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Abstract. The talk is split into two parts. First, we analyze an FE–BE coupling procedure for
scalar elastoplastic interface problems involving friction, where a nonlinear uniformly monotone
operator such as the p–Laplacian in a bounded Lipschitz domain Ω ⊂ Rn is coupled to the linear
Laplace equation on the exterior domain Ωc. In the second part we present a corresponding
coupling formulation for a nonconvex double–well potential in Ω. In both cases the transmission
problem is reduced to a boundary/domain variational inequality, which is solved by Galerkin’s
method with finite and boundary elements. The Galerkin approximations converge in a suitable
product of Lp– and L2–Sobolev spaces.

The nonlinear frictional contact problem under consideration reads for p ≥ 2: Given f ∈
Lp

′
(Ω), u0 ∈ W

1
2 ,2(∂Ω), t0 ∈ W−

1
2 ,2(∂Ω), g ∈ L∞(Γs) with

∫
Ω
f + 〈t0, 1〉 = 0 for n = 2, find

minimizers u1 ∈W 1,p(Ω), u2 ∈W 1,2
loc (Ω) of the functional

(1)

∫
Ω

%(|∇u1|)(∇u1)2 +
1

2

∫
Ωc

|∇u2|2 −
∫

Ω

fu1 − 〈t0, u2|∂Ω〉+

∫
Γs

g|u2 − u1 + u0|,

∂Ω = Γs ∪ Γt, over a convex subset of W 1,p(Ω)×W 1,2
loc (Ω) encoding the transmission condition

on Γt. Here %(t) is a function %(x, t) ∈ C(Ω× (0,∞)) satisfying

0 ≤ %(t) ≤ %∗[tδ(1 + t)1−δ]p−2, |%(t)t− %(s)s| ≤ %∗[(t+ s)δ(1 + t+ s)1−δ]p−2|t− s|,
and %(t)t − %(s)s ≥ %∗[(t + s)δ(1 + t + s)1−δ]p−2(t − s) for all t ≥ s > 0 uniformly in x ∈ Ω
(δ ∈ [0, 1], %∗, %

∗ > 0).
To reduce the exterior problem to ∂Ω = ∂Ωc, we use the Steklov–Poincaré operator

S : W
1
2 ,2(∂Ω) → W−

1
2 ,2(∂Ω) for the Laplacian on Ωc. The problem translates into a do-

main/boundary variational inequality: Find (û, v̂) ∈ X such that for all (u, v) ∈ X =

W 1,p(Ω)× {v ∈W
1
2 ,2(∂Ω) : supp v ⊂ Γs},∫

Ω

%(|∇û|)∇û∇(u− û) + 〈S(û|∂Ω + v̂), (u− û)|∂Ω + v − v̂〉+
∫

Γs

g(|v| − |v̂|) ≥ λ(u− û, v − v̂).

Theorem 1. The variational inequality is equivalent to the minimization problem (1) and has
a unique solution.

For a family of finite dimensional subspaces Xh = H1
h ×H

1
2
h of X, h ∈ I, we present a priori

error estimates.

Remark 1. The above procedure carries over to transmission problems in nonlinear elasticity
with a Hencky material in Ω and the Lamé equation in Ωc.

Next, we consider an FE–BE coupling for transmission problems with microstructure and
Signorini contact. Our starting point is the relaxed energy functional

Φ∗∗(u1, u2) =

∫
Ω

W ∗∗(∇u1) +
1

2

∫
Ωc

|∇u2|2 −
∫

Ω

fu1 − 〈t0, u2|∂Ω〉,

where W ∗∗ is the convex envelope of the double–well potential W (F ) = |F −F1|2 |F −F2|2 for
F1 6= F2 ∈ Rn. The minimization problem for Φ∗∗ corresponds to the variational inequality:

Find (û, v̂) ∈ A = {(u, v) ∈W 1,4(Ω)×W
1
2 ,2(∂Ω) : v|Γs ≥ 0, 〈S(u|∂Ω +v−u0), 1〉 = 0 if n = 2}

such that∫
Ω

DW ∗∗(∇û)∇(u− û) + 〈S(û|∂Ω + v̂), (u− û)|∂Ω + v − v̂〉 ≥ λ(u− û, v − v̂)

for all (u, v) ∈ A. We show that the stress DW ∗∗(û), a certain projection P∇û of the gradient,
the region of microstructure and the boundary value u|∂Ω +v are independent of the minimizer
and present a priori error estimates for the FE–BE approximation.
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