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Abstract

A mixed virtual element method (mixed-VEM) for a pseudostress-velocity formula-
tion of the Navier-Stokes equations with Dirichlet boundary conditions is proposed and
analyzed in this work. More precisely, we employ a dual-mixed approach based on
the introduction of a nonlinear pseudostress linking the usual linear one for the Stokes
equations and the convective term. In this way, the aforementioned new tensor together
with the velocity constitute the only unknowns of the problem, whereas the pressure is
computed via a postprocessing formula. In addition, the resulting continuous scheme
is augmented with Galerkin type terms arising from the constitutive and equilibrium
equations, and the Dirichlet boundary condition, all them multiplied by suitable sta-
bilization parameters, so that the Banach fixed point and Lax-Milgram theorems are
applied to conclude the well-posedness of the continuous and discrete formulations.
Next, we describe the main VEM ingredients that are required for our discrete analysis,
which, besides projectors commonly utilized for related models, include, as the main
novelty, the simultaneous use of virtual element subspaces for H1 and H(div) in order
to approximate the velocity and the pseudostress, respectively. Then, the discrete bilin-
ear and trilinear forms involved, their main properties and the associated mixed virtual
scheme are defined, and the corresponding solvability analysis is performed using again
appropriate fixed point arguments. Moreover, Strang-type estimates are applied to de-
rive the a priori error estimates for the two components of the virtual element solution
as well as for the fully computable projections of them and the postprocessed pressure.
As a consequence, the corresponding rates of convergence are also established. Finally,
we follow the same approach employed in previous works by some of the authors and
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introduce an element-by-element postprocessing formula for the fully computable pseu-
dostress, thus yielding an optimally convergent approximation of this unknown with
respect to the broken H(div)-norm.
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