p-VERSION OF SPARSE GRIDS WITH GLOBALLY CONTINUOUS DISCRETIZATION

ALEXEY CHERNOV

ABSTRACT. Approximation problems in high dimensions arise in numerous applications such as problems with random data, quantum chemistry, quantitative finance etc. Frequently, the computational domain has a relatively simple tensor product structure (e.g. *d*-dimensional cube or torus) and the tensor product discretization is straight forward. Unfortunately, the tensor product discretization leads to exponentially growing number of unknowns w.r.t. the spatial dimension *d*, which is known as the "curse of dimensionality". Sparse Grid technique allows to overcome this difficulty under additional regularity assumptions, cf. [1] for an overview.

In this talk we construct a p-version of sparse grids with globally continuous discretization and give an application to Boundary Integral Equations with random data. This is an extension of the recent analysis [2] for globally discontinuous discretization.

Keywords: Sparse grids, p-version, Boundary element method, Integral equations

References

- [1] H.-J. Bungartz, M. Griebel, Sparse grids, Acta Numerica, 13, 2004, pp.147-269
- [2] A. Chernov, Ch. Schwab, Sparse p-version BEM for first kind boundary integral equations with random loading, *Applied Numerical Mathematics* 59 (2009), pp. 2698–2712

HAUSDORFF CENTER FOR MATHEMATICS, INSTITUT FÜR NUMERISCHE SIMULATION, UNIVERSITÄT BONN, GERMANY

E-mail address: chernov@hcm.uni-bonn.de