method is based on approximating the fluid domain
Ω by a polygonal/polyhedral subdomain Dh, where the Galerkin method is applied to
approximate the solution, and on a transferring technique, based on integrating the ex-
trapolated discrete gradient of the velocity, to approximate the Dirichlet boundary data
on the boundary of Dh. Considering generic finite dimensional subspaces of H(div,Dh)
for the pseudostress and of L2(Dh) for the velocity, we prove that the resulting Galerkin
scheme becomes well-posed provided suitable hypotheses on the aforementioned sub-
spaces are assumed. A feasible choice of discrete spaces is given by Raviart–Thomas
elements of order k ≥ 0 for the pseudostress and discontinuous polynomials of de-
gree k for the velocity, yielding optimal convergence whenever the distance between
both boundaries is of order h. Moreover, the pressure can be approximated optimally
through a simple post-processing of the discrete pseudostress. We also derive an error
analysis on the complement Dc

h := Ω\Dh for the extrapolated solutions. Finally, we
provide some numerical experiments illustrating the good performance of the scheme
and confirming the theoretical rates of convergence.
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