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ABSTRACT

In this thesis we introduce and analyze an augmented mixed finite element method for the

coupling of quasi-Newtonian fluids and porous media. The flows are governed by a class of

nonlinear Stokes and linear Darcy equations, respectively, and the transmission conditions

are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman

law. We apply dual-mixed formulations in both domains, and, in order to handle the non-

linearity involved in the Stokes region, we set the strain and vorticity tensors as auxiliary

unknowns. In turn, since the transmission conditions become essential, they are imposed

weakly, which yields the introduction of the traces of the porous media pressure and the fluid

velocity as the associated Lagrange multipliers. Moreover, in order to facilitate the analysis,

we augment the formulation in the fluid by incorporating a redundant Galerkin-type term

arising from the quasi-Newtonian constitutive law multiplied by a suitable stabilization pa-

rameter. In this way, under a suitable and explicit choice of this parameter, a generalization

of the Babuska-Brezzi theory is utilized to show the well-posedness of the continuous and

discrete formulations and to derive the corresponding a-priori error estimate. In particular,

the feasible finite element subspaces include PEERS and Arnold-Falk-Winther elements for

the stress, velocity and vorticity in the fluid, Raviart-Thomas elements and piecewise con-

stants for the velocity and pressure in the porous medium, together with piecewise constant

Stokes strain tensor and continuous piecewise linear elements for the traces. Next, we em-

ploy classical approaches, which include linearization techniques, Clément’s interpolator and

Helmholtz’s decomposition, together with known efficiency estimates, to derive a reliable

and efficient residual-based a posteriori error estimator for the coupled problem. Finally,

several numerical results confirming the good performance of the method and the proper-

ties of the a posteriori error estimator, and illustrating the capability of the corresponding

adaptive algorithm to identify the singular regions of the solution, are reported.
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Chapter 1

Introduction

The devising of suitable numerical methods for solving the Stokes-Darcy and related coupled

problems, including porous media with cracks, the incorporation of the Brinkman equation

in the model, and linear as well as nonlinear behaviors, has become a very active research

area during the last decade (see, e.g. [6], [10], [11], [12], [13], [14], [24], [30], [32], [37],

[40], [42] and the references therein). In particular, a mixed finite element method for a

nonlinear Stokes-Darcy flow problem arising in industrial filtering application and involving

a non-Newtonian fluid, is introduced and analized in [12]. Actually, up to the authors’

knowledge, this is the first work dealing with the fully-coupled problem for non-Newtonian

Stokes and Darcy flows. In fact, the fluid is modeled there by the generalized nonlinear

Stokes equation in the free flow region and by the generalized nonlinear Darcy equation in

the porous medium. In addition, the approach in [12] employs the primal method in the

Stokes domain and the dual-mixed method in the Darcy region, which means that only

the original velocity and pressure unknowns are considered in the fluid, whereas a further

unknown (velocity) is added in the porous medium. The corresponding interface conditions

are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman

law, and since one of them becomes essential, the trace of the Darcy pressure on the interface

needs also to be incorporated as an additional Lagrange multiplier. More recently, the model

from [12] is recasted in [13] as a reduced matching problem on the interface by using a mortar

space approach. As a consequence, a parallel algorithm for the problems in both regions is

derived, which allows to solve the coupled problem utilizing existing codes for Stokes and

Darcy simulations.

On the other hand, the a priori and a posteriori error analyses of a new fully-mixed finite

element method for the 2D Stokes-Darcy coupled problem, in which dual-mixed formulations

are employed in both domains, were developed in [25] and [26]. This approach allows, on
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the one hand, the introduction of further unknowns of physical interest, and on the other

hand, the utilization of the same family of finite element subspaces in both media, without

requiring any stabilization term. The results from [25] and [26] were then extended in [27] to

the case of a two-dimensional nonlinear Stokes-Darcy coupled problem. More precisely, the

model here refers to the coupling of fluid flow with nonlinear porous media flow, where the

nonlinearity in the latter region is given by the corresponding permeability. The utilization of

dual-mixed formulations in both regions yields the pseudostress and the velocity in the fluid,

together with the velocity, the pressure and its gradient in the porous medium, as the main

unknowns. In addition, since the approach in [27] leads to essential transmission conditions,

these are imposed weakly and hence the traces of the porous medium pressure and the fluid

velocity become the corresponding Lagrange multipliers. Similarly as in [25], the remaining

unknowns of physical interest can then be computed through very simple postprocessing

formulae that, at the discrete level, make no use of any numerical differentiation procedure.

Since the resulting variational formulation can be written as a nonlinear twofold saddle

point operator equation, the generalization of the Babuška-Brezzi theory developed in [17]

is applied to prove the well-posedness of the continuous and discrete schemes. Finally, a

reliable and efficient residual-based a posteriori error estimator is also derived in [27]. In

spite of the many contributions available in the literature on the a posteriori error analysis for

variational formulations with saddle point structure, the first results concerning nonlinear

twofold saddle point problems have been obtained in [27] and [15] by properly adapting

and extending some related techniques from [22] and [26]. In particular, the analysis in

[15] provides an abstract error estimate that can be applied to a large class of nonlinear

variational formulations showing a twofold saddle point structure.

The purpose of the present thesis is to extend the analysis and results from [25] and

[27] to the model problem from [12], that is to the coupling of quasi-Newtonian fluids

and porous media. In other words, we now develop the a priori and a posteriori error

analyses of a fully-mixed formulation for a class of nonlinear Stokes models coupled with the

usual linear Darcy equation, and assuming the usual transmission conditions, that is mass

conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. To this end,

and differently from [12] where a primal approach is employed in the fluid, we apply dual-

mixed formulations in both regions (exactly as in [25] and [27]), and handle the nonlinearity

in the fluid by introducing the strain and vorticity tensors as additional unknowns. In

addition, since the transmission conditions become again essential, they are imposed weakly,

which yields the traces of the porous media pressure and the fluid velocity on the interface

as the associated Lagrange multipliers. Furthermore, we follow the same approach from [22]
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and [23], and enrich the equations in the fluid with a redundant Galerkin-type term arising

from the quasi-Newtonian constitutive law multiplied by a suitable stabilization parameter.

As a consequence, the resulting augmented variational formulation shows a twofold saddle

point structure that matches a slight modification of the generalized Babuška-Brezzi theory

derived in [17] (see also [16]). In this way, a suitable and explicit choice of the stabilization

parameter allows to prove the well-posedness of the corresponding continuous and discrete

schemes. Then, following the approach from [27] and [15], we derive a reliable and efficient

residual-based a posteriori error estimator for our nonliner coupled problem. As in [27],

the proof of reliability makes use of a global inf-sup condition for a linearized version of

the problem, Helmholtz decompositions in both media, and local approximation properties

of the Clément interpolant and Raviart-Thomas operator. In turn, inverse inequalities,

the localization technique based on element-bubble and edge-bubble functions, and known

results from previous works, are the main tools for proving the efficiency of the estimator.

The rest of this work is organized as follows. In Chapter 2 we introduce the model

problem and derive the augmented fully-mixed variational formulation, which is shown to

have a twofold saddle point structure. A slight modification of the generalized Babuška-

Brezzi theory developed in [17] is described in Chapter 3. This abstract framework is then

applied in Chapter 4 to prove the well posedness of the continuous problem. Next, in Chapter

5 we define the Galerkin scheme and, employing the corresponding analysis from Chapter

3, we derive general hypotheses on the finite element subspaces ensuring that the discrete

scheme becomes well posed. A specific choice of finite element subspaces satisfying these

assumptions is also described here. In Chapter 6 we derive the residual-based a posteriori

error estimator and prove its reliability and efficiency. Finally, several numerical results

illustrating the performance of the method, confirming the reliability and efficiency of the a

posteriori estimator, and showing the good behavior of the associated adaptive algorithm,

are reported in Chapter 7.



Chapter 2

The continuous problem

2.1 Preliminary notations

We begin this chapter with several notations to be used throughout the thesis. In what

follows, given n ∈ {2, 3}, Rn×n is the space of square matrices of orden n with real entries,

I := (δij) is the identity matrix of Rn×n, and for any τ := (τij), ζ := (ζij) in Rn×n, we write

as usual

τ t := (τji) , tr τ :=

n∑
i=1

τii , τ d := τ − 1

n
tr (τ ) I , and τ : ζ :=

n∑
i,j=1

τij ζij ,

which corresponds, respectively, to the transpose, the trace, and the deviator of a tensor τ ,

and to the tensorial product between τ and ζ. In turn, in what follows we utilize standard

simplified terminology for Sobolev spaces and norms. In particular, if O is a domain, S is

an open or closed Lipschitz curve (resp. surface in R3), and r ∈ R, we define

Hr(O) := [Hr(O)]n , Hr(O) := [Hr(O)]n×n , and Hr(S) := [Hr(S)]n .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O),

and H0(S), respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O),

Hr(O), and Hr(O)) and ‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space

H, we use H and H to denote [H]n and [H]n×n, respectively. In addition, 〈·, ·〉S stands

for the usual duality pairings between H−1/2(S) and H1/2(S), and between H−1/2(S) and

H1/2(S). Note, however, that when S is an open Lipschitz curve (resp. surface in R3),

〈·, ·〉S is also employed below to denote the duality pairings between H
−1/2
00 (S) and H

1/2
00 (S),

and between H
−1/2
00 (S) and H

1/2
00 (S) (see Section 2.3 for details). Furthermore, with div

7



2.2. THE MODEL PROBLEM 8

denoting the usual divergence operator, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [7], [28]). The space of matrix valued

functions whose rows belong to H(div;O) will be denoted H(div;O), where div stands for

the action of div along each row of a tensor. The Hilbert norms of H(div;O) and H(div;O)

are denoted by ‖ · ‖div;O and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then

div τ ∈ L2(O).

Finally, we employ 0 to denote a generic null vector (including the null functional and

operator), and use C and c, with or without subscripts, bars, tildes or hats, to denote generic

constants independent of the discretization parameters, which may take different values at

different places.

2.2 The model problem

In order to describe the corresponding geometry, we let ΩS and ΩD be bounded and simply

connected polyhedral domains in Rn, n ∈ {2, 3}, such that ΩS ∩ ΩD = ∅ and ∂ΩS ∩ ∂ΩD =

Σ 6= ∅. Then, we let ΓS := ∂ΩS\Σ̄, ΓD := ∂ΩD\Σ̄, and denote by n the unit normal vector

on the boundaries, which is chosen pointing outward from ΩS ∪Σ ∪ΩD and ΩS (and hence

inward to ΩD when seen on Σ). On Σ we also consider unit tangent vectors, which are

given by t = t1 when n = 2 (see Figure 2.1 below) and by {t1, t2} when n = 3. The model

problem we are interested in consists of the movement of an incompressible quasi-Newtonian

viscous fluid that occupies ΩS and that flows towards and from ΩD through Σ, where ΩD

is saturated with the same fluid. More precisely, the governing equations in ΩS are those of

the nonlinear Stokes problem written in the following stress-velocity-pressure formulation:

σS = µ (|e(uS)|) e(uS) − pS I in ΩS, div uS = 0 in ΩS ,

divσS = − fS in ΩS, uS = 0 on ΓS ,

(2.1)

where σS is the stress tensor, uS is the velocity, pS is the pressure, µ : R+ → R+ is

the nonlinear kinematic viscosity, e(uS) := 1
2

{
∇uS +

(
∇uS

)t}
is the strain tensor (or

symmetric part of the velocity gradient), |·| is the euclidean norm of Rn×n, and fS ∈ L2(ΩS)

is a known volume force. Note here that σS is symmetric. In turn, in ΩD we consider the
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Figure 2.1: The 2D geometry of our Stokes–Darcy model

linearized Darcy model with Neumann boundary condition on ΓD:

uD = −K∇pD in ΩD , div uD = fD in ΩD , uD · n = 0 on ΓD , (2.2)

where uD and pD denote the velocity and pressure, respectively, fD ∈ L2(ΩD) is a source

term satisfying
∫

ΩD
fD = 0, and K is a symmetric and positive definite tensor with entries

in L∞(ΩD), which describes the permeability of ΩD divided by a constant approximation of

the viscosity. Finally, the transmission conditions on Σ are given by

uS · n = uD · n on Σ ,

σS n +
n−1∑
`=1

κ−1
` (uS · t`) t` = −pD n on Σ ,

(2.3)

where {κ1, ..., κn−1} is a set of positive frictional constants that can be determined experi-

mentally.

At this point we remark that the kind of nonlinear Stokes problem given by (2.1) appears

in the modeling of a large class of non-Newtonian fluids (see, e.g. [5], [31], [34], [39]). In

particular, the Ladyzhenskaya law for fluids with large stresses (see [31]), also known as

power law, is given by µ(t) := µ0 + µ1t
β−2 ∀ t ∈ R+, with µ0 ≥ 0, µ1 > 0, and β > 1, and

the Carreau law for viscoplastic flows (see, e.g. [34], [39]) reads µ(t) := µ0 +µ1 (1+t2)(β−2)/2

∀ t ∈ R+, with µ0 ≥ 0, µ1 > 0, and β ≥ 1.

In what follows we let µij : Rn×n → R be the mapping given by µij(r) := µ(|r|) rij for

all r := (rij) ∈ Rn×n, for all i, j ∈ {1, ..., n}. Then, throughout this thesis we assume that µ

is of class C1 and that there exist γ0, α0 > 0 such that for all r := (rij), s := (sij) ∈ Rn×n,
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there holds

|µij(r) | ≤ γ0 |r| ,
∣∣∣∣ ∂

∂rkl
µij(r)

∣∣∣∣ ≤ γ0 ∀ i, j, k, l ∈ {1, ..., n} , (2.4)

and
n∑

i,j,k,l= 1

∂

∂rkl
µij(r) sij skl ≥ α0 |s|2 . (2.5)

It is easy to check that the Carreau law satisfies (2.4) and (2.5) for all µ0 > 0, and for all

β ∈ [1, 2]. In particular, with β = 2 we recover the usual linear Stokes model.

2.3 Further notations

In order to derive the weak formulation of the coupled problem given by (2.1), (1), and

(2.3), we need to introduce other notations and definitions. In fact, given ? ∈ {S,D},
u, v ∈ L2(Ω?), u, v ∈ L2(Ω?), and σ, τ ∈ L2(Ω?), we denote

(u, v)? :=

∫
Ω?

u v, (u,v)? :=

∫
Ω?

u · v, and (σ, τ )? :=

∫
Ω?

σ : τ .

In addition, we let L2
(ΩS) and L2(ΩS) be the subspaces of symmetric and skew-symmetric

tensors of L2(ΩS), respectively, that is

L2
(ΩS) :=

{
rS ∈ L2(ΩS) : rtS = rS

}
and

L2(ΩS) :=
{
ηS ∈ L2(ΩS) : ηtS = −ηS

}
.

Furthermore, we also need the space H
1/2
00 (Σ) := H

1/2
00 (Σ)×H1/2

00 (Σ), where

H
1/2
00 (Σ) :=

{
v|Σ : v ∈ H1(ΩS) , v = 0 on ΓS

}
.

Equivalently, if E0,S : H1/2(Σ)→ L2(∂ΩS) is the extension operator defined by

E0,S(ψ) :=

{
ψ on Σ

0 on ΓS

∀ψ ∈ H1/2(Σ) ,

we have that

H
1/2
00 (Σ) =

{
ψ ∈ H1/2(Σ) : E0,S(ψ) ∈ H1/2(∂ΩS)

}
,
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endowed with the norm ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
. In turn, if E0,S : H1/2(Σ) →

L2(∂ΩS) is the vector version of E0,S, we have that ‖ψ‖1/2,00,Σ := ‖E0,S(ψ)‖1/2,∂ΩS
∀ψ ∈

H
1/2
00 (Σ). The dual space of H

1/2
00 (Σ) (resp. H

1/2
00 (Σ)) is H

−1/2
00 (Σ) (resp. H

−1/2
00 (Σ)) and

the corresponding duality pairing is denoted in each case by 〈·, ·〉Σ. In particular, note

that given η ∈ H−1/2(∂ΩS), its restriction to Σ defined by 〈η|Σ,ψ〉Σ := 〈η,E0,S(ψ)〉∂ΩS

∀ψ ∈ H
1/2
00 (Σ), is an element of H

−1/2
00 (Σ).

2.4 The augmented fully-mixed variational formulation

We now proceed with the announced weak formulation. We begin by observing, as in [21]

and [22], that, thanks to the fact that tr e(uS) = div uS, the first two equations from (2.1),

that is

σS = µ (|e(uS)|) e(uS) − pS I and div uS = 0 in ΩS ,

are equivalent to

σS = µ (|e(uS)|) e(uS) − pS I and pS = − 1

n
trσS in ΩS ,

and hence, eliminating the pressure pS, the Stokes problem (2.1) can be rewritten as

σd
S = µ (|e(uS)|) e(uS) in ΩS , divσS = − fS in ΩS , uS = 0 on ΓS . (2.6)

Moreover, in order to handle the nonlinearity defining σS, we adopt the approach from [22]

(see also [23]) and introduce the additional unknowns

tS := e(uS) and γS :=
1

2

{
∇uS −

(
∇uS

)t}
in ΩS , (2.7)

where γS is the vorticity (or skew-symmetric part of the velocity gradient), so that (2.6)

reduces to
tS = ∇uS − γS in ΩS , σd

S = µ (|tS|) tS in ΩS ,

divσS = − fS in ΩS , uS = 0 on ΓS ,
(2.8)

with both tS and σS symmetric tensors, and such that tr tS = 0 in ΩS. Then, multi-

plying the first equation of (2.8) by τ S ∈ H(div; ΩS), integrating by parts the expression

(∇uS, τ S)S, introducing the Dirichlet boundary condition uS = 0 on ΓS, and using that

(tS, τ S)S = (tS, τ
d
S)S (which follows from the fact that tS : I = tr tS = 0), we arrive at

(tS, τ
d
S)S + (div τ S,uS)S + 〈τ S n,ϕ〉Σ + (τ S,γS)S = 0 ∀ τ S ∈ H(div; ΩS) , (2.9)
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with unknowns

tS ∈ L2
0(ΩS) , uS ∈ L2(ΩS) , ϕ := −uS|Σ ∈ H

1/2
00 (Σ) , and γS ∈ L2(ΩS) , (2.10)

where

L2
0(ΩS) =

{
rS ∈ L2

(ΩS) : tr rS = 0
}
.

Next, multiplying the second and third equations of (2.8) by rS ∈ L2
0(ΩS) and vS ∈ L2(ΩS),

respectively, and imposing the symmetry of σS in a weak sense, we obtain

(µ(|tS|) tS, rS)S − (rS,σ
d
S)S = 0 ∀ rS ∈ L2

0(ΩS) (2.11)

(divσS,vS)S = − (fS,vS)S ∀vS ∈ L2(ΩS) , (2.12)

and

(σS,ηS)S = 0 ∀ηS ∈ L2(ΩS) , (2.13)

where the unknown σS is sought in H(div; ΩS). Note that the decomposition L2
(ΩS) =

L2
0(ΩS) ⊕ R I and the fact that both tS and σd

S belong to L2
0(ΩS) guarantee that (2.11) is

equivalent to requiring it for all rS ∈ L2
(ΩS).

On the other hand, we now consider the first equation of (1) in the form K−1 uD =

−∇pD in ΩD, and, as suggested by the Neumann boundary condition on ΓD, introduce the

space

H0(div; ΩD) :=
{

vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
.

Then, multiplying by vD ∈ H0(div; ΩD), integrating by parts the expression (∇pD,vD)D,

and recalling that the normal vector n on Σ points inwards ΩD, we get

(K−1 uD,vD)D − (div vD, pD)D − 〈vD · n, λ〉Σ = 0 ∀vD ∈ H0(div; ΩD) , (2.14)

with unknowns

uD ∈ H0(div; ΩD) , pD ∈ L2(ΩD) , and λ := pD|Σ ∈ H1/2(Σ) . (2.15)

In turn, multiplying by qD ∈ L2(ΩD) the second equation of (1) and integrating on ΩD, we

obtain

(div uD, qD)D = (fD, qD)D ∀ qD ∈ L2(ΩD) . (2.16)

Finally, since the transmission conditions given by (2.3) become essential (which follows
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from the fact that dual-mixed approaches are employed in both domains), we impose them

weakly and obtain the equations

−〈ϕ · n, ξ〉Σ − 〈uD · n, ξ〉Σ = 0 ∀ ξ ∈ H1/2(Σ) ,

〈σS n,ψ〉Σ −
n−1∑
`=1

κ−1
` 〈ϕ · t`,ψ · t`〉Σ + 〈ψ · n, λ〉Σ = 0 ∀ψ ∈ H

1/2
00 (Σ) ,

(2.17)

where we have replaced uS|Σ and pD|Σ by −ϕ and λ, respectively. At this point we remark

that, in principle, the spaces for the unknowns uS and pD (cf. (2.10) and (2.15)) do not allow

enough regularity for the pair of traces (ϕ, λ) to live in H
1/2
00 (Σ)×H1/2(Σ). However, it is

easy to see from (2.8) and (1) that uS and pD belong to H1(ΩS) and H1(ΩD), respectively,

which confirms the indicated space for (ϕ, λ).

According to the whole above analysis, we find that our resulting weak formulation

reduces to a nonlinear system of eight unknowns, namely

tS ∈ L2
0(ΩS) , uS ∈ L2(ΩS) , ϕ ∈ H

1/2
00 (Σ) , γS ∈ L2(ΩS) ,

σS ∈ H(div; ΩS) , uD ∈ H0(div; ΩD) , pD ∈ L2(ΩD) , and λ ∈ H1/2(Σ) ,
(2.18)

and the eight equations given by (2.9), (2.11), (2.12), (2.13), (2.14), (2.16), and (2.17). Ho-

wever, it is not difficult to show that this system is not uniquely solvable since, given any

solution (tS,uS,ϕ,γS,σS,uD, pD, λ) in the indicated spaces, and given any constant c ∈ R,

the vector defined by (tS,uS,ϕ,γS,σS − c I,uD, pD + c, λ + c) also becomes a solution.

In order to avoid this non-uniqueness from now on we require that the Darcy pressure pD

belongs to L2
0(ΩD), where

L2
0(ΩD) :=

{
qD ∈ L2(ΩD) :

∫
ΩD

qD = 0

}
.

Note that the decomposition L2(ΩD) = L2
0(ΩD)⊕R, the boundary conditions uD ·n = 0 on

ΓD and uS = 0 on ΓS, the first transmission condition in (2.3), and the fact that
∫

ΩD
fD = 0,

guarantee that (2.16) is equivalent to requiring it for all qD ∈ L2
0(ΩD).

Now, it is quite clear that there are many different ways of ordering the equations forming

the resulting nonlinear system. Throughout the rest of the thesis, and for convenience of

the analysis, we adopt one leading to a twofold saddle point structure. More precisely, by

considering subsequently (2.11), (2.14), (2.9), (2.17), (2.16), (2.12), and (2.13), and denoting
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throughout the rest of the thesis

〈ϕ,ψ〉t,Σ :=

n−1∑
`=1

κ−1
` 〈ϕ · t`,ψ · t`〉Σ , (2.19)

we arrive at the matrix operator represented as follows, where the unknowns and corre-

sponding test functions are displayed along columns and rows, respectively,

tS uD σS (ϕ, λ) pD uS γS

rS (µ(|tS|) tS, rS)S − (rS,σ
d
S)S

vD (K−1uD,vD)D −〈vD · n, λ〉Σ − (divvD, pD)D

τS (tS, τ
d
S)S 〈τS n,ϕ〉Σ (div τS,uS)S (τS,γS)S

(ψ, ξ) −〈uD · n, ξ〉Σ 〈σS n,ψ〉Σ
−〈ϕ · n, ξ〉Σ
+ 〈ψ · n, λ〉Σ
−〈ϕ,ψ〉t,Σ

qD − (divuD, qD)D

vS (divσS,vS)S

ηS (σS,ηS)S


.

Furthermore, in order to facilitate the forthcoming analysis, and particularly, to be able

to apply a generalization of the Babuška-Brezzi theory for twofold saddle point problems

(see Chapter 3 below), we enrich the above formulation by adding the consistent equation

given by

ρ (σd
S − µ(|tS|) tS, τ

d
S)S = 0 ∀ τ S ∈ H(div; ΩS) , (2.20)

where ρ is a positive stabilization parameter to be choosen later. Note that (2.20), which is

included from now on into the left-upper block, arises from the quasi-Newtonian constitutive

law given by the second equation of (2.8). Additionally, we consider the decomposition

H(div; ΩS) = H0(div; ΩS) ⊕ R I , (2.21)

where

H0(div; ΩS) :=

{
τ ∈ H(div; ΩS) :

∫
ΩS

tr (τ ) = 0

}
, (2.22)

and redefine σS and τ S as σS + ` I and τ S +  I, respectively, with

σS, τ S ∈ H0(div; ΩS) and `,  ∈ R . (2.23)

Consequently, denoting µ̃(|tS|) := 1 − ρµ(|tS|), the matrix operator of our variational
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formulation is represented now by

(µ(|tS|) tS, rS)S − (rS,σ
d
S)S

(K−1uD,vD)D −〈vD · n, λ〉Σ − (divvD, pD)D(
µ̃(|tS|) tS, τ

d
S

)
S

ρ(σd
S, τ

d
S)S 〈τS n,ϕ〉Σ (div τS,uS)S (τS,γS)S

−〈uD · n, ξ〉Σ 〈σS n,ψ〉Σ
−〈ϕ · n, ξ〉Σ
+ 〈ψ · n, λ〉Σ
−〈ϕ,ψ〉t,Σ

`〈n,ψ〉Σ

− (divuD, qD)D

(divσS,vS)S

(σS,ηS)S

〈n,ϕ〉Σ


with unknowns

tS ∈ L2
0(ΩS) , uD ∈ H0(div; ΩD) , σS ∈ H0(div; ΩS) , (ϕ, λ) ∈ H

1/2
00 (Σ)×H1/2(Σ) ,

pD ∈ L2
0(ΩD) , uS ∈ L2(ΩS) , γS ∈ L2(ΩS) , and ` ∈ R ,

(2.24)

and corresponding test functions

rS ∈ L2
0(ΩS) , vD ∈ H0(div; ΩD) , τ S ∈ H0(div; ΩS) , (ψ, ξ) ∈ H

1/2
00 (Σ)×H1/2(Σ) ,

qD ∈ L2
0(ΩD) , vS ∈ L2(ΩS) , ηS ∈ L2(ΩS) , and  ∈ R .

(2.25)

The above structure suggests the introduction of the spaces

X1 := L2
0(ΩS)×H0(div; ΩD)×H0(div; ΩS) , M1 := H

1/2
00 (Σ)×H1/2(Σ) ,

M := L2
0(ΩD)× L2(ΩS)× L2(ΩS)× R , and X := X1 ×M1 ,

(2.26)

endowed with the associated product norms, and the operators A1 : X1 → X′1, B1 : X1 →
M′

1, S : M1 →M′
1, A : X→ X′, and B : X→M′, given, respectively, by

[A1(t), r] := (µ(|tS|) tS, rS)S + (K−1uD,vD)D − (rS,σ
d
S)S

+ (tS, τ
d
S)S + ρ (σd

S − µ(|tS|) tS, τ
d
S)S ,

(2.27)

[B1(r),ψ] := −〈vD · n, ξ〉Σ + 〈τ S n,ψ〉Σ , (2.28)

[S(ϕ),ψ] := 〈ϕ · n, ξ〉Σ − 〈ψ · n, λ〉Σ + 〈ϕ,ψ〉t,Σ , (2.29)

[A(t,ϕ), (r,ψ)] := [A1(t), r] + [B1(t),ψ] + [B1(r),ϕ] − [S(ϕ),ψ] , (2.30)
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and

[B(r,ψ), q] := − (div vD, qD)D + (div τ S,vS)S + (τ S,ηS)S +  〈n,ψ〉Σ , (2.31)

for all t := (tS,uD,σS) ∈ X1, r := (rS,vD, τ S) ∈ X1, ϕ := (ϕ, λ) ∈ M1, ψ :=

(ψ, ξ) ∈ M1, and q := (qD,vS,ηS, ) ∈ M, where [·, ·] denotes the duality pairing

induced by the corresponding operators. In addition, we let B′1 : M1 → X′1 and B′ : M →
X′ be the adjoints of B1 and B, respectively, which satisfy [B′1(ψ), r] = [B1(r),ψ] and

[B′(q), (r,ψ)] = [B(r,ψ), q] for all r ∈ X1, ψ ∈M1, and q ∈ M. Then, it is clear that A
can also be defined as the matrix operator

A(r,ψ) :=

[
A1 B′1

B1 −S

][
r

ψ

]
∈ X′ ∀ (r,ψ) ∈ X . (2.32)

Next, we let F ∈ X′ and G ∈M′ be the functionals defined by

[F, (r,ψ)] := 0 ∀ (r,ψ) ∈ X and [G, q] := − (fS,vS)S − (fD, qD)D ∀ q ∈ M ,

(2.33)

and observe that, denoting p := (pD,uS,γS, `) ∈ M, our augmented fully-mixed variational

formulation reduces to the twofold saddle point operator equation: Find ((t,ϕ), p) ∈ X×M
such that

[A(t,ϕ), (r,ψ)] + [B(r,ψ), p] = [F, (r,ψ)] ∀ (r,ψ) ∈ X ,

[B(t,ϕ), q] = [G, q] ∀ q ∈ M ,
(2.34)

or, equivalently, such that [
A B′

B O

][
(t,ϕ)

p

]
=

[
F
G

]
. (2.35)

Certainly, (2.32) and (2.35) explain here the use of the “twofold saddle point” concept.

In the following chapter we adapt the approach from [17, Sections 2 and 3] to derive the

necessary abstract theory for analyzing the kind of variational problems characterized by

(2.35) and (2.32).



Chapter 3

A modified abstract theory for

twofold saddle point problems

3.1 The continuous setting

Let X1, M1 and M be Hilbert spaces, set X := X1 ×M1, and denote their duals by X ′1,

M ′1, M ′, and X ′ := X ′1×M ′1, respectively. Next, given a nonlinear operator A1 : X1 → X ′1,

and linear bounded operators S : M1 → M ′1, B1 : X1 → M ′1, and B : X → M ′, we let

B′1 : M1 → X ′1 and B′ : M → X ′ be the corresponding adjoints, and define the nonlinear

operator A : X → X ′ as follows

A(r,ψ) :=

[
A1 B′1

B1 −S

][
r

ψ

]
∈ X ′ := X ′1 ×M ′1 ∀ (r,ψ) ∈ X . (3.1)

Then we are interested in the following nonlinear variational problem: Given (F,G) ∈
X ′ ×M ′, find ((t,ϕ), p) ∈ X ×M such that[

A B′

B O

][
(t,ϕ)

p

]
=

[
F

G

]
(3.2)

or, equivalently, such that

[A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ X ,

[B(t,ϕ), q] = [G, q] ∀ q ∈M .
(3.3)

In order to prove the main theorem for the solvability of the continuous formulation

(3.2), we need to recall the following auxiliary result from [17].

17
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Lemma 3.1 Let X̂1 and M̂1 be Hilbert spaces, and let Â1 : X̂1 → X̂ ′1 be a nonlinear

operator. In addition, let B̂1 : X̂1 → M̂ ′1 and Ŝ : M̂1 → M̂ ′1 be linear and bounded operators,

and let B̂′1 : M̂1 → X̂ ′1 be the adjoint of B̂1. Assume that

i) Â1 : X̂1 → X̂ ′1 is Lipschitz continuous and strongly monotone, that is, there exist

constants γ̂, α̂ > 0 such that

‖Â1(s) − Â1(r)‖
X̂′1
≤ γ̂ ‖s− r‖

X̂1
∀ s, r ∈ X̂1

and

[Â1(s) − Â1(r), s− r] ≥ α̂ ‖s− r‖2
X̂1

∀ s, r ∈ X̂1 .

ii) Ŝ is positive semi-definite on M̂1, that is,

[Ŝ(ψ),ψ] ≥ 0 ∀ψ ∈ M̂1 .

iii) B̂1 satisfies an inf-sup condition on X̂1 × M̂1, that is, there exists β̂ > 0 such that

sup
r∈X̂1

r6=0

[B̂1(r),ψ]

‖r‖
X̂1

≥ β̂ ‖ψ‖
M̂1

∀ψ ∈ M̂1 .

Then, given (F̂ , Ĝ) ∈ X̂ ′1 × M̂ ′1, there exists a unique (t,ϕ) ∈ X̂1 × M̂1 such that[
Â1 B̂′1

B̂1 −Ŝ

][
t

ϕ

]
=

[
F̂

Ĝ

]
.

In addition, there exists Ĉ > 0, depending only on γ̂, α̂, β̂ and ‖B̂1‖, such that

‖(t,ϕ)‖
X̂1×M̂1

≤ Ĉ
{
‖F̂‖

X̂′1
+ ‖Ĝ‖

M̂ ′1
+ ‖Â1(0)‖

X̂′1

}
. (3.4)

Proof. See [17, Lemma 2.1].

�

We now go back to the analysis of problem (3.2). To this end, we let V be the kernel of

B, that is

V :=
{

(r,ψ) ∈ X : [B(r,ψ), q] = 0 ∀ q ∈M
}
,

and denote by X̃1 and M̃1 the subspaces of X1 and M1, respectively, such that V = X̃1×M̃1.

Note that the boundedness of B implies that both X̃1 and M̃1 are closed. Then, the following
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theorem provides sufficient conditions for the well-posedness of (3.2).

Theorem 3.1 Assume that

i) A1|X̃1
: X̃1 → X̃ ′1 is Lipschitz continuous and strongly monotone, that is, there exist

constants γ, α > 0 such that

‖A1(s) − A1(r)‖
X̃′1
≤ γ ‖s− r‖X1 ∀ s, r ∈ X̃1

and

[A1(s) − A1(r), s− r] ≥ α ‖s− r‖2X1
∀ s, r ∈ X̃1 .

ii) For each pair (r, r⊥) ∈ X̃1 × X̃⊥1 there holds the pseudolinear property

A1(r + r⊥) = A1(r) + A1(r⊥) . (3.5)

iii) S is positive semi-definite on M̃1, that is,

[S(ψ),ψ] ≥ 0 ∀ψ ∈ M̃1 .

iv) B1 satisfies an inf-sup condition on X̃1 × M̃1, that is, there exists β1 > 0 such that

sup
r∈X̃1

r6=0

[B1(r),ψ]

‖r‖X1

≥ β1 ‖ψ‖M1 ∀ψ ∈ M̃1 .

v) B satisfies an inf-sup condition on X ×M , that is, there exists β > 0 such that

sup
(r,ψ)∈X

(r,ψ)6=0

[B(r,ψ), q]

‖(r,ψ)‖X
≥ β ‖q‖M ∀ q ∈M .

Then, there exists a unique ((t,ϕ), p) ∈ X ×M solution of (3.2). Moreover, there exists

C > 0, depending only on α, γ, β1, β, ‖S‖, and ‖B1‖ such that

‖((t,ϕ), p)‖X×M ≤ C
{
‖F‖X′ + ‖G‖M ′

}
. (3.6)

Proof. We adapt the proof of [17, Theorem 2.1] to the present situation. We begin by

recalling from [28, Chapter I, Lemma 4.1] that the inf-sup condition satisfied by B (cf. v))
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implies that B : V ⊥ →M ′ and B′ : M → V o are isomorphisms and that

‖B−1‖, ‖(B′)−1‖ ≤ 1

β
. (3.7)

As usual, V o stands here for the set of functionals in X ′ that vanish on V . Hence, we now

let (t⊥,ϕ⊥) := B−1(G) ∈ V ⊥, and observe, thanks to (3.7), that

‖(t⊥,ϕ⊥)‖X ≤
1

β
‖G‖M ′ . (3.8)

Next, we let F1 ∈ X ′1 and G1 ∈M ′1 be such that F = (F1, G1), and introduce the functionals

F̂1 := F1 − A1(t⊥) − B′1(ϕ⊥) ∈ X ′1 and Ĝ1 := G1 − B1(t⊥) + S(ϕ⊥) ∈M ′1 . (3.9)

Then, having in mind hypotheses i), iii), and iv), a straightforward application of Lemma

3.1 yields the existence of a unique (t̃, ϕ̃) ∈ V := X̃1 × M̃1 such that

[A1(t̃), r] + [B′1(ϕ̃), r] = [F̂1, r] ∀ r ∈ X̃1 ,

[B1(t̃),ψ] − [S(ϕ̃),ψ] = [Ĝ1,ψ] ∀ψ ∈ M̃1 ,
(3.10)

and there exists C̃ > 0, depending only on γ, α, β1 and ‖B1‖, such that

‖(t̃, ϕ̃)‖X1×M1 ≤ C̃
{
‖F̂1‖X̃′1 + ‖Ĝ1‖M̃ ′1

}
. (3.11)

Note that we have also used here, which is a consequence of ii), that A1(0) = 0. It follows

from (3.10) that the pair of functionals (F̂1 − A1(t̃) − B′1(ϕ̃), Ĝ1 − B1(t̃) + S(ϕ̃)) belongs

to X̃o
1 × M̃o

1 =: V o, and hence, according to the above mentioned property of B′ and the

bound (3.7) again, there exists a unique p ∈M such that

B′(p) = (F̂1 −A1(t̃)−B′1(ϕ̃), Ĝ1 −B1(t̃) + S(ϕ̃)) , (3.12)

and

‖p‖M ≤
1

β

{
‖F̂1 −A1(t̃)−B′1(ϕ̃)‖X′1 + ‖Ĝ1 −B1(t̃) + S(ϕ̃)‖M ′1

}
. (3.13)

Next, replacing F̂1 and Ĝ1 from (3.9) into (3.12), and using the pseudolinear property (3.5)

and the linearity of B′1, B1, and S, we find that

B′(p) = (F1 −A1(t⊥ + t̃)−B′1(ϕ⊥ + ϕ̃), G1 −B1(t⊥ + t̃) + S(ϕ⊥ + ϕ̃)) ,
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which, in terms of the operator A (cf. (3.1)) and the functional F = (F1, G1), can be

rewritten as

A(t⊥ + t̃,ϕ⊥ + ϕ̃) + B′(p) = F . (3.14)

In turn, since B(t⊥,ϕ⊥) = G and (t̃, ϕ̃) belongs to V , we easily see that

B(t⊥ + t̃,ϕ⊥ + ϕ̃) = G , (3.15)

and therefore, it becomes clear from (3.14) and (3.15) that the pair ((t⊥ + t̃,ϕ⊥ + ϕ̃), p) ∈
X ×M constitutes a solution of (3.2). The corresponding bound (3.6) follows from (3.8),

(3.9), (3.11), and (3.13), by employing also the properties of the operators involved. We

omit details.

For the uniqueness, let ((t,ϕ), p̄) ∈ X ×M be another solution of (3.2), that is

A(t,ϕ) + B′(p̄) = F and B(t,ϕ) = G .

It follows that (t,ϕ)−(t⊥,ϕ⊥) ∈ V , and hence, using again the pseudolinear property (3.5),

we find that A1(t) = A1(t− t⊥) + A1(t⊥). As a consequence, there holds

A(t,ϕ) = A
(
(t,ϕ)− (t⊥,ϕ⊥)

)
+ A(t⊥,ϕ⊥) ,

which, combined with the fact that A(t,ϕ)− F belongs to V o, yields

[A
(
(t,ϕ)− (t⊥,ϕ⊥)

)
, (r,ψ)] = [F −A(t⊥,ϕ⊥), (r,ψ)] ∀ (r,ψ) ∈ V ,

that is

[A1(t− t⊥), r] + [B′1(ϕ−ϕ⊥), r] = [F̂1, r] ∀ r ∈ X̃1 ,

[B1(t− t⊥),ψ] − [S(ϕ−ϕ⊥),ψ] = [Ĝ1,ψ] ∀ψ ∈ M̃1 .

This shows that (t− t⊥,ϕ− ϕ⊥) is a solution of (3.10), and hence, because of the unique

solvability of that problem, we deduce that (t − t⊥,ϕ − ϕ⊥) = (t̃, ϕ̃), that is (t,ϕ) =

(t̃ + t⊥, ϕ̃ + ϕ⊥). Finally, since B′(p) = B′(p̄) = F − A(t,ϕ) ∈ V o and B′ : M → V o is

an isomorphism, we conclude that p = p̄, which finishes the proof.

�

Before going on with the analysis, we now describe a particular case providing sufficient

conditions for the pseudolinear property (3.5). More precisely, let us assume that X1 can
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be decomposed as the product space X`
1 ×Xr

1 in such a way that

i) B does not depend on the variables from X`
1.

ii) A1 is linear in
{
0
}
×Xr

1 , where 0 denotes the null vector of X`
1.

iii) for each t := (t`, tr) ∈ X`
1 ×Xr

1 =: X1 there holds

A1(t) = A1(t`,0) + A1(0, tr) ,

where 0 denotes, respectively, the null vectors of Xr
1 and X`

1.

Then, recalling that V = X̃1×M̃1, we deduce from i) that X̃1 = X`
1×X̃r

1 , where X̃r
1 is a

subspace of Xr
1 . In addition, it follows from the above that X̃⊥1 =

{
0
}
×
(
X̃r

1

)⊥ ⊆ {0}×Xr
1 ,

where 0 denotes again the null vector of X`
1. Consequently, given t := (t`, tr) ∈ X̃1 and

t⊥ := (0, t⊥,r) ∈ X̃⊥1 , we use ii) and iii) to find that

A1(t) + A1(t⊥) = A1(t`,0) + A1(0, tr) + A1(0, t⊥,r) = A1(t`,0) + A1(0, tr + t⊥,r)

= A1(t`, tr + t⊥,r) = A1(t + t⊥) ,

which shows that (3.5) holds. In particular, we prove below in Chapter 4 that our formula-

tion from Chapter 2 does satisfy the assumptions i), ii), and iii).

On the other hand, if A1 is linear, Theorem 3.1 reduces to the following.

Theorem 3.2 Assume that

i) A1 : X̃1 → X̃ ′1 is linear, bounded and X̃1-elliptic, that is, there exist γ, α > 0 such that

‖A1(r)‖
X̃′1
≤ γ ‖r‖X1 ∀ r ∈ X̃1 ,

and

[A1(r), r] ≥ α ‖r‖2X1
∀ r ∈ X̃1 .

ii) The conditions iii) - v) from Theorem 3.1 are satisfied.

Then, there exists a unique ((t,ϕ), p) ∈ X ×M solution of (3.2). Moreover, there exists

C > 0, depending only on α, γ, β1, β, ‖S‖, and ‖B1‖ such that

‖((t,ϕ), p)‖X×M ≤ C
{
‖F‖X′ + ‖G‖M ′

}
. (3.16)
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Proof. It suffices to observe that the linearity, boundedness and ellipticity of A1 imply

that this operator is Lipschitz continuous and strongly monotone in X̃1. In addition, it is

clear that A1 satisfies (3.5). Thus, the proof follows from a straightforward application of

Theorem 3.1.

�

It is important to remark at this point that (3.16) is equivalent to the global inf-sup

condition

‖((s,φ), ρ)‖X×M ≤ C sup
((r,ψ),q)∈X×M

((r,ψ),q) 6= 0

[A(s,φ), (r,ψ)] + [B′(ρ), (r,ψ)] + [B(s,φ), q]

‖((r,ψ), q)‖X×M

(3.17)

for all ((s,φ), ρ) ∈ X ×M .

3.2 The discrete setting

We now turn our attention to the Galerkin scheme of problem (3.2). To this end, we let

X1,h, M1,h, and Mh be finite-dimensional subspaces of X1, M1, and M , respectively. Here,

the subindex h, which identifies the finite dimensional subspaces, is taken in a numerable

family I := {hj}j∈N such that hj ≥ hj+1 for all j ∈ N. Then, defining Xh := X1,h ×M1,h,

the Galerkin scheme reduces to: Find ((th,ϕh), ph) ∈ Xh ×Mh such that

[A(th,ϕh), (r,ψ)] + [B′(ph), (r,ψ)] = [F, (r,ψ)] ∀ (r,ψ) ∈ Xh ,

[B(th,ϕh), q] = [G, q] ∀ q ∈Mh .
(3.18)

Next, we let Vh be the discrete kernel of B, that is,

Vh :=
{

(rh,ψh) ∈ Xh : [B(rh,ψh), q] = 0 ∀ q ∈Mh

}
,

and let X̃1,h and M̃1,h be subspaces of X1,h and M1,h, respectively, such that Vh = X̃1,h ×
M̃1,h.

The following theorem establishes the well posedness of (3.18).

Theorem 3.3 Assume that

i) A1|X̃1,h
: X̃1,h → X̃ ′1,h is Lipschitz continuous and strongly monotone, that is, there
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exist constants γh, αh > 0 such that

‖A1(sh) − A1(rh)‖
X̃′1,h

≤ γh ‖sh − rh‖X1 ∀ sh, rh ∈ X̃1,h

and

[A1(sh) − A1(rh), sh − rh] ≥ αh ‖sh − rh‖2X1
∀ sh, rh ∈ X̃1,h .

ii) For each pair (rh, r
⊥
h ) ∈ X̃1,h × X̃⊥1,h there holds the discrete pseudolinear property

[A1(rh + r⊥h ), sh] = [A1(rh), sh] + [A1(r⊥h ), sh] ∀ sh ∈ X1,h , (3.19)

where X̃⊥1,h is the orthogonal of X̃1,h within X1,h.

iii) S is positive semi-definite on M̃1,h, that is,

[S(ψh),ψh] ≥ 0 ∀ψh ∈ M̃1,h .

iv) B1 satisfies an inf-sup condition on X̃1,h× M̃1,h, that is, there exists β1,h > 0 such that

sup
rh∈X̃1,h

rh 6=0

[B1(rh),ψh]

‖rh‖X1

≥ β1,h ‖ψh‖M1 ∀ψh ∈ M̃1,h .

v) B satisfies an inf-sup condition on Xh ×Mh, that is, there exists βh > 0 such that

sup
(rh,ψh)∈Xh
(rh,ψh)6=0

[B(rh,ψh), qh]

‖(rh,ψh)‖X
≥ βh ‖qh‖M ∀ qh ∈Mh .

Then, there exists a unique ((th,ϕh), ph) ∈ Xh ×Mh solution of (3.18). Moreover, there

exists Ch > 0, depending only on αh, γh, β1,h, βh, ‖S‖, and ‖B1‖ such that

‖((th,ϕh), ph)‖X×M ≤ Ch

{
‖F |Xh

‖X′h + ‖G|Mh
‖M ′h

}
. (3.20)

Proof. It follows analogously to the proof of Theorem 3.1 by adapting now the proof of

[17, Theorem 3.1]. In particular, the discrete inf-sup condition satisfied by B (cf. v))

and [28, Chapter I, Lemma 4.1] imply that the discrete counterparts of B and B′, namely

Bh : V ⊥h ∩Xh →M ′h and B′h : Mh → V o
h ∩X ′h, respectively, are isomorphisms with

‖B−1
h ‖ , ‖(B

′
h)−1‖ ≤ 1

βh
. (3.21)
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The rest of the proof makes use also of the discrete version of Lemma 3.1. We omit further

details.

�

It is interesting to observe at this point that the same sufficient conditions introduced

above for the pseudolinear property (3.5) yield now the verification of (3.19). In fact,

decomposing the space X1,h = X`
1,h×Xr

1,h, with X`
1,h ⊆ X`

1 and Xr
1,h ⊆ Xr

1 , and assuming

i), ii), and iii), we easily see that B does not depend on the variables from X`
1,h, A1|X1,h

is linear in
{
0
}
× Xr

1,h, and for each th := (t`h, t
r
h) ∈ X`

1,h × Xr
1,h =: X1,h there holds

[A1(th), sh] = [A1(t`h,0), sh] + [A1(0, trh), sh] ∀ sh ∈ X1,h. Consequently, we find that

X̃1,h = X`
1,h × X̃r

1,h, where X̃r
1,h is a subspace of Xr

1,h, and also that X̃⊥1,h ⊆
{
0
}
×Xr

1,h,

whence the discrete pseudolinear property (3.19) follows similarly to the proof of (3.5) from

the assumptions indicated. Further details are omitted.

On the other hand, the linear version of Theorem 3.3 is established as follows.

Theorem 3.4 Assume that

i) A1|X1,h
: X1,h → X ′1,h is linear, bounded and X̃1,h-elliptic, that is, there exist γh, αh > 0

such that

‖A1(rh)‖X′1,h ≤ γh ‖rh‖X1 ∀ rh ∈ X̃1,h ,

and

[A1(rh), rh] ≥ αh ‖rh‖2X1
∀ rh ∈ X̃1,h .

ii) The conditions iii) - v) from Theorem 3.3 are satisfied.

Then, there exists a unique ((th,ϕh), ph) ∈ Xh ×Mh solution of (3.18). Moreover, there

exists Ch > 0, depending only on αh, γh, β1,h, βh, ‖S‖, and ‖B1‖ such that

‖((th,ϕh), ph)‖X×M ≤ Ch

{
‖F |Xh

‖X′h + ‖G|Mh
‖M ′h

}
. (3.22)

Proof. It reduces to verify the hypotheses of Theorem 3.3. We omit details.

�

As for the continuous case, we notice here that (3.22) is equivalent to the global inf-sup

condition

‖((sh,φh), ρh)‖X×M ≤ Ch sup
((r,ψ),q)∈Xh×Mh

((r,ψ),q) 6= 0

[A(sh,φh), (r,ψ)] + [B′(ρh), (r,ψ)] + [B(sh,φh), q]

‖((r,ψ), q)‖X×M

(3.23)
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for all ((sh,φh), ρh) ∈ Xh ×Mh.

It is important to remark now that, from the point of view of the stability of the Galerkin

schemes, one actually should require that in Theorems 3.3 and 3.4 all the constants αh, γh,

β1,h, and βh, and hence Ch in (3.20) and (3.22), be independent of h. Indeed, these theorems

are usually stated by assuming the existence of uniform lower bounds for αh, β1,h, and βh,

and a uniform upper bound for γh. Needless to say, the derivation of these uniform bounds

(equivalently, the obtention of constants not depending on the meshsize h) becomes precisely

the core issue of the numerical analysis of any particular Galerkin scheme of the form (3.18).

We now aim to provide the error estimates for the abstract Galerkin scheme (3.18). For

this purpose, and in order to simplify the corresponding analysis, we proceed as in [17]

and introduce a differentiability hypothesis on the nonlinear operator A1. In addition, we

suppose that A1 is Lipschitz-continuous in the whole space X1, and adopt slightly more gen-

eral strong monotonicity properties involving separately the continuous and discrete spaces.

More precisely, throughout the rest of the chapter we assume the following hypotheses:

(A.1) there exist constants γ, α > 0, independent of h, such that

‖A1(s) − A1(r)‖X′1 ≤ γ ‖s− r‖X1 ∀ s, r ∈ X1 , (3.24)

[A1(t + s) − A1(t + r), s− r] ≥ α ‖s− r‖2X1
∀ t ∈ X1, ∀ s, r ∈ X̃1 , (3.25)

and

[A1(th + sh) − A1(th + rh), sh − rh] ≥ α ‖sh − rh‖2X1
∀ th ∈ X1,h, ∀ sh, rh ∈ X̃1,h .

(3.26)

(A.2) A1 : X1 → X ′1 has a hemi-continuous first order Gâteaux derivative DA1 : X1 →
L(X1, X

′
1), which means that for any s, r ∈ X1, the mapping R 3 µ → DA1(s +

µ r)(r)(·) ∈ X ′1 is continuous.

Note here that the discrete strong monotonicity condition (3.26) does not follow in

general from the continuous one (3.25) since the component X̃1,h of the discrete kernel Vh is

not necessarily contained in the corresponding component X̃1 of V . This is the reason why

we have to impose them separately. Then, we have the following result.

Lemma 3.2 For any s ∈ X1, the Gâteaux derivative DA1(s) constitutes a bounded bilinear

form on X1 × X1 that becomes elliptic on X̃1 ∪ X̃1,h, with boundedness and ellipticity

constants given by γ and α, respectively.
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Proof. Given s ∈ X1, the Gâteaux derivative DA1(s) is the operator in L(X1, X
′
1) (equiva-

lently, the bilinear form on X1 ×X1) defined by

DA1(s)(r, r̂) := lim
ε→0

[A1(s + ε r), r̂] − [A1(s), r̂]

ε
∀ r, r̂ ∈ X1 .

The rest of the proof follows as in [17, Lemma 3.1] by employing the assumptions (A.1)

and (A.2) in the above definition. We omit further details and refer the reader to [17].

�

Our next goal is to provide the Cea estimate for the Galerkin scheme (3.18). To this

end, we now let P : X ×M → (X ×M)′ := X ′ ×M ′ be the nonlinear operator obtained

after adding the equations on the left hand side of (3.3), that is

[P (~t),~r] := [A(t,ϕ), (r,ψ)] + [B′(p), (r,ψ)] + [B(t,ϕ), q]

for all ~t := ((t,ϕ), p), ~r := ((r,ψ), q) ∈ X ×M , or, equivalently, using (3.1),

[P (~t),~r] := [A1(t), r] + [B′1(ϕ), r] + [B1(t),ψ] + [B′(p), (r,ψ)] + [B(t,ϕ), q] (3.27)

for all ~t := ((t,ϕ), p), ~r := ((r,ψ), q) ∈ X × M . Then, it is easy to see that, given

~s := ((s,φ), ρ) ∈ X×M , the Gâteaux derivative of P at ~s is obtained by replacing [A1(t), r]

in (3.27) by DA1(s)(t, r). In this way we arrive at

DP (~s)(~t,~r) := DA1(s)(t, r) + [B′1(ϕ), r] + [B1(t),ψ] + [B′(p), (r,ψ)] + [B(t,ϕ), q] (3.28)

for all ~t := ((t,ϕ), p), ~r := ((r,ψ), q) ∈ X ×M , which, according to Lemma 3.2, becomes

a bounded bilinear form on
(
X ×M

)
×
(
X ×M

)
. Moreover, assuming for a moment the

conditions iii) - v) of Theorem 3.3 with constants independent of h, and having in mind

Lemma 3.2 again, we deduce that DP (~s)(·, ·) satisfies the hypotheses of the linear version

given by Theorem 3.4 with constants independent of h and ~s as well. It follows, in virtue of

(3.22) (equivalently (3.23)), that there exists C̃ > 0, independent of h, such that

‖~sh‖X×M ≤ C̃ sup
~rh∈Xh×Mh
~rh 6=0

DP (~s)(~sh,~rh)

‖~rh‖X×M
∀~sh ∈ Xh ×Mh . (3.29)

We are now in a position to establish the announced a priori error estimate.

Theorem 3.5 Assume that the hypotheses of Theorems 3.1 and 3.3 hold, and let ~t :=

((t,ϕ), p) ∈ X ×M and ~th := ((th,ϕh), ph) ∈ Xh ×Mh be the unique solutions of (3.2)
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and (3.18), respectively. Then, there exists C > 0, independent of h, such that

‖~t − ~th‖X×M ≤ C inf
~sh∈Xh×Mh

‖~t − ~sh‖X×M . (3.30)

Proof. We proceed as in the proof of [17, Theorem 3.3]. Hence, given ~s ∈ X ×M and

~sh ∈ Xh ×Mh, we apply (3.29) to ~th − ~sh and obtain

‖~th −~sh‖X×M ≤ C̃ sup
~rh∈Xh×Mh
~rh 6=0

DP (~s)(~th −~sh,~rh)

‖~rh‖X×M
. (3.31)

In turn, since the hemi-continuity of DA1 (cf. (A.2)) implies the same property for DP ,

we deduce the existence of µ0 ∈ (0, 1) such that

[P (~th),~rh] − [P (~sh),~rh] =

∫ 1

0
DP (µ~th + (1− µ)~sh)(~th −~sh,~rh) dµ

= DP (µ0~th + (1− µ0)~sh)(~th −~sh,~rh) ,

(3.32)

and hence, using in particular ~s = µ0~th + (1− µ0)~sh in (3.31), we find that

‖~th −~sh‖X×M ≤ C̃ sup
~rh∈Xh×Mh
~rh 6=0

[P (~th),~rh] − [P (~sh),~rh]

‖~rh‖X×M
. (3.33)

Next, since (3.2) and (3.18) yield [P (~t),~rh] = [P (~th),~rh] ∀~rh ∈ Xh × Mh, and since

(A.1) implies that P is also Lipschitz-continuous, say with a constant γ̃, we obtain from

(3.33) that

‖~th −~sh‖X×M ≤ C̃ γ̃ ‖~t−~sh‖X×M ∀~sh ∈ Xh ×Mh . (3.34)

Finally, it is easy to see that (3.34) and the triangle inequality give (3.30) and complete the

proof.

�



Chapter 4

Analysis of the continuous problem

We now go back to the augmented fully mixed variational formulation introduced in Section

2.4 and apply Theorem 3.1 to prove the well posedness of (2.34). In fact, we begin by

observing from the definition of B (cf. (2.31)) that the kernel of this operator reduces to

V :=
{

(r,ψ) ∈ X : [B(r,ψ), q] = 0 ∀ q ∈M
}

= X̃1 × M̃1 ,

where

X̃1 = L2
0(ΩS)× H̃0(div; ΩD)× H̃0(div; ΩS) and M̃1 = H̃

1/2
00 (Σ)×H1/2(Σ) ,

with

H̃0(div; ΩD) :=
{

vD ∈ H0(div; ΩD) : div(vD) ∈ P0(ΩD)
}
,

H̃0(div; ΩS) =
{
τ S ∈ H0(div; ΩS) : τ S = τ tS and div τ S = 0 in ΩS

}
,

and

H̃
1/2
00 (Σ) :=

{
ψ ∈ H

1/2
00 (Σ) : 〈n,ψ〉Σ = 0

}
.

4.1 The nonlinear operator

The following lemma shows that A1 verifies the assumptions (3.24) and (3.25) (cf. (A.1)),

which imply, in particular, that A1 satisfies the hypothesis i) in Theorem 3.1.

Lemma 4.1 Let A1 : X1 → X′1 be the nonlinear operator defined by (2.27). Then there

29
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exists a constant γ > 0 such that

‖A1(r)−A1(s)‖X′1 ≤ γ‖r− s‖X1 ∀ r, s ∈ X1 . (4.1)

Furthermore, assume that the parameter ρ lies in

(
0,
α0

γ2
0

)
, where α0 and γ0 are the positive

constants from (2.4) and (2.5). Then, there exists a constant α > 0 such that

[A1(t + r)−A1(t + r̄), r− r̄] ≥ α ‖r− r̄‖2X1
∀ t ∈ X1 , ∀ r, r̄ ∈ X̃1 . (4.2)

Proof. We begin by observing from (2.27) that A1 : X1 → X′1 can be decomposed as

[A1(r), r̄] = [A1S(rS, τ S), (r̄S, τ̄ S)] + [A1D(vD), v̄D)] ∀ r = (rS,vD, τ S), r̄ = (r̄S, v̄D, τ̄ S) ∈ X1,

where A1S : L2
0(ΩS) × H0(div; ΩS) → L2

0(ΩS)′ × H0(div; ΩS)′ and A1D : H(div; ΩD) →
H(div; ΩD)′ are the nonlinear and linear operators, respectively, given by

[A1S(rS, τ S), (r̄S, τ̄ S)] := (µ(|rS|) rS, r̄S)S − (r̄S, τ
d
S)S + (rS, τ̄

d
S)S + ρ (τ dS − µ(|rS|) rS, τ̄

d
S)S

(4.3)

and

[A1D(vD), v̄D)] := (K−1vD, v̄D)D . (4.4)

Next, we recall from [22, Lemma 3.1] that there exists γ̄ > 0 such that

‖A1S(rS, τ S)−A1S(r̄S, τ̄ S)‖L2
0(ΩS)′×H0(div;ΩS)′

≤ γ̄ ‖(rS, τ S)− (r̄S, τ̄ S)‖L2
0(ΩS)×H0(div;ΩS)

for all (rS, τ S), (r̄S, τ̄ S) ∈ L2
0(ΩS)×H0(div; ΩS), and hence, thanks also to the boundedness

of A1D, we conclude (4.1), that is the Lipschitz continuity of A1. On the other hand, it

was proved in [22, Lemma 3.2] that, under the present assumption on ρ and having in mind

that div τ S = 0 ∀ τ S ∈ H̃0(div; ΩS), there exists ᾱ > 0 such that

[A1S((r̃S , τ̃S) + (rS, τ S))−A1S((r̃S , τ̃S) + (r̄S, τ̄ S)), (rS, τ S)− (r̄S, τ̄ S)]

≥ ᾱ ‖(rS, τ S)− (r̄S, τ̄ S)‖2
L2

0(ΩS)×H0(div;ΩS)
,

(4.5)

for all (r̃S , τ̃S) ∈ L2
0(ΩS)×H0(div; ΩS) and for all (rS, τ S), (r̄S, τ̄ S) ∈ L2

0(ΩS)× H̃0(div; ΩS).

At this point we remark that both [22, Lemma 3.1] and [22, Lemma 3.2] follow from [22,
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Lemma 2.1], which is actually the key result making use of the Gâteaux derivative of A1S.

In turn, it was established in [25, Lemma 3.2] that there exists c > 0 such that

‖vD‖0,ΩD
≥ c ‖vD‖div;ΩD

∀vD ∈ H̃(div; ΩD) , (4.6)

which, together with the fact that K is positive definite, imply the strong coerciveness

property for A1D : H̃0(div; ΩD)→ H̃0(div; ΩD)′. In this way, (4.5) and (4.6) yield (4.2) and

complete the proof.

�

As previously announced, note that the assumption i) required by Theorem 3.1 follows

from (4.1), using that ‖A1(r) −A1(s)‖
X̃′1
≤ ‖A1(r) −A1(s)‖X′1 ≤ γ ‖r − s‖X1 , and from

(4.2) (with t = 0).

4.2 The inf-sup conditions

We continue the analysis with the inf-sup conditions for B1 and B (cf. iv) and v) in Theorem

3.1).

Lemma 4.2 There exists a constant β1 > 0 such that

sup
r∈X̃1

r 6=0

[B1(r),ψ]

‖r‖X1

≥ β1 ‖ψ‖M1 ∀ψ ∈ M̃1 . (4.7)

Proof. These results are very similar to the ones provided in [25, Lemma 3.8]. Indeed,

because of the diagonal character of B1 (cf. (2.28)), one first realizes that (4.7) is equivalent

to finding positive constants β̃S and β̃D such that

sup
τS ∈ H̃0(div;ΩS)\0

〈τ S n,ψ〉Σ
‖τ S‖div;ΩS

≥ β̃S ‖ψ‖1/2,Σ ∀ψ ∈ H̃
1/2
00 (Σ) , (4.8)

and

sup
vD ∈ H̃(div;ΩD)\0

〈vD · n, ξ〉Σ
‖vD‖div;ΩD

≥ β̃D ‖ξ‖1/2,Σ ∀ ξ ∈ H1/2(Σ) . (4.9)

The proof of (4.9) can be found in [27, Lemma 3.3] (see also [25, Lemma 3.8]), whereas

for (4.8) we need to slightly modify the corresponding arguments given there. In fact,

given χ ∈ H
−1/2
00 (Σ) we let τ be the H0(div; ΩS)–component of e(z) ∈ H(div; ΩS), where
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z ∈ H1(ΩS) is the unique solution of the boundary value problem:

div e(z) = 0 in ΩS , z = 0 on ΓS , e(z) n = χ on Σ . (4.10)

In other words, τ := e(z) − c I, where c :=
1

n |ΩS|

∫
ΩS

tr e(z) (cf. (2.21)), which implies

that τ ∈ H̃0(div; ΩS) and τ n = χ − cn on Σ. It follows that 〈τ n,ψ〉Σ = 〈χ,ψ〉Σ for

each ψ ∈ H̃
1/2
00 (Σ), which proves the surjectivity of the operator τ → τ n from H̃0(div; ΩS)

to
(
H̃

1/2
00 (Σ)

)′
, that is (4.8).

�

Lemma 4.3 There exists a constant β > 0 such that

sup
(r,ψ)∈X

(r,ψ) 6=0

[B(r,ψ), q]

‖(r,ψ)‖X
≥ β ‖q‖M ∀ q ∈M . (4.11)

Proof. Analogously to the proof of Lemma 4.2, and because of the structure of B (cf. (2.31)),

we find that (4.11) is equivalent to the following three independent inequalities

sup
τS ∈H0(div;ΩS)\0

(div τ S,vS)S + (τ S,ηS)S

‖τ S‖div;ΩS

≥ βS ‖(vS,ηS)‖ ∀ (vS,ηS) ∈ L2(ΩS)×L2(ΩS) ,

(4.12)

sup
vD ∈H0(div;ΩD)\0

(div vD, qD)D

‖vD‖div;ΩD

≥ βD ‖qD‖0,ΩD
∀ qD ∈ L2

0(ΩD) , (4.13)

and

sup
ψ ∈H1/2

00 (Σ)\0

 〈n,ψ〉Σ
‖ψ‖1/2,Σ

≥ βΣ || ∀  ∈ R , (4.14)

with βS, βD, βΣ > 0. Actually, except for the term (τ S,ηS)S appearing in (4.12), the

statement of the present lemma coincides with the one provided in [25, Lemma 3.6]. Hence,

for the derivation of (4.13) and (4.14) we simply refer to the proof of that result, whereas

the proof of (4.12), being a slight modification of [25, eq. (3.4)], can be found in several

places (see, e.g. [20, Lemma 3.4]). In particular, we recall that the proof of (4.14) relies on

the existence of a fixed element ψ0 ∈ H1/2(Σ) such that 〈n,ψ0〉Σ 6= 0 (see [25, Section 3.2]

for details).

�
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4.3 The main result

We now check that the assumptions i), ii) and iii) specified in Chapter 3 are satisfied by our

variational formulation (2.34). For this purpose we decompose X1 (cf. (2.26)) as X`
1 ×Xr

1,

where X`
1 := L2

0(ΩS) and Xr
1 := H0(div; ΩD) × H0(div; ΩS). Then, it is easy to see from

(2.28) that B1 does not depend on the variable from X`
1. In addition, it is clear from (2.27)

that for each t := (0,uD,σS), r := (rS,vD, τ S) ∈ X1 there holds

[A1(t), r] := (K−1uD,vD)D − (rS,σ
d
S)S + ρ (σd

S, τ
d
S)S ,

which shows that A1 is linear in
{
0
}
× Xr

1. Similarly, from the definition of A1 we also

find that for each t := (t`, tr) := (tS, (uD,σS)) ∈ X1 := X`
1 × Xr

1 and for each r :=

(rS,vD, τ S) ∈ X1 there holds

[A1(t`,0), r] + [A1(0, tr), r] = (µ(|tS|) tS, rS)S + (tS, τ
d
S)S − ρ (µ(|tS|) tS, τ

d
S)S

+ (K−1uD,vD)D − (rS,σ
d
S)S + ρ (σd

S, τ
d
S)S = [A1(t), r] ,

which proves that A1(t) = A1(t`,0) + A1(0, tr). It follows from the previous analysis that

A1 satisfies the pseudolinear property (3.5), which confirms the verification of the hypothesis

ii) of Theorem 3.1.

On the other hand, it is quite straightforward from (2.19) and (2.29) that for each

ψ := (ψ, ξ) ∈M1 there holds

[S(ψ),ψ] =

n−1∑
`=1

κ−1
` ‖ψ · t`‖

2
0,Σ ≥ 0 , (4.15)

which shows the positive definiteness of S, thus verifying the hypothesis iii) of Theorem 3.1.

We are now ready to establish the main result concerning the existence and uniqueness

of solution of the problem (2.34).

Theorem 4.1 Assume that the parameter ρ appearing in the definition of the non linear

operator A1 (cf. (2.27)) lies in
(

0,
α0

γ2
0

)
, where γ0 and α0 are the positive constants from

(2.4) and (2.5). Then, there exists a unique ((t,ϕ), p) ∈ X×M solution of (2.34). Moreover,

there exists C > 0, depending only on α, γ, β1, β, ‖S‖, and ‖B1‖, such that

‖((t,ϕ), p)‖X×M ≤ C
{
‖F‖X′ + ‖G‖M′

}
. (4.16)
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Proof. Thanks to the analysis developed in this chapter, the proof follows from a direct

application of Theorem 3.1.

�

We end this chapter with the converse of the derivation of the variational formulation

(2.34).

Theorem 4.2 Let ((t,ϕ), p) ∈ X×M be the unique solution of the variational formulation

(2.34) with F and G given by (2.33), and define pS := − 1
2tr (σS). Then uS ∈ H1(ΩS),

pD ∈ H1(ΩD), ϕ = −uS on Σ, λ = pD on Σ, and we have a solution of the system (2.8),

(1), and (2.3).

Proof. It basically follows by applying integration by parts backwardly in (2.34), and using

suitable test functions. We omit further details.

�



Chapter 5

The mixed finite element scheme

In this chapter we introduce the Galerkin scheme of problem (2.34) and analyze its well-

posedness by establishing suitable assumptions on the finite element subspaces involved.

Then, we provide specific examples of these subspaces satisfying the required hypotheses.

5.1 Preliminaries

We begin by selecting a set of arbitrary discrete spaces, namely

Hh(ΩS) ⊆ H(div; ΩS), L2
h(ΩS) ⊆ L2(ΩS), Lh(ΩS) ⊆ L2(ΩS), ΛS

h(Σ) ⊆ H1/2
00 (Σ) ,

Hh(ΩD) ⊆ H(div; ΩD), Lh(ΩD) ⊆ L2(ΩD), and ΛD
h (Σ) ⊆ H1/2(Σ) .

(5.1)

Then, we define the subspaces

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : c tτ ∈ Hh(ΩS) ∀c ∈ Rn

}
,

H0,h(ΩS) := Hh(ΩS) ∩H0(div; ΩS) ,

H0,h(ΩD) := Hh(ΩD) ∩H0(div; ΩD) ,

Lh(ΩS) := [Lh(ΩS)]n ,

Lh(ΩS) := [Lh(ΩS)]n×n ,

L0,h(ΩS) := Lh(ΩS) ∩ L2
0(ΩS) , and

ΛS
h(Σ) := [ΛS

h(Σ)]n .

(5.2)

35
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In addition, in order to deal with the mean value condition for the Darcy pressure pD, we

define

L0,h(ΩD) := Lh(ΩD) ∩ L2
0(ΩD) . (5.3)

Then, the global unknowns and corresponding finite element subspaces are as follows:

th := (tS,h,uD,h,σS,h) ∈ X1,h := L0,h(ΩS)×H0,h(ΩD)×H0,h(ΩS) ,

ϕ
h

:= (ϕh, λh) ∈ M1,h := ΛS
h(Σ)× ΛD

h (Σ) ,

p
h

:= (pD,h,uS,h,γS,h, `h) ∈ Mh := L0,h(ΩD)× Lh(ΩS)× L2
h(ΩS)× R .

(5.4)

In this way, setting Xh := X1,h ×M1,h, the Galerkin scheme for (2.34) reduces to: Find

((th,ϕh), p
h
) ∈ Xh ×Mh such that

[A(th,ϕh), (rh,ψh)] + [B(rh,ψh), p
h
] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Xh ,

[B(th,ϕh), q
h
] = [G, q

h
] ∀ q

h
∈Mh .

(5.5)

5.2 The main results

We now adapt the analysis from Chapter 4 to the discrete case and follow very closely

the approach from [25, Section 4.1] to establish general hypotheses on the finite element

subspaces (5.1) ensuring, by means of the abstract theory developed in Section 3.2, the

well-posedness of (5.5). We begin by observing that in order to have meaningful spaces

H0,h(ΩS) and L0,h(ΩD) (cf. (5.2) and (5.3)), we need to be able to eliminate multiples of the

identity matrix I from Hh(ΩS) and the constant polynomials from Lh(ΩD). This request is

certainly satisfied if we assume the following:

(H.0) [P0(ΩS)]2 ⊆ Hh(ΩS) and P0(ΩD) ⊆ Lh(ΩD),

where P0(ΩS) and P0(ΩD) are the spaces of constant polynomials on ΩS and ΩD, respectively.

In particular, it follows that I ∈ Hh(ΩS) for all h, and hence there holds the decomposition:

Hh(ΩS) = H0,h(ΩS)⊕ P0(ΩS)I . (5.6)

Next, according to the same diagonal argument utilized in the proof of Lemma 4.3 (see

also [25, Lemma 3.6]) we deduce that B satisfies the discrete inf-sup condition uniformly on
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Xh ×Mh if and only if there exist β̃S, β̃D, β̃Σ > 0, independent of h, such that

sup
τS,h∈H0,h(ΩS)

τS,h 6=0

(div τ S,h,vS,h)S + (τ S,h,ηS,h)S

‖τ S,h‖div,ΩS

≥ β̃S ‖(vS,h,ηS,h)‖ ∀ (vS,h,ηS,h) ∈ Lh(ΩS)× L2
h(ΩS) ,

(5.7)

sup
vD,h∈H0,h(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖div;ΩD

≥ β̃D ‖qD,h‖0,ΩD
∀ qD,h ∈ L0,h(ΩD) , (5.8)

sup
ψh∈ΛS

h(Σ)

ψh 6=0

 〈n,ψh〉Σ
‖ψh‖1/2,Σ

≥ β̃Σ || ∀  ∈ R . (5.9)

However, since divHh(ΩS) = divH0,h(ΩS) (cf. (5.6)) and (I,ηS,h)S = 0 (because of the

symmetry of I and the skew-symmetry of ηS,h), we find that the supremum in (5.7) remains

the same if taken on Hh(ΩS) instead of H0,h(ΩS). Notice also that a sufficient condition for

(5.9) is the existence of ψ0 ∈ H
1/2
00 (Σ) such that ψ0 ∈ ΛS

h(Σ) for all h and 〈n,ψ0〉Σ 6= 0.

Consequently, we now introduce the following hypotheses summarizing the above analysis:

(H.1) There exist β̃S, β̃D > 0, independent of h, and there exists ψ0 ∈ H
1/2
00 (Σ), such that

sup
τS,h∈Hh(ΩS)

τS,h 6=0

(div τ S,h,vS,h)S + (τ S,h,ηS,h)S

‖τ S,h‖div,ΩS

≥ β̃S ‖(vS,h,ηS,h)‖ ∀ (vS,h,ηS,h) ∈ Lh(ΩS)× L2
h(ΩS) ,

(5.10)

sup
vD,h∈H0,h(ΩD)

vD,h 6=0

(div vD,h, qD,h)D

‖vD,h‖div;ΩD

≥ β̃D ‖qD,h‖0,ΩD
∀ qD,h ∈ L0,h(ΩD) , (5.11)

ψ0 ∈ ΛS
h(Σ) ∀h and 〈n,ψ0〉Σ 6= 0 . (5.12)

On the other hand, we now look at the discrete kernel of B, which is defined by

Vh :=
{

(rh,ψh) ∈ Xh : B((rh,ψh), q
h
) = 0 ∀q

h
∈Mh

}
.

In addition, in order to have a more explicit definition of Vh we introduce the following

assumption:

(H.2) div Hh(ΩS) ⊆ Lh(ΩS) and div Hh(ΩD) ⊆ Lh(ΩD).
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It follows from the definition of B (cf. (2.31)) and (H.2) that Vh := X̃1,h×M̃1,h, where

X̃1,h := L0,h(ΩS)× H̃0,h(ΩD)× H̃0,h(ΩS) and M̃1,h := ΛS
0,h(Σ)× ΛD

h (Σ) ,

with

H̃0,h(ΩD) :=
{

vD,h ∈ H0,h(ΩD) : div vD,h ∈ P0(ΩD)
}
,

H̃0,h(ΩS) :=
{
τ S,h ∈ H0,h(ΩS) : (τ S,h,ηS,h)S = 0 ∀ηS,h ∈ L2

h(ΩS) and div τ S,h = 0 in ΩS

}
,

and

ΛS
0,h(Σ) :=

{
ψh ∈ ΛS

h(Σ) : 〈n,ψh〉Σ = 0
}
.

Then, applying the same diagonal argument employed in the proof of Lemma 4.2 (see

also [25, Lemma 3.8]), we find that B1 satisfies the discrete inf-sup condition uniformly on

X̃1,h × M̃1,h if and only if there exist β̂S, β̂D > 0, independent of h, such that

sup
τS,h∈H̃0,h(ΩS)

τS,h 6=0

〈τ S,h n,ψh〉Σ
‖τ S,h‖div,ΩS

≥ β̂S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
0,h(Σ), (5.13)

sup
vD,h∈H̃0,h(ΩD)

vD.h 6=0

〈vD,h · n, ξh〉Σ
‖vD,h‖div;ΩD

≥ β̂D ‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ). (5.14)

In addition, the characterization of the elements of ΛS
0,h(Σ) yields the supremum in (5.13)

to remain unchanged if, instead of H̃0,h(ΩS), it is taken on

H̃h(ΩS) :=
{
τ S,h ∈ Hh(ΩS) : (τ S,h,ηS,h)S = 0 ∀ηS,h ∈ L2

h(ΩS) and div τ S,h = 0 in ΩS

}
.

(5.15)

In this way, we now add the following hypothesis:

(H.3) There exist β̂S, β̂D > 0, independent of h, such that

sup
τS,h∈H̃h(ΩS)

τS,h 6=0

〈τ S,h n,ψh〉Σ
‖τ S,h‖div;ΩS

≥ β̂S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
0,h(Σ), (5.16)

sup
vD,h∈H̃0,h(ΩD)

vD.h 6=0

〈vD,h · n, ξh〉Σ
‖vD,h‖div;ΩD

≥ β̂D ‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ). (5.17)
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From now on we assume that the arbitrary finite element subspaces introduced in (5.1)

satisfy the above derived hypotheses (H.0), (H.1), (H.2) and (H.3). Hence, we are in

a position to prove that the assumptions required by Theorem 3.3 are satisfied. We begin

with the following lemma which yields the hypothesis i) of that theorem and the assumption

(3.26) (cf. (A.1)) as well.

Lemma 5.1 Let γ > 0 be the same constant provided by Lemma 4.1. Then

‖A1(rh)−A1(sh)‖
X̃′1,h
≤ γ ‖rh − sh‖X1 ∀ rh, sh ∈ X̃1,h . (5.18)

Furthermore, assume that the parameter ρ lies in

(
0,
α0

γ2
0

)
, where α0 and γ0 are the positive

constants from (2.4) and (2.5), and let α > 0 be the same constant provided by Lemma 4.1.

Then

[A1(th+rh)−A1(th+sh), rh−sh] ≥ α ‖rh−sh‖2X1
∀ th ∈ X1,h , ∀ rh, sh ∈ X̃1,h . (5.19)

Proof. It is clear that (5.18) follows straightforwardly from (4.1) by noting that

‖A1(rh)−A1(sh)‖
X̃′1,h

≤ ‖A1(rh)−A1(sh)‖X′1 .

In turn, similarly as for the continuous case, the discrete strong monotonicity (5.19) fol-

lows from the corresponding property of the operator A1S|L0,h(ΩS)×H̃0,h(ΩS)
: L0,h(ΩS) ×

H̃0,h(ΩS) → L0,h(ΩS)′ × H̃0,h(ΩS)′, which makes use now of the fact that div τ S,h =

0 ∀ τ S,h ∈ H̃0,h(ΩS), and also from the strong coercivenes of A1D|H̃0,h(ΩD)
: H̃0,h(ΩD) →

H̃0,h(ΩD)′. We omit further details and refer to the proofs of Lemma 4.1 and [22, Lemmas

3.1 and 3.2].

�

As stated in advance, we note here that the hypothesis i) in Theorem 3.3 is given by

(5.18) and (5.19) (with th = 0), whereas (5.19) is precisely (3.26) (cf. (A.1)). We observe

next, according to (4.15), that for each ψ
h

:= (ψh, ξh) ∈M1,h ⊆M1 there holds

[S(ψ
h
),ψ

h
] =

n−1∑
`=1

κ−1
` ‖ψh · t`‖

2
0,Σ ≥ 0 , (5.20)

which yields the hypothesis iii) of Theorem 3.3. The analysis is continued with the discrete

inf-sup conditions for B1 and B (cf. iv) and v) in Theorem 3.3).
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Lemma 5.2 There exists a constant β̂1 > 0, independent of h, such that

sup
rh∈X̃1

rh 6=0

[B1(rh),ψ
h
]

‖rh‖X1

≥ β̂1 ‖ψh‖M1 ∀ψ
h
∈ M̃1,h .

Proof. It follows directly from (H.3).

�

Lemma 5.3 There exists a constant β̂ > 0, independent of h, such that

sup
(rhψh

)∈Xh
(rhψh

) 6=0

[B(rhψh), q
h
]

‖(rh,ψh)‖X
≥ β̂ ‖q

h
‖M ∀ q

h
∈Mh .

Proof. It follows directly from (H.1).

�

The following theorem establishes the well posedness of (5.5).

Theorem 5.1 Assume that the hypotheses (H.0), (H.1), (H.2) and (H.3) hold, and that

ρ lives in
(

0, α0

γ2
0

)
. Then, the Galerkin scheme (5.5) has a unique solution ((th,ϕh), p

h
) ∈

Xh ×Mh, and there exists C > 0, depending only on α, γ, β̂1, β̂, ‖S‖ and ‖B1‖, such that

‖((th,ϕh), p
h
)‖X×M ≤ C

{
‖F|Xh

‖X′h + ‖G|Mh
‖M′h

}
. (5.21)

Proof. According to the previous analysis, the proof follows from a direct application of

Theorem 3.3.

�

We end this section with the corresponding Cea a priori error estimate. To this end, we

first recall from Section 2.2 that µ is assumed to be of class C1, which yields the assumption

(A.2), that is the hemi-continuity of the Gâteaux derivative DA1 : X1 → L(X1, X
′
1).

Consequently, we have the following result.

Theorem 5.2 Assume that the hypotheses (H.0), (H.1), (H.2) and (H.3) hold, and that

ρ lives in
(

0, α0

γ2
0

)
. Let ((t,ϕ), p) ∈ X × M and ((th,ϕh), p

h
) ∈ Xh × Mh be the unique

solutions of the continuous and discrete formulations (2.34) and (5.5), respectively. Then,

there exists C > 0, independent of h, such that

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C inf

((rh,ψh
),q

h
)∈Xh×Mh

‖((t,ϕ), p)− ((rh,ψh), q
h
)‖X×M

(5.22)
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Proof. It is a straightforward application of Theorem 3.5. �

5.3 Particular choices of finite element subspaces

We now specify concrete examples of finite element subspaces in 2D and 3D satisfying the

hypotheses introduced in the previous section. To this end, we let T S
h and T D

h be respective

triangulations of the domains ΩS and ΩD formed by shape-regular triangles (in R2) or

tetrahedra (in R3), and assume that they match in Σ so that T S
h ∪ T D

h is a triangulation of

ΩS ∪Σ∪ΩD. We also let Σh be the partition of Σ inherited from T S
h (or T D

h ). Furthermore,

given an integer k ≥ 0 and a subset S of Rn, we denote by Pk(S) the space of polynomials

defined on S of total degree at most k. Note that, according to the notation described in

Chapter 1, Pk(S) and Pk(S) stand for [Pk(S)]n and [Pk(S)]n×n, respectively. In addition, we

let bT be the element-bubble function defined as the unique polynomial in Pn+1(T ) vanishing

on ∂T with
∫
T bT = 1, and denote by x := (x1, x2, · · · , xn) a generic vector of Rn. Then,

we define for each T ∈ T S
h ∪ T D

h the local Raviart-Thomas and bubble spaces of order 0,

respectively, by (see, e.g. [7], [38])

RT0(T ) := P0(T )⊕ P0(T ) x ,

and

B0(T ) :=


P0(T )

(
∂bT
∂x2

, −∂bT
∂x1

)
in R2 ,

∇ ×
(
bT P0(T )

)
in R3 .

5.3.1 PEERS + Raviart-Thomas in 2D

We specify the discrete spaces in (5.1) as follows:

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : τ |T ∈ RT0(T )⊕B0(T ) ∀T ∈ T S

h

}
,

Hh(ΩD) :=
{
τ ∈ H(div; ΩD) : τ |T ∈ RT0(T ) ∀T ∈ T D

h

}
,

Lh(ΩS) :=
{
v ∈ L2(ΩS) : v|T ∈ P0(T ) ∀T ∈ T S

h

}
,

Lh(ΩD) :=
{
q ∈ L2(ΩD) : q|T ∈ P0(T ) ∀T ∈ T D

h

}
, and

L2
h(ΩS) :=

{
η :=

(
0 η

−η 0

)
: η ∈ C(Ω̄S) , η|T ∈ P1(T ) ∀T ∈ T S

h

}
.

(5.23)
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Note here that the product space Hh(ΩS) × Lh(ΩS) × L2
h(ΩS), with Hh(ΩS) and Lh(ΩS)

defined according to (5.2), constitutes the classical PEERS originally introduced in [1] for a

mixed finite element aproximation of the linear elasticity problem with Dirichlet boundary

conditions (see also [33]). In turn, Hh(ΩD)×Lh(ΩD) is the Raviart-Thomas stable element

of lowest order for the mixed formulation of the Poisson problem (see, e.g. [7], [36]). These

facts are particularly important for the rest of the analysis since, as we will make it clear

below, all the discrete inf-sup conditions that are required in the hypotheses indicated in

Section 5.2, either are already available in the literature or can be derived from related

results provided there.

Next, in order to define the spaces on the interface Σ, thus completing the list in (5.1),

we follow the simplest approach suggested in [25] and [35]. To this end, we assume, without

loss of generality, that the number of edges e of Σh is even. Then, we let Σ2h be the partition

of Σ arising by joining pairs of adjacent edges of Σh, and denote the resulting edges still

by e. Since Σh is inherited from the interior triangulations, it is automatically of bounded

variation (that is, the ratio of lengths of adjacent edges is bounded) and, therefore, so is

Σ2h. Certainly, if the number of edges of Σh were odd, we simply reduce it to the even case

by joining any pair of two adjacent elements, and then construct Σ2h from this partition.

Hence, denoting by x0 and x1 the extreme points of Σ, we define

ΛS
h(Σ) :=

{
ψ ∈ C(Σ) : ψ|e ∈ P1(e) ∀ e ∈ Σ2h , ψ(x0) = ψ(x1) = 0

}
, and

ΛD
h (Σ) =

{
ξ ∈ C(Σ) : ξ|e ∈ P1(e) ∀ e ∈ Σ2h

}
.

(5.24)

Our analysis below will also utilize the finite element subspaces of H
−1/2
00 (Σ) and H

−1/2
00 (Σ)

given by

Φh(Σ) :=
{
φh ∈ L2(Σ) : φh|e ∈ P0(e) ∀ edge e ∈ Σh

}
, and

Φh(Σ) :=
{
φh ∈ L2(Σ) : φh|e ∈ P0(e) ∀ edge e ∈ Σh

}
.

In what follows we establish from (5.23), (5.24), and the accompanying definitions (5.2)

and (5.4), that the hypotheses (H.0) - (H.3) are satisfied. In fact, the verification of (H.0)

and (H.2) is quite straightforward from the definitions given in (5.23). Now, the discrete

inf-sup conditions (5.10) and (5.11) are proved in [33, Theorem 4.5] and [7, Chapter IV,

Section IV.1.2], respectively. Alternatively, one can also look at [1, Lemma 4.4] and [36,

Chapter 7, Section 7.2.2]. In turn, the existence of ψ0 ∈ H
1/2
00 (Σ) verifying (5.12) follows as
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in [25, Section 3.2] (see also [27, Section 3.2]). In fact, we pick one interior corner point of

Σ and define a function v that is continuous, linear on each side of Σ, equal to one in the

chosen vertex, and zero on all other ones. If n1 and n2 are the normal vectors on the two

sides of Σ that meet at the corner point, then ψ0 := v (n1 + n2) satisfies that property. If

the interface Σ were a line segment (without interior corners), we pick v as the continuous

linear function on Σ, equal to one in any interior point and zero in the extreme points, and

define ψ0 := v n. We have thus verified the assumptions required by (H.1).

On the other hand, concerning the discrete inf-sup conditions yielding (H.3), we first

recall from the analyses in [25] and [35], that the existence of a stable discrete lifting of the

normal traces of H̃0,h(ΩD) implies that a sufficient condition for (5.17) is the existence of

β̂D > 0, independent of h, such that

sup
φh∈Φh(Σ)

φh 6=0

〈φh, ξh〉Σ
‖φh‖−1/2,Σ

≥ β̂D ‖ξh‖1/2,Σ ∀ξh ∈ ΛD
h (Σ) . (5.25)

In fact, a detailed proof of (5.17), whose main ingredients were the explicit construction of

such a lifting and then the demonstration of (5.25), was first provided in [25, Lemmas 4.2,

5.1 and 5.2] under the assumption of quasi-uniformity around the interface Σ. This result

was improved recently in [35, Sections 4 and 5] where it was shown for the 2D case without

any requirement on the meshes. In turn, in order to proceed similarly with (5.16), we need to

introduce suitable changes into the arguments from [25] and [35]. The reason for it is rather

technical and has to do with the fact that the tensors τ S,h ∈ H̃h(ΩS) (cf. (5.15)), space

where the supremum in (5.16) is taken, must also satisfy the discrete symmetry condition

(τ S,h,ηS,h)S = 0 ∀ηS,h ∈ L2
h(ΩS). More precisely, since the Raviart-Thomas or related

projection operators do not preserve any kind of symmetry, the way in which the lifting was

built in [25] is not applicable to construct a stable discrete lifting of the normal traces of

H̃h(ΩS). Instead of it, we now proceed a bit differently and still show, using results from

[20], [25], and [35], that a sufficient condition for (5.16) is the analogue of (5.25), that is the

existence of β̂S > 0, independent of h, such that

sup
φh∈Φh(Σ)

φh 6=0

〈φh,ψh〉Σ
‖φh‖−1/2,Σ

≥ β̂S ‖ψh‖1/2,Σ ∀ψh ∈ ΛS
0,h(Σ) . (5.26)

In fact, given φh ∈ Φh(Σ), we let
(
σ̃h, (ũh, γ̃h, ϕ̃h)

)
∈ Hh(ΩS)×

(
Lh(ΩS)×L2

h(ΩS)×ΛS
h(Σ)

)
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be the unique solution of the Galerkin scheme:

(σ̃h, τ h)S + (div τ h,uh)S + (τ h, γ̃h)S + 〈τ h n, ϕ̃h〉Σ = 0 ,

(div σ̃h,vh)S + (σ̃h,ηh)S + 〈σ̃h n,ψh〉Σ = 〈φh,ψh〉Σ ,
(5.27)

for all
(
τ h, (vh,ηh,ψh)

)
∈ Hh(ΩS)×

(
Lh(ΩS)×L2

h(ΩS)×ΛS
h(Σ)

)
. Note that (5.27) actually

corresponds to the PEERS-based mixed finite element approximation of a particular linear

elasticity problem in ΩS (see, e.g. (4.10)) with homogeneous Dirichlet boundary condition

on ΓS and Neumann boundary condition given by φh on Σ. Moreover, the well-posedness of

(5.27) is proved, modulus minor changes, by combining [20, Section 4.3] with [35, Theorem

5.1] and [25, Lemma 5.2]. In particular, the associated stability result insures the existence

of C̃ > 0, independent of h, such that

‖
(
σ̃h, (ũh, γ̃h, ϕ̃h)

)
‖ ≤ C̃ ‖φh‖−1/2,Σ . (5.28)

Therefore, since the second equation in (5.27) establishes that σ̃h belongs to H̃h(ΩS) and

that 〈σ̃h n,ψh〉Σ = 〈φh,ψh〉Σ ∀ψh ∈ ΛS
h(Σ), we deduce, using also (5.28), that

| 〈φh,ψh〉Σ |
‖φh‖−1/2,Σ

=
| 〈σ̃h n,ψh〉Σ |
‖φh‖−1/2,Σ

≤ 1

C̃

| 〈σ̃h n,ψh〉Σ |
‖σ̃h‖div;ΩS

,

which implies that

sup
φh∈Φh(Σ)

φh 6=0

〈φh,ψh〉Σ
‖φh‖−1/2,Σ

≤ 1

C̃
sup

τh∈H̃h(ΩS)

τh 6=0

〈τ h n,ψh〉Σ
‖τ h‖div;ΩS

∀ψh ∈ ΛS
h(Σ) . (5.29)

Thus, it is quite clear from (5.29) that the discrete inf-sup condition (5.16) is a straight-

forward consequence of (5.26). Moreover, since the latter has already been proved in [25,

Lemma 5.2], we conclude in this way the full verification of the hypothesis (H.3).

Thanks to the previous results and analyses, we can establish the following theorems.

Theorem 5.3 Assume that the stabilization parameter ρ lives in
(

0, α0

γ2
0

)
, and let ((t,ϕ), p) ∈

X×M be the unique solution of the continuous formulation (2.34). In addition, let Xh :=

X1,h×M1,h and Mh be the finite element subspaces defined by (5.4) in terms of the specific

discrete spaces given by (5.23) and (5.24). Then, the Galerkin scheme (5.5) has a unique

solution ((th,ϕh), p
h
) ∈ Xh ×Mh and there exist C1, C2 > 0, independent of h, such that

‖((th,ϕh), p
h
)‖X×M ≤ C1

{
‖F|Xh

‖X′h + ‖G|Mh
‖M′h

}
, (5.30)
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and

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C2 inf

((rh,ψh
),q

h
)∈Xh×Mh

‖((t,ϕ), p)− ((rh,ψh), q
h
)‖X×M .

(5.31)

Proof. Having verified the hypotheses (H.0), (H.1), (H.2) and (H.3), the proof is a

straightforward application of Theorems 5.1 and 5.2.

�

The following theorem provides the theoretical rate of convergence of the Galerkin

scheme (5.5), under suitable regularity assumptions on the exact solution.

Theorem 5.4 Let ((t,ϕ), p) ∈ X×M and ((th,ϕh), p
h
) ∈ Xh×Mh be the unique solutions of

the continuous and discrete formulations (2.34) and (5.5), respectively. Assume that there

exists δ ∈ (0, 1] such that tS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), div uD ∈ Hδ(ΩD), σS ∈ Hδ(ΩS),

divσS ∈ Hδ(ΩS), and γS ∈ Hδ(ΩS). Then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD), ϕ ∈ H1/2+δ(Σ),

λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h and the continuous and discrete

solutions, such that

‖((t,ϕ), p) − ((th,ϕh), p
h
)‖X×M ≤ C hδ

{
‖tS‖δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖div uD‖δ,ΩD

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖γS‖δ,ΩS
+ ‖uS‖1+δ,ΩS

+ ‖pD‖1+δ,ΩD

}
.

(5.32)

Proof. We first recall from Theorem 4.2 that ∇uS = tS + γS and ∇pD = −K−1uD, which

implies that uS ∈ H1+δ(ΩS), and pD ∈ H1+δ(ΩD), whence ϕ = −uS|Σ ∈ H1/2+δ(Σ) and

λ = pD|Σ ∈ H1/2+δ(Σ). The rest of the proof follows from the Cea estimate (5.31), the

approximation properties of the subspaces involved (see, e.g. [4], [7] and [29]), and the fact

that, thanks to the trace theorems in ΩS and ΩD, respectively, there holds

‖ϕ‖1/2+δ,Σ ≤ c ‖uS‖1+δ,ΩD
and ‖λ‖1/2+δ,Σ ≤ c ‖pD‖1+δ,ΩD

.

�
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5.3.2 PEERS + Raviart-Thomas in 3D

We now introduce the 3D version of the spaces defined in Section 5.3.1 (cf. (5.23)). More

precisely, we set

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : τ |T ∈ RT0(T )⊕B0(T ) ∀T ∈ T S

h

}
,

Hh(ΩD) :=
{
τ ∈ H(div; ΩD) : τ |T ∈ RT0(T ) ∀T ∈ T D

h

}
,

Lh(ΩS) :=
{
v ∈ L2(ΩS) : v|T ∈ P0(T ) ∀T ∈ T S

h

}
,

Lh(ΩD) :=
{
q ∈ L2(ΩD) : q|T ∈ P0(T ) ∀T ∈ T D

h

}
, and

L2
h(ΩS) :=

{
η ∈ L2(ΩS) : η ∈ C(Ω̄S) , η|T ∈ P1(T ) ∀T ∈ T S

h

}
.

(5.33)

Actually, except for the fact that the vectors and tensors live now in R3 and R3×3, respec-

tively, the above definitions look pretty much as those in (5.23).

Next, in order to complete the list of spaces in (5.1), we need to define those living on

the interface Σ. To this end, and for reasons that will become clear below, we introduce an

independent triangulation Σ
ĥ

of the interface Σ by triangles K of diameter ĥK and define

ĥΣ := max{ĥK : K ∈ Σ
ĥ
}. The above is certainly in addition to Σh, the usual partition

of Σ inherited from T S
h (or T D

h ), also formed by triangles K of diameter hK , and for which

we set hΣ := max{hK : K ∈ Σh}. Hence, denoting by ∂Σ the polygonal boundary of Σ,

we define

ΛS
ĥ
(Σ) :=

{
ψ ∈ C(Σ) : ψ|K ∈ P1(K) ∀K ∈ Σ

ĥ
, ψ = 0 on ∂Σ

}
,

ΛD
ĥ

(Σ) =
{
ξ ∈ C(Σ) : ξ|K ∈ P1(K) ∀K ∈ Σ

ĥ

}
, and

ΛS
ĥ
(Σ) := [ΛS

ĥ
(Σ)]3 ,

(5.34)

which, from now on, replace the spaces ΛS
h(Σ), ΛD

h (Σ), and ΛS
h(Σ) specified in (5.1) and

(5.2).

In what follows we show that the hypotheses (H.0) - (H.3) are satisfied. Indeed, as

in the 2D case, the verification of (H.0) and (H.2) is also quite straightforward from the

definitions given in (5.38). Furthermore, the proofs of the discrete inf-sup conditions (5.10)

and (5.11) can also be found in [33, Theorem 4.5] and [7, Chapter IV, Section IV.1.2],

respectively. In addition, the existence of ψ0 ∈ H
1/2
00 (Σ) verifying (5.12) is derived similarly

to the procedure described in Section 5.3.1. The assumptions required by (H.1) are then
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satisfied.

Now, concerning the discrete inf-sup conditions (5.17) and (5.16), we first remark that

the same approaches yielding the corresponding sufficiency of (5.25) and (5.26) in the 2D

case, which are based on the results from [25], [35], and [20], can also be applied to the

present three-dimensional situation. In this case, however, the 3D analogue of [35, Theorem

5.1], being still an open problem, can not be employed. Therefore, in order to construct the

stable discrete lifting of the normal traces of H̃0,h(ΩD) and prove the well-posedness of the

Galerkin scheme (5.27), we need to employ some inverse inequalities on Σ, which requires

quasi-uniform meshes in a neighborhood of this interface. Furthermore, it can be proved

(see, e.g. the second part of the proof of [19, Lemma 7.5]) that there exists C0 ∈ ]0, 1[ such

that for each pair (hΣ, ĥΣ) verifying hΣ ≤ C0 ĥΣ, the 3D versions of (5.25) and (5.26) are

satisfied. Note that this restriction on the meshsizes explains the need of having introduced

the independent partition Σ
ĥ

of Σ. We have thus confirmed the hypotheses from (H.3).

We are now in a position to state the following main results. Their proofs, being basically

the same of Theorems 5.3 and 5.4, are omitted.

Theorem 5.5 Assume that the stabilization parameter ρ lives in
(

0, α0

γ2
0

)
, and that the

meshes T S
h and T D

h are quasi-uniform around the interface Σ. In addition, let ((t,ϕ), p) ∈
X×M be the unique solution of the continuous formulation (2.34), and let Xh := X1,h×M1,h

and Mh be the finite element subspaces defined by (5.4) in terms of the specific discrete

spaces given by (5.33) and (5.34). Then, whenever the pair (hΣ, ĥΣ) verifies hΣ ≤ C0 ĥΣ,

the Galerkin scheme (5.5) has a unique solution ((th,ϕh), p
h
) ∈ Xh ×Mh and there exist

C1, C2 > 0, independent of h, hΣ, and ĥΣ, such that

‖((th,ϕh), p
h
)‖X×M ≤ C1

{
‖F|Xh

‖X′h + ‖G|Mh
‖M′h

}
, (5.35)

and

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C2 inf

((rh,ψh
),q

h
)∈Xh×Mh

‖((t,ϕ), p)− ((rh,ψh), q
h
)‖X×M .

(5.36)

Theorem 5.6 Let ((t,ϕ), p) ∈ X×M and ((th,ϕh), p
h
) ∈ Xh×Mh be the unique solutions of

the continuous and discrete formulations (2.34) and (5.5), respectively. Assume that there

exists δ ∈ (0, 1] such that tS ∈ Hδ(ΩS), uD ∈ Hδ(ΩD), div uD ∈ Hδ(ΩD), σS ∈ Hδ(ΩS),

divσS ∈ Hδ(ΩS), and γS ∈ Hδ(ΩS). Then, uS ∈ H1+δ(ΩS), pD ∈ H1+δ(ΩD), ϕ ∈ H1/2+δ(Σ),

λ ∈ H1/2+δ(Σ), and there exists C > 0, independent of h, hΣ, ĥΣ, and the continuous and



5.3. PARTICULAR CHOICES OF FINITE ELEMENT SUBSPACES 48

discrete solutions, such that whenever the pair (hΣ, ĥΣ) verifies hΣ ≤ C0 ĥΣ, there holds

‖((t,ϕ), p) − ((th,ϕh), p
h
)‖X×M ≤ C hδ

{
‖tS‖δ,ΩS

+ ‖uD‖δ,ΩD
+ ‖div uD‖δ,ΩD

+ ‖σS‖δ,ΩS
+ ‖divσS‖δ,ΩS

+ ‖γS‖δ,ΩS
+ ‖uS‖1+δ,ΩS

+ ‖pD‖1+δ,ΩD

}
.

(5.37)

5.3.3 AFW + BDM in 3D

Alternatively, for the 3D case we can also introduce the following discrete spaces in (5.1):

Hh(ΩS) :=
{
τ ∈ H(div; ΩS) : τ |T ∈ P1(T ) ∀T ∈ T S

h

}
,

Hh(ΩD) :=
{
τ ∈ H(div; ΩD) : τ |T ∈ P1(T ) ∀T ∈ T D

h

}
,

Lh(ΩS) :=
{
v ∈ L2(ΩS) : v|T ∈ P0(T ) ∀T ∈ T S

h

}
,

Lh(ΩD) :=
{
q ∈ L2(ΩD) : q|T ∈ P0(T ) ∀T ∈ T D

h

}
, and

L2
h(ΩS) :=

{
η ∈ L2(ΩS) : η|T ∈ P0(T ) ∀T ∈ T S

h

}
.

(5.38)

We remark, according to the complementary definitions given in (5.2), that the product

space Hh(ΩS)×Lh(ΩS)×L2
h(ΩS) constitutes now the lowest order mixed finite element ap-

proximation of the linear elasticity problem introduced recently by Arnold Falk and Winther

(AFW) (see [2], [3]). In turn, Hh(ΩD) × Lh(ΩD) is the BDM space of lowest order for the

mixed formulation of the corresponding Poisson problem (see, e.g. [7], [36]).

In what follows we refer to the verification of the hypotheses (H.0) - (H.3). Indeed,

as in the previous 2D and 3D cases, (H.0) and (H.2) follow straightforwardly from the

definitions given in (5.38). Furthermore, the proofs of the discrete inf-sup conditions (5.10)

and (5.11) can be found now in [2, Section 11.7, Theorem 11.9] and again in [7, Chapter IV,

Section IV.1.2], respectively. In addition, the existence of ψ0 ∈ H
1/2
00 (Σ) verifying (5.12) is

derived similarly to the procedure described in Section 5.3.1. The assumptions required by

(H.1) are then satisfied. Next, concerning the discrete inf-sup conditions (5.17) and (5.16),

we just remark that the corresponding proofs follow as in Section 5.3.2 by introducing again

the independent partition Σ
ĥ

and then defining the spaces given by (5.34). The rest of the

analysis is as in the previous section and the main results are basically the same as those

provided by Theorems 5.5 and 5.6, but now with the specific discrete spaces given by (5.38)

and (5.34) . We omit further details.



Chapter 6

The a-posteriori error analysis

In this chapter we restrict ourselves to the two-dimensional case and derive a reliable and

efficient residual-based a-posteriori error estimate for our mixed finite element scheme (5.5)

with the discrete spaces introduced in Section 5.3.1. The extension to 3D should be quite

straightforward. Most of the analysis employed in the proofs makes extensive use of the

estimates derived in [22] and [26]. We begin with some notations. For each T ∈ T S
h ∪ T D

h

we let E(T ) be the set of edges of T , and we denote by Eh the set of all edges of T S
h ∪ T D

h ,

subdivided as follows:

Eh = Eh(ΓS) ∪ Eh(ΩS) ∪ Eh(ΩD) ∪ Eh(Σ) ,

where Eh(ΓS) := { e ∈ Eh : e ⊆ ΓS }, Eh(Ω?) := { e ∈ Eh : e ⊆ Ω? } for each ? ∈ {S,D},
and Eh(Σ) := { e ∈ Eh : e ⊆ Σ }. Note that Eh(Σ) is the set of edges defining the

partition Σh. Analogously, we let E2h(Σ) be the set of double edges defining the partition

Σ2h. In what follows, he stands for the diameter of a given edge e ∈ Eh ∪ E2h(Σ). Now,

let ? ∈ {S,D} and let q ∈ [L2(Ω?)]
m, with m ∈ {1, 2}, such that q|T ∈ [C(T )]m for

each T ∈ T ?h . Then, given e ∈ Eh(Ω?), we denote by [q] the jump of q across e, that is

[q] := (q|T ′)|e− (q|T ′′)|e, where T ′ and T ′′ are the triangles of T ?h having e as an edge. Also,

we fix a unit normal vector ne := (n1, n2)t to the edge e (its particular orientation is not

relevant) and let te := (−n2, n1)t be the corresponding fixed unit tangential vector along e.

Hence, given v ∈ L2(Ω?) and τ ∈ L2(Ω?) such that v|T ∈ [C(T )]2 and τ |T ∈ [C(T )]2×2,

respectively, for each T ∈ T ?h , we let [v · te] and [τ te] be the tangential jumps of v and τ ,

across e, that is [v · te] := {(v|T ′)|e − (v|T ′′)|e} · te and [τ te] := {(τ |T ′)|e − (τ |T ′′)|e} te,

respectively. From now on, when no confusion arises, we will simply write t and n instead

of te and ne, respectively. Finally, for sufficiently smooth scalar, vector and tensors fields q,

49
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v := (v1, v2)t and τ := (τij)2×2, respectively, we let

curl v :=


∂v1

∂x2
−∂v1

∂x1

∂v2

∂x2
−∂v2

∂x1

 , curl q :=

(
∂q

∂x2
,− ∂q

∂x1

)t

,

rot v :=
∂v2

∂x1
− ∂v1

∂x2
, and rot τ :=

(
∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)t

.

In what follows,

((t,ϕ), p) = ((tS,uD,σS), (ϕ, λ)), (pD,uS,γS, `)) ∈ X×M

and

((th,ϕh), p
h
) = ((tS,h,uD,h,σS,h), (ϕh, λh)), (pD,h,uS,h,γS,h, `h)) ∈ Xh ×Mh

denote the solutions of (2.34) and (5.5), respectively. Also, we let κ = κ1 the only constant

appearing in the second transmission condition in (2.3). Then, we introduce the global a

posteriori error estimator:

Θ :=

∑
T∈T S

h

Θ2
S,T +

∑
T∈T D

h

Θ2
D,T


1/2

, (6.1)

where, for each T ∈ T S
h :

Θ2
S,T := ‖fS + divσS,h‖20,T + h2

T ‖rot (tS,h + γS,h)‖20,T + h2
T ‖tS,h + γS,h‖20,T

+ ‖σd
S,h − µ(|tS,h|) tS,h‖20,T + ‖σS,h − σt

S,h‖20,T +
∑

e∈E(T )∩Eh(ΩS)

he ‖[
(
tS,h + γS,h

)
t]‖20,e

+
∑

e∈E(T )∩Eh(Σ)

he ‖
(
σS,h + `h I

)
n + λhn − κ−1(ϕh · t) t‖20,e +

∑
e∈E(T )∩Eh(ΓS)

he ‖
(
tS,h + γS,h

)
t‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥(tS,h + γS,h

)
t +

dϕh
dt

∥∥∥∥2

0,e

+ he ‖uS,h +ϕh‖20,e

}
,

(6.2)
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and for each T ∈ T D
h :

Θ2
D,T := ‖fD − div uD,h‖20,T + h2

T ‖rot (K−1uD,h)‖20,T + h2
T ‖K−1uD,h‖20,T

+
∑

e∈E(T )∩Eh(ΩD)

he ‖[K−1uD,h · t]‖20,e +
∑

e∈E(T )∩Eh(Σ)

he ‖uD,h · n +ϕh · n‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥K−1uD,h · t +
dλh
dt

∥∥∥∥2

0,e

+ he ‖pD,h − λh‖20,e

}
.

(6.3)

6.1 Reliability of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 6.1 There exists Crel > 0, independent of h, such that

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ Crel Θ . (6.4)

We follow the general approach from [15] (see also [22] and [27]). Indeed, we begin by

recalling, thanks to the hypothesis on µ (cf. (2.4) and (2.5)), and Lemmas 4.1 and 5.1,

that A1 satisfies the assumptions (A.1) and (A.2). Hence, a straightforward application

of Lemma 3.2 implies that the Gâteaux derivative of A1 at any r ∈ X1, say DA1(r), is

a uniformly bounded and uniformly elliptic bilinear form on X1 × X1. Therefore, as a

consequence of the continuous dependence result provided by Theorem 3.2 (cf. (3.16)), we

find that the linear operator obtained by adding the two equations of the left hand side

of (2.34), after replacing A1 by DA1(r), satisfies a global inf-sup condition. Furthermore,

thanks to the mean value theorem applied to the continuous operator A1, there exists a

convex combination of t and th, say s̃ ∈ X1, such that

[DA1(s̃)(t− th), r] = [A1(t)−A1(th), r] ∀r ∈ X1. (6.5)

Then, applying the above mentioned inf-sup estimate (with r = s̃) to the error ((t− th,ϕ−
ϕ
h
), p− p

h
), we find that

‖((t− th,ϕ−ϕh), p− p
h
)‖X×M ≤ C sup

((r,ψ),q)∈X×M

((r,ψ),q)6=0

|[R, ((r,ψ), q)]|
‖((r,ψ), q)‖X×M

, (6.6)
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where, acording to (6.5) and (2.34), the residual operator R : X×M→ R is given by

[R, ((r,ψ), q)] := [R1, (τ S, j)] + [R2,vD] + [R3,ψ] + [R4, ξ]

+ [R5,vS] + [R6, qD] + [R7, rS] + [R8,ηS] ,

(6.7)

for each r := (rS,vD, τ S) ∈ X1, ψ := (ψ, ξ) ∈M1, q := (qD,vS,ηS, j) ∈M, with

[R1, (τ S, j)] := − (tS,h, τ
d
S)S − (div τ S,uS,h)S − ρ (σd

S,h − µ(|tS,h|) tS,h, τ
d
S)S

− (τ S,γS,h)S − 〈τ S n,ϕh〉Σ − j 〈n,ϕh〉Σ ,

[R2,vD] := −(K−1uD,h,vD)D + (div vD, pD,h)D + 〈vD · n, λh〉Σ ,

[R3,ψ] := − 〈σS,h n,ψ〉Σ − `h 〈n,ψ〉Σ + κ−1〈ϕh · t,ψ · t〉Σ − 〈ψ · n, λh〉Σ ,

[R4, ξ] := 〈ϕh · n, ξ〉Σ + 〈uD,h · n, ξ〉Σ ,

[R5,vS] := − (fS + divσS,h,vS)S ,

[R6, qD] := − (fD − div uD,h, qD)D ,

[R7, rS] := − (µ(|tS,h|) tS,h − σd
S,h, rS)S ,

[R8,ηS] := − (σS,h,ηS)S .

Hence, the supremum in (6.6) can be bounded in terms of Ri, with i ∈ {1, . . . , 8}, which

yields

‖((t,ϕ), p)− ((th,ϕh), p
h
)‖X×M ≤ C

{
‖R1‖(H0(div;ΩS)×R)′ + ‖R2‖H0(div;ΩD)′ + ‖R3‖H−1/2

00 (Σ)

+ ‖R4‖H−1/2(Σ) + ‖R5‖L2(ΩS)′ + ‖R6‖L2
0(ΩD)′ + ‖R7‖L2

0(ΩS)′
+ ‖R8‖L2(ΩS)′

}
.

(6.8)

Throughout the rest of the section we provide suitable upper bounds for each one of the

terms on the right hand side of (6.8). We begin with R1 by observing from its definition,

and having in mind that (tS,h, I)S = tr tS,h = 0, (I,γS,h)S = 0, and div I = 0, that

[R1, (τ S, j)] = [R̃1, τ S + j I] − ρ (σd
S,h − µ(|tS,h|) tS,h, τ

d
S)S ,
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where R̃1 : H(div; ΩS)→ R is given by

[R̃1, τ̃S] := − (tS,h + γS,h, τ̃S)S − (div τ̃S,uS,h)S − 〈τ̃S n,ϕh〉Σ ∀ τ̃S ∈ H(div; ΩS) .

It follows, using the triangle and Cauchy Schwarz inequalities, that

‖R1‖(H0(div;ΩS)×R)′ ≤ ‖R̃1‖H(div;ΩS)′ + ρ ‖σd
S,h − µ(|tS,h|) tS,h‖0,ΩS

, (6.9)

and hence it just remains to bound ‖R̃1‖H(div;ΩS)′ . Moreover, since the functionals R̃1 and

R2 share the same “structure” with K−1uD,h and tS,h + γS,h playing parallel roles, the up-

per bounds of their norms are derived by following the same approach. More precisely, one

proceeds as in [26] by using integration by parts on each element of the triangulations, by em-

ploying continuous and discrete Helmholtz decompositions of H(div; ΩS) and H0(div; ΩD),

and by applying the approximation properties of the Clément and Raviart-Thomas inter-

polation operators in both domains (cf. [9], [38]). In this way, and as a consequence of

the analysis developed in [26], we deduce that the estimate for ‖R̃1‖H(div;ΩS)′ is obtained

from [26, Lemma 3.8] after replacing σd
S,h there by tS,h + γS,h, whereas the estimate for

‖R2‖H0(div;ΩD)′ is exactly the one given by [26, Lemma 3.9]. The corresponding results are

stated as follows.

Lemma 6.1 There exists C1 > 0, independent of h, such that

‖R̃1‖H(div;ΩS)′ ≤ C1

∑
T∈T S

h

Θ̃2
S,T


1/2

, (6.10)

where, for each T ∈ T S
h :

Θ̃2
S,T := h2

T ‖rot (tS,h + γS,h)‖20,T + h2
T ‖tS,h + γS,h‖20,T

+
∑

e∈E(T )∩Eh(ΩS)

he ‖[(tS,h + γS,h) t]‖20,e +
∑

e∈E(T )∩Eh(ΓS)

he ‖(tS,h + γS,h) t‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥(tS,h + γS,h) t +
dϕh
d t

∥∥∥∥2

0,e

+ he ‖uS,h +ϕh‖20,e

}
.

(6.11)

Lemma 6.2 There exists C2 > 0, independent of h, such that

‖R2‖H0(div;ΩD)′ ≤ C2

 ∑
T∈T D

h

Θ̂2
D,T


1/2

, (6.12)
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where, for each T ∈ T D
h :

Θ̂2
D,T := h2

T ‖rot (K−1uD,h)‖20,T + h2
T ‖K−1uD,h‖20,T +

∑
e∈E(T )∩Eh(ΩD)

he ‖[K−1uD,h · t]‖20,e

+
∑

e∈E(T )∩Eh(Σ)

{
he

∥∥∥∥K−1uD,h · t +
dλh
d t

∥∥∥∥2

0,e

+ he ‖pD,h − λh‖20,e

}
.

(6.13)

Next, we observe that the upper bounds of ‖R3‖H−1/2
00 (Σ)

and ‖R4‖H−1/2(Σ) are also

derived in [26]. In fact, noting first that R3 can be re-written as

[R3,ψ] := −〈
(
σS,h + `h I

)
n,ψ〉Σ + κ−1〈ϕh · t,ψ · t〉Σ − 〈ψ · n, λh〉Σ ∀ψ ∈ H

1/2
00 (Σ) ,

we can establish the estimates provided by the following lemma, which are based on the

technical result given by [8, Theorem 2] and the fact that both Σh and Σ2h are of bounded

variation.

Lemma 6.3 There exist C3, C4 > 0, independent of h, such that

‖R3‖H−1/2
00 (Σ)

≤ C3

 ∑
e∈Eh(Σ)

he ‖
(
σS,hn + `h I) + λhn − κ−1 (ϕh · t)‖20,e


1/2

(6.14)

and

‖R4‖H−1/2(Σ) ≤ C4

 ∑
e∈Eh(Σ)

he ‖uD,h · n +ϕh · n‖20,e


1/2

. (6.15)

Proof. See [26, Lemma 3.2] for details.

�

Finally, for estimating the rest of the norms appearing on the right hand side of (6.8),

we simply use Cauchy-Schwarz’s inequality and the fact that R8 can be redefined as

[R8,ηS] := − 1

2
(σS,h − σt

S,h,ηS)S ∀ηS ∈ L2(ΩS) .

In this way, we arrive at the following lemma.

Lemma 6.4 There hold

‖R5‖L2(ΩS)′ ≤ ‖fS + divσS,h‖0,ΩS
, (6.16)
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‖R6‖L2
0(ΩD)′ ≤ ‖fD − div uD,h‖0,ΩD

, (6.17)

‖R7‖L2
0(ΩS)′

≤ ‖σd
S,h − µ(|tS,h|) tS,h‖0,ΩS

, (6.18)

and

‖R8‖L2(ΩS)′ ≤
1

2
‖σS,h − σt

S,h‖0,ΩS
. (6.19)

We end this section by observing that the reliability estimate (6.4) (cf. Theorem 6.1)

is a direct consequence of (6.8), (6.9), and Lemmas 6.1, 6.2, 6.3 and 6.4, by using when it

corresponds the obvious identities

∫
ΩS

=
∑
T∈T S

h

∫
T

and

∫
ΩD

=
∑
T∈T D

h

∫
T

.

6.2 Efficiency of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 6.2 There exists Ceff > 0, independent of h, such that

Ceff Θ + h.o.t. ≤ ‖((t,ϕ), p) − ((th,ϕh), p
h
)‖X×M , (6.20)

where h.o.t. stands, eventually, for one or several terms of higher order.

In what follows we prove Theorem 6.2 by providing suitable upper bounds depending of

local errors for each one of the 17 terms defining Θ2
S,T (cf. (6.2)) and Θ2

D,T (cf. (6.3)). To

this respect, it is important to remark that most of the required efficiency estimates in this

case are already available in the literature, and that the main tools employed in their proofs

include Helmholtz decompositions, inverse inequalities, and the localization technique based

on element-bubble and edge-bubble functions (cf. [15], [18], [22], [26]).

We begin with the zero order terms appearing in the definition of Θ2
S,T and Θ2

D,T .

Lemma 6.5 There hold

‖fS + divσS,h‖0,T ≤ ‖σS − σS,h‖div,T ∀T ∈ T S
h ,

‖fD − div uD,h‖0,T ≤ ‖uD − uD,h‖div;T ∀T ∈ T D
h ,

and

‖σS,h − σt
S,h‖0,ΩS

≤ 2 ‖σS − σS,h‖0,ΩS
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Proof. It suffices to recall, as established by Theorem 4.2, that fS = −divσS in ΩS,

fD = div uD in ΩD, and σS = σt
S in ΩS.

�

We now bound the component of Θ2
S,T involving the nonlinear operator.

Lemma 6.6 There exists C > 0, independent of h, such that

‖σd
S,h − µ(|tS,h|) tS,h‖20,T ≤ C

{
‖σS − σS,h‖20,T + ‖tS − tS,h‖20,T

}
Proof. We know from [22, Lemma 2.1] that there exists γ̄0 > 0, independent of h, such that

‖µ(|tS|) tS − µ(|tS,h|) tS,h‖0,T ≤ γ̄0 ‖tS − tS,h|‖0,T ∀T ∈ T S
h .

Hence, adding and substracting σd
S = µ(|tS|) tS in ΩS (cf. Theorem 4.2), we find that

‖σd
S,h − µ(|tS,h|) tS,h‖0,T ≤

{
‖(σS − σS,h)d‖0,T + ‖µ(|tS|) tS − µ(|tS,h|) tS,h‖0,T

}
≤

{
‖σS − σS,h‖0,T + γ̄0 ‖tS − tS,h|‖0,T

}
,

which yields the result.

�

We continue with the terms involving only tS,h + γS,h in the definition of ΘS,T .

Lemma 6.7 There exist C1, C2, C3, C4 > 0, independent of h, such that

h2
T ‖rot (tS,h + γS,h)‖20,T ≤C1

{
‖tS − tS,h‖20,T + ‖γS − γS,h‖20,T

}
∀T ∈ T S

h ,

h2
T ‖tS,h + γS,h‖20,T ≤C2

{
‖uS − uS,h‖20,T + h2

T ‖tS − tS,h‖20,T + h2
T ‖γS − γS,h‖20,T

}
∀T ∈ T S

h ,

he ‖[
(
tS,h + γS,h

)
t]‖20,e ≤C3

{
‖tS − tS,h‖20,we

+ ‖γS − γS,h‖20,we

}
∀ e ∈ Eh(ΩS) ,

he ‖
(
tS,h + γS,h

)
t‖20,e ≤C4

{
‖tS − tS,h‖20,Te + ‖γS − γS,h‖20,Te

}
∀ e ∈ Eh(ΓS) ,

where we := ∪
{
T ∈ T S

h : e ∈ E(T )
}

for all e ∈ Eh(ΩS), and Te is the triangle of T S
h having

e as an edge for all e ∈ Eh(ΓS).

Proof. See [15, Lemmas 5.6 and 5.7] for details.

�

The following four lemmas provide upper bounds for the remaining terms defining ΘS,T .
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Lemma 6.8 There exists C > 0, independent of h, such that for each e ∈ E(Σ) there holds

he ‖
(
σS,h + `h I

)
n + λhn − κ−1(ϕh · t) t‖20,e ≤ C

{
‖σS − σS,h‖20,T + |`− `h|

+ h2
T ‖div

(
σS − σS,h

)
‖20,T + he ‖λ− λh‖20,e + he ‖ϕ−ϕh‖20,e

}
,

where T is the triangle of T S
h having e as an edge.

Proof. It suffices to apply [26, Lemma 3.16] by replacing there σS and σS,h by (σS + ` I)
and (σS,h + `h I), respectively.

�

Lemma 6.9 There exists C > 0, independent of h, such that

∑
e∈Eh(Σ)

he

∥∥∥∥(tS,h + γS,h

)
t +

dϕh
dt

∥∥∥∥2

0,e

≤ C

 ∑
e∈Eh(Σ)

(
‖tS − tS,h‖20,Te + ‖γS − γS,h‖20,Te

)
+ ‖ϕ−ϕh‖21/2,Σ

 ,

where, given e ∈ Eh(Σ), Te is the triangle of T S
h having e as an edge.

Proof. It follows from the proof of [18, Lemma 20] by replacing there C−1 σ and C−1 σh by

tS and tS,h, respectively.

�

Note that the estimate given by the previous lemma is of a nonlocal character. Actually,

it will be the only one with this property in the efficiency analysis of the terms defining ΘS,T .

However, under an additional regularity assumption on ϕ, one can obtain the following local

bound.

Lemma 6.10 Assume that ϕ|e ∈ H1(e) for each e ∈ Eh(Σ). Then, there exists C > 0,

independent of h, such that for each e ∈ Eh(Σ) there holds

he

∥∥∥∥(tS,h + γS,h

)
t +

dϕh
dt

∥∥∥∥2

0,e

≤ C

{
‖tS − tS,h‖20,Te + ‖γS − γS,h‖20,Te +

∥∥∥∥ ddt(ϕ−ϕh)
∥∥∥∥2

0,e

}
,

where Te is the triangle of T S
h having e as an edge.

Proof. See [18, Lemma 21] for details.

�
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Lemma 6.11 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ) there

holds

he ‖uS,h+ϕh‖20,e ≤ C
{
‖uS−uS,h‖20,T+h2

T ‖tS−tS,h‖20,T+h2
T ‖γS−γS,h‖20,T +he ‖ϕ−ϕh‖20,e

}
,

where T is the triangle of T S
h having e as an edge.

Proof. Similarly to Lemma 6.9, it follows from the proof of [18, Lemma 22] by replacing

there C−1 σ and C−1 σh by tS and tS,h, respectively. �

The estimates for the remaining terms defining ΘD,T are given by the following four

lemmas.

Lemma 6.12 Assume that K−1 is piecewise polynomial on T D
h . Then, there exist C1, C2, C3, C4 >

0, independent of h, such that

h2
T ‖rot (K−1 uD,h)‖20,T ≤ C1 ‖uD − uD,h‖20,T ∀T ∈ T D

h ,

h2
T ‖K−1 uD,h‖20,T ≤ C2

{
‖pD − pD,h‖20,T + h2

T ‖uD − uD,h‖20,T
}

∀T ∈ T D
h ,

he |[K−1 uD,h · t]|20,e ≤ C3 ‖uD − uD,h‖20,we
∀ e ∈ Eh(ΩD) ,

he ‖pD,h − −λh‖20,e ≤ C4

{
‖pD − pD,h‖20,Te + h2

T ‖uD − uD,h‖20,Te + he ‖λ− λh‖20,e
}
∀ e ∈ Eh(Σ) ,

where we := ∪
{
T ∈ T D

h : e ∈ E(T )
}

for all e ∈ Eh(ΩD), and Te is the triangle of T D
h

having e as an edge for all e ∈ Eh(Σ).

Proof. See [26, Lemma 3.13] for details.

�

Lemma 6.13 There exists C > 0, independent of h, such that for each e ∈ Eh(Σ) there

holds

he ‖uD,h ·n + ϕh ·n‖20,e ≤ C
{
‖uD−uD,h‖20,T + h2

T ‖div(uD−uD,h)‖20,T + he ‖ϕ−ϕh‖20,e
}
,

where T is the triangle of T D
h having e as an edge.

Proof. See [26, Lemma 3.15] for details.

�

We end the efficiency analysis of ΘD,T with the analogue of Lemmas 6.9 and 6.10
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Lemma 6.14 Assume that K−1 is piecewise polynomial on T D
h . Then, there exists C > 0,

independent of h, such that

∑
e∈Eh(Σ)

he

∥∥∥∥K−1 uD,h · t +
dλh
dt

∥∥∥∥2

0,e

≤ C

 ∑
e∈Eh(Σ)

‖uD − uD,h‖20,Te + ‖λ − λh‖21/2,Σ

 ,

where, given e ∈ Eh(Σ), Te is the triangle of T D
h having e as an edge.

Proof. See [26, Lemma 3.13] for details.

�

Similarly to Lemma 6.10, we now assume an additional regularity assumption on λ to

derive, instead of the previous estimate, a local upper bound.

Lemma 6.15 Assume that K−1 is piecewise polynomial on T D
h , and that λ|e ∈ H1(e) for

each e ∈ Eh(Σ). Then, there exists C > 0, independent of h, such that for each e ∈ Eh(Σ)

there holds

he

∥∥∥∥K−1 uD,h · t +
dλh
dt

∥∥∥∥2

0,e

≤ C

{
‖uD − uD,h‖20,Te + he

∥∥∥∥ ddt (λ− λh)

∥∥∥∥2

0,e

}
,

where Te is the triangle of T D
h having e as an edge.

Proof. See [26, Lemma 3.14] for details. Actually, as stated there, it follows by adapting

the “elasticity version” given by [18, Lemma 21] to the present case.

�

We remark that if K−1 were not piecewise polynomial then higher order terms arising

from suitable local polynomial approximations would appear in the corresponding efficiency

estimates from the previous lemmas. This fact explains the expression “h.o.t.” in (6.20).

Consequently, the global efficiency estimate of Θ, that is the proof of Theorem 6.2,

follows straightforwardly from Lemmas 6.5 up to 6.15.



Chapter 7

Numerical results

We begin this chapter by observing that, while the decomposition (2.21) was necessary

for the analysis of the continuous and discrete formulations, the actual implementation of

the latter can abstain from it. In fact, it is easy to see that redefining σS,h + `h I, with

σS,h ∈ H0,h(ΩS) and `h ∈ R, as simply σS,h ∈ Hh(ΩS), and proceeding analogously with the

test tensor τ S,h ∈ Hh(ΩS), the Galerkin scheme (5.4) - (5.5) can be stated, equivalently, as

finding

th := (tS,h,uD,h,σS,h) ∈ X1,h := L0,h(ΩS)×H0,h(ΩD)×Hh(ΩS) ,

ϕ
h

:= (ϕh, λh) ∈ M1,h := ΛS
h(Σ)× ΛD

h (Σ) ,

p
h

:= (pD,h,uS,h,γS,h) ∈ Mh := L0,h(ΩD)× Lh(ΩS)× L2
h(ΩS) ,

(7.1)

such that

[A(th,ϕh), (rh,ψh)] + [B(rh,ψh), p
h
] = [F, (rh,ψh)] ∀ (rh,ψh) ∈ Xh := X1,h ×M1,h ,

[B(th,ϕh), q
h
] = [G, q

h
] ∀ q

h
∈Mh .

(7.2)

In addition, the mean value condition required by the elements in L0,h(ΩD) can be certainly

imposed through a suitable discrete Lagrange multiplier.

Throughout the rest of the chapter we present numerical examples illustrating the per-

formance of the discrete system (7.1) - (7.2), confirming the reliability and efficiency of

the a posteriori error estimator Θ derived in Chapter 6, and showing the behavior of the

associated adaptive algorithm. We consider the specific finite element subspaces defined in

Sections 5.3.1 and 5.3.2. In addition, all the nonlinear algebraic systems arising from (7.2)

are solved by the Newton method with a tolerance of 1E-6 and taking as initial iteration

60
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the solution of the associated linear problem with µ ≡ 1.

In what follows, N stands for the number of degrees of freedom defining Xh × Mh.

Furthermore, the individual and total errors are defined by:

e(tS) := ‖tS−tS,h‖0,ΩS
, e(uD) := ‖uD−uD,h‖div;ΩD

, e(σS) := ‖σS−σS,h‖div;ΩS
,

e(ϕ) := ‖ϕ−ϕh‖1/2,Σ , e(λ) := ‖λ− λh‖1/2,Σ , e(pD) := ‖pD − pD,h‖0,ΩD
,

e(uS) := ‖uS−uS,h‖0,ΩS
, e(γS) := ‖γS−γS,h‖0,ΩS

, e(t) :=
{
e(tS)2+e(uD)2+e(σS)2

}1/2
,

e(ϕ) :=
{
e(ϕ)2 + e(λ)2

}1/2
, e(p) :=

{
e(pD)2 + e(uS)2 + e(γS)2

}1/2
,

and

e(t,ϕ, p) :=
{
e(t)2 + e(ϕ)2 + e(p)2

}1/2
.

In turn, the effectivity index with respect to Θ is defined by

eff(Θ) := e(t,ϕ, p)/Θ ,

and the individual and global experimental rates of convergence are given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
for each % ∈

{
tS,uD,σS,ϕ, λ, pD,uS,γS, t,ϕ, p

}
,

and

r(t,ϕ, p) :=
log(e(t,ϕ, p)/e′(t,ϕ, p))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′. However, when the

adaptive algorithm is applied (see details below), the expression log(h/h′) appearing in the

computation of the above rates is replaced by − 1
2 log(N/N ′), where N and N ′ denote the

corresponding degrees of freedom of each triangulation.

The examples to be considered here are described below. Examples 1 (in 2D) and 2 (in

3D) are employed to illustrate the performance of the Galerkin scheme and to confirm the

reliability and efficiency of the a posteriori error estimator Θ (in the case of Example 1)

when a sequence of quasi-uniform meshes is considered. Then, Example 3 (in 2D) is utilized

to show the behavior of the associated adaptive algorithm, which applies the following

procedure from [41]:

1) Start with a coarse mesh Th := T D
h ∪ T S

h .
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2) Solve the discrete problem (7.2) for the current mesh Th.

3) Compute ΘT := Θ?,T for each triangle T ∈ T ?h , ? ∈ {D,S}.

4) Check the stopping criterion and decide whether to finish or go to next step.

5) Use blue-green refinement on those T ′ ∈ Th whose indicator ΘT ′ satisfies

ΘT ′ ≥
1

2
max
T∈Th

{ΘT : T ∈ Th } .

6) Define resulting meshes as current meshes T D
h and T S

h , and go to step 2.

For each example we consider the parameters κ1 = · · · = κn−1 = 1, K = I, and the

nonlinear function µ : R+ → R+ given by the Carreau law for viscoplastic flows, that is

µ(t) := µ0 + µ1 (1 + t2)(β−2)/2 ∀ t ∈ R+ ,

with µ0 = µ1 = 0.5 and β = 1.5. It is easy to check in this case that the assumptions

(2.4) and (2.5) are satisfied with

γ0 = µ0 + µ1

{
|β − 2|

2
+ 1

}
and α0 = µ0 .

Hence, for the implementation of our augmented scheme (7.2) we use the parameter ρ =
α0

2 γ2
0
, which certainly satisfies the required hypothesis ρ ∈

(
0, α0

γ2
0

)
.

In Example 1 we consider the regions ΩS := (0, 1)× (0.5, 1) and ΩD := (0, 1)× (0, 0.5),

and choose the data fS and fD so that the exact solution is given by the smooth functions

uS(x) =

(
uS,1(x)

uS,2(x)

)
∀x := (x1, x2) ∈ ΩS ,

with

uS,1(x) := −x1 sin(2πx1) (x1 − 1) (x2 − 1) exp(x1x2) (2− x1 + x1x2) ,

uS,2(x) := (x2 − 1)2 exp(x1x2)
(

2x1 sin(2πx1) − sin(2πx1) − 2πx1 cos(2πx1)

+ 2πx2
1 cos(2πx1) − x1x2 sin(2πx1) + x2x

2
1 sin(2πx1)

)
,

pS(x) = −π cos(πx1/2)
(
x2 + 0.5 − 2 cos(π (x2 + 0.5)/2)2

)
/4 ∀x := (x1, x2) ∈ ΩS ,
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and

pD(x) = x1 x2 (1− x1) sin(2πx1) sin(πx2) ∀x := (x1, x2) ∈ ΩD .

In Example 2 we consider the regions ΩS := (0, 1)2×(0.5, 1) and ΩD := (0, 1)2×(0, 0.5),

and choose the data fS and fD so that the exact solution is given by the smooth functions

uS(x) = ∇×


x2

1 (1− x1)2 x2
2 (1− x2)2 (1− x3)2 sin(π x1)

x2
1 (1− x1)2 x2

2 (1− x2)2 (1− x3)2 sin(π x2)

x2
1 (1− x1)2 x2

2 (1− x2)2 (1− x3)2 sin(π x3)

 ∀x := (x1, x2, x3) ∈ ΩS ,

pS(x) = (x3
1 + x3

2) exp(x3) ∀x := (x1, x2, x3) ∈ ΩS ,

and

pD(x) = x1 x2 x3 (1−x1) (1−x2) sin(2πx1) sin(2πx2) sin(πx3) ∀x := (x1, x2, x3) ∈ ΩD .

Finally, in Example 3 we consider ΩD := (−1, 0)2 and let ΩS be the L-shaped domain

given by (−1, 1)2 \ Ω̄D, which yields a porous medium partially surrounded by a fluid. Then

we choose the data fS and fD so that the exact solution is given by

uS(x) = curl
(

3 (x2
1 + x2

2)4/3 (x2
1 − 1)2 (x2

2 − 1)2
)
∀x := (x1, x2) ∈ ΩS ,

pS(x) =
1

100 (x2
1 + x2

2) + 0.1
∀x := (x1, x2) ∈ ΩS ,

and

pD(x) =

(
x1 + 1

10

)2

sin3(2π (x2 + 0.5)) ∀x := (x1, x2) ∈ ΩD .

Note that the partial derivatives of uS are singular at the origin and that pS has high

gradients around that point.

The numerical results shown below were obtained using a MATLAB code. In Tables 7.1,

7.2, 7.3 and 7.4 we summarize the convergence history of our augmented fully-mixed scheme

(7.1) - (7.2) as applied to Examples 1 and 2, for sequences of quasi-uniform triangulations

of the domains. The number of Newton iterations required in Example 1, for the tolerance

given, ranges between 9 and 12. We observe there, looking at the corresponding experimental

rates of convergence, that the O(h) predicted by Theorems 5.4 and 5.6 with δ = 1 is

attained in all the unknowns for both examples. In addition, we notice from Table 7.2

that the effectivity index eff(Θ) for Example 1 remains always in a neighborhood of 0.58,
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Figure 7.1: Example 1, pS and σS,12 for N = 120533

which illustrates the reliability and efficiency of Θ in the case of a regular solution. Some

components of the approximate (left) and exact (right) solutions for Example 1, which

illustrate the accurateness of the mixed finite element scheme, are displayed in Figures 7.1

and 7.2.

Then, in Tables 7.5, 7.6, 7.7, and 7.8 we provide the convergence history of the quasi-

uniform and adaptive schemes, as applied to Example 3. The number of Newton iterations

required in this case for the tolerance given, ranges between 14 and 16. We notice that the

errors of the adaptive procedure decrease faster than those obtained by the quasi-uniform

one, which is confirmed by the global experimental rates of convergence provided there. This

fact, which is clearly emphasized from about N = 10000 on, is also illustrated by Figure

7.3 where we display the total errors e(t,ϕ, p) vs. the number of degrees of freedom N for

both refinements. Moreover, as shown by the values of r(t,ϕ, p), the adaptive method is

able to keep the quasi-optimal rate of convergence O(h) for the total error. Furthermore,

the effectivity indexes remain bounded from above and below, which confirms the reliability

and efficiency of Θ in this case of non-smooth solution. Intermediate meshes obtained with

the adaptive refinement are displayed in Figure 7.4. We remark from there that the method

is able to recognize the origin as a singularity of the solution of this example. Moreover, the

additional refinement around the points (x1, x2) = (±1, 0) and (x1, x2) = (0,±1) indicates

the presence of large errors in those neighborhoods as well. Finally, some components of

the approximate (left) and exact (right) solutions for Example 3 are displayed in Figures

7.5 and 7.6.
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Table 7.1: Example 1, quasi-uniform scheme

h N e(tS) r(tS) e(uD) r(uD) e(σS) r(σS) e(ϕ) r(ϕ) e(λ) r(λ)
1/8 s 897 3.995E−01 − 4.961E−01 − 1.186E−00 − 5.183E−01 − 6.928E−02 −
1/10 1380 3.039E−01 1.227 3.979E−01 0.988 9.426E−01 1.029 3.513E−01 1.743 4.796E−02 1.648
1/12 1967 2.470E−01 1.137 3.322E−01 0.991 7.843E−01 1.008 2.570E−01 1.714 3.486E−02 1.750
1/14 2658 2.083E−01 1.104 2.851E−01 0.993 6.730E−01 0.993 1.980E−01 1.693 2.671E−02 1.727
1/16 3453 1.805E−01 1.075 2.496E−01 0.994 5.891E−01 0.997 1.585E−01 1.663 2.133E−02 1.687
1/18 4352 1.593E−01 1.057 2.220E−01 0.995 5.236E−01 1.000 1.307E−01 1.639 1.755E−02 1.652
1/20 5355 1.427E−01 1.043 2.000E−01 0.996 4.713E−01 0.999 1.103E−01 1.616 1.479E−02 1.624
1/22 6462 1.293E−01 1.035 1.818E−01 0.997 4.285E−01 0.998 9.468E−02 1.598 1.270E−02 1.603
1/24 7673 1.183E−01 1.028 1.667E−01 0.997 3.929E−01 0.999 8.248E−02 1.585 1.106E−02 1.587
1/26 8988 1.090E−01 1.023 1.539E−01 0.998 3.627E−01 0.999 7.272E−02 1.574 9.751E−03 1.574
1/28 10407 1.010E−01 1.020 1.429E−01 0.998 3.368E−01 0.999 6.475E−02 1.565 8.684E−03 1.563
1/30 11930 9.420E−02 1.017 1.334E−01 0.998 3.144E−01 0.999 5.815E−02 1.558 7.801E−03 1.555
1/32 13557 8.823E−02 1.015 1.251E−01 0.998 2.947E−01 0.999 5.261E−02 1.552 7.059E−03 1.548
1/34 15288 8.297E−02 1.013 1.177E−01 0.999 2.774E−01 0.999 4.790E−02 1.547 6.429E−03 1.542
1/36 17123 7.832E−02 1.011 1.112E−01 0.999 2.620E−01 0.999 4.389E−02 1.532 5.889E−03 1.535
1/40 21105 7.041E−02 1.010 1.001E−01 0.999 2.358E−01 0.999 3.733E−02 1.536 5.012E−03 1.531
1/48 30317 5.860E−02 1.007 8.342E−01 0.999 1.965E−01 1.000 2.825E−02 1.529 3.797E−03 1.522
1/56 41193 5.019E−02 1.005 7.151E−02 0.999 1.685E−01 1.000 2.234E−02 1.521 3.006E−03 1.515
1/64 53733 4.389E−02 1.004 6.257E−02 1.000 1.474E−01 1.000 1.825E−02 1.516 2.457E−03 1.510
1/80 83805 3.508E−02 1.003 5.006E−02 1.000 1.179E−01 1.000 1.295E−02 1.536 1.753E−03 1.512
1/96 120533 2.923E−02 1.002 4.172E−02 1.000 9.828E−02 1.000 9.821E−03 1.519 1.332E−03 1.506
1/112 163917 2.504E−02 1.002 3.576E−02 1.000 8.424E−02 1.000 7.771E−03 1.519 1.057E−03 1.504
1/128 213957 2.191E−02 1.001 3.129E−02 1.000 7.371E−02 1.000 6.343E−03 1.521 8.644E−04 1.503
1/144 270653 1.947E−02 1.000 2.782E−02 1.000 6.552E−02 1.000 5.511E−03 1.193 7.344E−04 1.384
1/160 334005 1.753E−02 1.001 2.503E−02 1.000 5.897E−02 1.000 4.739E−03 1.432 6.298E−04 1.458
1/250 853893 1.095E−02 1.054 1.565E−02 1.053 3.686E−02 1.053 2.515E−03 1.420 3.280E−04 1.462

Table 7.2: Example 1, quasi-uniform scheme (... cont)

N e(pD) r(pD) e(uS) r(uS) e(gS) r(gS) e(t,ϕ, p) r(t,ϕ, p) eff(Θ)

897 5.951E−03 − 3.695E−02 − 3.111E−01 − 1.478E−00 − 0.6134
1380 4.603E−03 1.152 2.752E−02 1.321 2.236E−01 1.479 1.147E−00 1.135 0.5962
1967 3.807E−03 1.042 2.238E−02 1.133 1.742E−01 1.369 9.405E−01 1.089 0.5880
2658 3.256E−03 1.013 1.900E−02 1.062 1.421E−01 1.321 7.987E−01 1.060 0.5850
3453 2.847E−03 1.004 1.655E−02 1.034 1.200E−01 1.265 6.944E−01 1.048 0.5830
4352 2.531E−03 1.001 1.468E−02 1.021 1.039E−01 1.226 6.142E−01 1.041 0.5815
5355 2.277E−03 1.000 1.319E−02 1.014 9.162E−02 1.193 5.508E−01 1.034 0.5804
6462 2.070E−03 1.000 1.198E−02 1.010 8.195E−02 1.171 4.994E−01 1.028 0.5795
7673 1.898E−03 1.000 1.098E−02 1.007 7.412E−02 1.153 4.568E−01 1.025 0.5788
8988 1.752E−03 1.000 1.013E−02 1.005 6.766E−02 1.140 4.209E−01 1.022 0.5783
10407 1.627E−03 1.000 9.401E−03 1.004 6.223E−02 1.129 3.903E−01 1.020 0.5778
11930 1.519E−03 1.000 8.772E−03 1.004 5.760E−02 1.120 3.638E−01 1.018 0.5774
13557 1.424E−03 1.000 8.222E−03 1.003 5.361E−02 1.112 3.407E−01 1.017 0.5771
15288 1.340E−03 1.000 7.738E−03 1.003 5.014E−02 1.105 3.203E−01 1.016 0.5768
17123 1.266E−03 1.000 7.307E−03 1.002 4.708E−02 1.100 3.023E−01 1.014 0.5766
21105 1.139E−03 1.000 6.575E−03 1.002 4.197E−02 1.091 2.717E−01 1.013 0.5762
30317 9.492E−04 1.000 5.478E−03 1.001 3.447E−02 1.079 2.260E−01 1.011 0.5757
41193 8.136E−04 1.000 4.695E−03 1.001 2.925E−02 1.067 1.934E−01 1.009 0.5753
53733 7.119E−04 1.000 4.107E−03 1.001 2.539E−02 1.058 1.690E−01 1.008 0.5750
83805 5.695E−04 1.000 3.286E−03 1.000 2.010E−02 1.048 1.350E−01 1.007 0.5747
120533 4.746E−04 1.000 2.738E−03 1.000 1.663E−02 1.040 1.124E−01 1.005 0.5745
163917 4.068E−04 1.000 2.347E−03 1.000 1.418E−02 1.033 9.629E−02 1.005 0.5743
213957 3.560E−04 1.000 2.053E−03 1.000 1.236E−02 1.029 8.421E−02 1.004 0.5742
270653 3.164E−04 1.000 1.825E−03 1.000 1.095E−02 1.032 7.484E−02 1.002 0.5742
334005 2.848E−04 1.000 1.643E−03 1.000 9.826E−03 1.024 6.733E−02 1.003 0.5742
853893 1.780E−04 1.053 1.027E−03 1.072 6.089E−03 1.053 4.204E−02 1.055 0.5742
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Figure 7.2: Example 1, uD,1 and ϕ for N = 120533

Table 7.3: Example 2, quasi-uniform scheme

h N e(tS) r(tS) e(uD) r(uD) e(σS) r(σS) e(ϕ) r(ϕ) e(λ) r(λ)
1/4 6086 1.368E−01 − 2.242E−01 − 5.213E−01 − 1.970E−02 − 1.048E−02 −
1/8 46884 7.737E−02 0.822 1.167E−01 0.942 2.617E−01 0.994 1.037E−02 0.926 1.552E−02 −
1/12 156386 5.338E−02 0.915 7.864E−02 0.974 1.738E−01 1.009 5.613E−03 1.514 8.433E−03 1.504
1/16 368576 4.065E−02 0.947 5.919E−02 0.988 1.299E−01 1.012 3.583E−03 1.560 4.867E−03 1.911
1/20 717438 3.278E−02 0.964 4.743E−02 0.993 1.037E−01 1.011 2.526E−03 1.567 3.200E−03 1.879
1/24 1236956 2.745E−02 0.974 3.956E−02 0.995 8.622E−02 1.010 1.898E−03 1.569 2.305E−03 1.800

Table 7.4: Example 2, quasi-uniform scheme (... cont)

N e(pD) r(pD) e(uS) r(uS) e(gS) r(gS) e(t,ϕ, p) r(t,ϕ, p)

6086 1.930E−03 − 8.682E−03 − 5.638E−02 − 5.870E−01 −
46884 9.663E−04 0.998 2.849E−03 1.607 2.100E−02 1.425 2.981E−01 1.135
156386 5.849E−04 1.238 1.403E−03 1.747 1.154E−02 1.476 1.987E−01 1.089
368576 4.287E−04 1.080 8.348E−04 1.804 7.470E−03 1.513 1.487E−01 1.060
717438 3.414E−04 1.021 5.536E−04 1.841 5.304E−03 1.535 1.188E−01 1.048
1236956 2.840E−04 1.008 3.942E−04 1.862 4.000E−03 1.548 9.888E−02 1.041
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Table 7.5: Example 3, quasi-uniform scheme

h N e(tS) e(uD) e(σS) e(ϕ) e(λ)
1 93 5.864E−00 8.654E−01 2.699E+01 2.837E−00 1.252E−00

1/3 1094 5.295E−00 3.403E−01 1.647E+01 2.349E−00 2.221E−01
1/5 2929 3.793E−00 1.989E−01 1.306E+01 1.462E−00 1.074E−01
1/7 5797 2.700E−00 1.400E−01 1.235E+01 1.050E−00 5.071E−02
1/9 9115 2.175E−00 1.061E−01 1.125E+01 7.521E−01 4.127E−02
1/11 13958 1.774E−00 8.698E−02 9.682E−00 8.081E−01 3.203E−02
1/13 19752 1.445E−00 7.681E−02 7.542E−00 5.152E−01 2.219E−02
1/15 26116 1.264E−00 6.488E−02 6.206E−00 4.463E−01 1.674E−02
1/17 33265 1.096E−00 5.634E−02 6.407E−00 3.857E−01 1.440E−02
1/19 41839 9.756E−01 5.103E−02 5.001E−00 3.486E−01 1.094E−02
1/21 51029 9.057E−01 4.628E−02 4.528E−00 2.929E−01 9.071E−03
1/25 74062 7.374E−01 3.777E−02 4.019E−00 2.228E−01 6.148E−03
1/35 142283 5.262E−01 2.780E−02 3.502E−00 1.453E−01 4.032E−03
1/45 237444 4.022E−01 2.093E−02 2.848E−00 1.035E−01 2.481E−03
1/55 355451 3.271E−01 1.725E−02 2.563E−00 7.612E−02 1.774E−03
1/65 496414 2.746E−01 1.464E−02 2.202E−00 5.915E−02 1.365E−03

Table 7.6: Example 3, quasi-uniform scheme (... cont)

N e(pD) e(uS) e(gS) e(t,ϕ, p) r(t,ϕ, p) eff(Θ)

93 1.429E−01 1.658E−00 3.794E−00 2.811E+01 − 0.8954
1094 4.436E−02 6.076E−01 4.110E−00 1.796E+01 0.408 0.7313
2929 2.109E−02 3.951E−01 3.125E−00 1.403E+01 0.482 0.6901
5797 8.068E−03 2.837E−01 2.273E−00 1.289E+01 0.252 0.7602
9115 5.318E−03 2.283E−01 1.892E−00 1.164E+01 0.405 0.7796
13958 3.245E−03 1.839E−01 1.544E−00 9.999E−00 0.758 0.7862
19752 2.790E−03 1.543E−01 1.267E−00 7.802E−00 1.485 0.7651
26116 1.879E−03 1.345E−01 1.100E−00 6.445E−00 1.335 0.7398
33265 1.713E−03 1.173E−01 9.702E−01 6.584E−00 -0.171 0.7856
41839 1.003E−03 1.055E−01 8.605E−01 5.180E−00 2.157 0.7459
51029 9.881E−04 9.693E−02 7.996E−01 4.697E−00 0.979 0.7340
74062 6.138E−04 7.974E−02 6.569E−01 4.145E−00 0.716 0.7539
142283 4.032E−04 5.707E−02 4.734E−01 3.577E−00 0.438 0.8041
237444 2.385E−04 4.396E−02 3.622E−01 2.901E−00 0.833 0.8146
355451 1.686E−04 3.593E−02 2.954E−01 2.602E−00 0.543 0.8386
496414 1.220E−04 3.024E−02 2.490E−01 2.234E−00 0.913 0.8423

Table 7.7: Example 3, adaptive scheme

N e(tS) e(uD) e(σS) e(ϕ) e(λ)
93 5.864E−00 8.654E−01 2.699E+01 2.837E−00 1.252E−00
270 6.406E−00 5.470E−01 2.793E+01 2.563E−00 9.664E−01
953 5.613E−00 3.342E−01 1.784E+01 2.367E−00 2.584E−01
2535 3.583E−00 3.613E−01 1.204E+01 2.834E−00 4.107E−01
4083 2.840E−00 2.882E−01 1.110E+01 1.729E−00 1.446E−01
6004 2.327E−00 2.560E−01 1.200E+01 1.647E−00 9.231E−02
9051 1.962E−00 2.208E−01 8.152E−00 1.293E−00 5.260E−02
11558 1.741E−00 2.169E−01 6.718E−00 9.672E−01 5.639E−02
24615 1.040E−00 1.662E−01 4.289E−00 4.600E−01 1.991E−02
43104 8.326E−01 1.247E−01 3.364E−00 2.463E−01 1.204E−02
80989 5.661E−01 1.244E−01 2.377E−00 1.855E−01 8.597E−03
126407 4.640E−01 1.157E−01 1.891E−00 9.514E−02 4.911E−03
280099 3.025E−01 1.013E−01 1.297E−00 6.864E−02 3.212E−03
468314 2.374E−01 7.989E−02 9.729E−01 3.606E−02 1.880E−03
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Table 7.8: Example 3, adaptive scheme (... cont)

N e(pD) e(uS) e(gS) e(t,ϕ, p) r(t,ϕ, p) eff(Θ)

93 1.429E−01 1.658E−00 3.794E−00 2.811E+01 − 0.8954
270 8.918E−02 1.337E−00 5.003E−00 2.925E+01 -0.075 0.8519
953 5.446E−02 8.060E−01 4.181E−00 1.933E+01 0.657 0.6708
2535 4.477E−02 5.839E−01 3.033E−00 1.325E+01 0.772 0.6491
4083 2.040E−02 4.184E−01 2.446E−00 1.186E+01 0.467 0.7015
6004 1.399E−02 3.653E−01 1.997E−00 1.250E+01 -0.275 0.7789
9051 9.291E−03 2.506E−01 1.663E−00 8.652E−00 1.794 0.6887
11558 9.665E−03 2.398E−01 1.560E−00 7.187E−00 1.518 0.6671
24615 3.348E−03 1.528E−01 9.590E−01 4.545E−00 1.212 0.6450
43104 1.889E−03 1.162E−01 7.695E−01 3.562E−00 0.870 0.6311
80989 1.100E−03 8.508E−02 5.202E−01 2.509E−00 1.111 0.6343
126407 7.986E−04 6.563E−02 4.251E−01 2.000E−00 1.020 0.6179
280099 5.810E−04 4.468E−02 2.773E−01 1.367E−00 0.957 0.6303
468314 4.024E−04 3.327E−02 2.188E−01 1.029E−00 1.103 0.6098
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Figure 7.3: Example 3, e(t,ϕ, p) vs. N for the quasi-uniform and adaptive schemes
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Figure 7.4: Example 3, adapted meshes with 4083, 9051, 24615 and 80989 degrees of
freedom

Figure 7.5: Example 3, tS,21 and σS,22 for adaptive scheme with N = 280099
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Figure 7.6: Example 3, pD and uD,2 for adaptive scheme with N = 280099



Chapter 8

Conclusiones y trabajo futuro

A continuación se presenta un resumen de los principales aportes de esta Tesis y una

descripción del trabajo futuro a desarrollar.

8.1 Conclusiones

El objetivo principal de este proyecto de t́ıtulo ha sido el análisis numérico de una for-

mulación mixta aumentada para el acoplamiento de fluidos quasi-Newtonianos con medios

porosos. Los flujos están descritos, por una ecuación de Stokes no lineal y la ecuación de

Darcy lineal respectivamente, mientras que las ecuaciones de interfase están dadas por con-

servación de masa, balances de fuerzas normales, y la ley de Beavers-Joseph-Saffman. Se

ha introducido una formulación de punto silla doble para el problema acoplado, donde las

incógnitas principales son el tensor de esfuerzos, velocidad, vorticidad y tensor de deforma-

ciones en la región de Stokes, mientras que en la región Darcy son la velocidad, gradiente de

velocidad y presión. Dado que se han considerado formulaciones mixtas en ambos dominios,

las condiciones de transmisión se imponen de forma débil, por lo que es necesario introducir

la traza de la velocidad del dominio Stokes y de la presión del dominio Darcy, en la interfase,

como incógnitas auxiliares del sistema.

Dado que la estructura mixta resultante no cae dentro de la teoŕıa de Babuška-Brezzi

para problemas mixtos no lineales disponible en la literatura, ha sido necesario extender

resultados previos para abarcar este tipo de problemas. Más precisamente, se han exten-

dido los resultados de [17] para demostrar existencia y unicidad de solución para el problema

acoplado continuo, como también, existencia y unicidad de solución, y convergencia de los es-

quemas de Galerkin propuestos. En particular, los espacios de elementos finitos considerados

en este trabajo incluyen los elementos PEERS y Arnold-Falk-Winther para el esfuerzo, ve-
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locidad y vorticidad en el fluido, Raviart-Thomas y constantes a trozos para la velocidad

y presión en el medio poroso, junto con constantes a trozos en el tensor de esfuerzos y

continuos y lineales a trozos para las trazas.

Por otro lado, se ha propuesto un estimador de error a posteriori residual, eficiente y

confiable para el problema acoplado bidimensional.

Finalmente, se han proporcionado distintos ejemplos numéricos, los cuales confirman los

resultados teóricos obtenidos, esto es, la convergencia óptima de los métodos de elementos

mixtos, como también, la eficiencia y confiabilidad del estimador a posteriori.

8.2 Trabajo futuro

1. Se extenderán los resultados del presente trabajo a la interacción de un fluido quasi-

Newtoniano con un medio poroso no lineal. Más precisamente, se analizará el acoplamiento

de las ecuaciones de Stokes descritas en (2.1) y (2.3), con las ecuaciones de Darcy no

lineales dadas por:

uD = −κ(·, |∇pD|)∇pD in ΩD, div(uD) = fD in ΩD,

uD · n = 0 on ΓD,

donde κ : ΩD ×R+ → R es un operador no lineal que representa la permeabilidad del

medio poroso.

2. Se ampliarán los resultados de error a posteriori para el caso tridimensional.

3. Se extenderán los resultados obtenidos al problema acoplado de Stokes-Darcy en su

versión evolutiva.
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