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CONCEPCIÓN – CHILE

EL PROBLEMA DE EQUILIBRIO MEDIANTE
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Fecha exámen de grado:

Calificación:

Concepción–Enero 2005



A Luisa y Rubén
a Gloria y Marı́a Jesús
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Abstract

This thesis is concerned with the study of the equilibrium problem by using asymp-

totic analysis. As a model of study we consider the complementarity problem (CP).

It is well-known that the (CP) is equivalent to a variational inequality problem

(VIP). We employ the latter problem in order to study (CP). Under some continuity

assumptions the (VIP) has solutions as soon as is defined on a bounded set. The object

of this thesis is to deal with the (VIP) defined on unbounded sets (as in the (CP)). To

this end we apply the asymptotic analysis: we approximate the (VIP) with problems

defined on bounded sets and that have solutions and then we study the asymptotic

properties of the normalized approximate solutions of such problems. With the aid of

the obtained information, the reformulated Gowda-Pang existence theorem and by in-

troducing several new classes of mappings, we obtain new existence, stability and sen-

sitivity results. Moreover, we obtain bounds for the solutions sets and the asymptotic

cones of the solution sets. The multivalued, piecewise polyhedral, and linear comple-

mentarity cases are studied in detail, the results from the literature are recovered and

new results are given.

The Lemke’s algorithm allows the resolution of the linear complementarity prob-

lem in a finite number of steps. For large size problems we have iterative algorithms.

Among the latter the splitting method plays an important role. In order for this al-

gorithm to be well-defined some of the matrices involved must be Q-matrices. We

study such matrices in detail and characterize them within a new class of matrices we

introduced, which enjoys good properties.

v



vi

Resumen

El objetivo de esta tesis es estudiar el problema de equilibrio mediante análisis de

recesión. Tomamos como modelo de estudio al problema de complementariedad (PC).

Es conocido que el (PC) es equivalente a un problema de desigualdad variacional

(PDV), el cual empleamos para estudiar nuestro problema. El (PDV) tiene soluciones

en dominios acotados bajo ciertas hipótesis de continuidad. El objetivo de esta tesis

es estudiar dicho problema en dominios no acotados (como es el caso de (PC)). Para

tal efecto usamos análisis de recesión (o análisis asintótico); hacemos una aproxima-

cion de (PDV) mediante problemas en dominios acotados en los cuales se tienen solu-

ciones y luego estudiamos las propiedades asintóticas de sus correspondientes solu-

ciones aproximadas normalizadas. Utilizando la información obtenida, el teorema de

existencia reformulado de Gowda-Pang y mediante la introducción de nuevas clases

de mapeos obtenemos nuevos resultados de existencia, estabilidad y sensibilidad.

Además, obtenemos cota/estimas para los conjuntos solución y los conos asintóticos

de los últimos. Los casos multı́voco, poliédrico por tramos y lineal son estudiados en

detalle, se recuperan los resultados de la literatura y se dan otros nuevos.

El algoritmo de Lemke permite la resolución del problema de complementariedad

lineal en un número finito de pasos y para problemas de gran tamaño se tienen a

los algoritmos iterativos. Entre los últimos tenemos los algoritmos de descomposición

que juegan un rol muy importante. Para que dichos algoritmos esten bien definidos,

algunas de las matrices involucradas deben ser Q-matrices. Estudiamos dichas matri-

ces con bastante detalle y las caracterizamos dentro de una nueva clase de matrices

que introducimos, la cual goza de buenas propiedades.



Glossary of Notations

Spaces
Rn real n−dimensional space
R

n
+ the nonnegative orthant of R

n

Rn
++ the positive orthant of Rn

R
m×n the space of m × n matrices

cl-sets 6=∅(R
n) the space of nonempty closed subsets of Rn

E⊥ the orthogonal subspace of E

Vectors
x ∈ R

n an n−dimensional column vector
x ≥ 0 a nonnegative vector (i.e. in Rn

+)
x > 0 a positive vector (i.e. in R

n
++)

|y| the vector whose i−th component is |yi|
ei the i-th column of the identity matrix in R

n×n

l1 the vector of ones
〈y, x〉 the standard inner product of vectors in R

n

‖·‖ the Euclidean norm on Rn

||y||d the d−norm of y ∈ R
n for a vector d > 0

x ≥ y the partial ordering xi ≥ yi, i = 1, . . . n

x > y the strict ordering xi > yi, i = 1, . . . n

Index sets
I an arbitrary index set

vii
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α an index subset of I
.
= {1, 2, . . . , n}

ᾱ the complement of the index subset α

supp{x} the support of a vector x

Matrices
M = (aij) a matrix with entries aij

MT the transpose of a matrix M

‖M‖ a norm of a matrix M

‖M‖d a d-norm of a matrix M

Mαβ (aij)i∈α,j∈β, a submatrix of a matrix M

Mα· (ai·)i∈α,all j, the rows of M indexed by α

M·β (a·j)all i,j∈β, the columns of M indexed by β

Sets
co A the convex hull of the set A

int A the topological interior of the set A

cl A = Ā the (topological) closure of the set A

ri A the relative interior of the set A

pos A the positive hull of the set A

pos+A the strictly positive hull of the set A

A∗ the (positive) polar cone of the set A

A# the strictly (positive) polar cone of the set A

A∞ the asymptotic cone of the set A

A∞
d the d−normalized asymptotic cone of the set A

B(x, δ) the unit ball with center x and radius δ

B the unit ball B(0, 1)

Bd the unit ball Bd(0, 1) respect to the d-norm
S the unit sphere with center 0 and radius 1

Sd the unit sphere respect to the d-norm
∆d {x ≥ 0 : 〈d, x〉 = 1} a set in R

n

∆J , J ⊆ I co
{

1
di

ei : i ∈ J
}

an extreme face of ∆d
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dC(x) the distance from x to C ⊆ Rn

Ck → C the Painlevé-Kuratowski set convergence
dI(A, B) the integrated set distance from A to B

dI∞(A, B) the Pompeiu-Hausdorff distance from A to B

Mappings
Φ : X ⇒ Y a multifunction from X to Y

dom Φ the domain of the mapping Φ

gph Φ the graph of the mapping Φ

Φ−1 the inverse of the mapping Φ

X the set of cuscos on R
n
+

X0 the set of compact-convex-valued mappings on Rn
+

Φk g→ Φ graphical convergence of {Φk} to Φ

ω(Φ) the d−numerical range of Φ

MΦ, mΦ the supremum and infimum of ω(Φ)

‖Φ‖ sup{‖y‖ : y ∈ Φ(x), x ≥ 0}
|Φ|+d the d-outer norm of Φ

δC the indicator function of a set C

σC the support function of a set C

f : X → Y a function from X to Y

∂f the subgradient of a function f

usc and lsc upper and lower semicontinuity property
UL(λ) upper Lipschitzian property with modulus λ

CP symbols
D(Φ) all vectors q for which MCP(q, Φ) has solutions
F(q, Φ) the feasibility set of MCP(q, Φ)

Fs(q, Φ) the strict feasibility set of MCP(q, Φ)

S(q, Φ) the solution set of MCP(q, Φ).



Introduction

Several problems in optimization and nonlinear analysis can be written in
an abstract framework known as the equilibrium problem. In the scalar case the
above problem reads as follows [12]

find x̄ ∈ K : f(x̄, y) ≥ 0 ∀y ∈ K. (EP)

where X is a Hausdorff topological vector space, K ⊂ X is a nonempty closed
convex subset, and f : K × K → R is a function.

Problems like this have a long history, starting with the work of Ky Fan
[24, 25] in the early seventies and that of Brezis-Niremberg-Stampacchia [11].
However, it was after the work of Blum-Oettli [12] that such a problem has
been in the scope of many researchers (for historical comments see [29]).

We now review some problems that can be written as equilibrium problems
by adequately setting the function f (see [12, 29, 44] for instance).

Minimization problem: Let h : K → R ∪ {∞}, it is requested to

find x̄ ∈ K : h(x) ≥ h(x̄) ∀x ∈ K.

Set f(x, y) = h(y) − h(x).

Saddle point problem: Let L : K1 × K2 → R, it is requested to

find (x̄1, x̄2) ∈ K1 × K2 : L(x̄1, y2) ≤ L(y1, x̄2) ∀(y1, y2) ∈ K1 × K2.

Set K = K1 × K2 and f((x1, x2), (y1, y2)) = L(y1, x2) − L(x1, y2).

x
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Fixed-Point problem: Let X be a Hilbert space and T : K → K, it is requested
to

find x̄ ∈ K : T (x̄) = x̄.

Set f(x, y) = 〈x − Tx, y − x〉.
If Φ : K ⇒ K is a multifunction, it is requested to

find x̄ ∈ K : x̄ ∈ Φ(x̄).

Set f(x, y) = supz∈Φ(x)〈x − z, y − x〉.

Convex/pseudoconvex differentiable minimization problem: Let h : X → R

be a convex/pseudoconvex and Gâteaux differentiable function. Consider the
minimization problem, it is known (see [29] for instance) that such a problem
is equivalent to the problem

find x̄ ∈ K : 〈Dh(x̄), y − x̄〉 ≥ 0 ∀y ∈ K.

Set f(x, y) = 〈Dh(x), y − x〉.

Variational Inequality Problem: Let X be a Banach space and T : K → X∗, it
is requested to

find x̄ ∈ K : 〈T (x̄), y − x̄〉 ≥ 0 ∀y ∈ K.

Set f(x, y) = 〈T (x), y − x〉.
If Φ : K ⇒ K is a multifunction, it is requested to

find x̄ ∈ K : ȳ ∈ Φ(x̄), 〈ȳ, y − x̄〉 ≥ 0 ∀y ∈ K.

Set f(x, y) = supz∈Φ(x)〈z, y − x〉.

Complementarity problem: Let K be a closed convex cone, K∗ its positive
polar cone, and T : K → X∗, it is requested to

find x̄ ∈ K : T (x̄) ∈ K∗, 〈T (x̄), x̄〉 = 0.

Set f(x, y) = 〈T (x), y − x〉.
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If Φ : K ⇒ K is a multifunction, it is requested to

find x̄ ∈ K : ȳ ∈ Φ(x̄), ȳ ∈ K∗, 〈ȳ, x̄〉 = 0.

Set f(x, y) = supz∈Φ(x)〈z, y − x〉.

Quasivariational inequality problem: Let F : K → X∗, Q : K ⇒ X , x∗ ∈ X∗,
and K be a closed convex set, it is requested to

find x̄ ∈ Q(x̄) : 〈F (x̄) − x∗, y − x̄〉 ≥ 0 ∀y ∈ Q(x̄).

Set f(x, y) = 〈F (x) − x∗, y − x〉 + δQ(x)(y), where δC is the indicator function of
the set C.

Nash equilibria problem in noncooperative games: Let I = {1, . . . , n} be
the set of players. For every player i ∈ I, let there be given a set Ki (the
strategy set of the ith player). Let K =

∏

i∈I

Ki. For every player i ∈ I, let

there be given a function fi : K → R (the loss function of the ith player, de-
pending on the strategy of all players). For x = (x1, . . . , xn) ∈ K, we define
xi = (x1, . . . , xi−1, xi+1, . . . , xn). It is requested to

find x̄ ∈ K : fi(x̄) ≤ fi(x̄
i, yi) ∀i ∈ I ∀yi ∈ Ki.

The vector x̄ ∈ K is said to be a Nash equilibrium in the noncooperative game.
The above relationship means that no player can reduce his loss by varying his
strategy alone.
Set f(x, y) =

∑

i∈I

(fi(x
i, yi) − fi(x)).

Vector minimization problem: Let C ⊆ Rm be a closed convex cone, such
that both C and C∗ have nonempty interior. Consider the partial order in Rm

defined by

x � y ⇐⇒ y − x ∈ C and x ≺ y ⇐⇒ y − x ∈ int C.

It is requested to
find x̄ ∈ K : F (x) 6≺ F (x̄) ∀x ∈ K.
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Set f(x, y) = sup||z||=1,z∈C∗〈z, F (y) − F (x)〉.

Many authors had contributed to the study of the equilibrium problem
when the set K is assumed to be compact or some coerciveness assumptions
are imposed on the function f (see [12, 10] and the bibliography therein).

In this thesis, we study the equilibrium problem in a noncoercive frame-
work by approximating the initial problem by problems defined on compact
sets and by using techniques of recession analysis similarly as in [8, 70, 34, 13,
27, 14, 29] and the bibliography therein. However, we improve this approach
by approximating the mappings as well, using the concept of graphical con-
vergence or convergence by means of the outer norm. This allows us to avoid
coercivity conditions and to obtain continuity results for the solution set map-
pings as well.

We take the complementarity problem in the finite dimensional setting as a
model of our study and develop our approach for it.

We begin our study with the multivalued complementarity problem on the
nonnegative orthant, which reads as follows

find x̄ ≥ 0, ȳ ∈ Φ(x̄) : ȳ + q ≥ 0, 〈ȳ + q, x̄〉 = 0. (MCP)

where Φ : Rn
+ ⇒ Rn is a multifunction and q ∈ Rn is a column vector. This

problem is denoted by MCP(q, Φ) and if Φ is a piecewise polyhedral multi-
function this problem is called the polyhedral complementarity problem whereas if
Φ is a linear mapping, it is called the linear complementarity problem.

Problem (MCP) is known to be equivalent to the following multivalued vari-
ational inequality problem:

find x̄ ≥ 0, ȳ ∈ Φ(x̄) : 〈ȳ + q, x − x̄〉 ≥ 0 ∀ x ≥ 0 (MVIP)

The ASYMPTOTIC ANALYSIS of problem (MCP) consists of approximating
the (MVIP) by a sequence of problems (PMVIPk) defined on compact sets (in
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such sets we have solutions) and which have the following form:

find xk ∈ Dk, yk ∈ Φk(xk) : 〈yk + qk, x − xk〉 ≥ 0 ∀x ∈ Dk. (PMVIPk)

where d > 0, {σk} is an increasing sequence of positive numbers converg-
ing to +∞, Dk =

{

x ∈ Rn
+ : 〈d, x〉 ≤ σk

}

is a compact convex set, qk → q and
dI(Φk, Φ) → 0 (graphical convergence) or |Φk − Φ|+d → 0 (convergence in the
d-outer norm). Afterwards, we determine the asymptotic behavior of the nor-
malized sequence of the approximate solutions to (PMVIPk) and we use this
information in order to obtain existence and sensibility results for the initial
problem (MCP). We have developed this analysis in [30, 32, 53], the last work
of which is still in progress.

The outline of the present thesis is as follows:

Chapter 1 is devoted to set up notation and review some facts from matrix
analysis, convex analysis, quadratic programming, set-valued analysis and vari-
ational inequalities. The notion of asymptotic cone is reviewed as well. It is
worth mentioning that in order to realize our approach, we define and employ
concepts related to a positive vector d and the simplex ∆d, as d-norm, d-matrix
norm, d-numerical range and d-normalized asymptotic cone among others.

Chapter 2 is devoted to the study of the multivalued complementarity prob-
lem. In Section 2.1 we list some classes of multifunctions known in the liter-
ature of the complementarity problem and introduce new classes for which
we perform the asymptotic analysis. These classes are compared by using the
notion of d-numerical range. The asymptotic analysis of the approximate so-
lutions to the variational inequality formulation is performed in Section 2.2
(Basic Lemma) and the abstract Gowda–Pang existence theorem is reformu-
lated therein. In Section 2.3, new classes of multifunctions are introduced and
some of their properties are described. In Section 2.4, bounds-estimates for the
asymptotic cone of the solution set are obtained. The main specializations of
the abstract existence theorem are discussed in Section 2.5, where also some
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kind of robustness results are established. Section 2.6 is devoted to present
some new sensitivity and stability results by using the concept of graphical
convergence. In Section 2.7, the asymptotic analysis is carried out by means of
the d-outer norm. Finally, precise bounds–estimations for the solution set are
obtained in Section 2.8.

Chapter 3 is devoted to the study of the polyhedral complementarity problem.
In Section 3.1, we recall the notion of piecewise polyhedral multifunctions, we
give examples and establish some of their properties. A new class of multi-
functions, suitable for this kind of complementarity problem is introduced in
Section 3.2 and the asymptotic analysis for it is performed therein. Section 3.3
is devoted to present existence theorems. Finally, Lipschitzian properties for
the solution set multifunction are obtained and the concept of approximable
mappings is used in Section 3.4.

Chapter 4 is devoted to the study of the linear complementarity problem. In
Section 4.1 we proceed with the asymptotic analysis for arbitrary matrices and
establish various equivalent conditions to the non-emptiness of the solution
set. Section 4.2 recalls the notion of G-matrices and present some of their char-
acterizations. In Section 4.3, we proceed with the asymptotic analysis for dif-
ferent classes of matrices. The new class of GT-matrices, which contains prop-
erly that of G#-matrices (used in [40]), is introduced as well. Some estimates
for the asymptotic cone of the solution set are presented in Section 4.4. In Sec-
tion 4.5 we prove some existence results for our larger class of matrices, which
strengthen part of those in [40], and extend others. New sensitivity results are
proved as well. In addition, new characterizations of the nonemptiness and
boundedness of the solution set for all vectors q are established when the ma-
trix is either a G-matrix or a positive subdefinite matrix. Moreover, some con-
ditions ensuring the boundedness of the solution set are also provided. Finally,
Section 4.6 is devoted to discuss some possible relationship with other exis-
tence results, specially those in [40] and [17, 18].
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Finally, Chapter 5 is devoted to the study of the class of Q-matrices, which
consists of matrices such that the linear complementarity problem has solu-
tion for all vectors q. In Section 5.1 we list some classes of matrices arising in
the linear complementarity problem and to recall the characterizations of Q-
matrices within the class P0 due to Aganagič and Cottle, and within the class L,
which does not contains P0, due to Pang. In Section 5.2, a new class of matrices,
which properly contains L, is introduced. Moreover, some classes of matrices
contained in such a class are indicated. In Section 5.3, we further establish the
same result of Pang for a this new class of matrices. Furthermore, the equiv-
alence between a Q-matrix and Qb, which consists of matrices such that the
linear complementarity problem has a nonempty and compact solution set for
all vectors q, is discussed. Positive subdefinite matrices are analyzed as well.



xvii

Introducción

Muchos problemas en optimización y análisis no lineal pueden ser escritos
en el mismo marco de referencia, conocido como problema de equilibrio. En el
caso escalar dicho problema tiene la siguiente formulación [12]:

hallar x̄ ∈ K : f(x̄, y) ≥ 0 ∀y ∈ K. (EP)

donde X es un espacio vectorial topológico de Hausdorff, K ⊂ X es un sub-
conjunto cerrado convexo no vacio y f : K × K → R es una función.

Los problemas de este tipo tienen una larga historia, comenzando en los
trabajos de Ky Fan [24, 25] a comienzos de los años setenta y en los trabajos de
Brezis-Niremberg-Stampacchia [11]. Sin embargo, es sólo después del trabjo de
Blum-Oettli [12] que tal problema está bajo la lupa de muchos investigadores
(para referencias históricas consultar [29]).

A continuación damos un listado de problemas que pueden ser escritos
como problemas de equilibrio mediante la eleccción adecuada de la función f

(ver [12, 29, 44] por ejemplo)

Problema de minimización: Sea h : K → R ∪ {∞}, se pide

hallar x̄ ∈ K : h(x) ≥ h(x̄) ∀x ∈ K.

Escoger f(x, y) = h(y) − h(x).

Problema de punto silla: Sea L : K1 × K2 → R, se pide

hallar (x̄1, x̄2) ∈ K1 × K2 : L(x̄1, y2) ≤ L(y1, x̄2) ∀(y1, y2) ∈ K1 × K2.

Escoger K = K1 × K2 y f((x1, x2), (y1, y2)) = L(y1, x2) − L(x1, y2).

Problema de punto fijo: Sea X un espacio de Hilbert y T : K → K, se pide

hallar x̄ ∈ K : T (x̄) = x̄.
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Escoger f(x, y) = 〈x − Tx, y − x〉.
Si Φ : K ⇒ K es una multifunción, se pide

hallar x̄ ∈ K : x̄ ∈ Φ(x̄).

Escoger f(x, y) = supz∈Φ(x)〈x − z, y − x〉.

Problema de minimización convexa/pseudoconvexa diferenciable: Sea h :

X → R una función convexa/pseudoconvexa y diferenciable según Gâteaux.
Consideremos el problema de minimización, se sabe (ver [29] por ejemplo) que
dicho problema es equivalenta al problema

hallar x̄ ∈ K : 〈Dh(x̄), y − x̄〉 ≥ 0 ∀y ∈ K.

Escoger f(x, y) = 〈Dh(x), y − x〉.

Problema de desigualdad variacional: Sea X un espacio de Banach y T : K →
X∗, se pide

hallar x̄ ∈ K : 〈T (x̄), y − x̄〉 ≥ 0 ∀y ∈ K.

Escoger f(x, y) = 〈T (x), y − x〉.
Si Φ : K ⇒ K es una multifunción, se pide

hallar x̄ ∈ K : ȳ ∈ Φ(x̄), 〈ȳ, y − x̄〉 ≥ 0 ∀y ∈ K.

Escoger f(x, y) = supz∈Φ(x)〈z, y − x〉.

Problema de complementariedad: Sea K un cono cerrado convexo, K∗ su
cono polar positivo y T : K → X∗, se pide

hallar x̄ ∈ K : T (x̄) ∈ K∗, 〈T (x̄), x̄〉 = 0.

Escoger f(x, y) = 〈T (x), y − x〉.
Si Φ : K ⇒ K es una multifunción, se pide

hallar x̄ ∈ K : ȳ ∈ Φ(x̄), ȳ ∈ K∗, 〈ȳ, x̄〉 = 0.
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Escoger f(x, y) = supz∈Φ(x)〈z, y − x〉.

Problema de desigualdad casivariacional: Sea F : K → X∗, Q : K ⇒ X ,
x∗ ∈ X∗ y K un conjunto cerrado convexo, se pide

hallar x̄ ∈ Q(x̄) : 〈F (x̄) − x∗, y − x̄〉 ≥ 0 ∀y ∈ Q(x̄).

Escoger f(x, y) = 〈F (x)−x∗, y−x〉+ δQ(x)(y), donde δC es la función indicatriz
del conjunto C.

Problema de equilibrio de Nash en juegos no coperativos: Sea I = {1, . . . , n}
el conjunto de jugadores. Para cada jugador i ∈ I es dado el conjunto Ki (la
estrategia de cada jugador i-ésimo). Sea K =

∏

i∈I

Ki. Para cada jugador i ∈ I es

también dada la función fi : K → R (la función de pérdida del jugador i-ésimo,
dependiendo de la estrategia de todos los jugadores). Para x = (x1, . . . , xn) ∈
K, definimos xi = (x1, . . . , xi−1, xi+1, . . . , xn). Se pide

hallar x̄ ∈ K : fi(x̄) ≤ fi(x̄
i, yi) ∀i ∈ I ∀yi ∈ Ki.

El vector x̄ ∈ K se llama punto de equilibrio de Nash en juegos no coperativos. Las
anteriores relaciones significan que ningún jugador puede reducir sus pérdidas
cambiando el sólo su estrategia.
Escoger f(x, y) =

∑

i∈I

(fi(x
i, yi) − fi(x)).

Problema de minimización vectorial: Sea C ⊆ Rm un cono cerrado convexo,
tal que C y C∗ tienen interior no vacio. Consideramos el orden parcial en Rm

definido por

x � y ⇐⇒ y − x ∈ C y x ≺ y ⇐⇒ y − x ∈ int C.

Se pide
hallar x̄ ∈ K : F (x) 6≺ F (x̄) ∀x ∈ K.

Escoger f(x, y) = sup||z||=1,z∈C∗〈z, F (y) − F (x)〉.
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Muchos investigadores han contribuido al estudio del problema de equilib-
rio en el caso cuando el conjunto K es compacto o cuando ciertas condiciones
de coercividad son impuestas sobre la función f (ver [12, 10] y la bibliografı́a
contenida ahı́).

En esta tesis se estudia el problema de equilibrio en un marco de referencia
no coercivo mediante la aproximación del problema original por problemas
definidos en conjuntos compactos y usando técnicas de análisis de recesión
(o análisis asintótico) de manera similar como en los trabajos [8, 70, 34, 13,
27, 14, 29] y la bibliografı́a contenida ahı́). Sin embargo, mejoramos dicho en-
foque aproximando también a los mapeos, usando el concepto de convergencia
gráfica o de convergencia mediante la norma exterior. Esto nos permite evitar
las condiciones de coercividad y obtener además resultados de continuidad
para los mapeos de conjunto solución.

Tomamos al problema de complementariedad en dimensión infinita como
modelo de estudio y desarrollamos nuestro enfoque para dicho problema.

Comenzamos nuestro estudio con el problema de complementariedad multı́-
voco en el octante no negativo (primer octante), dicho problema se enuncia de
la siguiente manera:

hallar x̄ ≥ 0, ȳ ∈ Φ(x̄) : ȳ + q ≥ 0, 〈ȳ + q, x̄〉 = 0. (MCP)

donde Φ : Rn
+ ⇒ Rn es una multifunción y q ∈ Rn es un vector columna. Deno-

tamos a este problema por MCP(q, Φ) y si Φ es una multifunción poliédrica por
tramos este problema se llama problema de complementarity poliédrico mientras
que, si Φ es un mapeo lineal unı́voco se llama problema de complementariedad
lineal.

Se sabe que el problema (MCP) es equivalente al problema de desigualdad
variacional multı́voco:

hallar x̄ ≥ 0, ȳ ∈ Φ(x̄) : 〈ȳ + q, x − x̄〉 ≥ 0 ∀ x ≥ 0 (MVIP)

El ANÁLISIS DE RECESIÓN O ASINTÓTICO para el problema (MCP) consiste
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en aproximar el problema (MVIP) por una sucesión de problemas (PMVIPk)

definidos en conjuntos compactos (en los cuales hay soluciones) que tienen la
siguiente forma:

hallar xk ∈ Dk, yk ∈ Φk(xk) : 〈yk + qk, x − xk〉 ≥ 0 ∀x ∈ Dk. (PMVIPk)

donde d > 0, {σk} es una sucesión creciente de números positivos que con-
vergen a +∞, Dk =

{

x ∈ Rn
+ : 〈d, x〉 ≤ σk

}

es un conjunto compacto convexo,
qk → q y dI(Φk, Φ) → 0 (convergencia gráfica) o |Φk − Φ|+d → 0 (convergen-
cia en la d-norma exterior). A continuación, determinamos el comportamiento
asintótico de la sucesión de soluciones aproximadas normalizadas del prob-
lema (PMVIPk) y usamos esta información para obtener resultados de existen-
cia y sensibilidad para el problema original (MCP). Hemos desarrollado este
análisis en los siguientes trabajos:

1. FLORES-BAZÁN F., LÓPEZ R., The linear complementarity problem un-
der asymptotic analysis, Pre-print 2003-23, Depto. Ingenierı́a Matemática,
Universidad de Concepción, será publicado en la revista ISI Mathematics
of Operations Research (2005).

2. FLORES-BAZÁN F., LÓPEZ R., Characterizing Q-matrices beyond L-matrices,
Pre-print 2004-11, Depto. Ingenierı́a Matemática, Universidad de Con-
cepción, será publicado en la revista ISI Journal of Optimization Theory and
Applications (2005).

3. FLORES-BAZÁN F., LÓPEZ, R., Asymptotic analysis, existence and sensi-
tivity results for a class of multivalued complementarity problems. Pre-
print 2004-19, Depto. Ingenierı́a Matemática, Universidad de Concepción.
Sometido a publicación (2004).

4. LÓPEZ R. The polyhedral complementarity problem, en preparación (2004).

A continuación damos una breve descripción de la tesis:
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El Capı́tulo 1 está dedicado a fijar la notación y revisar algunos resultados del
análisis matricial, análisis convexo, programación cuadrática, análisis multı́voco
y desigualdades variacionales. La noción de cono asintótico es revisada también.
Es importante mencionar que para llevar a cabo nuestro enfoque se han definido
y utilizado conceptos relacionados a un vector positivo d y al simplejo ∆d,
como ser d-norma, d-norma matricial, d-rango numérico y d-cono asintótico
normalizado entre otros.

El Capı́tulo 2 está dedicado al estudio del problema de complementariedad
multı́voco. En la Sección 2.1 listamos algunas clases de multifunciones conoci-
das en la literatura del problema de complementariedad e introducimos nuevas
clases de multifunciones para las cuales se efectúa el análsis asintótico. Es-
tas clases son comparadas usando la noción de d-rango numérico. El análisis
asintótico de las soluciones aproximadas de la desigualdad variacional (MVIP)

es realizado en la Sección 2.2 (Lema Básico) y el teorema de existencia abstracto
de Gowda–Pang es reformulado ahı́ mismo. En la Sección 2.3, se introducen
nuevas clases de multifunciones y se estudian algunas de sus propiedades. En
la Sección 2.4, se obtienen cotas/estimas para el cono asintótico del conjunto
solución. En la Sección 2.5 se discuten las principales especializaciones del teo-
rema abstracto de existencia, también se obtienen resultados en los cuales se
observa cierta clase de robusticidad. La Sección 2.6 está dedicada a la obtención
de algunos nuevos resultados de sensibilidad y estabilidad mediante el uso
de la convergencia gráfica. En la Sección 2.7, se realiza el análisis asintótico
mediante la d-norma exterior. Finalmente en la Sección 2.8 se obtienen co-
tas/estimas para los conjuntos solución.

El Capı́tulo 3 está dedicado al estudio del problema de complementariedad
poliédrico. En la Sección 3.1, repasamos la noción de multifunción poliédrica
por tramos, damos algunos ejemplos y establecemos algunas de sus propie-
dades. En la Sección 3.2 introducimos una nueva clase de multifunciones que
es adecuada para este tipo de problema de complementariedad, además re-
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alizamos el análisis asintótico para dicha clase. En la Sección 3.3 se presentan
teoremas de existencia. Finalmente, en la Sección 3.4 se establecen propiedades
Lipschitzianas para la multifunción conjunto-solución y el concepto de mapeo
aproximable es usado.

El Capı́tulo 4 está dedicado al estudio del problema de complementariedad lin-
eal. En la Sección 4.1 realizamos el análisis asintótico para matrices arbitrarias
y establecemos condiciones equivalentes para la existencia de soluciones. En
la Sección 4.2 se repasa la noción de G-matriz y se presentan algunas de sus
caracterizaciones. En la Sección 4.3, se realiza el análisis asintótico para difer-
entes clases de matrices. Además se introduce la nueva clase de GT-matrices,
la cual contiene propiamente a la clase de G#-matrices (usada en [40]). En
la Sección 4.4 se hallan algunas estimas para el cono asintótico del conjunto
solución. En la Sección 4.5 se demuestran algunos resultados de existencia para
clases más amplias de matrices y que refuerzan parte de aquellos obtenidos
en [40] y se extienden otros. Se prueban nuevos resultados de sensibilidad.
Además, se dan nuevas caracterizaciones de la no vacuidad y la acotación del
conjunto solución para todos los vectores q cuando la matriz es o bien G-matriz
o bien positivamente subdefinida. También se dan condiciones que aseguran la
acotación del conjunto solución. Finalmente, en la Sección 4.6 se discuten posi-
bles relaciones con otros resultados de existencia, especialmente con aquellos
de los trabajos [40] y [17, 18].

Finalmente, el Capı́tulo 5 está dedicado al estudio de la clase de Q-matrices, la
cual consiste en las matrices tales que el problema de complementariedad lin-
eal tiene solución para todos los vectores q. En la Sección 5.1 listamos algunas
clases de matrices que aparecen en el problema de complementariedad lineal
y repasamos algunas caracterizaciones de las Q-matrices dentro de la clase P0

debido a Aganagič y Cottle, y dentro de la clase L, que no contiene a P0, de-
bido a Pang. En la Sección 5.2, se introduce una nueva clase de matrices que
contiene propiamente a L. Además, algunas clases de matrices contenidas en



xxiv

tal clase son indicadas. En la Sección 5.3, generalizamos el resultado de Pang
para la nueva clase de matrices. Se discute también la equivalencia entre Q-
matrices y Qb-matrices, la última consiste en las matrices tal que el problema
de complementariedad lineal tiene conjunto de solución no vacio y compacto
para todo vector q. Las matrices positivamente subdefinidas son analizadas en
detalle.
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Chapter 1

Notation and Preliminary Facts

In this thesis, we use the following notation: x ≥ 0 (resp. x > 0) whenever
x ∈ Rn

+ (resp. x ∈ Rn
++ = int Rn

+); |y| = (|y1|, . . . , |yn|) and ||y||d := 〈d, |y|〉
whenever y ∈ Rn and d > 0 (in particular ||y||d = 〈d, y〉 for y ≥ 0), ‖ · ‖d is a
vector norm on Rn; given x ∈ Rn, the index set supp{x} := {i ∈ I : xi 6= 0} is
the support of x where I

.
= {1, . . . , n}.

We denote by Rm×n the space of matrices with real entries of order m × n; by
MT we mean the transpose of M ∈ Rm×n. For M ∈ Rm×n, α ⊆ I and β ⊆ I , Mαβ

denotes the submatrix of M consisting of the rows and columns of M whose
indices are in α and β respectively.
Given a matrix M ∈ Rn×n and the vector norm ‖ · ‖d for a positive vector d > 0,
the nonnegative number defined by

‖M‖d
.
= max

w 6=0

‖Mw‖d

‖w‖d

= max
‖w‖d=1

‖Mw‖d

is called the matrix norm subordinated to the vector norm ‖·‖d (see [21] for the
definition of subordinated norm). By an standard argument we can find the
following formula for this norm.

‖M‖d = max
1≤j≤n

(

n
∑

i=1

di

dj

|aij|
)

(1.1)

1
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for instance, if d = l1 is the vector of ones, we have that ‖x‖ l1 = |x1| + · · · + |xn|
is the sum norm and ‖M‖ l1 = max1≤j≤n

n
∑

i=1

|aij| is the maximum column-sum

norm. Unless otherwise stated, by ‖x‖ and ‖M‖ we mean the usual Euclidean
norm of x and the matrix norm of M subordinated to it.
Let d > 0 and µd =

√
n

max1≤i≤n di

min1≤i≤n di
, we have the following relationship between

these matrix norms
1

µd

‖M‖d ≤ ‖M‖ ≤ µd ‖M‖d .

1.1 Convex analysis

Let A ⊂ Rn be a subset, we denote by co A the convex hull of the set A; ri A

the relative interior of A, that is, the interior with respect to its affine hull. The
sets pos A = {tx : t ≥ 0, x ∈ A} and pos+A = {tx : t > 0, x ∈ A} are the positive
hull and strictly positive hull of A respectively; A∗ .

= {x : 〈u, x〉 ≥ 0 ∀ u ∈ A},
A# .

= {x : 〈u, x〉 > 0 ∀ u ∈ A \ {0}} are the (positive) polar cone and the strictly
(positive) polar cone of A respectively. Let d > 0, the sets Bd = {x : ‖x‖d ≤ 1}
and Sd = {x : ‖x‖d = 1} are the unit ball and sphere with center 0 respect to the
vector norm ‖ · ‖d, the notations B and S are used when the Euclidean norm is
employed; ∆d is the simplex {x ≥ 0 : 〈d, x〉 = 1}, clearly ∆d = Sd ∩Rn

+; if J ⊆ I ,
∆J = ∆J(d)

.
= co{ 1

di
ei : i ∈ J} is an extreme face of ∆d, where ei is the i-th

column of the identity matrix in Rn×n. In particular, ∆I = ∆d.
The convex hull of a finite set of points is called a polytope. A polyhedral set

or polyhedron is the intersection of a finite number of closed half-spaces. For a
union of such sets we have the following result (see [68, Lem 2.50])

Lemma 1.1.1 If a convex set C is the union of a finite collection of polyhedral sets Ck,
it must itself be polyhedral. Moreover if int C 6= ∅, the sets Ck with int Ck = ∅ are
superfluous in the representation. In fact C can be given a refined expression as the
union of a finite collection of polyhedral sets {Di}m

i=1 such that
(a) each set Di is included in one of the sets Ck;
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(b) int Di 6= ∅, so Di = cl(int Dj);
(c) int Di1 ∩ int Di2 = ∅ when i1 6= i2.

In Chapter 3 we employ the following result [51, Lem 23.3]

Lemma 1.1.2 If C ⊆ Rn is a compact convex set with nonempty interior, then for
each ε > 0 there exists a polytope P such that P ⊆ C ⊆ Pε, where Pε = P + εB.

Let K ⊂ Rn be a convex cone, then

w ∈ int K ⇐⇒ 〈v, w〉 > 0 for all nonzero v ∈ K∗,

moreover if K ⊂ Rn is a closed cone, not necessarily convex, then

w ∈ int K∗ ⇐⇒ 〈v, w〉 > 0 for all nonzero v ∈ K,

thus in this case we can write int K∗ = K# (see [68] for instance).
The indicator function of a set C ⊂ Rn, denoted by δC , is defined by

δC(x)
.
=







0 if x ∈ C,

+∞ if x 6∈ C.

If C ⊂ Rn is a nonempty closed convex subset, then δC is a proper, lsc, and
convex function.

A subgradient of a function f : Rn → R ∪ {+∞} at a point x with f(x) finite
is any vector ξ ∈ R

n satisfying f(y) ≥ f(x) + 〈ξ, y − x〉 for all y. The set of
all subgradients of f at x ∈ dom f is called the subdifferential of f at x and is
denoted by ∂f(x), such a set is closed and convex.

The support function of a set C ⊂ Rn, denoted by σC , is defined by

σC(x)
.
= sup{〈y, x〉 : y ∈ C}.

Let D ⊂ Rn be a nonempty closed convex set then (see [68, Cor. 8.25])

∂σD(x) = arg max
y∈D

〈y, x〉.

We shall use the following theorem of the alternative.
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Lemma 1.1.3 (Farkas) Let A ∈ Rn×m and c ∈ Rn be given. Then exactly one of the
following two systems has a solution:
1. Ax ≤ 0 and 〈c, x〉 > 0 for some x ∈ Rn;
2. ATy = c and y ≥ 0 for some y ∈ Rm.

1.2 Optimality conditions

Consider the following quadratic programming problem

Minimize 〈c, x〉 + 1
2
〈x, Qx〉

subject to Ax ≥ b

x ≥ 0.

(QP)

where Q ∈ Rn×n is symmetric, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. If x is a lo-
cally optimal solution of the program (QP), then there exists a vector y ∈ Rm

such that the pair (x, y) satisfies the Karush-Kuhn-Tucker conditions (see [15] for
instance)

u = c + Qx − ATy ≥ 0, x ≥ 0, 〈x, u〉 = 0,

v = −b + Ax ≥ 0, y ≥ 0, 〈y, v〉 = 0.
(KKT)

If, in addition, Q is positive semi-definite, i.e., if the objective function is con-
vex, then the conditions in (KKT) are in fact, sufficient for the vector x to be a
globally optimal solution of (QP).

In particular, for Q = 0 we get the linear programming problem.

Minimize 〈c, x〉
subject to Ax ≥ b

x ≥ 0

(LP)

where c ∈ R
n, b ∈ R

m, and A ∈ R
m×n. A vector x ∈ R

n is an optimal solution to
(LP) if and only if there exists a vector y ∈ Rm such that the pair (x, y) satisfies
the Karush-Kuhn-Tucker conditions

u = c − ATy ≥ 0, x ≥ 0, 〈x, u〉 = 0,

v = −b + Ax ≥ 0, y ≥ 0, 〈y, v〉 = 0.
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1.3 Set-valued analysis

Set convergence

We introduce the following collection of subsets of N:

N∞
.
= {N ⊆ N : N \ N finite}
= {subsequences of N containing all v beyond some v̄}

N#
∞

.
= {N ⊆ N : N infinite} = {all subsequences of N} .

For a sequence {Ck} of subsets of Rn, the outer limit is the set

lim sup
k→+∞

Ck .
=
{

x : ∃N ∈ N#
∞, ∃xv ∈ Cv (v ∈ N) with xv −→

N
x
}

the inner limit is the set

lim inf
k→+∞

Ck .
=
{

x : ∃N ∈ N∞, ∃xv ∈ Cv (v ∈ N) with xv −→
N

x
}

The limit of the sequence exists if the outer and inner limits sets are equal:

lim
k→+∞

Ck = lim sup
k→+∞

Ck = lim inf
k→+∞

Ck.

The above limits can be expressed in terms of distance functions:

lim inf
k→+∞

Ck =

{

x : lim sup
k→+∞

dCk(x) = 0

}

, lim sup
k→+∞

Ck =

{

x : lim inf
k→+∞

dCk(x) = 0

}

where dC(x)
.
= d(C, x) stands for the distance from x to C ⊆ Rn (for C = ∅, we

have dC(x) = ∞).
When limk Ck exists and equals C, the sequence {Ck} is said to converge to

C in Painvelé-Kuratowski sense, written Ck → C.

Metric characterization of set convergence

Let A, B ⊆ Rn be two sets, the integrated set distance between them is defined
by

dI(A, B) :=

∞
∫

0

dIρ(A, B)e−ρdρ.
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where for ρ ≥ 0,
dIρ(A, B) := max

‖x‖≤ρ
|dA(x) − dB(x)|.

The expression dI gives a metric on cl − sets 6=∅(R
n)-the space of all nonempty

closed subsets of Rn, which characterizes ordinary set convergence

Ck → C ⇐⇒ dI(Ck, C) → 0.

Another notion of convergence for sets regards the Pompeiu-Hausdorff distance
which is defined by

dI∞(A, B) := max
x∈Rn

|dA(x) − dB(x)|
= inf {η ≥ 0 : C ⊆ D + ηB, D ⊆ C + ηB} .

where A, B ⊂ Rn are two nonempty and closed sets. The convergence with
respect to Pompieu-Hausdorff distance entails the ordinary set convergence
Ck → C and is equivalent to it when there is a bounded set X ⊆ R

n such that
Ck, C ⊆ X for all k. But convergence with respect to Pompieu-Hausdorff dis-
tance is not equivalent to ordinary set convergence without this boundedness
restriction. Indeed, it is possible to have Ck → C with dI∞(Ck, C) → +∞ (even
for C, Ck being compact sets) as is shown in [68, p. 118].
The Pompieu-Hausdorff distance is unsuitable for analyzing sequences of un-
bounded sets or even unbounded sequences of bounded sets. That is why in
this thesis we employ the integrated set distance, since we deal with distances
between graphics of multifunctions, which are unbounded sets.
Let C ⊆ Rn be a compact convex set with nonempty interior, using Lemma1.1.2
we prove that there is a sequence {Ck} of polytopes such that dI∞(Ck, C) → 0

and by the above remark we obtain dI(Ck, C) → 0.

Multifunctions

Given a set C ⊂ Rn, a multifunction or set-valued map Φ from C to Rm, de-
noted by Φ : C ⇒ Rm, is a mapping that associates to any x ∈ C a subset Φ(x)
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of Rm, called the image of x under Φ. A single-valued mapping f : C → Rm can
be treated in terms of the multifunction F : C ⇒ Rm defined by F (x) = {f(x)},
we simply write F (x) = f(x).
The following sets:

dom Φ
.
= {x ∈ C : Φ(x) 6= ∅} , gph Φ

.
= {(x, y) ∈ C × R

m : y ∈ Φ(x)} ,

rge Φ
.
= ∪x∈RnΦ(x), Φ−1(y)

.
= {x ∈ R

n : y ∈ Φ(x)} .

denote the domain, the graph, the range and the inverse of Φ respectively. We
may consider that Φ(x) = ∅ for x 6∈ dom Φ.
Minkowski addition and scalar multiplication are defined as follows:

(Φ + Ψ)(x)
.
= Φ(x) + Ψ(x) for x ∈ dom Φ ∩ dom Ψ,

(λΦ)(x)
.
= λ Φ(x) for x ∈ dom Φ, λ ∈ R.

Classes of multifunctions

A multifunction Φ : Rn
⇒ Rn is said to be:

• compact (resp. convex, closed, bounded) valued if for each x ∈ dom Φ, Φ(x) is
compact (resp. convex, closed, bounded);

• lower semicontinuous (lsc) if for any x ∈ dom Φ, y ∈ Φ(x) and any sequence
{

xk
}

⊆ dom Φ converging to x, there exists a sequence
{

yk
}

such that
yk ∈ Φ(xk) and yk → y;

• upper semicontinuous (usc) if for any x ∈ dom Φ and any open set V ⊂ Rn

containing Φ(x), there is a neighborhood U of x such that Φ(U) ⊆ V ;

• a cusco if it is usc and compact convex valued;

• locally upper Lipschitzian at x̄ ∈ dom Φ with modulus λ (UL(λ)) if there is a
neighborhood U of x̄ such that Φ(x) ⊆ Φ(x̄) + λ ‖x − x̄‖B for all x ∈ U .



1.3 Set-valued analysis 8

• sequentially bounded if for any bounded sequence {xk} ⊆ dom Φ, it follows
that any sequence {yk} with yk ∈ Φ(xk) for all k, is bounded;

• superadditive if Φ(x) + Φ(y) ⊆ Φ(x + y) for all x, y ∈ dom Φ;

• uniformly bounded if there exists a bounded set C such that Φ(x) ⊆ C for
all x ∈ domΦ;

• graph-convex (resp. graph-closed) if its graph is convex (resp. closed).

• Rn
+-convex if tΦ(x)+(1−t)Φ(y) ∈ Φ(tx+(1−t)y)+Rn

+ for all x, y ∈ dom Φ,
t ∈]0, 1[.

In this thesis, we use repeatedly the following property which is related to the
upper semicontinuity property of multifunctions.

Proposition 1.3.1 [3, Prop. 2,3] Let X and Y be two Hausdorff topological spaces,
and Φ : X ⇒ Y be a multifunction.

(a) If Φ is usc and closed-valued, then it is graph-closed;

(b) If Φ is usc and compact-valued from the compact space X to Y , then Φ(X) is
compact.

Generalized equations and graphical convergence

For a sequence of mappings Φk : Rn
⇒ Rn, the graphical outer limit (resp.

graphical inner limit), denoted by g-lim supk Φk (resp. g-lim infk Φk), is the map-
ping with graph lim supk(gphΦk) (resp. lim infk(gph Φk)). If these outer and in-
ner limits agree, the graphical limit g-limk Φk exists. In this case the notation
Φk g→ Φ is used.

Graphical convergence of mappings can be characterized with the metric
of set convergence. Indeed, on the set of all cuscos we consider the metric (that
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we shall denote also by dI)

dI(Φ1, Φ2)
.
= dI(gph Φ1, gph Φ2),

such a metric characterizes the graphical convergence `` g→´´, i.e.

Φk g→ Φ ⇐⇒ dI(Φk, Φ) → 0,

In our analysis we employ repeatedly the following two properties of the graph-
ical convergence [68, Ex. 5.34(b), Th. 5.37].

Theorem 1.3.2 (Uniformity in graphical convergence) Let the mappings
Φ, Φk : Rn

⇒ Rm. Suppose the mappings Φk are connected-valued (e.g. convex-
valued). If g-lim supk Φk = Φ, and if Φ(x̄) is nonempty and bounded, then there exist
k0 ∈ N, a neighborhood V of x̄ and a bounded set B such that

Φ(x) ⊆ B and Φk(x) ⊂ B ∀x ∈ V, k ≥ k0.

Theorem 1.3.3 (Generalized equations) For two closed-valued mappings Φ, Φk :

Rn
⇒ Rm and two vectors ū, ūk ∈ Rm, consider the generalized equation ūk ∈ Φk(x)

as an approximation to the generalized equation ū ∈ Φ(x), the respective solutions be-
ing (Φk)−1(ūk) and Φ−1(ū), with the elements of the former referred to as approximate
solutions and the elements of the latter as true solutions.

(a) As long as g-lim supk Φk ⊆ Φ, one has that for every choice of ūk → ū that
lim supk(Φ

k)−1(ūk) ⊆ Φ−1(ū). Thus, any cluster point of a sequence of approx-
imate solutions is a true solution.

(b) If g-lim infk Φk ⊇ Φ, one has Φ−1(ū) ⊆ ⋂ε lim infk(Φ
k)−1(B(ū, ε)). In this case,

therefore, every true solution is the limit of approximate solutions corresponding
to some choice of ūk → ū.

(c) When Φk g→ Φ, both conclusions hold.
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A sequence of matrices {Mk} ⊆ Rn×n is said to converge to a matrix M if and
only if its components converge ak

ij → aij for all i and j, or equivalently if
∥

∥Mk − M
∥

∥ → 0. Let Φk(x) = Mkx and Φ(x) = Mx with Mk, M ∈ Rn×n. For
such mappings Φk g→ Φ if and only if

∥

∥Mk − M
∥

∥→ 0.

1.4 Variational inequalities

In the existence theory for the complementarity problem, we employ the
following well-known existence theorems for variational inequalities (see [50,
69] for instance).

Theorem 1.4.1 (Hartman-Stampacchia) Let K ⊆ R
n be a compact convex set and

let f : K → Rn be continuous. Then there exists an x̄ ∈ K such that

〈f(x̄), x − x̄〉 ≥ 0 ∀x ∈ K.

It is worth mentioning that under the above assumptions for f , if K is un-
bounded, the variational inequality problem does not always admit a solution,
take for instance K = R and f(x) = ex.

Theorem 1.4.2 (Saigal) Let K ⊆ Rn be a compact convex set and let Φ : K ⇒ Rn

be an usc compact contractible (in particular convex) valued multifunction. Then there
exists an x̄ ∈ K and ȳ ∈ Φ(x̄) such that

〈ȳ, x − x̄〉 ≥ 0 ∀x ∈ K.

1.5 Asymptotic cones

Given a nonempty set C ⊆ R
n and a vector d > 0. We define the d-normalized

asymptotic cone of C as the set

C∞
d

.
=

{

v ∈ R
n : ∃ xk ∈ C, ||xk||d → +∞,

xk

||xk||d
→ v

}

,
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and the asymptotic cone of C as the set

C∞ .
=
{

v ∈ R
n : ∃ xk ∈ C, tk ↓ 0, tkx

k → v
}

.

The ``recession´´ term instead of asymptotic is employed when convex sets are
considered.

Now, we list some properties of the asymptotic cones (see [7, 29, 68] for
instance):

(a) C is a closed cone if and only if C∞ = C;

(b) C∞ = posC∞
d (where by convention pos ∅ = {0} );

(c) C∞ = {0} if and only if C is bounded, or equivalently if C∞
d = ∅;

(d) C∞ = (C)∞;

(e) C1 ⊆ C2 implies C∞
1 ⊆ C∞

2 ;

(f) Let C be a non-empty closed convex set, x0 ∈ C. Then,

C∞ =
{

u ∈ R
n : x0 + tu ∈ C ∀ t > 0

}

.

Such a cone is independent on x0;

(g) Let {Ci}, i ∈ I, be any family of non-empty sets in Rn, then
(

⋂

i∈I

Ci

)∞

⊆
⋂

i∈I

C∞
i .

If, in addition, each Ci is closed and convex and
⋂

i∈I Ci 6= ∅, then
(

⋂

i∈I

Ci

)∞

=
⋂

i∈I

C∞
i .



Chapter 2

The multivalued complementarity
problem

A great variety of problems arising in most applications in Sciences and
Engineering have the same mathematical formulation known as a multivalued
complementarity problem which may be stated as follows: given a multifunction
Φ : Rn

⇒ Rn such that Rn
+ ⊆ dom Φ, and a vector q ∈ Rn, it is requested to

find x̄ ≥ 0, ȳ ∈ Φ(x̄) such that ȳ + q ≥ 0, 〈ȳ + q, x̄〉 = 0. (MCP)

This problem denoted by MCP(q, Φ) generalizes substantially the so-called
linear complementarity problem largely studied since 1958 (see [15, p. 218]),
where Φ is assumed to be a linear mapping.

Problem (MCP) is known to be equivalent to the following multivalued vari-
ational inequality problem MVI(Rn

+, Φ + q):

find x̄ ≥ 0, ȳ ∈ Φ(x̄) such that 〈ȳ + q, x − x̄〉 ≥ 0 ∀ x ≥ 0. (MVIP)

In this chapter we present a method which allows us to develop a general
theory yielding new existence and sensitivity results and unifying the ones
found in the literature. Our method is based on the asymptotic description

12
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of a sequence of approximate solutions to (MVIP). Thus, problems possibly
allowing an unbounded solution set are also treated. Another advantage of
our approach is that all requirements arise in a natural way. Several examples
are discussed illustrating the wide applicability of our results. We follow the
line of reasoning carried out in [27, 29].

We denote by S(q, Φ) the solution set of MCP(q, Φ) and by

D(Φ)
.
=
{

q ∈ R
n : q ∈ w − Φ(x), (x, w) ∈ R

n
+ × R

n
+, 〈w, x〉 = 0

}

the set of vectors for which MCP(q, Φ) has solutions. More precisely,

q ∈ D(Φ) ⇐⇒ S(q, Φ) 6= ∅ ⇐⇒ Φ ∈ D−1(q).

Here D−1 denotes the inverse multifunction of D. Moreover, the sets

F (q, Φ)
.
= {x ≥ 0 : y ∈ Φ(x), y + q ≥ 0} ,

Fs(q, Φ)
.
= {x ≥ 0 : y ∈ Φ(x), y + q > 0}

denote the feasible and strict feasible sets of MCP(q, Φ) respectively.

2.1 Definitions and preliminaries

Here and in the subsequent sections we shall deal with multifunctions Φ :

Rn
⇒ Rn such that dom Φ = Rn

+, we shall assume that Φ(x) = ∅ for all x 6∈
dom Φ. We denote such multifunctions by Φ : Rn

+ ⇒ Rn.
Before introducing our main classes of multifunctions, we need the follow-

ing notation:
X .

= {Φ : R
n
+ ⇒ R

n : Φ is a cusco }.

C .
= {c : R++ → R++, c(0) ≥ 0, lim

t→+∞
c(t) = +∞}.

Definition 2.1.1 For c ∈ C, d > 0, the mapping Φ : Rn
+ ⇒ Rn such that 0 ∈ Φ(0),

is said to be
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• c-homogeneous (on ∆d) if Φ(λx) = c(λ)Φ(x) ∀x ∈ ∆d, λ > 0;

• c-subhomogeneous (on ∆d) if Φ(λx) ⊆ c(λ)Φ(x) ∀x ∈ ∆d, λ > 0;

• zero-subhomogeneous (on ∆d) if Φ(λx) ⊆ Φ(x) ∀x ∈ ∆d, λ > 0;

• c-Moré (on ∆d) if ∀λ ≥ 1, x ∈ ∆d, y ∈ Φ(λx) ∃z ∈ Φ(x) such that
〈y, x〉 ≥ c(λ)〈z, x〉.

We have to point out that our notion of (sub)homogeneity lies on the compact
set ∆d in place of the standard requirement lying on Rn

+. We can weaken this
definitions, by considering that the equalities and inclusions hold for all λ ≥ r

for some r ≥ 1, without changing most of the results. However, in order to
present a unified theory we restrict us to the above definitions, unless other-
wise is stated.

Example 2.1.2 1.[41] A (positively) homogeneous multifunction Φ of degree γ > 0,
i.e. such that

Φ(λx) = λγΦ(x) for all x ≥ 0 and λ > 0,

is λγ-homogeneous on ∆d for any d > 0 provided 0 ∈ Φ(0). The multifunctions
Φ1(x) = Mx, where M ∈ Rn×n; Φ2(x) = (f1(x), . . . , fn(x))T , where fi(x) =

max {〈wij, x〉 : j ∈ Λi} with wij ∈ Rn and Λi being a finite index set; Φ3(x) =

{My : Ax + Qy ≤ 0}, where M ∈ Rn×n and A, Q ∈ Rm×n, are all homogeneous
of degree 1. The mapping Φ4(x) = ‖x‖Mx is homogeneous of degree 2.
2.[72] A (positively) generalized homogeneous multifunction Φ, i.e. such that for some
c ∈ C,

Φ(λx) = c(λ)Φ(x) for all x ≥ 0 and λ > 0,

is c-homogeneous on ∆d for any d > 0 provided 0 ∈ Φ(0).
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3. The mappings Φ5(x) = [x + x2, 2x + 2x2] and Φ6(x) = [ex − 1, 2ex − 2] are
c-homogeneous on ∆1 with c(λ) = λ+λ2

2
and c(λ) = eλ−1

e−1
respectively, and if

Φ7(x) =







[0, 1], if 0 ≤ x ≤ 1;

[x − 1, x], if x > 1.
and c̄(λ) =







1, if 0 ≤ λ ≤ 1;

λ, if λ > 1.
,

then Φ7 is c̄-subhomogeneous on ∆1 but not c-homogeneous for any c ∈ C.
4.[57, 58, 72] Let f : R

n
+ → R

n and c ∈ C such that

〈x, f(λx) − f(0)〉 ≥ c(λ)〈x, f(x) − f(0)〉 for all x ≥ 0 and λ ≥ 1,

The mapping Φ(x) = f(x) − f(0) is c-Moré on ∆d for any d > 0. In particular, if
f : R+ → R is convex then Φ is ĉ-Moré for ĉ(λ) = λ. In connection with this result
see (d) of Proposition 2.1.5.
5. The mapping Φ8(x) = [x, 2x] is λ

2
-Moré on ∆1.

6. The mapping Φ9(x) = [0, 1/ ‖x‖d] if ‖x‖d ≥ 1 and Φ9(x) = [0, ‖x‖d] if ‖x‖d ≤ 1

is zero-subhomogeneous on ∆d for d > 0.
7.[41] A (positively) homogeneous multifunction Φ of degree 0, i.e. such that

Φ(λx) = Φ(x) for all x ≥ 0 and λ > 0,

is zero-subhomogeneous on ∆d for any d > 0 provided 0 ∈ Φ(0). For instance,
Φ10(x) = ∂h(x) where h(x) = supy∈C〈x, y〉 for C ⊆ Rn a nonempty compact convex
set such that 0 ∈ C.

Proposition 2.1.3 Let c ∈ C and Φ : Rn
+ ⇒ Rn be a multifunction.

(a) If Φ is usc with compact values, then it is sequentially bounded and graph-closed;

(b) If Φ is a zero-subhomogeneous cusco, then it is uniformly bounded;

(c) If Φ is either c-homogeneous with c(R+) = R+, Φ(0) = {0} and superadditive or
simply graph-convex, then the set Φ(Rn

+) is convex;

(d) if Φ is c-homogeneous such that Φ(0) is bounded, then Φ(0) = {0}.
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Proof. (a): It follows from Proposition 1.3.1
(b): For 0 6= x ≥ 0, we have Φ(x) = Φ(‖x‖d

x
‖x‖

d

) ⊆ Φ( x
‖x‖

d

) ⊆ Φ(∆d), which
implies the desired result since Φ(∆d) is compact by Proposition 1.3.1.
(c) and (d) are straightforward.

Notice that within cuscos, uniformly bounded does not imply zero-subho-
mogeneity as the function Φ(x) = 1/(1 + x) shows.

The (nonlinear) multivalued version of the classes of mappings introduced
in the study of linear complementarity problems (see [15, 30] for example) arise
in a natural way in the present setting. We now recall some of them. Let d > 0

and Φ : R
n
+ ⇒ R

n be a multifunction. We say that Φ is:

• copositive if 〈y, x〉 ≥ 0 ∀ (x, y) ∈ gphΦ;

• strictly copositive if 〈y, x〉 > 0 ∀ (x, y) ∈ gphΦ with x 6= 0;

• strongly copositive if ∃ α > 0 such that 〈y, x〉 ≥ α ‖x‖2 ∀ (x, y) ∈ gph Φ;

• semimonotone if S(p, Φ) = {0} ∀ p > 0;

• a R(d)-mapping, or Φ ∈ R(d), if S(τd, Φ) = {0} ∀ τ ≥ 0;

• a G(d)-mapping, or Φ ∈ G(d), if S(τd, Φ) = {0} ∀ τ > 0;

• monotone if 〈y1 − y2, x1 − x2〉 ≥ 0 ∀(x1, y1), (x2, y2) ∈ gph Φ;

• q-pseudomonotone if 〈y1 + q, x2 − x1〉 ≥ 0 ⇒ 〈y2 + q, x2 − x1〉 ≥ 0 ∀(x1, y1),
(x2, y2) ∈ gph Φ,

The following definition generalizes that for linear mappings used in [43].

Definition 2.1.4 For d > 0 and Φ ∈ X . The d-numerical range of Φ is by defini-
tion, the set ω(Φ)

.
= {〈y, x〉 : x ∈ ∆d, y ∈ Φ(x)} .

We denote MΦ
.
= sup ω(Φ) < +∞ and mΦ

.
= inf ω(Φ) > −∞.
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Proposition 2.1.5 Let d > 0, c ∈ C, and Φ ∈ X .

(a) If Φ is c-subhomogeneous and mΦ > 0 (in particular if Φ is strictly copositive),
then Φ is c̄-Moré for c̄(λ) = mΦ

MΦ

c(λ);

(b) If Φ is copositive c-subhomogeneous and the following implication holds:
(v ≥ 0, w ∈ Φ(v), 〈w, v〉 = 0 =⇒ v = 0), then Φ is c̄-Moré;

(c) If Φ is strongly copositive and 0 ∈ Φ(0), then it is c̃-Moré for c̃(λ) = αλ

MΦ‖d‖2 .

(d) If Φ is Rn
+-convex and 0 ∈ Φ(0), then it is ĉ-Moré for ĉ(λ) = λ.

Proof. (a): Let λ ≥ 1, x ∈ ∆d, and y ∈ Φ(λx) be given, by hypothesis 1
c(λ)

y ∈
Φ(x) and for any z ∈ Φ(x) we get 〈 1

c(λ)
y, x〉 ≥ mΦ ≥ mΦ

MΦ

〈z, x〉. Thus, setting
c̄(λ) = mΦ

MΦ

c(λ) we obtain the desired result.
(b): Since Φ is copositive, mΦ ≥ 0. Suppose that mΦ = 0, then there exist x ∈ ∆d

and y ∈ Φ(x) such that mΦ = 〈y, x〉 = 0, contradicting the hypothesis. The
result follows from (a).
(c): Let λ ≥ 1 and x ∈ ∆d, then ‖x‖ ≥ 1

‖d‖
and if y ∈ Φ(λx), then 〈y, λx〉 ≥

α ‖λx‖2 for some α > 0, and thus 〈y, x〉 ≥ αλ

‖d‖2 . Clearly if z ∈ Φ(x) then
1

MΦ

〈z, x〉 ≤ 1. Therefore 〈y, x〉 ≥ αλ

‖d‖2 ≥ c̃(λ)〈z, x〉.
(d): Let λ ≥ 1 and x ∈ ∆d, by definition 1

λ
Φ(λx) + (1 − 1

λ
)Φ(0) ⊆ Φ(x) + Rn

+,
since 0 ∈ Φ(0) we conclude that 1

λ
Φ(λx) ⊆ Φ(x) + R

n
+, thus, if y ∈ Φ(λx) then

there exists z ∈ Φ(x) such that 1
λ
y ≥ z. Thus, 〈y, x〉 ≥ ĉ(λ)〈z, x〉.

2.2 Asymptotic analysis and existence theorem

We approximate problem (MVIP), which is the variational inequality for-
mulation to (MCP), by the following sequence of problems

find xk ∈ Dk, yk ∈ Φ(xk) : 〈yk + q, x − xk〉 ≥ 0 ∀x ∈ Dk. (MVIPk)
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where d > 0 , {σk} is an increasing sequence of positive numbers converging
to +∞, and

Dk =
{

x ∈ R
n
+ : 〈d, x〉 ≤ σk

}

.

If Φ is a cusco, the existence of (xk, yk) ∈ gph Φ satisfying (MVIPk) is guaran-
teed by Theorem 1.4.2.

It is clear that (xk, yk) solves (MVIPk) if and only if xk is an optimal solution
of the linear program

inf
x

[〈yk + q, x〉 : x ≥ 0, 〈d, x〉 ≤ σk]. (P)

Applying usual optimality conditions we conclude that (xk, yk) solves (MVIPk)

if and only if there exists θk ∈ R such that (xk, yk, θk) solves the so-called aug-
mented multivalued complementarity problem

find xk ≥ 0, θk ≥ 0, yk ∈ Φ(xk) such that

yk + q + θkd ≥ 0, 〈d, xk〉 ≤ σk, (MCPk)

〈yk + q + θkd, xk〉 = 0, θk(σk − 〈d, xk〉) = 0.

In particular,
xk ∈ S(q + θkd, Φ) and xk ∈ S(q, Φ + θkd). (2.1)

Clearly, we observe that

〈d, xk〉 < σk =⇒ θk = 0 =⇒ xk ∈ S(q, Φ).

This line of reasoning was also applied in [66].

We introduce the following definition: a subset M of a metric space X is
said to be closed at x, if whenever a sequence {xk} ⊆ M converges to x, one has
x ∈ M . Obviously, if M is closed then M is closed at every point x ∈ M .

The next theorem was established in [41]. We reformulate it in terms of the
above definition.
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Theorem 2.2.1 Let d > 0, {σk} be an increasing sequence of positive numbers con-
verging to +∞, Φ ∈ X , and

{

(xk, yk, θk)
}

be a sequence of solutions to problem
(MCPk). Assume lim inf

k→+∞
θk = 0. Then, the following assertions are equivalent:

(a) S(q, Φ) is nonempty;

(b) D(Φ) is closed at q.

Proof. (a)⇒(b): It is obvious.
(b)⇒(a): Without loss of generality we may assume that θk → 0. By (2.1), we
conclude that S(q + θkd, Φ) is nonempty, thus q + θkd ∈ D(Φ). By hypothesis
q ∈ D(Φ), thus S(q, Φ) is nonempty.

An important class of multifunctions Φ for which D(Φ) is closed at every q

is that of polyhedral ones (see Chapter 3). However, we look for new classes of
multifunctions such that D(Φ) is closed at some particular q. These classes are
introduced in Section 2.3.

Remark 2.2.2 As pointed above, if θk = 0 for some k, then S(q, Φ) is nonempty. The-
orem 2.2.1 yields existence of solutions when θk > 0 for all k. Indeed, let Φ(x1, x2) =

[−x1, x1]×[−x2, x2], d = (1, 1)T, σk = k, and q = (0,−1)T. We get that
{

(xk, yk, θk)
}

solves (MCPk) for xk = (0, k)T, yk = (0, 1− 1
k
)T, and θk = 1

k
> 0. Since lim inf

k→+∞
θk =

0 and D(Φ) is closed being Φ polyhedral (see [41, Prop. 3]), the above theorem asserts
that S(q, Φ) is nonempty.

In our opinion, Theorem 2.2.1 was established only by taking xk ∈ S(q +

θkd, Φ) into account in (2.1); in this respect the closedness of D(Φ) at q plays a
certain role since q + θkd ∈ D(Φ) and, S(q, Φ) 6= ∅ ⇐⇒ q ∈ D(Φ). However, if
instead we look at xk ∈ S(q, Φ + θkd) in (2.1), we have to analize the closed-
ness of D−1(q) relative to some particular class of approximating mappings.
Thus, we first need a good notion of convergence for multifunctions, and sec-
ondly, to find the particular approximating mappings. Just to give an idea to
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be developed presently, we observe that the c-subhomogeneity of Φ does not
imply the c-subhomegeneity of Φ + θkd; however, the multifunction Ψk given
by Ψk(x) = θkd is copositive and uniformly bounded whenever θk → 0. On the
other hand, in order to discuss sensitivity and stability results we also substi-
tute Φ by an approximating mapping Φk. These considerations give rise to the
notion of approximable mappings to be discussed in Section 2.6.

The next (Basic) lemma describes the asymptotic behavior of the corre-
sponding solutions to the problems associated to the approximating mappings
(see (PMVIPk) below). Existence of solutions will require further assumptions
on the original and/or the approximating mappings. The latter is also ana-
lyzed in Section 2.6.

Lemma 2.2.3 (Basic Lemma) Let d > 0, {σk} be an increasing sequence of positive
numbers converging to +∞; q, qk ∈ Rn; Φ, Ψ, Φk, Ψk ∈ X be such that Φk g→ Φ,
Ψk g→ Ψ, qk → q and

{

(xk, yk, rk)
}

be a sequence of solutions to

find xk ∈ Dk : yk ∈ Φk(xk), rk ∈ Ψk(xk), 〈yk + rk + qk, x − xk〉 ≥ 0 ∀x ∈ Dk.

(PMVIPk)

such that 〈d, xk〉 = σk and xk

σk

→ v. Then, there exist subsequences
{

(xkm , ykm, rkm)
}

,
{σkm

}, numbers k0, m0 ∈ N, and an index set ∅ 6= Jv ⊆ I such that

(a) for all k ≥ k0, xk − σk

2
v ≥ 0 and 0 < ||xk − σk

2
v||d < σk;

(b) for all m ≥ m0, xkm

σkm

∈ ri(∆Jv
), thus supp{xkm} = Jv, hence supp{v} ⊆ Jv;

(c) for all m ≥ m0, z ∈ ∆Jv
: 〈ykm + rkm + qkm , σkm

z − xkm〉 = 0.

Moreover,

(d) if each Φk is c-subhomogeneous and each Ψk is uniformly bounded with respect
to the same set, then the subsequences

{

ykm

}

,
{

rkm

}

, {σkm
} may be chosen in

such a way that there are vectors w and r such that 1
c(σkm

)
ykm → w ∈ Φ(v),

rkm → r, 〈w, v〉 ≤ 0, 〈w, y〉 ≥ 〈d, y〉〈w, v〉 for all y ≥ 0, and 〈w, z〉 = 〈w, v〉,
for all z ∈ ∆Jv

;
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(e) if each Φk is c-Moré and each Ψk is uniformly bounded with respect to the same
set, then there exist vectors w, r and sequences

{

wk
}

and
{

rkm

}

such that wk ∈
Φk(xk

σk

), wkm → w ∈ Φ(v), rkm → r, and 〈w, v〉 ≤ 0;

(f) if each Φk is qk-pseudomonotone and each Ψk = 0, then v ∈ Rn
+ ∩ [−Φ(Rn

+)− q]∗.
Hence, 0 ≤ v ∈ −[Φ(Rn

+)]∗ and 〈q, v〉 ≤ 0 provided Φ is c-homogeneous and
Φ(0) = {0} as well.

(g) if each Φk is monotone and each Ψk is uniformly bounded with respect to the same
set and copositive, then v ∈ Rn

+ ∩ [−Φ(Rn
+) − q]∗.

Proof. By Theorems 5.19 and 5.51(b) from [68], Φk + Ψk ∈ X , and problem
(PMVIPk) has solutions by Theorem 1.4.2.
(a): As 1

σk

xk → v, for ε = min{ vi

2
: vi > 0} > 0 there exists k0 such that for

all k ≥ k0,
∑n

i=1 |
xk

i

σk

− vi| < ε. This implies vi

2
<

xk
i

σk

for i ∈ supp {v}. Thus
0 6= xk − σk

2
v ≥ 0, and then (a) holds.

(b): Clearly ∆d = ∆I = co{ 1
di

ei : i ∈ I} may be written as the disjoint union of
the relative interior of its extreme faces. More precisely, if we denote its extreme
faces by ∆J1

, ∆J2
, . . . , ∆J2n−1

, then

∆d =
2n−1
⋃

i=1

ri(∆Ji
).

As 1
σk

xk ∈ ∆d, k ∈ N, there exist an i0 ∈ {1, 2, . . . , 2n−1}, m0, and a subsequence
{

xkm

}

such that 1
σkm

xkm ∈ ri(∆Ji0
) for all m ≥ m0. By setting Jv

.
= Ji0 , one

obtains supp{xkm} = Jv and supp{v} ⊆ Jv.
(c): We analyze two cases, whether Jv is a singleton or not. In the first case, we
have 1

σkm

xkm = v for all m ≥ m0 because of ri(∆Jv
) = ∆Jv

, and therefore (c)
obviously holds. In the second case, for all z ∈ ∆Jv

and all m ≥ m0, by virtue
of (b) there exists εz > 0 such that for all t, |t| < εz, one obtains

1

σkm

xkm + t

(

z − 1

σkm

xkm

)

∈ ∆Jv
.
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Because of the choice of xkm , we have

〈ykm + rkm + qkm, σkm
(
xkm

σkm

+ t(z − xkm

σkm

)) − xkm〉 ≥ 0, ∀ |t| < εz.

Then
〈ykm + rkm + qkm, t(σkm

z − xkm)〉 ≥ 0, ∀ |t| < εz.

Hence
〈ykm + rkm + qkm , σkm

z − xkm〉 = 0, ∀ z ∈ ∆Jv
.

(d): By assumption yk

c(σk)
∈ Φk(xk

σk

). Since
{

xk

σk

}

is bounded, by Theorem 1.3.2

as Φk g→ Φ, we may also assume that yk

c(σk)
→ w up to subsequences. From

Theorem 1.3.3(a), it follows in particular that w ∈ Φ(v).
Moreover, from rk ∈ Ψk(xk), since Ψk is uniformly bounded with respect to the
same set, the sequence

{

rk
}

is bounded and rkm → r.
On dividing the inequality in (PMVIPk) by c(σk)σk and letting k → +∞ for
x = 0 and x = σk

y

‖y‖
d

with 0 6= y ≥ 0 respectively, we obtain 〈w, v〉 ≤ 0

and 〈w, y〉 ≥ 〈d, y〉〈w, v〉 for all y ≥ 0. Dividing (c) by c(σkm
)σkm

and letting
m → +∞ we obtain the last part of (d).
(e): By assumption, 〈yk, xk

σk

〉 ≥ c(σk)〈wk, xk

σk

〉 for some wk ∈ Φk(xk

σk

). As in (d), we
obtain wkm → w and w ∈ Φ(v). On dividing (PMVIPk) (for x = 0) by c(σk), we
get

−〈r
k + qk

c(σk)
,
xk

σk

〉 ≥ 〈 yk

c(σk)
,
xk

σk

〉 ≥ 〈wk,
xk

σk

〉.

Taking the limit we obtain 〈w, v〉 ≤ 0.
(f): Let us fix x ≥ 0 and y ∈ Φ(x). Since Φk, Φ are closed-valued and Φk g→ Φ,
by Theorem 1.3.3 we consider x as the limit of a sequence {aj}, corresponding
to some choice of {bj} satisfying bj ∈ Φj(aj) and bj → y as j → +∞. Obviously
there is j0 such that aj ∈ Dj0 for all j. In particular, for j ≥ j0 we have that aj ∈
Dj0 ⊆ Dj. By qj-pseudomonotonicity of Φj , (PMVIPj) implies 〈bj+qj, aj−xj〉 ≥
0 for all j sufficiently large, dividing by σj and taking the limit we conclude
that 〈y + q, v〉 ≤ 0. Thus v ∈ [−Φ(Rn

+) − q]∗. The remaining part is obvious.
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(g): Since Ψk is uniformly bounded and rk ∈ Ψk(xk), proceeding as in (d), we
obtain rkm → r and by copositivity 〈rk, xk〉 ≥ 0, thus 〈r, v〉 ≥ 0.
Let us fix x ≥ 0 and y ∈ Φ(x), as in (f) we obtain x as the limit of a sequence
{aj}, corresponding to some choice of {bj} satisfying bj ∈ Φj(aj) and bj → y as
j → +∞, and aj ∈ Dj0 ⊆ Dj for j ≥ j0. By (rj + qj)-pseudomonotonicity of Φj ,
(PMVIPj) implies 〈bj + rj + qj, aj − xj〉 ≥ 0 for all j sufficiently large; dividing
by σj and taking the limit we conclude that 0 ≥ 〈y + r + q, v〉 ≥ 〈y + q, v〉. Thus
v ∈ [−Φ(Rn

+) − q]∗.

Remark 2.2.4 Clearly 〈d, v〉 = 1. Moreover, when Φk are c-subhomogeneous, by
choosing y = ei, i ∈ I in (d) and setting τ = −〈w, v〉 ≥ 0, we obtain w + τd ≥ 0 and
〈w + τd, v〉 = 0. Thus 0 6= v ∈ S(τd, Φ).

We now exhibit an instance where our Basic Lemma is applicable. Let us
consider Φk(x) = Mkx, Ψk(x) = ∂σCk(x), where Mk ∈ Rn×n converges to M ∈
Rn×n, and ∂σCk is the subdifferential of the support function of the nonempty
compact convex set Ck, which converges (in the sense of Painlevé-Kuratowski)
to the nonempty compact convex C. It is known that M k g→ M , and by Corol-
laries 11.5 and 8.24, and Theorem 12.35 of [68], one obtains, Ck → C ⇐⇒
∂σCk

g→ ∂σC . Moreover, as mentioned in Example 2.1.2, each ∂σCk and ∂σC is
zero-subhomogeneous, and we may consider that ∂σCk are uniformly bounded
respect to the same set. In addition, if 0 ∈ Ck∩C (this is not a stringent assump-
tion), then ∂σCk and ∂σC are copositive.

Let {(xk, yk)} be a sequence of solutions to (MVIPk), if 〈d, xk〉 < σk for some
k, then xk ∈ S(q, Φ). Thus, we are interested in the case when 〈d, xk〉 = σk for
all k. Therefore, the following set of sequences will play an essential role in our
analysis.

Definition 2.2.5 Let d > 0 and {σk} be an increasing sequence of positive numbers
converging to +∞. Let W be the set of sequences {(xk, yk)} in R

n
+ × R

n, satisfying
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for each k,
(xk, yk) solves problem (MVIPk) (2.2)

〈d, xk〉 = σk. (2.3)

We point out that the requirement (2.3) is verified if S(q, Φ) is either empty
or unbounded. Indeed, if S(q, Φ) = ∅ then 〈d, xk〉 = σk for all k by the above
reasoning. If S(q, Φ) is nonempty and unbounded, then for all k, there exists
xk ∈ S(q, Φ) such that 〈d, xk〉 ≥ k, and then we put σk = 〈d, xk〉.
Under requirement (2.3), there exists a vector v such that, up to subsequences,
xk

σk

→ v, and if {θk} is such that (xk, yk, θk) solves (MCPk) for each k, by (c) of
the Basic Lemma (for Φk = Φ, Ψk = 0 and qk = q for all k) we get.

θkm
= −〈ykm + q,

xkm

σkm

〉 = −〈ykm + q, v〉. (2.4)

2.3 New classes of multifunctions

We introduce the following new classes of multifunctions, which generalize
those introduced in [30] for the linear complementarity problem.

Definition 2.3.1 Let d > 0, Φ : Rn
+ ⇒ Rn, s.t. 0 ∈ Φ(0). We say that Φ is a

• T(d)-mapping, if for any index subset J ⊆ I , one has

v ≥ 0, w ≥ 0, w ∈ Φ(v)

wJ = 0, ∅ 6= supp{v} ⊆ J

}

=⇒ v ∈
[

Φ(pos+∆J)
]∗

. (2.5)

• T̃(d)-mapping, if for any index subset J ⊆ I , one has

v ≥ 0, w ≥ 0, w ∈ Φ(v)

wJ = 0, ∅ 6= supp{v} ⊆ J

}

=⇒ 〈y, x〉 ≥ 0,

∀x ∈ pos+∆J , y ∈ Φ(x).
(2.6)

• GT(d) (resp. GT̃(d))-mapping if it is G(d) and T(d) (resp. T̃(d)).
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Remark 2.3.2 We observe that if Φ is c-subhomogeneous for some c ∈ C, then

Φ ∈ T(d) ⇐⇒ Φ ∈ T(d′) ∀ d′ > 0;

Φ ∈ T̃(d) ⇐⇒ Φ ∈ T̃(d′) ∀ d′ > 0.

Moreover, Φ ∈ T(d) (resp. Φ ∈ T̃(d)) if and only if (2.5) (resp. (2.6)) holds with ∆J

instead of pos+∆J .

Proposition 2.3.3 Let d > 0, c ∈ C, and Φ : Rn
+ ⇒ Rn be a multifunction. The

following assertions hold:

(a) 0 ∈ S(p, Φ) for all p ≥ 0 provided 0 ∈ Φ(0);

(b) if Φ is copositive then it is semimonotone (hence G(p) for all p > 0) and T̃(p) for
all p > 0;

(c) if Φ is superadditive c-homogeneous (in particular if Φ is single-valued and linear)
and T̃(d), then it is T(d).

Proof. (a): It is obvious.
(b): For p > 0 fixed, we take any x ∈ S(p, Φ). Then, y + p ≥ 0 and 〈y + p, x〉 = 0

for some y ∈ Φ(x). By copositivity 〈p, x〉 ≤ 0, which implies x = 0, proving that
Φ is semimonotone. The remaining assertion is obvious.
(c): Let v, w be such that the left-hand side of (2.5) holds, then 〈y, x〉 ≥ 0 for all
x ∈ pos+∆J and y ∈ Φ(x). By hypothesis, y + c(t)w ∈ Φ(x + tv) for all t > 0

since w ∈ Φ(v). Thus 〈y+c(t)w, x+tv〉 ≥ 0 for all t > 0. It follows that 〈y, v〉 ≥ 0

since 〈w, x〉 = 〈w, v〉 = 0, proving (2.5).

Example 2.3.4 1. We must point to out that there is no relationship between G and
T-mappings, even in the linear case (see Chapter 4). Analogously, there is no relation-
ship between G and T̃-mappings. Indeed, take

M1 =

(

−1 0

0 1

)

, M2 =

(

0 −1

0 1

)

.
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Then the mapping Φ1(x) = M1x ∈ T̃(d) \ G(d) for any d > 0, whereas the mapping
Φ2(x) = M2x ∈ G(d) \ T̃(d) for any d > 0.

2. Let M3 =

(

0 −2

1 0

)

, M4 =

(

−1 0

0 0

)

, and consider the mappings Φi(x) =

Mix, i = 3, 4. Then Φ3 is not copositive but it is semimonotone (hence Φ3 ∈ G(p) for
any p > 0) and T̃(p) for any p > 0; whereas Φ4 ∈ T(p) \ T̃(p) for any p > 0. This
shows that T and T̃ does not coincide even in the linear case. The same properties hold
for Φi(x) = ||x||Mix, i = 3, 4.

One can check directly that

F(q, Φ) 6= ∅ =⇒ [v ≥ 0, v ∈ −[Φ(Rn
+)]∗, 〈q, v〉 ≤ 0 =⇒ 〈q, v〉 = 0]. (2.7)

And the reverse implication holds whenever Φ is c-homogeneous for some
c ∈ C, Φ(0) = {0}, and the set Rn

+ − Φ(Rn
+) is convex and closed. It should be

notice that the right-hand side of (2.7) amounts to writing

v ≥ 0, v ∈ −[Φ(Rn
+)]∗ =⇒ 〈q, v〉 ≥ 0.

Proposition 2.3.5 Let d > 0, c ∈ C, q ∈ Rn, and Φ : Rn
+ ⇒ Rn be q-pseudomonotone

c-homogeneous. Assume that F(q, Φ) 6= ∅. Then,

(a) Φ is copositive on Rn
++;

(b) Φ is copositive, if in addition it is either lsc or superadditive;

(c) if Φ is superadditive, then for all J ⊆ I

v ≥ 0, w ∈ Φ(v), wJ ≤ 0

∅ 6= supp{v} ⊆ J

}

=⇒ v ∈ [Φ(∆J)]∗ . (2.8)

Proof. (a): Let x0 ≥ 0, y0 ∈ Φ(x0) such that y0 + q ≥ 0. For any x > 0 there
exists tx > 0 such that for all t > tx, tx

‖x‖
d

− x0 ≥ 0. Thus 〈y0 + q, t
‖x‖

d

x − x0〉 ≥ 0
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for all t > tx. If y ∈ Φ(x), by c-homogeneity c(t)
c(‖x‖

d
)
y ∈ Φ( t

‖x‖
d

x), and by q-
pseudomonotonicity,

〈 c(t)

c(‖x‖d)
y + q, t

x

‖x‖d

− x0〉 ≥ 0 ∀ t > tx.

On dividing by c(t)t and taking the limit as t → +∞, we get 〈y, x〉 ≥ 0, proving
(a).
(b): Let x be on the boundary of Rn

+ and y ∈ Φ(x). Then, there exists {xk} ⊆ Rn
++

such that xk → x. Suppose first that Φ is lsc, then there exists {yk} such that
yk ∈ Φ(xk) and yk → y. By (a), 〈yk, xk〉 ≥ 0 and then 〈y, x〉 ≥ 0. We now
suppose that Φ is superadditive. If e > 0, tx + e > 0 for all t > 0. Let y ∈ Φ(x)

and u ∈ Φ(e). Clearly c(t)y + u ∈ Φ(tx + e), and by (a) 〈c(t)y + u, tx + e〉 ≥ 0

for all t > 0. After dividing by c(t)t and taking the limit as t → +∞, we get
〈y, x〉 ≥ 0. This completes the proof that Φ is copositive in either case.
(c): Let v, w satisfy the left-hand side of (2.8). For z ∈ ∆J and y ∈ Φ(z) we get
y + c(t)w ∈ Φ(z + tv) ∀t > 0, and by (b) we obtain 〈y + c(t)w, z + tv〉 ≥ 0. Since
〈w, v〉 = 〈w, z〉 ≤ 0, we deduce that 〈y, v〉 ≥ 0, proving (2.8).

The next result describes the asymptotic behavior of the normalized ap-
proximate solutions to problem (MCP), for the mappings introduced recently.

Lemma 2.3.6 Let d > 0, c ∈ C; Φ, Ψ ∈ X , and {σk} be an increasing sequence of
positive numbers converging to +∞. Assume there exist a sequence

{

(xk, yk + rk)
}

∈
W for Φ + Ψ such that xk

σk

→ v. Then, in addition to the existence of w, r, {wk} and
subindex set ∅ 6= Jv ⊆ I satisfying the properties established in the Basic Lemma (for
Φk = Φ, Ψk = Ψ, and qk = q for all k), we also obtain the following:

(a) for Φ to be c-subhomogeneous and Ψ copositive uniformly bounded:

(a.1) Φ ∈ G(d) implies w ≥ 0, wJv
= 0 (hence 〈w, v〉 = 0);

(a.2) Φ ∈ GT̃(d) implies w ≥ 0, wJv
= 0, 〈q, v〉 ≤ 0, 〈r, v〉 ≥ 0, and

〈y, x〉 ≥ 0 ∀ x ∈ pos+∆Jv
, y ∈ Φ(x);
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(a.3) Φ ∈ GT(d) implies w ≥ 0, wJv
= 0, 〈q, v〉 ≤ 0, 〈r, v〉 ≥ 0, and

v ∈ [Φ(pos+∆Jv
)]∗;

(b) for Φ to be a copositive c-Moré and Ψ copositive uniformly bounded: 〈w, v〉 = 0,
〈r, v〉 ≥ 0, and 〈q, v〉 ≤ 0.

Proof. We set Φk = Φ, Ψk = Ψ and qk = q for all k in the Basic Lemma.
(a.1): By (d) of the Basic Lemma, 〈w, v〉 ≤ 0. If, on the contrary 〈w, v〉 < 0, then
from Remark 2.2.4, 0 6= v ∈ S(τd, Φ) with τ = −〈w, v〉 > 0. This contradicts
the fact that Φ ∈ G(d). Hence 〈w, v〉 = 0. We then apply again (d) to obtain the
desired result. Moreover, since Ψ is copositive 〈rk, xk〉 ≥ 0, thus 〈r, v〉 ≥ 0.
(a.2): If Φ ∈ GT̃(d), then (a.1) holds, and by (2.6) we get 〈y, x〉 ≥ 0 for all
x ∈ pos+∆Jv

and y ∈ Φ(x), which in turn implies 〈ykm, xkm〉 ≥ 0. From 〈yk +

rk + q, xk〉 ≤ 0 for all k (set x = 0 in (MVIPk) for Φ + Ψ), we deduce that
〈q, xkm〉 ≤ 0, thus 〈q, v〉 ≤ 0.
(a.3): If Φ ∈ GT(d), then (a.1) holds, and by (2.5) we get v ∈ [Φ(pos+∆Jv

)]∗,
which in turn implies 〈ykm, v〉 ≥ 0. From (c) of the Basic Lemma (for z = v),
and setting x = 0 in (MVIPk) for Φ+Ψ we get 〈q+rkm, v〉 ≤ 〈ykm +rkm +q, v〉 =

〈ykm + rkm + q, xkm

σkm

〉 ≤ 0, thus 〈r + q, v〉 ≤ 0. Since 〈r, v〉 ≥ 0, we get 〈q, v〉 ≤ 0.
(b): By copositivity of Φ and Ψ, and (e) of the Basic Lemma, 〈w, v〉 = 0 and
setting x = 0 in (MVIPk) for Φ + Ψ, 〈q, xk〉 ≤ 〈yk + rk + q, xk〉 ≤ 0. Thus
〈q, v〉 ≤ 0. As above we prove 〈r, v〉 ≥ 0.

2.4 Estimates for [S(q,Φ)]∞

In order to obtain bounds-estimates for the asymptotic cones of the solution
sets to (MCP), which will allow us to investigate the boundedness of solutions,
we introduce the following sets:

Uq(Φ)
.
= {v ≥ 0 : w ∈ Φ(v), 〈w, v〉 = 0, 〈q, v〉 ≤ 0} ;
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Vq(Φ)
.
= R

n
+ ∩ [−Φ(Rn

+) − q]∗;

Wq(Φ)
.
= {v ≥ 0 : w ∈ Φ(v), 〈w, v〉 = 0, w ≥ 0, 〈q, v〉 ≤ 0} .

One immediately obtains

q ∈ [U0(Φ)]# ⇐⇒ Uq(Φ) = {0};

q ∈ [S(0, Φ)]# ⇐⇒ Wq(Φ) = {0}.

Proposition 2.4.1 Let d > 0, c ∈ C, q ∈ Rn, and Φ, Ψ ∈ X .

(a) [S(q, Φ + Ψ)]∞d ⊆ S(0, Φ) ∩ ∆d if Φ is c-subhomogeneous and Ψ is uniformly
bounded. Moreover, if Φ ∈ T̃(d) ∪ T(d) and Ψ is copositive as well, [S(q, Φ +

Ψ)]∞d ⊆ Wq(Φ) ∩ ∆d;

(b) [S(q, Φ + Ψ)]∞d ⊆ Uq(Φ) ∩ ∆d if Φ is copositive c-Moré and Ψ is copositive
uniformly bounded;

(c) [S(q, Φ + Ψ)]∞d ⊆ Vq(Φ) ∩ ∆d if Φ is monotone and Ψ is copositive uniformly
bounded.

If Φ is q-pseudomonotone and S(q, Φ) 6= ∅, then [S(q, Φ)]∞ = Vq(Φ).

Proof. (a): Let v ∈ [S(q, Φ + Ψ)]∞d . Then, there exists xk ∈ S(q, Φ + Ψ) such that
||xk||d → +∞ and xk

||xk||d
→ v. Moreover, there exist yk ∈ Φ(xk) and rk ∈ Ψ(xk)

such that yk + rk + q ≥ 0 and 〈yk + rk + q, xk〉 = 0 for all k. Clearly, σk =

〈d, xk〉 → +∞ and xk

σk

→ v as k → +∞. Consequently, the Basic Lemma (for
Φk = Φ, Ψk = Ψ, and qk = q for all k) implies the existence of w ∈ Φ(v) and
∅ 6= Jv ⊆ I , such that (a)-(d) of that lemma hold. Dividing yk + rk + q ≥ 0 (resp.
〈yk + rk + q, xk〉 = 0) by c(σk) (resp. c(σk)σk) and taking the limit we obtain
w ≥ 0, 〈w, v〉 = 0, and wJv

= 0. Thus, in particular v ∈ S(0, Φ).
Let Φ ∈ T(d) ∪ T̃(d) and Ψ be copositive uniformly bounded, by proceeding
exactly as in Lemma 2.3.6 we obtain that 〈q, v〉 ≤ 0. Thus, v ∈ Wq(Φ).
(b): By proceeding as above and in Lemma 2.3.6, we obtain that v ∈ Uq(Φ).
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(c): If Φ is monotone and Ψ is uniformly bounded, by proceeding as above, (g)
of the Basic Lemma implies that v ∈ Vq(Φ).
If Φ is q-pseudomonotone, it is well known that (see [16] for instance)

S(q, Φ) =
⋂

x≥0

⋂

y∈Φ(x)

{x̄ ≥ 0 : 〈y + q, x − x̄〉 ≥ 0}.

Since the sets involved in the intersection are closed and convex and S(q, Φ) is
nonempty, applying a property of asymptotic cones we conclude that

[S(q, Φ)]∞ =
⋂

x≥0

⋂

y∈Φ(x)

{

x̄ ≥ 0 : 〈y + q, x − x̄〉 ≥ 0
}∞

= Vq(Φ),

since
{

x̄ ≥ 0 : 〈y + q, x − x̄〉 ≥ 0
}∞

=
{

v ≥ 0 : 〈y + q, v〉 ≤ 0
}

.

Example 2.4.2 The inclusions in the preceding proposition may be strict.

1. Let Φ(x1, x2) =

(

0 1

0 1

)(

x1

x2

)

be in T(d) ∩ T̃(d) (for all d > 0), Ψ = 0,

and q = (−1
2
,−1)T. The inclusions in (a) are strict since S(q, Φ) = {(0, 1)T} and

S(0, Φ) = Wq(Φ) = {(v1, 0)T : v1 ≥ 0}.
2. Let Φ(x1, x2) = [x1, 2x1]×{0} be copositive λ

2
-Moré on ∆d for d = (1, 1)T, Ψ = 0,

and q = (−1, 1)T. The inclusion in (b) is strict since S(q, Φ) = [ 1
2
, 1] × {0} and

U0(Φ) =
{

(0, v2)
T : v2 ≥ 0

}

.

2.5 Main existence results

In this section we present new existence results, which generalize and unify
several ones found in the literature. This is carried out by using the classes
of mappings introduced in Sections 2.1 and 2.3, and applying mostly Theo-
rem 2.2.1. Actually, our main results of this section establishes sufficient condi-
tions implying a kind of robustness property for some classes mappings with
respect to certain perturbation.
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Lemma 2.5.1 Let d > 0, c ∈ C, q ∈ Rn, Φ ∈ X , and Ψ ∈ X be copositive uniformly
bounded. The set D(Φ + Ψ) is closed at q under any of the following circumstances:

(a) Φ is c-subhomogeneous GT(d) and q ∈ [S(0, Φ)]#;

(b) Φ is c-subhomogeneous GT̃(d) and q ∈ [S(0, Φ)]#;

(c) Φ is copositive c-Moré and q ∈ [U0(Φ)]#;

(d) Φ is monotone and Vq(Φ) = {0}.

Proof. Let
{

qk
}

⊆ D(Φ + Ψ) be a sequence converging to q. There exist xk ≥ 0,
yk ∈ Φ(xk), and rk ∈ Ψ(xk) such that yk + rk + qk ≥ 0 and 〈yk + rk + qk, xk〉 = 0.
If the sequence

{

xk
}

is bounded, each of its limit points is in S(q, Φ + Ψ) since
Φ, Ψ ∈ X . Thus q ∈ D(Φ + Ψ).
If the sequence

{

xk
}

is unbounded, setting σk = 〈d, xk〉 → +∞, we may con-
sider that there exists v such that, up to subsequences, xk

σk

→ v and {(xk, yk, rk)}
are solutions to (PMVIPk) for Φk = Φ, Ψk = Ψ for all k. By the Basic Lemma
(for Φk = Φ, Ψk = Ψ for all k) and proceeding as in Lemma 2.3.6 it follows that:
(a): there exist

{

xkm

}

, r, and ∅ 6= Jv ⊆ I , such that 0 6= v ∈ S(0, Φ), wJv
= 0, and

by (2.5) v ∈ [Φ(pos+∆Jv
)]∗, which in turn implies 〈ykm, v〉 ≥ 0. Moreover, from

(c) of the Basic Lemma (for z = v) we get 〈ykm + rkm + qkm, v〉 = 〈ykm + rkm +

qkm, xkm

σkm

〉 = 0, thus 〈rkm + qkm , v〉 ≤ 0, then 〈q, v〉 ≤ 〈r + q, v〉 ≤ 0, contradicting
the choice of q.
(b): there exist

{

xkm

}

and ∅ 6= Jv ⊆ I , such that 0 6= v ∈ S(0, Φ), wJv
= 0, and

〈y, x〉 ≥ 0 for all x ∈ pos+∆Jv
, y ∈ Φ(x), which in turn implies 〈ykm, xkm〉 ≥ 0.

Moreover, from 〈ykm +rkm +qkm , xkm〉 = 0, we get 〈qkm, xkm〉 ≤ 0, then 〈q, v〉 ≤ 0,
contradicting the choice of q.
(c): there exists wk ∈ Φ(xk

σk

) such that wk → w ∈ Φ(v) and 〈w, v〉 = 0, thus
0 6= v ∈ U0(Φ). Moreover, from 0 = 〈yk+rk+qk, xk〉 ≥ 〈qk, xk〉, we get 〈q, v〉 ≤ 0,
contradicting the choice of q.
(d): 0 6= v ∈ Vq(Φ) a contradiction.
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We first obtain existence theorems for problem (MCP) for mappings of the
form Φ + Ψ, and Φ respectively. In this way, we generalize some results from
[41, 64, 65, 66] as will be shown in the example below.

Theorem 2.5.2 Let d > 0, c ∈ C, Φ ∈ X be GT(d) or GT̃(d) c-subhomogeneous,
and Ψ ∈ X be copositive uniformly bounded:

(a) if q ∈ [S(0, Φ)]∗ and D(Φ + Ψ) is closed at q, then S(q, Φ + Ψ) is nonempty;

(b) if q ∈ [S(0, Φ)]#, then S(q, Φ + Ψ) is nonempty and compact.

Proof. (a): Let {σk} be an increasing sequence of positive numbers converging
to +∞, d > 0, and

{

(xk, yk + rk)
}

∈ W for Φ + Ψ. Since 〈d, xk

σk

〉 = 1, up to
subsequences, there exists 0 6= v ≥ 0 such that xk

σk

→ v. Thus,

xk ∈ Dk, yk ∈ Φ(xk), rk ∈ Ψ(xk), 〈yk + rk + q, x − xk〉 ≥ 0 ∀x ∈ Dk. (2.9)

By the Basic Lemma (for Φk = Φ, Ψk = Ψ, and qk = q for all k) and Lemma 2.3.6
for Φ in GT̃(d) (resp. in GT(d)) and Ψ copositive uniformly bounded there
exist w ∈ Φ(v), r, ∅ 6= Jv ⊆ I , and {xkm} such that w ≥ 0, 〈w, v〉 = 0, wJv

= 0,
〈q, v〉 ≤ 0, 〈r, v〉 ≥ 0, and 〈y, x〉 ≥ 0 for all x ∈ pos+∆Jv

, y ∈ Φ(x) (resp.
v ∈ [Φ(pos+∆Jv

)]∗, which in turn implies 〈ykm, xkm〉 ≥ 0 (resp. 〈ykm, v〉 ≥ 0).
Moreover, v ∈ S(0, Φ) implies 〈q, v〉 = 0. From (2.4) for Φ + Ψ, we get

θkm
= −〈ykm + rkm + q,

xkm

σkm

〉 = −〈ykm + rkm + q, v〉. (2.10)

then 0 ≤ θkm
≤ −〈q, xkm

σkm

〉 (resp. 0 ≤ θkm
≤ −〈rkm , v〉). Thus lim inf

k→+∞
θk = 0, and

the result follows from Theorem 2.2.1.
(b): By Lemma 2.5.1 the set D(Φ + Ψ) is closed at q and by (a) we obtain that
S(q, Φ + Ψ) is nonempty. Its boundedness follows from Proposition 2.4.1 since
by the choice of q, we get Wq(Φ) = {0}.

If Ψ = 0 in the previous theorem, the closedness of D(Φ) is not needed for
T-mappings, as is shown in the next corollary.
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Corollary 2.5.3 Let d > 0, c ∈ C, q ∈ Rn, and Φ ∈ X be c-subhomogeneous:

(a) if Φ ∈ GT(d) and q ∈ [S(0, Φ)]∗, then S(q, Φ) is nonempty;

(b) if Φ ∈ GT̃(d), D(Φ) is closed at q, and q ∈ [S(0, Φ)]∗, then S(q, Φ) is nonempty;

(c) if Φ is GT(d) or GT̃(d) and q ∈ [S(0, Φ)]#, then S(q, Φ) is nonempty and com-
pact.

Proof. By setting Ψ = 0 in the above theorem we obtain (b) and (c).
(a): By proceeding as in the above theorem with Ψ = 0, from (2.10) we obtain
that 0 ≤ θkm

≤ −〈ykm + q, v〉 ≤ 0, thus θkm
= 0 and xkm ∈ S(q, Φ).

Remark 2.5.4 Since copositive mappings are GT̃(d) for each d > 0, the above result
contains Corollary 2 of [41].

The next two results do not require c-subhomogeneity.

Theorem 2.5.5 Let d > 0, c ∈ C, q ∈ Rn, Φ ∈ X be copositive c-Moré, and Ψ ∈ X
be copositive uniformly bounded:

(a) if q ∈ [U0(Φ)]∗ and D(Φ + Ψ) is closed at q, then S(q, Φ + Ψ) is nonempty;

(b) if q ∈ [U0(Φ)]#, then S(q, Φ + Ψ) is nonempty and compact.

Proof. (a): Let {σk} be an increasing sequence of positive numbers converg-
ing to +∞, d > 0, and

{

(xk, yk)
}

∈ W for Φ + Ψ. Since 〈d, xk

σk

〉 = 1, up to
subsequences, there exists 0 6= v ≥ 0 such that xk

σk

→ v. By the Basic Lemma
(for Φk = Φ, Ψk = Ψ, and qk = q for all k) and Lemma 2.3.6 there exist w, r,
{

xkm

}

, and ∅ 6= Jv ⊆ I such that w ∈ Φ(v) and 〈w, v〉 = 0, thus v ∈ U0(Φ),
and then 〈q, v〉 ≥ 0. From (2.10) and copositivity of Φ and Ψ we get that
0 ≤ θkm

= −〈ykm + rkm + q, xkm

σkm

〉 ≤ −〈q, xkm

σkm

〉, thus lim inf
k→∞

θk = 0 and the re-
sult follows from Theorem 2.2.1.



2.5 Main existence results 34

(b): By Lemma 2.5.1 the set D(Φ+Ψ) is closed at q, and by (a) we conclude that
S(q, Φ+Ψ) is nonempty. Its boundedness follows from Proposition 2.4.1, since
by the choice of q, we get Uq(Φ) = {0}.

The previous theorem allows us to recover Theorem 3.1 from [69], where Φ

is assumed to admit contractible images.

Corollary 2.5.6 Let Φ ∈ X be such that 0 ∈ Φ(0). If Φ is strongly copositive, then
S(q, Φ) is nonempty and compact for all q ∈ Rn.

Proof. By Proposition 2.1.5, Φ is c-Moré for some c ∈ C, moreover U0(Φ) = {0}.
The result follows from the above theorem.

Theorem 2.5.7 Let d > 0, q ∈ Rn, Φ ∈ X be monotone copositive, and Ψ ∈ X be
copositive uniformly bounded:

(a) if the following implication holds [v ∈ Vq(Φ) =⇒ 〈q, v〉 = 0] and D(Φ + Ψ) is
closed at q, then S(q, Φ + Ψ) is nonempty.

(b) if Vq(Φ) = {0}, then S(q, Φ + Ψ) is nonempty and compact.

Proof. (a): Let {σk} be an increasing sequence of positive numbers converging
to +∞, d > 0, and

{

(xk, yk + rk)
}

∈ W for Φ + Ψ. Since 〈d, xk

σk

〉 = 1, up to
subsequences, there exists 0 6= v ≥ 0 such that xk

σk

→ v. By (g) of the Basic
Lemma (for Φk = Φ, Ψk = Ψ, and qk = q for all k), v ∈ Vq(Φ) and by hypothesis
〈q, v〉 = 0. From (2.10) since Φ and Ψ are copositive we get 0 ≤ θkm

= −〈ykm +

rkm + q, xkm

σkm

〉 ≤ −〈q, xkm

σkm

〉. Therefore lim inf
k→+∞

θk = 0 and the result follows from
Theorem 2.2.1.
(b): By Lemma 2.5.1 the set D(Φ + Ψ) is closed at q and by (a) we conclude that
S(q, Φ+Ψ) is nonempty. Its boundedness follows from Proposition 2.4.1, since
Vq(Φ) = {0}.

It is worth mentioning that a monotone mapping is copositive if Φ(0)∩Rn
+ 6=

∅ (in particular if 0 ∈ Φ(0)).
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We now revise the pseudomonotone case. Part of the next theorem was first
observed in [16].

Theorem 2.5.8 Let q ∈ Rn and Φ ∈ X be q-pseudomonotone. Consider the state-
ments

(a) Fs(q, Φ) is nonempty;

(b) Vq(Φ) = {0};

(c) S(q, Φ) is nonempty and compact;

(d) There exists a compact convex set K ⊆ Rn
+ such that

∀ x ∈ R
n
+ \ K ∀ y ∈ Φ(x) ∃ z ∈ K : 〈y + q, z − x〉 < 0.

The following implications hold: (a) =⇒ (b) ⇐⇒ (c) ⇐⇒ (d).
Moreover, if Φ(Rn

+) is convex, then all the statements are equivalent.

Proof. (a)⇒(b): Let x0 ≥ 0 and y0 ∈ Φ(x0) such that y0+q > 0, and let v ∈ Vq(Φ),
thus 〈y0 + q, v〉 ≤ 0 a contradiction if v 6= 0.
(b)⇒(c): Let {σk} be an increasing sequence of positive numbers converging
to +∞, d > 0, and {(xk, yk, θk)} a sequence which solves (MCPk) for all k. If
there exists k such that 〈d, xk〉 < σk, then θk = 0 and therefore xk ∈ S(q, Φ). If
〈d, xk〉 = σk for all k, then up to subsequences xk

σk

→ v 6= 0. By (f) of the Basic
Lemma (for Φk = Φ, Ψk = 0, and qk = q for all k) we obtain 0 6= v ∈ Vq(Φ)

a contradiction. The boundedness of the solution set follows from Proposition
2.4.1.
(c)⇒(b): It follows from (c) of Proposition 2.4.1.
(c)⇒(d): See [22].
(d)⇒(c): See [16] (this implication holds without the q-pseudomonotonicity as-
sumption).
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(b)⇒(a): On the contrary suppose that (Φ(Rn
+) + q) ∩ int Rn

+ = ∅. By using
standard separation arguments, we obtain the existence of 0 6= v ∈ Vq(Φ) a
contradiction.

Remark 2.5.9 In [22] is shown that for Φ ∈ X to be q-pseudomonotone, condition
(d) known as Karamardian’s condition is equivalent to the following ones:
(d’): there exists a compact convex set K ⊆ R

n
+ such that

∀x ∈ R
n
+ \ K ∃z ∈ K ∀y ∈ Φ(x) : 〈y + q, z − x〉 < 0;

(d”): there exists a compact convex set K ⊆ Rn
+ such that

∀x ∈ R
n
+ \ K ∃z ∈ K ∃y ∈ Φ(x) : 〈y + q, z − x〉 < 0.

Theorem 2.5.10 Let q ∈ Rn, c ∈ C, Φ ∈ X be q-pseudomonotone c-homogeneous
and lsc. If F(q, Φ) is nonempty and D(Φ) is closed at q, then S(q, Φ) is nonempty.

Proof. Let {σk} be an increasing sequence of positive numbers converging to
+∞, d > 0, and

{

(xk, yk)
}

∈ W . Since 〈d, xk

σk

〉 = 1, up to subsequences, there
exists 0 6= v ≥ 0 such that xk

σk

→ v. By (f) of the Basic Lemma (for Φk = Φ,
Ψk = 0, and qk = q for all k) we get 0 ≤ v ∈ −[Φ(Rn

+)]∗ and 〈q, v〉 ≤ 0, which
in turn implies 〈q, v〉 = 0 by (2.7), and by Proposition 2.3.5(b), Φ is copositive,
thus 〈yk, xk〉 ≥ 0, and from (2.4) we get 0 ≤ θk = −〈yk + q, xk

σk

〉 ≤ −〈q, xk

σk

〉.
Hence lim inf

k→∞
θk = 0, and the result follows from Theorem 2.2.1.

Theorem 2.5.11 Let d > 0, c ∈ C, q ∈ Rn, and Φ ∈ X be q-pseudomonotone c-
homogeneous and superadditive. Consider the statements:

(a) F(q, Φ) 6= ∅;

(b) v ≥ 0, v ∈ −[Φ(Rn
+)]∗ =⇒ 〈q, v〉 ≥ 0;

(c) S(q, Φ) 6= ∅.
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The following implications hold: (c) ⇐⇒ (a) =⇒ (b).
Moreover, if Rn

+ − Φ(Rn
+) is convex and closed together with Φ(0) = {0}, then all the

statements are equivalent.

Proof. (a)⇒(b): It follows from (2.7).
(a)⇒(c): Let {σk} be an increasing sequence of positive numbers converging to
+∞, d > 0, and

{

(xk, yk)
}

∈ W . Since 〈d, xk

σk

〉 = 1, up to subsequences, there
exists 0 6= v ≥ 0 such that xk

σk

→ v. By (f) of the Basic Lemma (for Φk = Φ,
Ψk = 0, and qk = q for all k) we get 0 ≤ v ∈ −[Φ(Rn

+)]∗ and 〈q, v〉 ≤ 0, which
in turn imply 〈q, v〉 = 0 by the above implication. By (d) of the same lemma
and (2.8) we conclude that v ∈ [Φ(∆Jv

)]∗, which in turn implies 〈ykm, v〉 ≥ 0,
therefore by (2.4), 0 ≤ θkm

= −〈ykm + q, v〉 = −〈ykm, v〉 ≤ 0, thus θkm
= 0 and

then xkm ∈ S(q, Φ).
(c)⇒(a): It is obvious.
(b)⇒(a): It follows from the remark made after (2.7).

In what follows we give a variety of results existing in the literature which
are direct consequences of our theorems.

Example 2.5.12 1. [41, Cor. 4,5] Let Φ(x) = Mx, where M ∈ Rn×n and Ψ(x) =

∂h(x), where h is a nonnegative on Rn
+ support function of a nonempty compact con-

vex set C (see Example 2.1.2). By applying Theorem 2.5.2 we obtain that:
• if M is copositive, q ∈ [S(0, M)]∗, and D(M +∂h) is closed at q, then S(q, M +

∂h) is nonempty. Moreover, if C is a polyhedral set the closedness condition is clearly
satisfied (see Chapter 3);

• if M is copositive-star and there exists a vector x0 ≥ 0 such that Mx0 + q > 0,
then S(q, M +∂h) is nonempty and compact. Since the existence of such an x0 implies
that q ∈ [S(0, M)]# (see Chapter 4);

• if M is regular, then S(q, M + ∂h) is nonempty and compact for all q ∈ Rn.
2. Let Φ(x) = F (x), where F : Rn

+ → Rn is a continuous homogeneous of degree
γ > 0 function. Let Ψ : Rn

+ ⇒ Rn be a multifunction.
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• [66, Th. 7] if F is regular and Ψ be an usc convex-valued uniformly bounded
multifunction, then S(q, F +Ψ) is nonempty and compact for all q ∈ Rn. This follows
from Theorem 2.5.2;

• [65, Th. 3.3] if F is monotone, ∂h(x) as above, and there exist u ≥ 0, ỹ ∈ ∂h(u)

such that F (u)+ ỹ+ q > 0, then S(q, F +∂h) is nonempty and compact. This follows
from Theorem 2.5.8 since F +∂h is q-pseudomonotone and Fs(q, F +∂h) is nonempty.

Remark 2.5.13 The results we obtained allow us to find Karush-Kuhn-Tucker sta-
tionary points for the following mathematical programming problem:

minimize F (x) + h(x)

subject to x ≥ 0, g(x) ≥ 0.

where F : Rn → R and g : Rn → Rm are differentiable functions and h is the support
function of a nonempty compact convex set in R

n, since its corresponding Karush-
Kuhn-Tucker stationary point problem can be expressed as a multivalued complemen-
tarity problem [65].

Given d > 0, the system

v ≥ 0, 〈d, v〉 = 1, w ∈ Φ(v), 〈w, v〉 ≤ 0, w − 〈w, v〉d ≥ 0. (2.11)

found in the Basic Lemma (for Φk = Φ, Ψk = Ψ, and qk = q for all k), plays
a fundamental role in characterizing the nonemptiness and boundedness of
S(q, Φ) for all q ∈ Rn. When Φ is c-subhomogeneous the inconsistency of (2.11)
is equivalent to the inconsistency of the following system

0 6= v ≥ 0, z ∈ Φ(v), τ ≥ 0, z + τd ≥ 0, 〈z + τd, v〉 = 0. (2.12)

This system has its origin in [47] where the case Φ(x) = Mx with M being a
matrix and d to be the vector of ones is treated. It was further developed in [49]
for Φ having single-values and nonlinear. Afterwards, the set-valued version
was introduced in [66, 41].
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The next theorem generalizes Corollary 2 of [41] and provides, in this set-
ting, new characterizations of regular mappings. In particular, it shows the
existence of some kind of robustness property with respect to certain classes of
perturbations.

Theorem 2.5.14 Let d > 0, c ∈ C, and Φ ∈ X be c-subhomogeneous. Consider the
statements

(a) the system (2.11) is inconsistent;

(b) Φ ∈ G(d) and S(q, Φ + Ψ) is nonempty and compact for all q ∈ R
n and all

Ψ ∈ X copositive uniformly bounded;

(c) Φ ∈ G(d) and S(q, Φ+Ψ) is nonempty and compact for all q ∈ R
n and all Ψ ∈ X

copositive zero-subhomogeneous;

(d) Φ ∈ G(d) and S(q, Φ) is nonempty and compact for all q ∈ Rn;

(e) Φ ∈ R(d).

The following implications hold: (e)⇐⇒(a)=⇒(b)=⇒ (c)=⇒(d). Moreover, if Φ is
c-homogeneous, then all the statements are equivalent.

Proof. (a)⇒(b): We first prove that Φ is G(d). Let τ > 0 and x ∈ S(τd, Φ).
Then there is y ∈ Φ(x) such that y + τd ≥ 0 and 〈y + τd, x〉 = 0. If 〈y, x〉 = 0

then 〈d, x〉 = 0, which implies x = 0. If 〈y, x〉 < 0 then for v = x/ ‖x‖d we
get w = y/c(‖x‖d) ∈ Φ(v) and since τ ‖x‖d = −〈y, x〉, clearly (2.11) holds,
a contradiction. The previous reasoning also shows that S(0, Φ) = {0}, and
thus Φ ∈ T̃(d). Hence Φ ∈ GT̃(d), and by Theorem 2.5.2 we conclude that
S(q, Φ + Ψ) is nonempty and compact for all q ∈ R

n and all Ψ ∈ X copositive
uniformly bounded.
(a)⇔(e): It follows from the equivalence between (2.11) and (2.12).
(b)⇒(c): It follows from Proposition 2.1.3(b).
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(c)⇒(d): It is obvious.
(d)⇒(e): If there exists v ∈ S(0, Φ), v 6= 0, then by c-homogeneity, tv ∈ S(0, Φ)

for all t > 0, contradicting the boundedness of S(0, Φ).

We rewrite the previous theorem to get the next corollary which is new in
the literature, even in the case when Φ(x) = Mx with M being a real matrix.
Our corollary gives more information than the existing ones, e.g. [41].

Corollary 2.5.15 Let d > 0, c ∈ C, and Φ ∈ X be c-homogeneous. Assume in addi-
tion that Φ ∈ G(d). The following assertions are equivalent:

(a) S(q, Φ) is nonempty and compact for all q ∈ Rn;

(b) S(q, Φ + Ψ) is nonempty and compact for all q ∈ Rn and all Ψ ∈ X copositive
uniformly bounded;

(c) S(q, Φ + Ψ) is nonempty and compact for all q ∈ Rn and all Ψ ∈ X copositive
zero-subhomogeneous;

(d) S(0, Φ) = {0}.

2.6 Sensitivity and approximable multifunctions

In this section we give sensitivity results for problem (MCP), whose data
are small perturbations of a given pair (q0, Φ0); prove some continuity proper-
ties of its solution-set multifunction, and establish further existence results for
mappings which are approximable in some sense.

Proposition 2.6.1 Let d > 0, c ∈ C, q0 ∈ R
n, and Φ0 ∈ X . If q0 ∈ [S(0, Φ0)]# (resp.

Vq0(Φ0) = {0}), then there exists ε > 0 such that for all q ∈ Rn and all Φ ∈ X which
are c-subhomogeneous (resp. simply cuscos) satisfying

‖q − q0‖ + dI(Φ, Φ0) < ε,

one has q ∈ [S(0, Φ)]# (resp. Vq(Φ) = {0}).
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Proof. We first consider the case q0 ∈ [S(0, Φ0)]#. Suppose on the contrary,
that there exist sequences {qk, Φk, vk} satisfying qk → q0, dI(Φk, Φ0) → 0, 0 6=
vk ∈ S(0, Φk), and 〈qk, vk〉 ≤ 0 with Φk ∈ X being c-subhomogeneous. By c-
subhomogeneity we may assume that ‖vk‖d = 1, therefore up to subsequences
vk → v and ‖v‖d = 1. Moreover, for all k , there exist wk ∈ Φk(vk) such that
wk ≥ 0 and 〈vk, wk〉 = 0. As Φk g→ Φ0, by Theorem 1.3.2 we may also assume
that wk → w. From (a) of Theorem 1.3.3, it follows in particular that w ∈ Φ0(v).
Furthermore, w ≥ 0 and 〈w, v〉 = 0. Hence 0 6= v ∈ S(0, Φ0) and 〈q0, v〉 ≤ 0,
contradicting the choice of q0.
We now consider the case Vq0(Φ0) = {0}. Suppose on the contrary that there
exist sequences {qk, Φk, vk} satisfying qk → q0, dI(Φk, Φ0) → 0, and 0 6= vk ∈
Vqk(Φk), with Φk ∈ X . We may assume that ‖vk‖d = 1, therefore up to subse-
quences vk → v and ‖v‖d = 1. Let us fix x ≥ 0 and y ∈ Φ0(x). Since Φk, Φ0 are
closed-valued and Φk g→ Φ0, we invoke again Theorem 1.3.3 to obtain x as the
limit of a sequence {aj}, corresponding to some {bj} satisfying bj ∈ Φj(aj) and
bj → y. By the choice of vj, we obtain 〈bj + qj, vj〉 ≤ 0. Thus 〈y + q, v〉 ≤ 0, and
therefore 0 6= v ∈ Vq0(Φ0) a contradiction.

Theorem 2.6.2 Let d > 0, c ∈ C, q0 ∈ R
n, and Φ0 ∈ X . If q0 ∈ [S(0, Φ0)]# (resp.

Vq0(Φ0) = {0}), then there exists ε > 0 such that for all q ∈ Rn and all Φ ∈ X which
are c-subhomogeneous and from GT(d) ∪ GT̃(d) (resp. simply q-pseudomonotone)
satisfying ‖q − q0‖ + dI(Φ, Φ0) < ε, the set S(q, Φ) is nonempty and compact.

Proof. This follows from the above proposition and Corollary 2.5.3 and Theo-
rem 2.5.8.

The next theorem may be considered as a stability result for MCP(q0, Φ0)

under a copositivity c-subhomogeneous or a q-pseudomonotone perturbation.
Notice it is only required that Φ0 ∈ X . This theorem extends Theorem 7.5.1 of
[15], where only the copositive linear case is considered.
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Theorem 2.6.3 Let d > 0, c ∈ C, q0 ∈ Rn, and Φ0 ∈ X . If q0 ∈ [S(0, Φ0)]# (resp.
Vq0(Φ0) = {0} ), then there exist ε > 0 and r > 0 such that for all q ∈ Rn and all
Φ ∈ X which are copositive c-subhomogeneous (resp. simply q-pseudomonotone) the
following implication holds

‖q − q0‖ + dI(Φ, Φ0) < ε =⇒ ‖S(q, Φ)‖ ≤ r,

where ‖S(q, Φ)‖ .
= sup {‖x‖ : x ∈ S(q, Φ)}.

Proof. By Theorem 2.6.2 for such q and Φ the set S(q, Φ) is nonempty and com-
pact.
Suppose on the contrary that there exist sequences {qk, Φk, xk} satisfying qk →
q0, dI(Φk, Φ0) → 0, xk ∈ S(qk, Φk), and 〈d, xk〉 → +∞. There exists a sequence
{

yk
}

such that for all k

yk ∈ Φk(xk), yk + qk ≥ 0, and 〈yk + qk, xk〉 = 0. (2.13)

Setting σk = 〈d, xk〉, up to subsequences, xk

σk

→ v 6= 0. Clearly (xk, yk) is a
solution of problem (PMVIPk) for Φ = Φ0, Ψk = 0, and q = q0, so we can apply
the Basic Lemma (for Φ = Φ0, Ψk = 0, and q = q0 for all k).
If Φk is copositive c-subhomogeneous for all k, by (d) of the Basic Lemma and
(2.13) we obtain that 0 6= v ∈ S(0, Φ0) and 〈qk, xk〉 ≤ 0, thus 〈q0, v〉 ≤ 0 contra-
dicting the choice of q0.
If Φk is qk-pseudomonotone for all k. By (f) of the Basic Lemma 0 6= v ∈ Vq0(Φ0)

a contradiction.

In what follows, we recall another type of continuity for multifunctions. Let
X, Y be two metric spaces and M ⊆ X . The mapping F : X ⇒ Y is said to be
outer semicontinuous (osc) at x̄ relative to M if,

lim sup
M3x→x̄

F(x) ⊆ F(x̄),

where
lim sup
M3x→x̄

F(x) =

{

z : lim inf
M3x→x̄

dF(x)(z) = 0

}

.
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Given c ∈ C and d > 0. Let us consider the following sets

ZGT
.
= {(q, Φ) ∈ R

n ×X : Φ is c-subhomogeneous and GT(d)} .

ZGT̃

.
=
{

(q, Φ) ∈ R
n ×X : Φ is c-subhomogeneous and GT̃(d)

}

.

ZPs
.
= {(q, Φ) ∈ R

n × X : Φ is q-pseudomonotone} .

On Rn × X we introduce the metric

D((q1, Φ1)(q2, Φ2))
.
= ‖q1 − q2‖ + dI(Φ1, Φ2).

Obviously (Rn × X , D) is a metric space. We now investigate continuity prop-
erties of the solution-set mapping S : Rn × X ⇒ Rn.

Theorem 2.6.4 Let S be the solution-set mapping associated to problem (MCP).
Then

(a) S is osc relative to ZGT or ZGT̃ at (q0, Φ0) provided q0 ∈ [S(0, Φ0)]#;

(b) S is osc relative to ZPs at (q0, Φ0) provided Vq0(Φ0) = {0}.

Proof. We only consider the case (a) relative to ZGT , the other being entirely
similar. By Theorem 2.6.2, the mapping S has nonempty compact values in a
neighborhood of (q0, Φ0), thus it is well defined. We have to prove

lim sup
ZGT 3(q,Φ)→(q0,Φ0)

S(q, Φ) ⊆ S(q0, Φ0). (2.14)

Let x be in the left-hand set of (2.14), then there exist a sequence (qk, Φk) ∈
ZGT such that qk → q0, dI(Φk, Φ0) → 0, and a sequence xk → x with xk ∈
S(qk, Φk). Thus, xk ≥ 0 and there is yk ∈ Φk(xk) such that yk + qk ≥ 0 and
〈yk + qk, xk〉 = 0. By Theorem 1.3.2, we conclude that {yk} is bounded, and so,
up to subsequences, we may assume yk → y. From Theorem 1.3.3 it follows
that y ∈ Φ0(x). Taking the limit we obtain x ≥ 0, y + q0 ≥ 0, and 〈y + q0, x〉 = 0,
that is, x ∈ S(q0, Φ0).
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By using the above continuity properties and the Basic Lemma, we can
provide existence results to other classes of multifunctions, which admit some
kind of approximating mappings.

Definition 2.6.5 Let Y be any class of multifunctions, the mapping Φ ∈ X is said to
be approximable by Y if there exists a sequence {Φk} ⊆ Y ∩ X such that Φk g→ Φ.

Theorem 2.6.6 Let d > 0, c ∈ C, q ∈ R
n, and Φ ∈ X .

(a) If Φ is approximable by copositive c-subhomogeneous mappings and q ∈ [S(0, Φ)]#,
then S(q, Φ) is nonempty;

(b) If Φ is approximable by q-pseudomonotone mappings and Vq(Φ) = {0}, then
S(q, Φ) is nonempty.

Proof. It follows from Theorems 2.6.2 to 2.6.4.

Theorem 2.6.7 Let d > 0, c ∈ C, q ∈ Rn, and Φ = Φ0 + Ψ0 where Φ0 ∈ X and
Ψ0 ∈ X is approximable by copositive uniformly bounded with respect to the same set
mappings.

(a) If Φ0 ∈ GT(d) ∪ GT̃(d) is approximable by c-subhomogeneous mappings and
q ∈ [S(0, Φ0)]#, then S(q, Φ) is nonempty;

(b) If Φ0 is approximable by copositive c-Moré mappings and q ∈ [U0(Φ
0)]#, then

S(q, Φ) is nonempty.

Proof. Let {Φk} and {Ψk} be the sequence of mappings that approximate Φ0

and Ψ0 respectively. Let {σk} be an increasing sequence of positive numbers
converging to +∞, d > 0, and {(xk, yk, rk)} be a sequence of solutions to
(PMVIPk) for Φ = Φ0, Ψ = Ψ0, and qk = q for all k.
If {xk} is bounded, by Theorems 1.3.2 and 1.3.3, any limit point of such a se-
quence belongs to S(q, Φ).
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Otherwise, we may consider (by redefining σk if necessary) that σk = 〈d, xk〉.
Since 〈d, xk

σk

〉 = 1, up to subsequences, there exists 0 6= v ≥ 0 such that xk

σk

→ v.
By applying the Basic Lemma (for Φ = Φ0, Ψ = Ψ0, and qk = q for all k) we
obtain that:
(a): there exist w ∈ Φ0(v), {rkm}, r, and ∅ 6= Jv ⊂ I , such that rkm → r, 0 6=
v ∈ S(−〈w, v〉d, Φ0), 〈w, v〉 ≤ 0, 〈r, v〉 ≥ 0, and 〈w, z〉 = 〈w, v〉 for all z ∈ ∆Jv

.
As Φ0 ∈ G(d) we conclude that 〈w, v〉 = 0 and wJv

= 0. If Φ ∈ T(d) (resp. Φ ∈
T̃(d)), by (2.5) (resp. (2.6)) v ∈ [Φ0(pos+∆Jv

)]∗ (resp. 〈y, x〉 ≥ 0 for x ∈ pos+∆Jv
,

y ∈ Φ(x)), which in turn implies 〈ykm, v〉 ≥ 0 (resp. 〈ykm, xkm〉 ≥ 0). By setting
x = 0 in (PMVIPk) and by (c) of the Basic Lemma we get

〈ykm + rkm + q, v〉 = 〈ykm + rkm + q,
xkm

σkm

〉 ≤ 0. (2.15)

then 〈rkm + q, v〉 ≤ 0 (resp. 〈q, xkm

σkm

〉 ≤ 0) thus 〈q, v〉 ≤ 0 contradicting the choice
of q.
(b): there exist w and wk ∈ Φk(xk

σk

) such that wkm → w ∈ Φ0(v) and 〈w, v〉 ≤ 0.
Since each Φk is copositive we get 〈w, v〉 = 0, thus 0 6= v ∈ U0(Φ

0). Moreover,
from (2.15) and copositivity we get 〈q, xkm〉 ≤ 0, thus 〈q, v〉 ≤ 0 contradicting
the choice of q.

Notice that under the assumptions of Theorem 2.6.7 we actually prove
that any limit point of every approximate sequence {xk} constructed through
(PMVIPk) (which is bounded) is a solution to (MCP).

2.7 Asymptotic analysis via the outer norm

Let Φ : Rn
+ ⇒ Rn be an homogeneous multifunction of degree 1 (or simply

homogeneous), in [68, p. 365] is defined the outer norm |Φ|+ ∈ [0, +∞]

|Φ|+ .
= sup {‖y‖ : x ∈ B, y ∈ Φ(x)} . (2.16)
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This is the infimum over all constants k ≥ 0 such that ‖y‖ ≤ k ‖x‖ for all
(x, y) ∈ gph Φ. When Φ is actually a linear mapping, i.e. Φ(x) = Mx for M ∈
Rn×n, then |Φ|+ = ‖M‖.
In general, however, homogeneous multifunctions, don’t even form a vector
space under addition and scalar multiplication, so | · |+ is not truly a ´´norm``.
Nevertheless, elementary rules are valid like

|λΦ|+ = |λ| |Φ|+, |Φ1 + Φ2|+ ≤ |Φ1|+ + |Φ2|+, |Φ2 ◦ Φ1|+ ≤ |Φ2|+|Φ1|+.

We shall define a similar object for c-subhomogeneous multifunctions.

Definition 2.7.1 Let d > 0, c ∈ C, and Φ : Rn
+ ⇒ Rn be a c-subhomogeneous

multifunction. The d-outer norm of Φ is by definition

|Φ|+d
.
= sup {‖y‖d : x ∈ ∆d, y ∈ Φ(x)} . (2.17)

Let Φ ∈ X be c-subhomogeneous on ∆d such that Φ(0) = {0}, by Proposi-
tion 1.3.1 the set Φ(∆d) is compact, therefore the supremum in (2.17) is attained
and we may write max instead of sup, and |Φ|+d < +∞. Moreover

‖y‖d ≤ |Φ|+d c(‖x‖d) for all x ≥ 0, y ∈ Φ(x). (2.18)

As we already know | · |+d is not a norm. However, the mapping defined by
(Φ1, Φ2) 7→ |Φ1 −Φ2|+d is a metric on the set of c-subhomogeneous on ∆d cuscos
such that Φ(0) = {0}. If Φ is a linear mapping, i.e., Φ(x) = Mx for M ∈ R

n×n,
by (1.1) we obtain that |Φ|+d = ‖M‖d.

Now we present an alternative of the asymptotic analysis by means of the
d-outer norm.

Lemma 2.7.2 Let d > 0, c ∈ C, {σk} be an increasing sequence of positive numbers
converging to +∞; q, qk ∈ Rn; and Φ, Ψ, Φk, Ψk ∈ X be such that |Φk − Φ|+d → 0,
Ψk g→ Ψ, qk → q, and

{

(xk, yk, rk)
}

be a sequence of solutions to (PMVIPk) such
that 〈d, xk〉 = σk and xk

σk

→ v. Then, there exist subsequences
{

(xkm , ykm, rkm)
}

,
{σkm

}, numbers k0, m0 ∈ N, and an index set ∅ 6= Jv ⊆ I such that in addition to the
properties (a)-(c) of the Basic Lemma we also obtain
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(d’) if Φ, Φk are c-subhomogeneous such that Φ(0) = Φk(0) = {0} and Ψk are
uniformly bounded with respect to the same set, then the subsequences

{

ykm

}

,
{

rkm

}

, {σkm
} may be chosen in such a way that there are vectors w and r such

that 1
c(σkm

)
ykm → w ∈ Φ(v), rkm → r, 〈w, v〉 ≤ 0, 〈w, y〉 ≥ 〈d, y〉〈w, v〉 for all

y ≥ 0, and 〈w, z〉 = 〈w, v〉, for all z ∈ ∆Jv
.

Proof. (d’): By assumption yk

c(σk)
∈ Φk(xk

σk

). Suppose that wk ∈ Φ(xk

σk

), then

‖ yk

c(σk)
− wk‖ ≤ |Φk − Φ|+d . As

{

xk

σk

}

is bounded, by Proposition 1.3.1 we may

assume that wkm → w ∈ Φ(v) and by the above inequality we get ykm

c(σkm
)
→ w.

Moreover, from rk ∈ Ψk(xk), since Ψk is uniformly bounded with respect to the
same set, the sequence

{

rk
}

is bounded and rkm → r.
Proceeding exactly as in the last part of the proof of (d) from the Basic Lemma
we obtain the properties for v and w.

Now we give sensitivity results for problem (MCP) by using the d-outer
norm. As consequences of these results we shall obtain in the next chapters
continuity properties for the solution set mapping.

Proposition 2.7.3 Let d > 0, c ∈ C, q0 ∈ Rn, and Φ0 ∈ X be c-subhomogeneous
such that Φ0(0) = {0}. If q0 ∈ [S(0, Φ0)]#, then there exists ε > 0 such that for all
q ∈ Rn and all Φ ∈ X which are c-subhomogeneous such that Φ(0) = {0} satisfying

‖q − q0‖ + |Φ − Φ0|+d < ε,

one has q ∈ [S(0, Φ)]#.

Proof. Suppose on the contrary, that there exist sequences {qk, Φk, vk} satis-
fying qk → q0, |Φk − Φ0| → 0, 0 6= vk ∈ S(0, Φk), and 〈qk, vk〉 ≤ 0 with
Φk ∈ X being c-subhomogeneous such that Φk(0) = {0}. By c-subhomogeneity
we may assume that ‖vk‖d = 1, therefore up to subsequences vk → v and
‖v‖d = 1. Moreover, for all k , there exist wk ∈ Φk(vk) such that wk ≥ 0 and
〈vk, wk〉 = 0. Let uk ∈ Φ0(vk) then ‖wk − uk‖ ≤ |Φk − Φ0|+d . Since vk → v by
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Proposition 1.3.1 we may consider that uk → w ∈ Φ0(v) for some w. From the
above inequality it follows that wk → w. Furthermore, w ≥ 0 and 〈w, v〉 = 0.
Hence 0 6= v ∈ S(0, Φ0) and 〈q0, v〉 ≤ 0, contradicting the choice of q0.

Theorem 2.7.4 Let d > 0, c ∈ C, q0 ∈ R
n, and Φ0 ∈ X be c-subhomogeneous

such that Φ0(0) = {0}. If q0 ∈ [S(0, Φ0)]#, then there exists ε > 0 such that for all
q ∈ R

n and all Φ ∈ X which are c-subhomogeneous such that Φ(0) = {0} and from
GT(d) ∪ GT̃(d) satisfying ‖q − q0‖ + |Φ − Φ0|+d < ε, the set S(q, Φ) is nonempty
and compact.

Proof. This follows from the above proposition and Corollary 2.5.3 and Theo-
rem 2.5.8.

Theorem 2.7.5 Let d > 0, c ∈ C, q0 ∈ Rn, and Φ0 ∈ X be c-subhomogeneous
such that Φ0(0) = {0}. If q0 ∈ [S(0, Φ0)]#, then there exist ε > 0 and r > 0 such
that for all q ∈ Rn and all Φ ∈ X which are copositive c-subhomogeneous such that
Φ(0) = {0}, the following implication holds

‖q − q0‖ + |Φ − Φ0|+d < ε =⇒ ‖S(q, Φ)‖ ≤ r,

Proof. By the above theorem for such q and Φ the set S(q, Φ) is nonempty and
compact.
Suppose on the contrary that there exist sequences {qk, Φk, xk} satisfying qk →
q0, |Φk − Φ0|+d → 0, xk ∈ S(qk, Φk), and 〈d, xk〉 → +∞. There exists a sequence
{

yk
}

such that (2.13) holds for all k. Setting σk = 〈d, xk〉, up to subsequences,
xk

σk

→ v 6= 0. Clearly (xk, yk) is a solution of problem (PMVIPk) for Φ = Φ0,
Ψk = 0, and q = q0, so we can apply Lemma2.7.2 (for Φ = Φ0, Ψk = 0, and
q = q0 for all k). If Φk is copositive c-subhomogeneous such that Φk(0) = {0}
for all k, by (d) of such a Lemma and (2.13) we obtain that 0 6= v ∈ S(0, Φ0) and
〈qk, xk〉 ≤ 0, thus 〈q0, v〉 ≤ 0 contradicting the choice of q0.
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2.8 Estimates for the solution set

In this section we extend and generalize some results from [55], where the
monotone linear complementarity problem is studied; [43], where the numer-
ical range of an operator is used to obtain bounds for the linear complemen-
tarity problem in Hilbert spaces; and [65], where a bound for the solution set
of a quasidifferentiable convex programming problem is obtained. Indeed, we
consider the set-valued case and obtain bounds for the solution set to problem
(MCP) under subhomogeneity, Moré and pseudomonotonicity properties.

If Φ ∈ X is c-subhomogeneous (on ∆d), we infer that

mΦ ‖x‖d c(‖x‖d) ≤ 〈y, x〉 ≤ MΦ ‖x‖d c(‖x‖d) ∀x ≥ 0, y ∈ Φ(x). (2.19)

In the following we denote d0
.
= min1≤i≤n di > 0. We point out that Ψ is uni-

formly bounded if and only if ||Ψ|| < +∞, where

||Ψ|| .
= sup {||y|| : y ∈ Ψ(x), x ≥ 0} .

Theorem 2.8.1 Let d > 0, c ∈ C, q ∈ Rn, and Φ, Ψ ∈ X .

(a) Assume Φ is c-subhomogeneous and Ψ is uniformly bounded:

• if MΦ < 0, then S(q, Φ + Ψ) ⊆
{

x ≥ 0 : c(‖x‖d) ≤ max
(

c(0), ||Ψ||+‖q‖
d0|MΦ|

)}

;

• if mΦ > 0, then S(q, Φ + Ψ) ⊆
{

x ≥ 0 : c(‖x‖d) ≤ max
(

c(0), ||Ψ||+‖q‖
d0 mΦ

)}

;

(b) Assume Φ is c-Moré, Ψ is uniformly bounded, and mΦ > 0, then

S(q, Φ + Ψ)∩ cl(Rn
+ \Bd) ⊆

{

x ≥ 0 : c(‖x‖d) ≤ max

(

c(0),
||Ψ|| + ‖q‖

d0 mΦ

)}

;

(c) Assume Φ is monotone, Ψ is copositive uniformly bounded, there exist 0 6= x0 ≥ 0,
y0 ∈ Φ(x0) such that y0 + q > 0, then

S(q, Φ + Ψ) ⊆







x ≥ 0 : ‖x‖1 ≤
〈y0 + q, x0〉 + ‖Ψ‖ ‖x0‖

min
1≤i≤n

(y0 + q)i







.
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Proof. (a): First we notice that for u ≥ 0 and w ∈ Ψ(u), ‖w‖ ≤ ||Ψ||. Assume
MΦ < 0, and let 0 6= x ≥ 0, y ∈ Φ(x), and r ∈ Ψ(x). By (2.19) we obtain

〈y + r + q, x〉 ≤ MΦ ‖x‖d c(‖x‖d) + (‖r‖ + ‖q‖) ‖x‖

≤ ‖x‖d

(

MΦ c(‖x‖d) +
1

d0

(||Ψ|| + ‖q‖)
)

.

It follows that MΦ c(‖x‖d) + 1
d0

(||Ψ|| + ‖q‖) ≥ 0 if 0 6= x ∈ S(q, Φ + Ψ).
Let mΦ > 0, 0 6= x ≥ 0, y ∈ Φ(x), and r ∈ Ψ(x). By (2.19) again

〈y + r + q, x〉 ≥ mΦ ‖x‖d c(‖x‖d) − (‖r‖ + ‖q‖) ‖x‖

≥ ‖x‖d

(

mΦ c(‖x‖d) −
1

d0

(||Ψ|| + ‖q‖)
)

.

It follows that mΦ c(‖x‖d) − 1
d0

(||Ψ||+ ‖q‖) ≤ 0 if 0 6= x ∈ S(q, Φ + Ψ).
(b): Let mΦ > 0, x ≥ 0 such that ‖x‖d ≥ 1, y ∈ Φ(x), and r ∈ Ψ(x). Since
y ∈ Φ(‖x‖d

x
‖x‖d

) by definition there exists z ∈ Φ( x
‖x‖d

) such that

〈y, x〉 ≥ c(‖x‖d) 〈z, x〉 = ‖x‖d c(‖x‖d)〈z,
x

‖x‖d

〉 ≥ ‖x‖d c(‖x‖d)mΦ

thus we obtain that

〈y + r + q, x〉 ≥ mΦ ‖x‖d c(‖x‖d) − (‖r‖ + ‖q‖) ‖x‖

≥ ‖x‖d

(

mΦ c(‖x‖d) −
1

d0
(||Ψ|| + ‖q‖)

)

.

It follows that mΦ c(‖x‖d)− 1
d0

(||Ψ||+ ‖q‖) ≤ 0 if x ∈ S(q, Φ + Ψ) and ‖x‖d ≥ 1.
(c): Let x ∈ S(q, Φ + Ψ), there exist y ∈ Φ(x) and r ∈ Ψ(x) such that 〈y +

r + q, u − x〉 ≥ 0 for all u ≥ 0, since Φ is (r + q)-pseudomonotone we get
〈y0 + r + q, x0 − x〉 ≥ 0 and since Ψ is copositive

〈y0 + r + q, x0〉 ≥ 〈y0 + r + q, x〉 ≥ 〈y0 + q, x〉 ≥ min
1≤i≤n

(y0 + q)i ‖x‖1 .

Since Ψ is uniformly bounded, 〈r, x0〉 ≤ ‖Ψ‖ ‖x0‖. Thus
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〈y0 + q, x0〉 + ‖Ψ‖ ‖x0‖ ≥ min
1≤i≤n

(y0 + q)i ‖x‖1.

Remark 2.8.2 One can check that hypothesis mΦ > 0 in (a) implies that Φ ∈ GT̃(d)

and S(0, Φ) = {0}, which in turn implies that S(q, Φ + Ψ) is nonempty and com-
pact for all q ∈ Rn provided Ψ is copositive (Theorem 2.5.2). The hypothesis bΦ

.
=

min{〈y, x〉 : x ≥ 0, ‖x‖d ≤ 1, y ∈ Φ(x)} > 0 in (b) implies that mΦ > 0, Φ is
copositive, and U(0, Φ) = {0}, which in turn implies that S(q, Φ + Ψ) is nonempty
and compact for all q ∈ Rn provided Ψ is copositive (Theorem 2.5.5). Similarly, the
hypothesis in (c) implies that S(q, Φ + Ψ) is nonempty and compact provided Φ is
copositive as well (Theorem 2.5.8 implication (a) ⇒ (b) and Theorem 2.5.7).

Corollary 2.8.3 Let d > 0, c ∈ C, q ∈ Rn, and Φ ∈ X .

(a) Assume Φ is c-subhomogeneous:

• if MΦ < 0, then S(q, Φ) ⊆
{

x ≥ 0 : c(‖x‖d) ≤ max
(

c(0), ‖q‖
d0|MΦ|

)}

;

• if mΦ > 0, then S(q, Φ) ⊆
{

x ≥ 0 : c(‖x‖d) ≤ max
(

c(0), ‖q‖
d0 mΦ

)}

;

(b) Assume Φ is c-Moré and mΦ > 0, then

S(q, Φ) ∩ cl(Rn
+ \ Bd) ⊆

{

x ≥ 0 : c(‖x‖d) ≤ max

(

c(0),
‖q‖

d0 mΦ

)}

;

(c) Assume Φ is q-pseudomonotone, and there exist 0 6= x0 ≥ 0, y0 ∈ Φ(x0) such that
y0 + q > 0, then

S(q, Φ) ⊆







x ≥ 0 : ‖x‖1 ≤
〈y0 + q, x0〉
min

1≤i≤n
(y0 + q)i







.

Proof. (a)-(b): We set Ψ = 0 in (a)-(b) of the above theorem.
(c): We proceed as in (c) of the above theorem with Ψ = 0, and taking into
account that Φ is q-pseudomonotone.

Remark 2.8.4 The hypothesis in (c) implies that S(q, Φ) is nonempty and compact
(Theorem 2.5.8).



Chapter 3

The polyhedral complementarity
problem

In this chapter our main concern is the study of the polyhedral complemen-
tarity problem, i.e., the problem MCP(q, Φ) where Φ : Rn

⇒ Rn is a piecewise
polyhedral multifunction. For such a problem we have some additional infor-
mation which can facilitate the analysis. For instance the set D(Φ) is closed,
piecewise polyhedral multifunctions are locally UL(λ) for some λ and the so-
lutions set mapping q 7→ S(q)

.
= S(q, Φ) for Φ being a piecewise polyhedral

multifunction is piecewise polyhedral as well. Due to this fact it makes sense
to try to approximate complementarity problems by polyhedral ones, we give
an example of this approximation in the last section. Our research on this topic
is in progress.

3.1 Piecewise polyhedral multifunctions

Definition 3.1.1 A multifunction Φ : Rn
⇒ Rn is said to be piecewise polyhedral

if gph Φ is piecewise polyhedral i.e. is expressible as the union of finitely many polyhe-
dral sets, called components. If Φ has one component i.e gph Φ is a polyhedron, then it

52
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is said to be a polyhedral multifunction.

Let Φ be a piecewise polyhedral multifunction then

gph Φ =

m
⋃

i=1

Pi

where each Pi ⊆ Rn × Rn is a polyhedral set. Let (v, w) ∈ gph Φ we denote
by Pv,w

.
=
⋃

1≤i≤m{Pi : (v, w) ∈ Pi} the union of polyhedral sets Pi containing
(v, w).
The class of piecewise polyhedral multifunctions can be shown to be closed
under (finite) addition, scalar multiplication, and (finite) composition. The in-
verse mapping of a piecewise polyhedral multifunction is piecewise polyhe-
dral as well. Moreover, a graph-convex piecewise polyhedral multifunction is
polyhedral by Lemma 1.1.1.

Example 3.1.2 1. The multifunction defined by Φ(x) = Mx where M ∈ Rn×n, is a
polyhedral mapping.
2. The multifunction Φ(x) = {y : Ax + Qy ≤ b} where A ∈ Rl×n, Q ∈ Rl×n and
b ∈ Rl, is polyhedral. In fact, every polyhedral multifunctions has this form.
3. Let Rn

+ = ∪1≤i≤kCi where each subset Ci is a polyhedral set. The multifunction
Φ(x) = {y : Aix + Qiy ≤ bi} if x ∈ Ci, where Ai ∈ Rli×n, Q ∈ Rli×n and b ∈ Rl

i, is
piecewise polyhedral.
4. The multifunction Φ7 from Example 2.1.2 is piecewise polyhedral and c̄-subhomo-
geneous on ∆1 but not c-homogeneous for any c ∈ C.
5. The multifunction defined by Φ(1) = [0, 1] and Φ(x) = 0 if x 6= 1, is piecewise
polyhedral and λγ-subhomogeneous on ∆1 for all γ > 0.
6. A function f : Rn → R̄ is called piecewise linear-quadratic if dom f can be
represented as the union of finitely many polyhedral sets, relative to each of which
f(x) is given by an expression of the form 1

2
〈x, Ax〉 + 〈a, x〉 + α, for α ∈ R, a ∈ Rn,

and A ∈ Rn×n a symmetric matrix. If A = 0 the term piecewise linear is used.
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If f : Rn → R̄ is a proper lsc convex piecewise linear-quadratic function, then the
subgradient mapping ∂f is piecewise polyhedral [68, Prop. 12.30]. For instance, if
C ⊂ Rn is a nonempty polyhedral set, the multifunctions Φ1 = ∂σC and Φ2 = ∂d2

C are
piecewise polyhedral, since σC is piecewise linear [68, Prop. 8.29] and d2

C is piecewise
linear-quadratic [68, Ex. 11.28].
7. A norm ‖·‖P on Rn is said to be a polyhedral norm if the corresponding unit
ball {x ∈ Rn : ‖x‖P ≤ 1} is polyhedral. A norm ‖·‖P on Rn is polyhedral if and
only if there exist vectors c1, . . . , cr ∈ R

n such that ‖x‖P = max
1≤i≤r

〈ci, x〉. The met-

ric projection from (Rn, ‖·‖P ) to a polyhedral subset K ⊆ Rn is the multifunction
defined by ΠK,P (x)

.
= arg min

y∈K
‖y − x‖P . This multifunction is piecewise polyhedral

[26, Th. 18].
8. The multifunction Φ(x) = Mx + ∂σC(x) where M ∈ R

n×n and C ⊆ R
n is a

polyhedron, is polyhedral.

The following result shows that for polyhedral multifunctions it makes
sense work only with T(d)-mappings.

Proposition 3.1.3 Let d > 0 and Φ : R
n

⇒ R
n be a polyhedral multifunction.

(a) If Φ is a T̃(d)-mapping, then it is a T(d)-mapping;

(b) If 0 ∈ Φ(0), then Φ is λ-Moré and Φ(λx) ⊆ λΦ(x) for all x ≥ 0 and λ ≥ 1,
whereas Φ(λx) ⊇ λΦ(x) for all x ≥ 0 and 0 < λ ≤ 1;

(c) Φ is λ-subhomogeneous if and only if it is λ-homogeneous;

(d) If Φ is λ-homogeneous and Φ(0) = {0}, then Φ is superadditive and homogeneous
of degree γ = 1.

Proof. (a): Let v, w, J such that the premiss of (2.5) holds. Let x ∈ pos+∆J ,
y ∈ Φ(x), clearly tv + (1 − t)x ∈ pos+∆J for all t ∈]0, 1[. Since gph Φ is convex,
we get tw + (1 − t)y ∈ Φ(tv + (1 − t)x) and by (2.6) we obtain that 〈tw +
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(1 − t)y, tv + (1 − t)x〉 ≥ 0 for all t ∈]0, 1[. By the choice of x, v, w, we get
t〈y, v〉+ (1 − t)〈y, x〉 ≥ 0 for all t ∈]0, 1[, thus 〈y, v〉 ≥ 0.
(b): By Proposition 2.1.5(d) Φ is λ-Moré. Since Φ is polyhedral, there exist A ∈
Rl×n, Q ∈ Rl×n, and b ∈ Rl such that Φ(x) = {y : Ax + Qy ≤ b}. From 0 ∈ Φ(0)

we obtain b ≥ 0 and if x ≥ 0, λ ≥ 1, and y ∈ Φ(λx), then Ax + 1
λ
Qy ≤ 1

λ
b ≤ b,

thus y ∈ λΦ(x). The remaining part can be obtained similarly.
(c): It follows from (b).
(d): It follows from (c) and the graph-convexity of Φ.

We need the following continuity [67, Prop. 1] and closedness [41, Prop. 3]
properties of piecewise polyhedral multifunctions.

Proposition 3.1.4 Let F : Rm
⇒ Rn be a piecewise polyhedral multifunction, Then

there exists a constant λ such that F is locally UL(λ) at each x0 ∈ Rm.

Proposition 3.1.5 Let Φ : Rn
+ ⇒ Rn be a piecewise polyhedral multifunction. Then

the sets D(Φ) and Rn
+ − Φ(Rn

+) are closed.

Proof. The closedness of the former set is proved in [41], by proceeding analo-
gously we can prove that property of the latter set.

3.2 New classes of multifunctions

When dealing with piecewise polyhedral multifunctions, we can weak the
notion of T(d)-mapping, in order to obtain finer existence results.

Definition 3.2.1 Let d > 0, Φ : Rn
⇒ Rn be a piecewise polyhedral multifunction

({Pi}m
i=1 as above) such that 0 ∈ Φ(0). We say that Φ is a

• Tp(d)-mapping, if, for any index subset J ⊆ I , one has

v ≥ 0, w ≥ 0, w ∈ Φ(v)

wJ = 0, ∅ 6= supp{v} ⊆ J

}

=⇒ 〈y, v〉 ≥ 0,

∀x ∈ pos+∆J , (x, y) ∈ Pv,w.
(3.1)
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• T̃p(d)-mapping if, for any index subset J ⊆ I ,

v ≥ 0, w ≥ 0, w ∈ Φ(v)

wJ = 0, ∅ 6= supp{v} ⊆ J

}

=⇒ 〈y, x〉 ≥ 0,

∀x ∈ pos+∆J , (x, y) ∈ Pv,w.
(3.2)

• GTp(d)-mapping if, it is G(d) and Tp(d).

Proposition 3.2.2 Let d > 0 and Φ : Rn
+ ⇒ Rn be a piecewise polyhedral multifunc-

tion. If Φ is a T̃p(d)-mapping, then it is a Tp(d)-mapping. Moreover, for polyhedral
multifunctions the classes T(d) and Tp(d) coincide.

Proof. We proceed exactly as in the proof of Proposition 3.1.3(a), instead of the
convexity of gph Φ we use the fact that Pv,w is star-shaped relative to the point
(v, w). The last assertion holds since for Φ to be polyhedral Pv,w = gph Φ.

Henceforth, for the piecewise polyhedral complementarity problem we shall
deal only with Tp(d)-mappings.

Remark 3.2.3 From the above proposition follows that a copositive piecewise polyhe-
dral multifunction is GTp(d) for any d > 0 (without any superadditivity or homo-
geneity assumption as in Proposition 2.3.3(c)).

We introduce the following notation

X0
.
= {Φ : R

n
+ ⇒ R

n : Φ is compact convex valued }

By Proposition 3.1.4 we obtain in particular that if Φ ∈ X0 is piecewise polyhe-
dral then Φ ∈ X . Thus, for piecewise polyhedral multifunctions in X0 the Basic
Lemma, Lemma 2.3.6 and Proposition 2.4.1 hold. As a consequence we obtain
the following result for Tp(d)-mappings.

Lemma 3.2.4 Let d > 0, c ∈ C; Φ, Ψ ∈ X0 be piecewise polyhedral, and {σk} be
an increasing sequence of positive numbers converging to +∞. Assume there exist a
sequence

{

(xk, yk + rk)
}

∈ W for Φ + Ψ such that xk

σk

→ v. Then, in addition to the
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existence of w, r, {xkm}, {wk}, and subindex set ∅ 6= Jv ⊆ I satisfying the properties
established in the Basic Lemma (for Φk = Φ, Ψk = Ψ, and qk = q for all k), we
also obtain that if Φ is GTp(d) c-subhomogeneous and Ψ uniformly bounded, then
w ≥ 0, wJv

= 0 (hence 〈w, v〉 = 0), 〈q, v〉 ≤ 0, 〈r, v〉 ≥ 0, and 〈y, v〉 ≥ 0 for all
x ∈ pos+∆J , (x, y) ∈ Pv,w. Moreover, (xkm

σkm

, ykm

c(σkm
)
) ∈ Pv,w.

Proof. We set Φk = Φ, Ψk = Ψ and qk = q for all k in the Basic Lemma. Since Φ ∈
GTp(d), then (a.1) of Proposition 2.3.6 holds, and by (3.1) we obtain 〈y, v〉 ≥ 0

for all x ∈ pos+∆Jv
, (x, y) ∈ Pv,w, which in turn implies 〈ykm, v〉 ≥ 0 since

xkm

σkm

∈ ∆Jv
and (xkm

σkm

, ykm

c(σkm
)
) ∈ Pv,w. Indeed, as (xkm

σkm

, ykm

c(σkm
)
) ∈ gph Φ, there exists

i0 ∈ {1, 2, . . . , m} such that up to subsequences (xkm

σkm

, ykm

c(σkm
)
) ∈ Pi0 , thus (v, w) ∈

Pi0 and Pi0 ⊆ Pv,w.
From (c) of the Basic Lemma (for z = v), and setting x = 0 in (MVIPk) for
Φ + Ψ we get 〈rkm + q, v〉 ≤ 〈ykm + rkm + q, v〉 = 〈ykm + rkm + q, xkm

σkm

〉 ≤ 0, thus
〈r + q, v〉 ≤ 0. Since Ψ is copositive from 〈rk, xk〉 ≥ 0 we get 〈r, v〉 ≥ 0 and then
〈q, v〉 ≤ 0.

Proposition 3.2.5 Let d > 0, c ∈ C, q ∈ R
n, and Φ, Ψ ∈ X0 be piecewise polyhe-

dral. If Φ is Tp(d) c-subhomogeneous and Ψ is copositive uniformly bounded, then
[S(q, Φ + Ψ)]∞d ⊆ Wq(Φ) ∩ ∆d.

Proof. We proceed exactly as in the proof of Proposition 2.4.1(a) taking into
account the above lemma.

3.3 Main existence results

Theorem 3.3.1 Let d > 0, c ∈ C, Φ ∈ X0 be GTp(d) c-subhomogeneous piecewise
polyhedral, and Ψ ∈ X0 be copositive uniformly bounded piecewise polyhedral:

(a) if q ∈ [S(0, Φ)]∗, then S(q, Φ + Ψ) is nonempty;

(b) if q ∈ [S(0, Φ)]#, then S(q, Φ + Ψ) is nonempty and compact.
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Proof. (a): Let {σk} be an increasing sequence of positive numbers converging
to +∞, d > 0, and

{

(xk, yk + rk)
}

∈ W for Φ + Ψ. Since 〈d, xk

σk

〉 = 1, up to
subsequences, there exists 0 6= v ≥ 0 such that xk

σk

→ v. Thus,

xk ∈ Dk, yk ∈ Φ(xk), rk ∈ Ψ(xk), 〈yk + rk + q, x − xk〉 ≥ 0 ∀x ∈ Dk. (3.3)

By the Basic Lemma (for Φk = Φ, Ψk = Ψ, and qk = q for all k) and Lemma 3.2.4
there exist w ∈ Φ(v), r, ∅ 6= Jv ⊆ I , and {xkm} such that w ≥ 0, 〈w, v〉 = 0, wJv

=

0, 〈q, v〉 ≤ 0, 〈r, v〉 ≥ 0, and 〈y, v〉 ≥ 0 for all x ∈ pos+∆Jv
, (x, y) ∈ Pv,w, which

in turn implies 〈ykm, v〉 ≥ 0 since (xkm

σkm

, ykm

c(σkm
)
) ∈ Pv,w. Moreover, v ∈ S(0, Φ)

implies 〈q, v〉 = 0. From (2.4) for Φ + Ψ, we get

θkm
= −〈ykm + rkm + q,

xkm

σkm

〉 = −〈ykm + rkm + q, v〉. (3.4)

then 0 ≤ θkm
≤ −〈rkm , v〉. Thus lim infk→+∞ θk = 0, and the result follows from

Theorem 2.2.1 since by Proposition 3.1.5 the set D(Φ + Ψ) is closed.
(b): By (a) we obtain that S(q, Φ + Ψ) is nonempty. Its boundedness follows
from Proposition 3.2.5 since by the choice of q, we get Wq(Φ) = {0}.

Remark 3.3.2 The above theorem generalizes Corollary 3(a) from [41], which is an
analogue result valid for Φ being a copositive homogeneous of degree γ > 0 mapping
and Ψ = 0.

Theorem 3.3.3 Let d > 0, c ∈ C, q ∈ Rn, Φ ∈ X0 be copositive c-Moré piecewise
polyhedral, and Ψ ∈ X0 be copositive uniformly bounded piecewise polyhedral:

(a) if q ∈ [U0(Φ)]∗, then S(q, Φ + Ψ) is nonempty;

(b) if q ∈ [U0(Φ)]#, then S(q, Φ + Ψ) is nonempty and compact.

Proof. It is a consequence of Theorem 2.5.5. since by Proposition 3.1.5 the set
D(Φ + Ψ) is closed.

For polyhedral multifunctions we can drop the c-subhomogeneous and d-
Moré hypotheses and obtain the following existence result.
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Corollary 3.3.4 Let d > 0, c ∈ C, Φ ∈ X0 be polyhedral such that 0 ∈ Φ(0), and
Ψ ∈ X0 be copositive uniformly bounded piecewise polyhedral.

(a) Assume Φ is GTp(d): if q ∈ [S(0, Φ)]∗, then S(q, Φ + Ψ) is nonempty; if q ∈
[S(0, Φ)]#, then S(q, Φ + Ψ) is nonempty and compact;

(b) Assume Φ is copositive: if q ∈ [U0(Φ)]∗, then S(q, Φ + Ψ) is nonempty; if q ∈
[U0(Φ)]#, then S(q, Φ + Ψ) is nonempty and compact;.

Proof. It is a consequence of Theorems 3.3.1, 3.3.3, Proposition 3.1.4(b) and the
reasoning after the definition of c-(sub)homogeneous mappings.

We now revise the pseudomonotone case and obtain the following corol-
laries of Theorems 2.5.8 and 2.5.11 by applying Propositions 3.1.3 and 3.1.4.

Corollary 3.3.5 Let q ∈ Rn and Φ ∈ X0 be q-pseudomonotone piecewise polyhedral.
Consider the statements

(a) Fs(q, Φ) is nonempty;

(b) Vq(Φ) = {0};

(c) S(q, Φ) is nonempty and compact;

(d) There exists a compact convex set K ⊆ R
n
+ such that

∀ x ∈ R
n
+ \ K ∀ y ∈ Φ(x) ∃ z ∈ K : 〈y + q, z − x〉 < 0.

The following implications hold: (a) =⇒ (b) ⇐⇒ (c) ⇐⇒ (d).
Moreover, if Φ(Rn

+) is convex (in particular if Φ is polyhedral), then all the statements
are equivalent.

Corollary 3.3.6 Let d > 0, c ∈ C, q ∈ Rn, and Φ ∈ X0 be q-pseudomonotone.
Consider the statements:

(a) F(q, Φ) 6= ∅;
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(b) v ≥ 0, v ∈ −[Φ(Rn
+)]∗ =⇒ 〈q, v〉 ≥ 0;

(c) S(q, Φ) 6= ∅.

The following implications hold: (c) ⇐⇒ (a) =⇒ (b)

(i) if Φ is piecewise polyhedral c-homogeneous and superadditive. Moreover, if Rn
+ −

Φ(Rn
+) is convex and Φ(0) = {0} as well, then all the statements are equivalent;

(ii) if Φ is polyhedral λ-homogeneous. Moreover, if Φ(0) = {0} as well, then all the
statements are equivalent.

3.4 Sensibility and approximable multifunctions

Let us fix a piecewise polyhedral mapping Φ : Rn
+ ⇒ Rn, we define the

solution set mapping S : R
n

⇒ R
n by S(q)

.
= S(q, Φ). For such a mapping we

obtain the following Lipschitzian property.

Proposition 3.4.1 There exists a constant λ such that the solution set mapping S is
locally UL(λ) at each q0 ∈ Rn, i.e. there exists a neighborhood U of q0 such that

S(q) ⊆ S(q0) + λ
∥

∥q − q0
∥

∥B for all q ∈ U.

Proof. It is sufficient to prove that S(·) is a piecewise polyhedral multifunc-
tion and the result follows by applying Proposition 3.1.4. Indeed, by definition
gph Φ =

⋃m
i=1 Pi where each Pi ⊆ Rn × Rn is a polyhedral set. We define the set

Σ
.
=
{

(q, x, y) ∈ R
3n : x ≥ 0, y ∈ Φ(x), y + q ≥ 0, 〈y + q, x〉 = 0

}

.

In a standard way we can write Σ =
⋃m

i=1

⋃

∅6=α⊂I Xi,α where

Xi,α
.
= {(q, x, y) : (x, y) ∈ Pi, (y + q)α = 0, (y + q)ᾱ ≥ 0, xᾱ = 0}

is a polyhedral set, then Σ is piecewise polyhedral. Let Π : R3n → R2n be the
orthogonal projection defined by Π(q, x, y)

.
= (q, x), then gphS = Π(Σ), thus

gphS is a finite union of polyhedral sets.
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Now we investigate the continuity properties of the solution set mapping
S : Rn × X0 ⇒ Rn defined by (q, Φ) 7→ S(q, Φ).

Theorem 3.4.2 Let d > 0, c ∈ C be nondecreasing, q0 ∈ Rn, and Φ0 ∈ X0 be
piecewise polyhedral c-subhomogeneous such that Φ0(0) = {0}. If q0 ∈ [S(0, Φ0)]#,
then there exist positive scalars ε and L such that for all q ∈ Rn and all Φ ∈ X0

which are copositive piecewise polyhedral c-subhomogeneous such that Φ(0) = {0}
satisfying ‖q − q0‖ + |Φ − Φ0|+d < ε, the following inclusion holds

S(q, Φ) ⊆ S(q0, Φ0) + L
(∥

∥q − q0
∥

∥ + |Φ − Φ0|+d
)

B.

Proof. We proceed similarly as in [15, Th. 7.5.1]. Let x ∈ S(q, Φ), there exists
y ∈ Φ(x) such that y + q ≥ 0 and 〈y + q, x〉 = 0. Let y0 ∈ Φ0(x) be arbitrary and
let q̄ = q + (y − y0), then x ∈ S(q̄, Φ0). From y − y0 ∈ (Φ − Φ0)(x) we get that if
x = 0 then q̄ = q, otherwise by c-subhomogeneity

y − y0 ∈ (Φ − Φ0)(x) ⊆ c(‖x‖d)(Φ − Φ0)(
x

‖x‖d

), (3.5)

and by taking ε > 0 sufficiently small, from Theorem 2.7.5 the elements of
S(q, Φ) are uniformly bounded for all (q, Φ) as given, i.e. there exists r > 0

such that if x ∈ S(q, Φ), then ‖x‖d ≤ r and from (3.5) and (2.18) we obtain
∥

∥y − y0
∥

∥

d
≤ |Φ − Φ0|+d c(‖x‖d) ≤ |Φ − Φ0|+d c(r),

since c is nondecreasing, therefore q̄ can be made arbitrarily close to q by re-
stricting ε if necessary. Hence by the above theorem there exists a constant
λ > 0 such that S(q̄, Φ0) ⊆ S(q0, Φ0) + λ ‖q̄ − q0‖B. Moreover, as we proved
S(q, Φ) ⊆ S(q̄, Φ0) and by replacing q̄ we obtain

S(q, Φ) ⊆ S(q0, Φ0) + k (‖q − q0‖ + ‖y − y0‖d) B

⊆ S(q0, Φ0) + k
(

‖q − q0‖ + c(r)|Φ − Φ0|+d
)

B

the result follows by taking L = k max{1, c(r)}.

We now reformulate Theorem 2.6.7 which is concerned about approximable
mappings in terms of piecewise polyhedral approximations.
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Corollary 3.4.3 Let d > 0, c ∈ C, q ∈ Rn, and Φ = Φ0 + Ψ0 where Φ0 ∈ X and
Ψ0 ∈ X is approximable by copositive piecewise polyhedral uniformly bounded with
respect to the same set mappings from X0.

(a) If Φ0 ∈ GT(d) ∪ GT̃(d) is approximable by piecewise polyhedral c-subhomo-
geneous mappings from X0 and q ∈ [S(0, Φ0)]#, then S(q, Φ) is nonempty;

(b) If Φ0 is approximable by copositive piecewise polyhedral c-Moré mappings from
X0 and q ∈ [U0(Φ

0)]#, then S(q, Φ) is nonempty.

We now exhibit an instance where the above corollary is applicable. To do this
we recall the example given just after Remark 2.2.4. Let us consider Φ = Φ0+Ψ0

where Φ0(x) = Mx is a polyhedral multifunction and Ψ0(x) = ∂σC(x), where
C ⊆ Rn is a nonempty compact convex set with nonempty interior. As we now
from Chapter 1, there exists a sequence {Ck} of polytopes such that Ck → C,
and if Ψk(x) = ∂σCk(x) then Ψk is piecewise polyhedral (see Example 3.1.2(6))
and Ψk g→ Ψ0. Each Ψk is uniformly bounded with respect to the same set. In
addition, if 0 ∈ Ck, then Ψk is copositive.



Chapter 4

The linear complementarity
problem

In this chapter our main concern is the study of the linear complementarity
problem, denoted by LCP(q, M), and which reads as follow

find x̄ ≥ 0 such that Mx̄ + q ≥ 0, 〈Mx̄ + q, x̄〉 = 0, (LCP)

where M ∈ Rn×n and q ∈ Rn are given. One denotes by S(q, M) the solution set
to LCP(q, M) and by F(q, M) its feasible set, i.e., the set of all vector x ≥ 0 such
that Mx + q ≥ 0. As we know problem (LCP) is equivalent to the variational
inequality problem VIP(Rn

+, T0) with T0(x) = Mx + q (see [48])

find x̄ ≥ 0 such that 〈Mx̄ + q, y − x̄〉 ≥ 0, for all y ≥ 0. (VIP)

We proceed as in (MCP) and approximate the latter problem by the sequence
of problems VIP(Dk, T0)

find xk ∈ Dk such that 〈Mxk + q, y − xk〉 ≥ 0, for all y ∈ Dk. (VIPk)

Where d > 0 is a fixed positive vector of Rn, {σk} is an increasing sequence of
positive numbers converging to +∞, and

Dk
.
=
{

x ≥ 0 : 〈d, x〉 ≤ σk

}

.

63
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Since Dk is compact, convex and nonempty such a solution xk exists for each
k by Theorem 1.4.1. As in the preceding chapters we shall use asymptotical
properties of the sequence {xk} to obtain information on S(q, M).

It is clear that xk is a solution of (VIPk) if and only if xk ∈ Dk is an optimal
solution of the linear program

inf
x

[〈Mxk + q, x〉 : x ≥ 0, 〈d, x〉 ≤ σk]. (P)

Applying optimality conditions , we obtain that xk is a solution of (VIPk) if
and only if there exists θk ∈ R such that (xk, θk) is a solution of the problem

find xk ≥ 0 and θk ≥ 0, such that

Mxk + q + θkd ≥ 0, σk ≥ 〈d, xk〉 (LCPk)

〈Mxk + q + θkd, xk〉 = 0 and θk(σk − 〈d, xk〉) = 0,

or, equivalently, if (xk, θk) is a solution to the augmented linear complementar-
ity problem LCP(q̃k, M̃) in Rn+1, with

M̃ =

(

M d

−dT 0

)

, q̃k =

(

q

σk

)

.

Observe that 〈d, xk〉 < σk implies θk = 0. Furthermore, if θk = 0, then xk ∈
S(q, M).

As in Chapter 2, we denote by W the set of sequences {xk} in Rn
+ satisfying:

xk solves (VIPk) for each k and

〈d, xk〉 = σk for all k. (4.1)

The condition
lim inf

k
θk = 0

is used in [40] to derive various existence results suitable for G-matrices. We
recall that M is a G-matrix if for some d > 0, S(d, M) = {0}.
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One of the main goals of this chapter is to provide various equivalent condi-
tions in order to have θi = 0 for some i ∈ N whenever (4.1) holds. Surprisingly,
such conditions, given in terms of the asymptotic behavior of the normalized
approximate solutions, are also equivalent to lim inf

k
θk = 0.

Our approach, allows us to deal with copositive, semimonotone, q-pseudo-
monotone, G matrices among others (including a new class introduced in this
thesis), in a unified framework.

A different approach to the existence theory in LCP is applied in [17, 18], it
involves the investigation of the quadratic programming problem associated
to LCP(q, M). In this case, the problem reduces to finding conditions implying
that S(q, M) coincides with the set of KKT-points of such a quadratic problem
(the former set is always contained in the latter). An example of a LCP(q, M)

having KKT-points without being in S(q, M) to which our theory is applicable,
is exhibited in Section 4.6. In particular, our results neither contain nor are
contained in that of [18].

4.1 Asymptotic analysis and the general existence

theorem

A carefully description of the asymptotic behavior of the approximate nor-
malized solutions {xk} is given in the next lemma.

Lemma 4.1.1 (Basic Lemma for the LCP) Let d > 0 and {σk} be an increasing
sequence of positive numbers converging to +∞, and {xk} a sequence of solutions to
VIPk such that 〈d, xk〉 = σk for all k and xk

σk

→ v. Then

(a) v ≥ 0, 〈d, v〉 = 1, 〈Mv, v〉 ≤ 0, 〈Mv, y〉 ≥ ||y||d〈Mv, v〉 for all y ≥ 0. Conse-
quently v ∈ S(−〈Mv, v〉d, M);
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(b) there exists k0 ∈ N such that for all k ≥ k0, xk − σk

2
v ≥ 0 and

0 < ||xk − σk

2
v||d < ||xk||d.

Moreover, there exist ∅ 6= Jv ⊆ I , a subsequence {xkm} and m0 ∈ N such that

(c) for all m ≥ m0, 1
σkm

xkm ∈ ri(∆Jv
). Thus supp{xkm} = Jv for all m ≥ m0 (hence

supp{v} ⊆ Jv);

(d) 〈Mxkm + q, σkm
z − xkm〉 = 0 for all z ∈ ∆Jv

and all m ≥ m0;

(e) 〈Mv, z〉 = 〈Mv, v〉, for all z ∈ ∆Jv
.

Proof. This lemma is a consequence of (a)-(d) of the Basic Lemma from Chapter
2, since setting Φk(x) = Φ(x)

.
= Mx and Ψk = Ψ = 0, the former mappings are

usc and linear (homogeneous of degree γ = 1) whereas the latter are usc and
uniformly bounded respect to the same set.

Remark 4.1.2 In general, one cannot expect in the previous theorem that

〈Mv, v〉 = 0. (4.2)

Matrices having this property will play an important role in the existence theory for
problem (LCP). Indeed, Theorem 4.1.6 below presents various equivalent conditions
each one implying (4.2) and the non-emptiness of S(q, M). A suitable class of matrices
are those due to Garcı́a [33].

It is known that any linear complementarity problem LCP(q, M) always ad-
mits a solution which is an extreme point of the polyhedron Mx+ q ≥ 0, x ≥ 0,
provided a solution exists. Using this fact for LCP(q̃k, M̃), it is not difficult to
prove the following theorem.

Theorem 4.1.3 [15, Th. 3.7.9] Let {σk} be an increasing sequence of positive num-
bers converging to +∞ and let {(xk, θk)} be a sequence of solutions to problem LCPk
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such that 〈d, xk〉 = σk for all k ∈ N. Then, there exist a subsequence {σkm
}, along

with (possibly different) corresponding solutions {(x̄km , θ̄km
)} to LCP(q̃km , M̃) and

two vectors u and w such that

〈d, u〉 = 0, w ≥ 0, 〈d, w〉 = 1, and x̄km = u + σkm
w ∀ m. (4.3)

Remark 4.1.4 We have to point out that the sequence {(x̄km , θ̄km
)} may has nothing

to do with the original sequence {(xkm , θkm
)}. However, we may consider that the

subsequence found in the Basic Lemma also satisfies (4.3). Otherwise, we first apply
Theorem 4.1.3 to obtain a further sequence and afterwards use the Basic Lemma to get
a subsequence of the latter.

With this observation, it follows from (d) of the Basic Lemma that

〈Mxkm + q, xkm〉 = 〈Mxkm + q, σkm
v〉 = 〈Mxkm + q, σkm

z〉 ∀ z ∈ ∆Jv
. (4.4)

By using the second equality of (VIPk), (4.4) gives

θkm
= −〈Mxkm + q,

xkm

σkm

〉 = −〈Mxkm + q, v〉

= −〈xkm − σkm

2
v, (M + MT)v〉 − 〈q, v〉.

(4.5)

Moreover, (4.4) also implies

(Mxkm + q)Jv
= 〈Mxkm + q, v〉dJv

. (4.6)

On the other hand, by (a) and (e) of the Basic Lemma we obtain

〈Mv, v〉 ≤ 0, (Mv)Jv
≥ 〈Mv, v〉dJv

and (Mv)Jv
= 〈Mv, v〉dJv

. (4.7)

Furthermore, by substituting (4.3) (notice that w = v) in (4.4) and (4.5), and
using (e) of the Basic Lemma, we get for all m sufficiently large

σkm
[〈Mu + q, z − v〉 − 〈Mv, u〉] = 〈Mu + q, u〉 ∀ z ∈ ∆Jv

,
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θkm
= −〈Mu + q, v〉 − σkm

〈Mv, v〉. (4.8)

It follows for all z ∈ ∆Jv

〈Mu + q, z − v〉 = 〈Mv, u〉 and 〈Mu + q, u〉 = 0.

Hence
〈Mv, u〉 = 0, 〈Mu + q, u〉 = 0,

(Mu + q)Jv
= 〈Mu + q, v〉dJv

.
(4.9)

We also obtain

〈u, d〉 = 0, uJv
= 0, uJv\J > 0, J = supp{v} ⊆ Jv. (4.10)

Taking into account (4.9)–(4.10), the proof of the following lemma is straight-
forward.

Lemma 4.1.5 Let u ∈ Rn, v ∈ Rn
+ to be satisfying (4.9) and (4.10) and set J =

supp{v}. Then, the following assertions are equivalent:

(a) (Mu + q)i0 = 0 (> 0) for some i0 ∈ J ;

(b) (Mu + q)i = 0 (> 0) for all i ∈ J ;

(c) 〈Mu + q, v〉 = 0 (> 0);

(d) max{vi(Mu + q)i : i ∈ J} = 0 (> 0);

(e) min{vi(Mu + q)i : i ∈ J} = 0 (> 0).

The next theorem provides various equivalent conditions in order to have θi =

0 for some i ∈ N whenever 〈d, xk〉 = σk ∀ k.

Theorem 4.1.6 (Main Existence Theorem) Assume that there exists {(xk, θk)} a
sequence of solutions to LCPk such that 〈d, xk〉 = σk for all k, σk → +∞ and (4.3)

holds for w = v. Then, the following assertions are equivalent each other:
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(a) lim inf
k→+∞

θk = 0;

(b) ∃ m0, ∃ {θkm
}, θkm

= 0 ∀ m ≥ m0;

(c) ∃ m0, ∃ {xkm}, 〈Mxkm + q, v〉 ≥ 0 ∀ m ≥ m0;

(d) ∃ m0, ∃ {xkm}, such that ∀ m ≥ m0 ∃ ukm ≥ 0, 0 < 〈d, ukm〉 < 〈d, xkm〉 and
〈Mxkm + q, ukm − xkm〉 ≤ 0.

(e) ∃ m0, ∃ {xkm}, xkm ∈ S(q, M) ∀ m ≥ m0.

Under any of the conditions (a) to (e), one has

Mv ≥ 0, (Mv)Jv
= 0 for some ∅ 6= Jv ⊇ supp{v} ( thus 〈Mv, v〉 = 0). (4.11)

Proof. (a)⇒(b): We may suppose, up to a subsequence, that θk → 0. By assump-
tion, for some vector u, 〈d, u〉 = 0, v ≥ 0, 〈d, v〉 = 1, xk = u + σkv. From the
analysis carried out in Remark 4.1.4 , we get by (4.8)

θkm
= −〈Mu + q, v〉 − σkm

〈Mv, v〉,

and therefore 〈Mv, v〉 = 0 (hence (4.11) holds), which implies θkm
= −〈Mu +

q, v〉 = 0, proving that (b) holds.
(b) ⇒ (a) It is obvious.
(b) ⇔ (c) It is straightforward since θkm

= −〈Mxkm + q, v〉 by (4.5).
(c) ⇒ (d) For all k ≥ k0, (b) of the Basic Lemma implies uk = xk − σk

2
v ≥ 0 and

0 < 〈d, uk〉 < 〈d, xk〉. By hypothesis, for all m ≥ m0 such that km ≥ k0 we get

〈Mxkm + q, ukm − xkm〉 = −σkm

2
〈Mxkm + q, v〉 = 0.

(d) ⇒ (e) We assert that xkm ∈ S(q, M) for all m ≥ m0. Suppose to the contrary,
there exist m ≥ m0 and y0 ∈ Rn

+ \ Dkm
such that 〈Mxkm + q, y0 − xkm〉 < 0. As

0 < 〈d, ukm〉 < 〈d, xkm〉, there is t ∈ ]0, 1[ such that zt
.
= tukm + (1 − t)y0 ∈ Dkm

.
Thus 〈Mxkm + q, zt − xkm〉 ≥ 0, and then 〈Mxkm + q, y0 − xkm〉 ≥ 0, leading to a
contradiction.
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(e) ⇒ (a) Suppose there exist m0 and a subsequence {xkm} of {xk} such that
xkm ∈ S(q, M) for all m ≥ m0. Then, for all y ≥ 0, and m ≥ m0, 〈Mxkm +

q, y − xkm〉 ≥ 0. Taking y = xkm + v ≥ 0 (resp. y = xkm − σkm

2
v ≥ 0 for km such

that km ≥ k0) we obtain 〈Mxkm + q, v〉 ≥ 0 (resp. 〈Mxkm + q, v〉 ≤ 0). Hence
θkm

= −〈Mxkm + q, v〉 = 0.

It is worth mentioning that for the multivalued complementarity problem
(for the polyhedral case in particular) we do not have the above equivalence
even if (4.3) holds for the approximate solutions, see Example 2.2.2.

4.2 The class of Garcı́a matrices

In the spirit of using Theorem 4.1.6 we deduce that in order to {xkm} yields
a solution to (LCP), we have to exclude 〈Mv, v〉 < 0 in Lemma 4.1.1. A general
class of matrices having that property is that due to Garcı́a. This results from
(4.7) and Proposition 4.2.2 below.

Definition 4.2.1 It is said that M ∈ Rn×n is a G-matrix if there is p > 0 such that

S(p, M) = {0}. (4.12)

In this case we say that M is a G-matrix with respect to p, or simply M ∈ G(p).

Proposition 4.2.2 Let d > 0 and M ∈ Rn×n. The following assertions are equivalent
each other:

(a) M ∈ G(p);

(b) for any three index sets α, β and γ which partition I
.
= {1, . . . , n}, the following
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implication holds:

v ≥ 0, α = supp{v}, 〈d, v〉 = 1,

Mααvα − 〈Mv, v〉dα = 0,

Mβαvα − 〈Mv, v〉dβ = 0,

Mγαvα − 〈Mv, v〉dγ > 0.































=⇒ 〈Mv, v〉 ≥ 0; (4.13)

(c) the following implication holds

[v ≥ 0, 〈d, v〉 = 1, 〈Mv, v〉 < 0] ⇒ ∃i ∈ I : (Mv)i < 〈Mv, v〉di. (4.14)

Proof. (a) ⇒ (b) If on the contrary 〈Mv, v〉 < 0, from the left hand side of
(4.13), we have (Mv)α = 〈Mv, v〉dα, and (Mv)ᾱ ≥ 〈Mv, v〉dᾱ. It follows that
v ∈ S(τd, M) for τ = −〈Mv, v〉 > 0. Then v

τ
∈ S(d, M), which implies v = 0 if

(a) holds, a contradiction.
(b) ⇒ (c): Suppose that

v ≥ 0, 〈d, v〉 = 1, 〈Mv, v〉 < 0, and Mv ≥ 〈Mv, v〉d.

Then 0 6= v ∈ S(−〈Mv, v〉d, M). Set

α
.
= supp{v}, β

.
= {i ∈ I \ α : (Mv)i − 〈Mv, v〉di = 0}, γ = I \ (α ∪ β).

Thus, we can apply (4.13) to conclude that 〈Mv, v〉 ≥ 0, a contradiction.
(c) ⇒ (a): It is straightforward.

4.3 Classes of matrices

In the study of the existence of solutions to LCP(q, M) different classes of
matrices arise, some of the most important ones existing in the literature (see
[15] for instance), are listed in what follows.
We say that M ∈ Rn×n is
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• copositive if 〈Mx, x〉 ≥ 0 ∀ x ≥ 0;

• copositive-star if M is copositive and [x ∈ S(0, M) =⇒ MTx ≤ 0];

• copositive-plus if M is copositive and

[x ≥ 0, 〈Mx, x〉 = 0 =⇒ (M + MT)x = 0];

• semimonotone if S(p, M) = {0} for all p > 0, or equivalently,

x 6= 0, x ≥ 0 =⇒ ∃ i : xi > 0, (Mx)i ≥ 0;

• regular if there exists p > 0 such that S(τp, M) = {0} for all τ ≥ 0, in this
case we say that M is a regular matrix with respect to p;

• positive subdefinite if [〈Mx, x〉 < 0 =⇒ either MTx ≤ 0 or MTx ≥ 0];

• (given q ∈ R
n) q-pseudomonotone if given x, y ≥ 0,

〈Mx + q, y − x〉 ≥ 0 =⇒ 〈My + q, x − y〉 ≤ 0;

• (given q ∈ Rn) q-quasimonotone if given x, y ≥ 0,

〈Mx + q, y − x〉 > 0 =⇒ 〈My + q, x − y〉 ≤ 0;

• a #-matrix (condition (17) in [40]) if

x ∈ S(0, M) =⇒ (M + MT)x ≥ 0;

• a G#-matrix [40] if it is a # and G-matrix. Like in Definition 4.2.1, we
may also introduce the notion of a G#-matrix with respect to p > 0. In
this case we write M ∈ G#(p).

The asymptotic analysis carefully described in the Basic Lemma motivates
the following new class of matrices, which coincides with the class T(d) (for
each d > 0) from Chapter 2.
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Definition 4.3.1 Given d > 0, M ∈ Rn×n is said to be a T-matrix if one has

0 6= v ≥ 0, Mv ≥ 0,

(Mv)α = 0, supp{v} ⊆ α







=⇒ (MTv)α ≥ 0. (4.15)

We also say that M is a GT-matrix if it is a T-matrix and M ∈ G(d) for some d > 0,
in this case we write M ∈ GT(d).

Remark 4.3.2 (i) It is clear that every copositive-plus matrix is copositive-star, and
both classes do not coincide. The class of copositive matrices is contained strictly in the
class of semimonotone matrices, and the latter class is obviously a proper subset of the
G-matrices.
(ii) A q-pseudomonotone matrix is also q-quasimonotone, and in general, the reverse
implication is not true. We also have that every q-quasimonotone matrix is positive
subdefinite [17]. On the other hand, we have the following result:

• if M is q-pseudomonotone and F(q, M) 6= ∅, then M is copositive. In fact, for
x ∈ F(q, M), we have 〈Mx + q, x + tu − x〉 ≥ 0 ∀ t > 0, ∀ u ≥ 0. Then

0 ≤ 〈M(x + tu) + q, x + tu − x〉 = t〈Mx + q, u〉 + t2〈Mu, u〉 ∀ t > 0 ∀ u ≥ 0.

From which the copositivity of M follows.
Moreover, it is not difficult to prove the following (see also [17]):

• if M is q-quasimonotone and q 6= 0, then M is q-pseudomonotone.
• if M is q-quasimonotone and there exists x ≥ 0 so that Mx + q ≥ 0 and

Mx + q 6= 0, then M is copositive.

Remark 4.3.3 Matrices which are symmetric, copositive (because of (b) in Lemma
4.3.5 below) and those satisfying S(0, M) = {0}, are #-matrices. The new class of
T-matrices contains properly the #-matrices, as shown by

M =

(

0 −2

1 0

)

.
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It is also semimonotone and thus M ∈ G(d) for all d > 0. Whence, the class of G#-
matrices is also contained properly in the class of GT-matrices. Notice that M is not
copositive.

Example 4.3.4 We have to point out that there is no relationship between semimono-
tone and either T or #-matrices. In fact, the matrix

M1 =

(

1 −2

1 −1

)

,

is non semimonotone but it is a #-matrix and hence M1 is a T-matrix, whereas the
matrix

M2 =









0 −1 0

0 0 1

1 0 0









is semimonotone without being a T-matrix. Obviously M1 ∈ G( l1) and M2 ∈ G(d)

for all d > 0.
However, the matrix

M =

(

−1 0

0 1

)

,

is not a G-matrix (and thus it is not semimonotone) but it is a #-matrix, and hence is
a T-matrix.

The next two results describe the asymptotic behavior of the approximate so-
lutions to LCP(q, M) for G, copositive, and q-pseudomonotone matrices. Part
of such theorems are direct consequences of Basic Lemma(g) from Chapter 2
and Lemma 2.3.6.

Lemma 4.3.5 Let d > 0, {σk} be an increasing sequence of positive numbers con-
verging to +∞, and {xk} ∈ W be a sequence such that xk

σk

→ v. Then, in addition to
the properties established in the Basic Lemma for some {xkm} and Jv ⊇ supp{v} 6= ∅,
we also obtain
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(a) Mv ≥ 0 and (Mv)Jv
= 0 (hence 〈Mv, v〉 = 0), provided M ∈ G(d);

(b) Mv ≥ 0, (Mv)Jv
= 0 , 〈q, v〉 ≤ 0, and (M+MT)v ≥ 0, provided M is copositive.

Proof. (a): It follows from (4.13) and (a) of Lemma 4.1.1.
(b) Since every copositive matrix is a G(d)-matrix, it only remains to prove that
〈q, v〉 ≤ 0. By the choice of {xk}, we have 〈Mxk + q, y − xk〉 ≥ 0 for all y ∈ Dk.
By taking y = 0 ∈ Dk in (VIPk), dividing it by σk, and letting k goes +∞, we
get 〈q, v〉 ≤ 0. By splitting the inequality 〈M(x+ tv), x+ tv〉 ≥ 0 for fixed x ≥ 0,
and letting t → +∞, we obtain (M + MT)v ≥ 0.

Lemma 4.3.6 Let d > 0, {σk} be an increasing sequence of positive numbers con-
verging to +∞, q ∈ Rn, M be q-pseudomonotone, and {xk} ∈ W such that xk

σk

→ v.
Then, in addition to the properties established in the Basic Lemma for some {xkm} and
Jv ⊇ supp{v} 6= ∅, we also obtain

(a) MTv ≤ 0 and 〈q, v〉 ≤ 0;

(b) 〈M(z − xkm

σkm

), z − xkm

σkm

〉 ≥ 0 and 〈q, v〉 ≥ 〈q, xkm

σkm

〉 for all z ∈ ∆Jv
, m ≥ m0.

Proof. (a): By the choice of xk, the q-pseudomonotonicity implies

〈My + q, xk − y〉 ≤ 0 ∀ y ∈ Dk. (4.16)

For any y ≥ 0 there exists ky such that for all k ≥ ky, y ∈ Dk and 〈My + q, xk −
y〉 ≤ 0. If we divide it by σk and take the limit, we obtain 〈My + q, v〉 ≤ 0 for
all y ≥ 0. This implies that MTv ≤ 0 and 〈q, v〉 ≤ 0.
In the Basic Lemma, we proved the existence of subsequences {xkm}, {σkm

},
m0 and Jv ⊆ I such that 1

σkm

xkm ∈ ri(∆Jv
) with v ∈ ∆Jv

for all m ≥ m0. We
now prove (b). In case ∆Jv

is a singleton, ∆Jv
= {v}. Then 1

σkm

xkm = v for all
m ≥ m0, and so all the assertions hold. We analyze the case when ∆jv

is not
a singleton. For m ≥ m0 and z ∈ ∆Jv

, we proceed as in the proof of the Basic
Lemma, to get the existence of εz > 0, such that for all t, |t| < εz:

yt
.
=

xkm

σkm

+ t

(

z − xkm

σkm

)

∈ ∆Jv
.
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We substitute y = σkm
yt in (4.16), and obtain

−tσkm
〈Mxkm + q, z − xkm

σkm

〉 − t2(σkm
)2〈M(z − xkm

σkm

), z − xkm

σkm

〉 ≤ 0, ∀ |t| < εz.

We use (d) of the same Lemma to conclude that −t2σkm
〈M(z− xkm

σkm

), z− xkm

σkm

〉 ≤ 0

for all m ≥ m0, which proves the first part of (b). By the q-pseudomonotonicity
again

〈M(σkm
v) + q, xkm − σkm

v〉 ≤ 0.

We use (e) of the same Lemma to conclude 〈q, xkm − σkm
v〉 ≤ 0.

4.4 Estimates for [S(q,M)]∞

We introduce the following closed cones which are not necessarily convex
(except Vq(M)):

Wq(M)
.
=
{

v ≥ 0 : Mv ≥ 0, 〈Mv, v〉 = 0, 〈q, v〉 ≤ 0
}

;

V0(M)
.
=
{

v ≥ 0 : 〈Mv, v〉 = 0, MTv ≤ 0, 〈q, v〉 ≤ 0, Mv ≥ 0
}

;

Vq(M)
.
=
{

v ≥ 0 : MTv ≤ 0, 〈q, v〉 ≤ 0
}

;

A0(M)
.
=
{

v ≥ 0 : Mv ≥ 0, 〈Mv, v〉 = 0, (M + MT)v ≥ 0, 〈q, v〉 ≤ 0
}

.

Clearly W0(M) = S(0, M) and V0(M) ⊆ Vq(M).

Theorem 4.4.1 Let q ∈ Rn and M ∈ Rn×n. Then

(a) [S(q, M)]∞ ⊆ S(0, M);

(b) [S(q, M)]∞ ⊆ Wq(M) if M is a T-matrix;

(c) [S(q, M)]∞ ⊆ A0(M) if M is copositive;

(d) S(q, M)+λWq(M) = S(q, M) ∀λ ≥ 0 if M is copositive-plus and S(q, M) 6= ∅.
Moreover, [S(q, M)]∞ = Sq(M) = [S(q, M)]∞ ∩ q⊥;
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(e) [S(q, M)]∞ = Vq(M) = V0(M) if M is q-pseudomonotone, S(q, M) 6= ∅.

Proof. (a)-(b) are consequences of Proposition 2.4.1(a)-(b) since S(0, M) and
Wq(M) are cones and if M is a T-matrix, then Φ(x) = Mx is T(d) for each
d > 0.
(c): If v ∈ [S(q, M)]∞ then v ∈ Wq(M) since a copositive matrix is a T-matrix.
Moreover, by copositivity again 〈M(x + tv), x + tv〉 ≥ 0 for all x ≥ 0, t ≥ 0, and
letting t → +∞, we obtain (M + MT)v ≥ 0.
(d): Let v ∈ Wq(M)\{0} and let x̄ ∈ S(q, M). Then MTv ≤ 0 by the copositivity-
plus of M and 〈Mx̄+q, y−x̄〉 ≥ 0 for all y ≥ 0. By taking y = v+x̄ ≥ 0 we obtain
〈Mx̄ + q, v〉 ≥ 0, which together with MTv ≤ 0 imply 〈Mx̄, v〉 = 0 = 〈q, v〉.
Again by copositivity-plus of M we have 〈Mv, x̄〉 = 0. Using these facts it is
not difficult to check that x̄ + λv ∈ S(q, M) for all λ ≥ 0, proving one inclusion
of the first equality; the other inclusion always holds since 0 ∈ Wq(M). It also
implies that (S(q, M))∞ ∩ {q}⊥ = Wq(M).
(e): The first equality is a consequence of Proposition 2.4.1. The other equality
results from (a) since M is copositive by Remark 4.3.2.

It is worth noting that here we estimate the asymptotic cone of the solution
set instead of the d-asymptotic cone, due to the linearity of the mapping.

Remark 4.4.2 According to (a) of the previous theorem, the strongest condition im-
plying the non-existence of solution rays for LCP(q, M), is S(0, M) = {0}. The same
theorem provides weaker conditions when some specializations on M are made.

Example 4.4.3 The inclusions in the preceding theorem may be strict.

(i) Take for instance M =

(

0 1

0 1

)

, and q =

(

−1
2

−1

)

. Clearly S(q, M) = {(0, 1)T},

so [S(q, M)]∞ = {0}, and S(0, M) = Wq(M) = {(v1, 0)T : v1 ≥ 0}. Notice that M

is copositive, and therefore (4.15) is satisfied (see (b) in Lemma 4.3.5). This instance
also shows that the inclusion S(q, M) ⊆ S(q, M) + λWq(M) may be strict if M is
not copositive-plus.
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(ii) The first equality in (d) of the above theorem may induce us to conclude that
S(q, M) is convex if M is copositive-plus. This is not so. Indeed, let us consider

M =

(

1 4

4 1

)

, q =

(

−1

−1

)

.

Simple computations show that M is copositive-plus, and

S(0, M) = {0} = Wq(M), S(q, M) = {(1, 0)T,
3

15
(1, 1)T, (0, 1)T}.

4.5 Main existence and sensitivity results

In this section we shall present general existence results for larger classes
of matrices than those considered in the literature of Linear Complementarity.
In particular, extensions and generalizations of the main results in [40] will be
established. Moreover, new characterizations of regular matrices are provided,
and sensivity results for GT and q-pseudomonotone matrices are proved as
well.

Motivated by Remark 4.1.4, given d, q, M , we introduce the following defi-
nition which is a refinement of a homogeneous pair introduced in [40].

Definition 4.5.1 We say that (u, v) is a (d, q, M)-homogeneous pair if the follow-
ing conditions in (4.17) are satisfied: (J = supp{v})

v ≥ 0, Mv ≥ 0, (Mv)α = 0, J ⊆ α,

〈Mv, u〉 = 0, 〈Mu + q, u〉 = 0, 〈u, d〉 = 0,

u + λv ≥ 0, for some λ > 0,

〈d, v〉(Mu + q)α = 〈Mu + q, v〉dα.































(4.17)

By Lemma 4.1.5, the next theorem strengthens Theorem 7 in [40].

Theorem 4.5.2 Let d > 0, q ∈ Rn and M ∈ Rn×n be a G(d)-matrix.
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(a) Assume that any (J
.
= supp{v}) (d, q, M)-homogeneous pair

(u, v), v 6= 0, satisfies (Mu + q)i0 ≥ 0 for some i0 ∈ J, (4.18)

then S(q, M) 6= ∅ (possibly unbounded);

(b) If (4.18) holds with strict inequality “>”, then S(q, M) is nonempty and compact.

Proof.(a): For a given sequence σk → +∞, we consider the sequence {xk} of
solutions to (VIPk). If there exists k ∈ N such that ||xk||d < σk, we already know
that xk ∈ S(q, M). If, on the contrary, for all k ∈ N, ||xk||d = σk, we may suppose
that {xk} satisfies (4.3) and the assumptions of Lemma 4.3.5. Since M is a G(d)-
matrix, we obtain with the notations of the same lemma, that 〈Mv, v〉 = 0,
Mv ≥ 0, ||v||d = 1, (Mv)Jv

= 0, where

J
.
= supp{v} ⊆ Jv = supp{xkm} ∀ m ≥ m0.

By (4.7), (4.9) and (4.10), (u, v) is a (d, q, M)-homogeneous pair. Moreover, from
(4.8) it follows θkm

= −〈Mu + q, v〉 ≥ 0. Thus by Lemma 4.1.5 and (4.17) with
α = Jv, we obtain θkm

= 0 thus xkm ∈ S(q, M).
(b): The nonemptiness follows from (a) and the boundedness is a consequence
of the reasoning in (a) along with Lemma 4.1.5.

Remark 4.5.3 (i) Condition (4.18) holds vacuously if S(0, M) = {0}. Thus the as-
sumptions of Theorem 4.5.2 hold if M is a regular matrix with respect to d.
(ii) Equivalent conditions satisfying the requirement (Mu + q)i0 ≥ 0 for some i0 in
(4.18) for any (d, q, M)-homogeneous pair, are exhibited in Lemma 4.1.5.

We observe that (see Chapter 1)

int [S(0, M)]∗ = [S(0, M)]# (4.19)

The next theorem, which applies to the example exhibited in Remark 4.3.3,
extends Theorem 9 in [40]. Such a theorem has its origin in a result due to
Lemke [52, p. 114] valid for copositive matrices.
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Theorem 4.5.4 Let d > 0 and M ∈ GT(d):

(a) if q ∈ [S(0, M)]∗, then S(q, M) is nonempty (possibly unbounded);

(b) if q ∈ int[S(0, M)]∗ or equivalently, when Wq(M) = {0}, then S(q, M) is
nonempty and compact.

Proof. It is a consequence of Theorem 3.3.1 for Φ(x) = Mx and Ψ = 0, since by
hypothesis Φ ∈ GTp(d) and it is linear (homogeneous of degree γ = 1).

We now exhibit three instances showing that (a) in the previous theorem
may be false if either M is not a T-matrix, or q ∈ (S(0, M))∗ or M is not a
G-matrix. The fourth instance shows that condition q ∈ int(S(0, M))∗ is not
necessary for the boundedness of S(q, M).

Example 4.5.5 (i) Let us consider the semimonotone (hence a G-) matrix M2 given
in Example 4.3.4 which is not a T-matrix, and q = (1,−1, 1)T. Clearly S(0, M2) =

{(x1, 0, x3)
T : x1 ≥ 0, x3 ≥ 0, x1x3 = 0}. Thus, q ∈ [S(0, M2)]

∗ but S(q, M2) = ∅.
(ii) We now consider the GT(d)-matrix (for all d > 0) of Remark 4.3.3 and q =

(−1, 1)T. Clearly S(0, M) = {(x1, 0)T : x1 ≥ 0}, q 6∈ [S(0, M)]∗ and S(q, M) = ∅.
(iii) Take the T-matrix M ∈ R2×2 given in Example 4.3.4, which is not a G-matrix,
and consider q = (−1, 0)T. Clearly S(0, M) = {0} and S(q, M) = ∅.
(iv) Let us consider the matrix M considered in (i) of Example 4.4.3 which is copositive
(hence a GT(d)-matrix for all d > 0) and S(0, M) = {(v1, 0)T : v1 ≥ 0}. Take
q = (0,−1)T 6∈ int[S(0, M)]∗. Clearly S(q, M) = {(0, 1)T}. Notice that M is not
copositive-star.

We say that LCP(q, M) is feasible if F(q, M) 6= ∅, and is strictly feasible if the
interior of F(q, M) is nonempty, that is, if

{

x > 0 : Mx + q > 0
}

6= ∅, (4.20)

or equivalently, q ∈ int(Rn
+)−M(int(Rn

+)). As a consequence of Farkas Lemma

F(q, M) 6= ∅ ⇐⇒ [x ≥ 0, MTx ≤ 0 =⇒ 〈q, x〉 ≥ 0]. (4.21)
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Given d > 0, analogously as in Section 2.4, the system

v ≥ 0, 〈d, v〉 = 1, 〈Mv, v〉 ≤ 0, v ∈ S(−〈Mv, v〉d, M), (4.22)

found in the Basic Lemma, will play a fundamental role in characterizing the
nonemptiness and boundedness of S(q, M) for all q ∈ Rn. It is easy to check
that the inconsistency of (4.22) is equivalent to the inconsistency of the follwing
system:

(Mv)i+tdi = 0 i ∈ supp{v},
(Mv)i+tdi ≥ 0 i 6∈ supp{v},

0 6=v ≥ 0, t ≥ 0.

The next theorem provides new characterizations of regular matrices.

Theorem 4.5.6 Let d > 0 and M ∈ Rn×n. The following assertions are equivalent:

(a) the system (4.22) is inconsistent;

(b) M is a G(d)-matrix and S(q, M) is nonempty and compact for all q ∈ Rn;

(c) M is regular with respect to d.

Proof. It follows from the equivalence (a)-(d)-(e) of Theorem 2.5.14 for Φ(x) =

Mx, which is linear (homogeneous of degree γ = 1).

By rewriting the latter theorem we get the next corollary which extends an
earlier result valid for copositive-star matrices [35].

Corollary 4.5.7 Let d > 0 and M ∈ Rn×n be a G(d)-matrix. The following assertions
are equivalent:

(a) the system (4.22) is inconsistent;

(b) S(q, M) is nonempty and compact for all q ∈ Rn;

(c) S(0, M) = {0}.
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We now present some new equivalences to the inconsistency of (4.22) within
the class of positive subdefinite matrices.

Theorem 4.5.8 Let d > 0 and M ∈ Rn×n be a positive subdefinite matrix. The fol-
lowing assertions are equivalent:

(a) the system (4.22) is inconsistent;

(b) S(q, M) is nonempty and compact for all q ∈ Rn;

(c) S(0, M) = {0} and F(q, M) 6= ∅ for all q ∈ Rn.

Proof. (a) ⇒ (b) is part of the preceding theorem and (b) ⇒ (c) is obvious. The
remaining implication is a consequence of the definition of positive subdefi-
niteness and (4.21) together with (c).

Proposition 4.5.9 Let M ∈ Rn×n, q ∈ Rn. Then,

int(F(q, M)) 6= ∅ ⇐⇒ q ∈ int(Rn
+ − M(Rn

+)).

Proof. It results from (4.20) and int(Rn
+ − M(Rn

+)) = Rn
++ − M(Rn

++) (see [68,
Prop. 2.44]).

In [35], Gowda shows that for a copositive matrix M , [S(0, M)]∗ = Rn
+ −

M(Rn
+) if and only if [x ∈ S(0, M) =⇒ MTx ≤ 0]. In other words, when M is

copositive: [S(0, M)]∗ = Rn
+ − M(Rn

+) if and only if M is copositive-star. In [40,
Theorem 10], the same result is extended to G#-matrices. We further extend it
to the larger class of GT-matrices, by establishing a necessary and sufficient
condition for the cone [S(0, M)]∗ to equal the set of feasible vectors q, i.e., the
set Rn

+ − M(Rn
+). The proof of such a result is essentially the same as in [40].

Theorem 4.5.10 Let d > 0, M ∈ Rn×n, and q ∈ Rn. Assume M ∈ GT(d). Then the
following assertions are equivalent:

(a) [S(0, M)]∗ = Rn
+ − M(Rn

+);
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(b) x ∈ S(0, M) =⇒ MTx ≤ 0.

Proof. Set N = {x ≥ 0 : MTx ≤ 0}. Then N ∗ = Rn
+ − M(Rn

+) and hence the re-
sult amounts to saying that [S(0, M)]∗ = N∗ ⇐⇒ S(0, M) ⊆ N ]. If S(0, M) ⊆ N

then N∗ ⊆ [S(0, M)]∗. (a) of Theorem 4.5.4 implies [S(0, M)]∗ ⊆ N∗. Conse-
quently [S(0, M)]∗ = Rn

+ − M(Rn
+). Suppose the latter equality holds. Then

N = N∗∗ = [S(0, M)]∗∗ ⊇ S(0, M).

The next theorem and corollary are sensitivity results for LCP(q, M) whose
data are small perturbations of a given pair (q0, M0). It is a extension to the
class of GT-matrices of Theorem 11 in [40]. The proof is exactly the same.

Theorem 4.5.11 Let M 0 ∈ R
n×n and q0 ∈ int[S(0, M0)]∗. Then, there exists ε > 0,

such that for all vectors q and matrices M satisfying

||q − q0|| + ||M − M0|| < ε,

one has q ∈ int[S(0, M)]∗.

Proof. Suppose on the contrary, that there exist sequences {qk, Mk, vk} satisfy-
ing qk → q0, Mk → M0, 0 6= vk, vk ∈ S(0, Mk), 〈qk, vk〉 ≤ 0. We may assume
that ||vk|| = 1 and therefore, up to a subsequence, vk → v, ||v|| = 1. Whence
0 6= v ∈ S(0, M 0) and 〈q0, v〉 ≤ 0, which contradicts the choice of q0.

We obtain the following corollary as a consequence of Theorem 4.5.4 and the
above theorem.

Corollary 4.5.12 Let M 0 ∈ Rn×n, q0 ∈ int[S(0, M0)]∗. Then, there exists ε > 0,
such that for all vectors q and GT-matrices M satisfying

||q − q0|| + ||M − M0|| < ε,

S(q, M) is a nonempty compact set.
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It is worth mentioning that the last two results are consequences of Proposi-
tion 2.7.3 and Theorem 2.7.4 respectively, since the mappings Φ(x) = Mx for
M ∈ Rn×n are homogeneous of degree γ = 1, Φ(0) = {0} and ‖M − M 0‖d =

|M − M0|+d . In the same fashion the next result is a consequence of the above
results, Theorems 2.7.5, 3.4.2, and the relationship between the matrix norms
‖·‖ and ‖·‖d.

Corollary 4.5.13 [15, Th. 7.5.1] Let M 0 ∈ Rn×n, q0 ∈ int[S(0, M0)]∗. Then, there
exist positive scalars ε, r and L, such that for all vectors q and copositive matrices M

satisfying ||q − q0|| + ||M − M0|| < ε, the following statements hold:

(a) S(q, M) is a nonempty compact set;

(b) ‖S(q, M)‖ ≤ r;

(c) S(q, M) ⊆ S(q0, M0) + L (‖q − q0‖ + ‖M − M0‖) B.

A particular case of Theorem 4.5.4 is given in the next corollary, which sup-
plements some earlier results appeared in [36].

Corollary 4.5.14 Let q ∈ Rn and M ∈ Rn×n be a copositive-star matrix. Then

(a) int(F(q, M)) 6= ∅ ⇐⇒ q ∈ int[S(0, M)]∗ =⇒ S(q, M) 6= ∅ and compact;

(b) q ∈ [S(0, M)]∗ ⇐⇒ S(q, M) 6= ∅ ⇐⇒ F(q, M) 6= ∅.

Proof. (a): The first equivalence is a consequence of Proposition 4.5.9 and The-
orem 4.5.10, and the remaining implication follows from Theorem 4.5.4.
(b): The first implication “⇒” results from Theorem 4.5.4(a) since every copos-
itive matrix is GT(d) for all d > 0 by Remark 4.3.3 and (b) of Lemma 4.3.5. The
second implication “⇒” is straightforward, and the remaining implication to
close the cycle follows from (4.21) and by taking into account that MTv ≤ 0 for
all v ∈ S(0, M) whenever M is copositive-star, since in this case the feasibility
implies 〈q, v〉 ≥ 0, i.e., q ∈ [S(0, M)]∗.
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Part of the following corollary was already established in [36]. Its proof
follows from the preceding corollary and (d) of Theorem 4.4.1.

Corollary 4.5.15 Let q ∈ Rn and M ∈ Rn×n be a copositive-plus matrix. Then,

int(F(q, M)) 6= ∅ ⇐⇒ q ∈ int[S(0, M)]∗ ⇐⇒ S(q, M) 6= ∅ and compact.

The equivalence between (a) and (c) of the next theorem was proved in Theo-
rem 6 of [38]. A condition guaranteeing q-pseudomonotonicity is given in (ii)
of Remark 4.3.2.

Theorem 4.5.16 Let q ∈ Rn and M ∈ Rn×n be a q-pseudomonotone matrix. The
following assertions are equivalent:

(a) F(q, M) 6= ∅;

(b) x ≥ 0, MTx ≤ 0, 〈q, x〉 ≤ 0 =⇒ 〈q, x〉 = 0;

(c) S(q, M) 6= ∅ (it is already closed and convex).

Proof. It follows from Corollary 3.3.6(ii) for Φ(x) = Mx, which is linear (homo-
geneous of degree γ = 1), and the discussion after (2.7).

Part of the next theorem was first observed in [16].

Theorem 4.5.17 Let q ∈ Rn and M ∈ Rn×n be a q-pseudomonotone matrix. The
following assertions are equivalent:

(a) F(q, M) 6= ∅ and [x ≥ 0, MTx ≤ 0, 〈q, x〉 = 0 =⇒ x = 0];

(b) S(q, M) is nonempty and compact;

(c) x ≥ 0, MTx ≤ 0, 〈q, x〉 ≤ 0 =⇒ x = 0;

(d) Fs(q, M)) 6= ∅;
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(e) int(F(q, M)) 6= ∅.

Proof. Taking into account (4.21), easy computations show that (a) and (c) are
equivalent each other. The equivalence between (b)-(c)-(d) follows from Corol-
lary 3.3.5 for Φ(x) = Mx, which is polyhedral. Clearly (d) is equivalent to (e).

There is a counterpart to Theorem 4.5.11 under the pseudomonotonicity
assumption. This result is new.

Theorem 4.5.18 Let M 0 ∈ Rn×n and q0 ∈ Rn such that

v ≥ 0, (M0)Tv ≤ 0, 〈q0, v〉 ≤ 0 =⇒ v = 0. (4.23)

Then, there exists ε > 0, such that for all vectors q and matrices M satisfying

||q − q0|| + ||M − M0|| < ε,

one has v ≥ 0, MTv ≤ 0, 〈q, v〉 ≤ 0 =⇒ v = 0.

Proof. If on the contrary there exist sequences {qk, Mk, vk}, satisfying qk → q0,
Mk → M0, 0 6= vk ≥ 0, (Mk)Tvk ≤ 0, 〈qk, vk〉 ≤ 0. We may assume, as before,
that ||vk|| = 1 and therefore, up to a subsequence, vk → v, ||v|| = 1, and hence
〈q0, v〉 ≤ 0 and (M 0)Tv ≤ 0. This contradicts the choice of q0.

The following proof was provided by one of the referees of [30]: condition
(4.23) is equivalent to (by a theorem of alternative)

∃ u ≥ 0, ∃ t ≥ 0 : M0u + tq0 ≥ l1.

Clearly, for (M, q) close enough to (M 0, q0), it holds Mu + tq ≥ 1
2
l1, from which

the theorem follows.
We obtain the following corollary as a consequence of Theorems 4.5.17 and
4.5.18.
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Corollary 4.5.19 Let M 0 ∈ Rn×n and q0 ∈ Rn such that

v ≥ 0, (M0)Tv ≤ 0, 〈q0, v〉 ≤ 0 =⇒ v = 0.

Then, there exists ε > 0, such that for all vectors q and matrices M which are q-
pseudomonotone satisfying

||q − q0|| + ||M − M0|| < ε,

S(q, M) is a nonempty and compact set.

4.6 Further remarks

We presented various equivalent existence results valid for general matri-
ces based on the asymptotic description of solutions to approximate varia-
tional inequality problems. One of these existence results ((a) of Theorem 4.1.6),
regarding the limit of θk, is due to Gowda and Pang ([40]), but the condi-
tion (c), which is used in our proof methodology, regards its exact expression:
θk = −〈Mxk + q, v〉. This fact is strongly exploited to obtain more applicable
existence results (Theorems 4.5.2 and 4.5.4). It allowed us to extend the main re-
sults of [40] (including some sensitivity ones) to the larger class of GT-matrices
(a subfamily of the G-matrices), which includes situations in which there are
KKT-points (of the quadratic programming problem associated to LCP(q, M))
that are not solutions to LCP(q, M). To see this simply consider the matrix M1

(belonging to GT( l1)) of Example 4.3.4 and q = (1, 1)T ∈ [S(0, M1)]
∗. Then it

is not difficult to check that (0, 1
2
)T is a KKT-point but is not in S(q, M1). Thus,

our existence results neither contain nor are contained in that of [18].
The following existence theorem is the main result in [40]. It follows from

(d) of Theorem 4.1.6 (take for instance ukm = xkm − γmy for suitable γm > 0).

Theorem 4.6.1 [40, Th. 3] Let q ∈ Rn and M ∈ Rn×n. Suppose that there exists
a vector d > 0 such that for any three index sets α, β and γ which partition I , the
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following implication holds:

vα > 0, τ ≥ 0,

Mααvα + τdα = 0,

Mβαvα + τdβ = 0,

Mγαvα + τdγ > 0.































=⇒































∀ β̄ ⊆ β, ∃ 0 6= (yα, yβ̄) ≥ 0 such that

yT
αMαα + yT

β̄ Mβ̄α = 0,

yT
αMαβ̄ + yT

β̄
Mβ̄β̄ ≥ 0,

yT
α qα + yT

β̄ qβ̄ ≥ 0.

(4.24)

Then S(q, M) is nonempty.

In spite of the generality of its formulation, the previous theorem is applicable
only to G-matrices. More precisely, we show that condition (4.24) implies that
M is a G(d)-matrix. Indeed, let v ∈ S(d, M), v 6= 0. One can write α

.
= supp{v},

β
.
= {i ∈ I \ α : (Mv)i + di = 0}, γ = I \ (α ∪ β). Hence, if (4.24) holds (with

τ = 1), then for β̄ = β there exists 0 6= (yα, yβ) ≥ 0 such that yT
α Mαα + yT

β Mβα =

0, yT
αMαβ + yT

β Mββ ≥ 0, or equivalently, (Mα∪β,α)Tyα∪β ≥ 0. The left-hand
side of (4.24) gives Mα∪β,αvα + dα∪β = 0. Thus 0 = 〈Mα∪β,αvα + dα∪β, yα∪β〉 =

〈vα, (Mα∪β,α)Tyα∪β〉 + 〈dα∪β, yα∪β〉 > 0, which is a contradiction. Consequently
S(d, M) = {0}. Therefore, the only τ ≥ 0 for which implication (4.24) holds is
τ = 0.

As a consequence, the above theorem is equivalent (in the sense that one
can be derived from the other) to the following result

Theorem 4.6.2 [40, Th. 4] Let M be a G-matrix. Suppose that for any index sets
α, β and γ as stated in the above theorem, the following implication holds:

vα > 0,

Mααvα = 0,

Mβαvα = 0,

Mγαvα > 0.































=⇒































∀ β̄ ⊆ β, ∃ 0 6= (yα, yβ̄) ≥ 0 such that

yT
αMαα + yT

β̄ Mβ̄α = 0,

yT
αMαβ̄ + yT

β̄
Mβ̄β̄ ≥ 0,

yT
α qα + yT

β̄ qβ̄ ≥ 0.

(4.25)

Then S(q, M) is nonempty.
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For the sake of completeness we establish various equivalent conditions to
the non-emptiness of S(q, M) when M is q-pseudomonotone. In order to do
that, we first state such conditions:

(C0) if the sequence xk ≥ 0, ||xk|| → +∞ is such that xk

||xk||
→ v ∈ V and for

all y ≥ 0, there exists ky such that 〈Mxk + q, y − xk〉 ≥ 0 when k ≥ ky

then, for k sufficiently large, there exists u ≥ 0 such that ||u|| < ||xk|| and
〈Mxk + q, u − xk〉 ≤ 0.

(C1) [48] there exists a compact set ∅ 6= D ⊆ Rn
+ such that ∀ x ∈ Rn

+\D, ∃ y ∈ D:
〈Mx + q, y − x〉 ≤ 0.

(C2) [19] there exist u ≥ 0 and r > ||u|| such that 〈Mx + q, u − x〉 ≤ 0 ∀ x ≥ 0,
||x|| = r.

(C3) [19] there exists r > 0 such that ∀ x ≥ 0, ||x|| = r there exists u ≥ 0,
||u|| < r: 〈Mx + q, u − x〉 ≤ 0.

Clearly (C1) =⇒ (C0) and (C2) =⇒ (C3).

In [29], when equilibrium problems are specialized to linear complementarity
problems, the following theorem is proved. Compare with Theorem 2.2 in [19].

Theorem 4.6.3 [29] Let q ∈ R
n and M ∈ R

n×n be q-pseudomonotone. Then, the
following assertions are equivalent:

(a) (C0) is satisfied;

(b) S(q, M) 6= ∅ (it is already closed and convex);

(c) (C1) is satisfied;

(d) (C2) is satisfied;

(e) (C3) is satisfied.
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In the case when M is positive subdefinite, the next result is obtained.

Corollary 4.6.4 [56, Th. 3.5] Let q ∈ Rn and M ∈ Rn×n be positive subdefinite with
rank greater or equal than two. Then

F(q, M) 6= ∅ ⇐⇒ S(q, M) 6= ∅.

Proof. In Theorem 2.2. and Lemma 3.2 of [56] is proved that for such a matrix
M at least one of the following conditions holds: M is copositive-star or M ≤ 0.
In the first case the result follows from Corollary 4.5.14; while when M ≤ 0,
the feasibility implies q ≥ 0, thus 0 ∈ S(q, M).

If the rank of M is equal to one, the previous corollary may be false as shown
in [56].



Chapter 5

On Q-matrices

A matrix M is said to be a Q-matrix, or M ∈ Q, if S(q, M) 6= ∅ for all q ∈ Rn.
Strict copositive matrices, nonnegative matrices with positive diagonal entries
and copositive-plus matrices with a positive column vector are examples of Q-
matrices (see [60]). This class has proved to be very important from algorithmic
view’s point. Indeed, many iterative methods for solving the LCP(q, M) can be
described by means of a matrix splitting (see [15, Ch. 5]). To do this, we split the
matrix M as the sum of two matrices B and C, i.e. M = B + C. For such
a splitting (B, C) of M , the LCP(q, M) can be transformed into a fixed-point
problem; indeed, for an arbitrary vector z, we may consider the LCP(qz, B)

where qz .
= q + Cz and the multifunction z 7→ Ω(z)

.
= S(qz, B) which asso-

ciates with this vector z the solution set of the LCP(qz, B). Clearly z solves the
LCP(q, M) if and only if z is a fixed-point of Ω(·). In terms of this fixed-point
formulation, the following iterative method for solving the LCP(q, M) may be
introduced.

Algorithm.(The Basic Splitting Method)
Step 0: Initialization. Let z0 be an arbitrary positive vector, set

k = 0;

Step 1: General iteration. Given zk, solve the LCP(qk, B) where

91
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qk = q + Czk and let zk+1 be an arbitrary solution;

Step 2: Test for termination. If zk+1 satisfies a prescribed stop-

ping rule, terminate. Otherwise, return to Step 1

with k replaced by k + 1.

In order for this algorithm to be well-defined each subproblem LCP(qk, B)

must have at least one solution, for this reason we must assume that B is a Q-
matrix. It is worth mentioning that the computational complexity of checking
whether a given matrix B is a Q-matrix is not known (to our best knowledge).
In [60, Ex. 3.87] is provided a finite algorithm for checking the Q-property and
when it is applied on a matrix of order n, this algorithm requires the solution
of at most n2n systems of linear inequalities, hence this method though finite,
is utterly impractical even for n = 4. Moreover, no polynomially bounded
algorithms are known so far, and it is not known whether this problem is NP-
complete. For this reason, characterizations of Q-matrices within some classes
of matrices are of great interest.

5.1 Classes of matrices and previous results

In the following we recall some important classes of matrices arising in the
study of the linear complementarity problem and which we shall use in this
chapter.
We say that M ∈ Rn×n is

• copositive if 〈Mx, x〉 ≥ 0 ∀ x ≥ 0;

• a star-matrix if [x ∈ S(0, M) =⇒ MTx ≤ 0];

• copositive-star if M is copositive and star-matrix;

• semimonotone, or M ∈ E0, if S(p, M) = {0} for all p > 0, or equivalently,
[0 6= x ≥ 0 =⇒ ∃ i : xi > 0, (Mx)i ≥ 0];
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• (given p > 0) an R(p)-matrix, if S(τp, M) = {0} for all τ ≥ 0;

• positive subdefinite (PSBD) if [〈Mx, x〉 < 0 =⇒ MTx ≤ 0 or MTx ≥ 0];

• (given p > 0) a G(p)-matrix, if S(p, M) = {0};

• an R0-matrix (E∗(0) in [33]), if S(0, M) = {0};

• an E1-matrix if, given 0 6= v ∈ S(0, M) there exist nonnegative diagonal
matrices D1 and D2 such D2v 6= 0 and (D1M + MTD2)v = 0;

• an L-matrix, if M ∈ E0 ∩ E1;

• a P0-matrix, if its principal minors are nonnegative;

• an S-matrix, if there is x ≥ 0 such that Mx > 0, or equivalently, there is
x > 0 such that Mx > 0;

• a Qb-matrix, if S(q, M) is nonempty and compact for all q ∈ Rn;

• a Q0-matrix, if [F(q, M) 6= ∅ =⇒ S(q, M) 6= ∅];

• a Z-matrix, if Mij ≤ 0 for i 6= j;

• a nonnegative M ≥ 0 (resp. nonpositive M ≤ 0 ) matrix, if its entries are
nonnegative (resp. nonpositive).

Finally, we say that a matrix M ∈ Rn×n has the property (T) [5] if for every
nonempty α ⊆ {1, . . . , n} the existence of a solution zα to the system

zα > 0, Mααzα ≤ 0, Mᾱαzα ≥ 0, (5.1)

implies there exists a nonzero vector yα0
≥ 0 such that

yT
α0

Mα0α = 0 and yT
α0

Mα0ᾱ ≤ 0, (5.2)

where α0 = {i ∈ α : Miαzα = 0}.
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This property was employed to characterize constructively Q0 ∩ P0, while
a characterization of Q0 by solving linear complementarity problems as linear
programs was provided in [61] following the line of Mangasarian [54] (see also
[2]).

Given d > 0, as we already know M ∈ R(d) is equivalent to the inconsis-
tency of the following system:

(Mv)i + tdi = 0 i ∈ supp{v},
(Mv)i + tdi ≥ 0 i 6∈ supp{v},

0 6= v ≥ 0, t ≥ 0,

.

Such a system has its origin in [47], where only the case d = l1 (the vector of
ones) is considered, and further developed in [49]. The class R(d) is extremely
important since for matrices in that class, LCP(q, M) cannot have a secondary
ray; hence Lemke’s complementarity pivoting scheme would actually com-
pute a solution in a finite number of iterations for any q ∈ Rn ([33]).

It is not difficult to check that ([15, Prop. 3.15])

M ∈ S ⇐⇒ F(q, M) 6= ∅ ∀ q ∈ R
n. (5.3)

Moreover, as a consequence of the Farkas’ Lemma,

F(q, M) 6= ∅ ⇐⇒ [x ≥ 0, MTx ≤ 0 =⇒ 〈q, x〉 ≥ 0]. (5.4)

In Chapter 4 it is proved that

[S(q, M)]∞ ⊆ S(0, M). (5.5)

Therefore
Qb = Q ∩ R0, (5.6)

since A∞ = {0} if and only if A is bounded. On the other hand, we also have

Q = Q0 ∩ S. (5.7)
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Two main results were established in connection with the characterization
of Q-matrices. The first one is due to Aganagič and Cottle [4] valid for P0-
matrices, and read as follows:

Theorem 5.1.1 (Aganagič-Cottle) Let M ∈ P0. Then

M ∈ R( l1) ⇐⇒ M ∈ R0 ⇐⇒ M ∈ Q ⇐⇒ M ∈ Qb =⇒ M ∈ S.

By choosing the matrix

M1 =









1 1 0

1 1 0

0 1 0









,

we have that P0 ∩S 6⊆ Q. The second result was proved by Pang in [62] for the
class L = E0 ∩ E1 which is distinct from P0:

Theorem 5.1.2 (Pang) Let M ∈ L. Then

M ∈ R( l1) ⇐⇒ M ∈ R0 ⇐⇒ M ∈ Q ⇐⇒ M ∈ S ⇐⇒ M ∈ Qb.

Since P0 ⊆ E0 and L ⊆ E0, Pang asked the question whether Theorem 5.1.1 is
valid for E0 instead of P0. This question was completely solved in the affirma-
tive in the symmetric case [39], and in the negative for nonsymmetric matrices
[45]. To be more precise, in that paper it is exhibited a matrix M satisfying

M ∈ (E0 ∩ Q) \ R0.

We investigate a possible extension of Theorem 5.1.1, without the equiv-
alence with Q, to a class larger than P0 (Corollary 5.3.3), and also a general-
ization of Theorem 5.1.2 (Theorem 5.3.4). We start by providing a wide class
of matrices, namely F1, for which Q ∩ F1 = Qb ∩ F1 (Theorem 5.3.1), where
eventually Q ∩ F1 6= R0. Positive subdefinite matrices with rank equal one
are particularly analyzed as well. The latter class of matrices has been recently
studied in [17].
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Our main results apply to matrices which are not in L, such as

M2 =

(

1 −2

1 −1

)

∈ (R0 ∩ G( l1)) \ E0,

or to matrices which are not in E1 [40] as

M3 =









0 −1 −2

0 1 2

1 1 1









∈ (E0 \ P0) \ E1.

Since S(0, M3) = {(v1, 0, 0)T : v1 ≥ 0}, M3 6∈ R0. In this spirit a new class of
matrices will be introduced in the next section.

5.2 A new class of matrices

Our main theorems require the following new class of matrices, where the
notation F1 is used since extends E1.

Definition 5.2.1 A matrix M ∈ Rn×n is said to be an F1-matrix, if

0 6= v ∈ S(0, M) =⇒
{

there exists a nonnegative diagonal matrix Λ,

Λv 6= 0 and MTΛv ≤ 0.

Equivalently, M ∈ F1 if and only if for any nonempty set α ⊆ {1, . . . , n}, the
following implication holds:

xα > 0,

Mααxα = 0,

Mᾱαxα ≥ 0.















=⇒















∃ 0 6= wα ≥ 0 :

wT
αMαα = 0,

wT
αMαᾱ ≤ 0.

(5.8)

Now we list some classes of matrices contained in the new class F1.

Proposition 5.2.2 M ∈ F1 if any of the conditions below is satisfied:
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(a) M satisfies property (T);

(b) M ∈ P0 ∩ Q0;

(c) M ∈ Z ∩ P0;

(d) M is a star-matrix (in particular if M is positive semidefinite or M ≤ 0);

(e) M ∈ E1 (in particular if M ∈ R0);

(f) M is a PSBD-matrix with rank greater or equal than two.

Proof. If M has property (T) then obviously M ∈ F1 since for z ∈ S(0, M),
z 6= 0, we get α0 = α in (5.2) with α = supp{i : zi 6= 0}), and then the right-hand
side of (5.8) is satisfied for wα = yα. In case M ∈ P0∩Q0, by Proposition 3 in [5],
M has property (T) and thus M ∈ F1. If M ∈ Z ∩ P0 then, by Theorem 3.11.6
in [15], M ∈ Q0 ∩P0. Hence M ∈ F1. Under either (d) or (e), the result follows
easily. In case M is PSBD we apply Theorem 2.2 and Lemma 3.2 of [56] to
conclude that M is either copositive-star or M ≤ 0. Thus by (d), we get the
desired result.

PSBD-matrices with rank equal one may be not in F1 as the matrix

M4 =

(

1 0

1 0

)

∈ (S ∩ E0) \ (F1 ∪ Q)

shows. Here S(0, M4) = {(0, v2)
T : v2 ≥ 0}. On the other hand, we observe

that F1 properly contains the union of the classes mentioned in (b)–(f). In fact,
we simply take

M5 =









0 1 −2

0 −1 2

−1 1 −2









.
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Here S(0, M5) = {(0, 2t, t)T : t ≥ 0}, and M5 verifies Definition 5.2.1 by taking

Λ =









0 0 0

0 1
2

0

0 0 1









.

Moreover, the matrix

M6 =









1 −2 0

1 −1 0

0 0 0









∈ (G( l1) ∩ F1) \ E0

but does not satisfy property (T). Since S(0, M6) = {(0, 0, v3)
T : v3 ≥ 0}, M6 6∈

R0.

5.3 Main results

Now, we are ready to establish the first main theorem in this Chapter. Its
first part unifies Lemma 2 of [4] and Lemma 3 of [62] since P0 ∩Q = P0 ∩Q0 ∩
S ⊆ F1 ∩ S and E1 ∩Q ⊆ F1 ∩ S by Proposition 5.2.2; whereas the second part
extends Theorem 4.11 of [20].

Theorem 5.3.1 Let M ∈ F1 ∩ S, then M ∈ R0. As a consequence, if M ∈ F1 then

M ∈ Qb ⇐⇒ M ∈ Q.

Proof. Let M ∈ F1 ∩ S. If M 6∈ R0, take 0 6= v ∈ S(0, M). By assumption
there is a nonnegative diagonal matrix Λ such that Λv 6= 0 and MTΛv ≤ 0.
Since 〈Λv, v〉 > 0, we obtain 〈Mx − v, Λv〉 < 0 for all x ≥ 0. This shows that
F(−v, M) = ∅ (M 6∈ S), a contradiction. This establishes the first implication.
Obviously Qb ⊆ Q; for the other inclusion we use (5.5) and the first part of the
theorem.
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The equivalence in Theorem 5.3.1 may be false if M 6∈ F1 as the matrix [45]

M7 =



















0 0 0 0 1

0 0 0 0 1

1 −1 0 0 1

−1 1 0 0 1

0 0 −1 −1 1



















∈ (E0 ∩ Q) \ (R0 ∪ F1)

shows; while the matrix

M8 =

(

−1 0

0 1

)

∈ R0 \ (S ∪ G(d)) ∀ d > 0,

illustrates that R0 6= F1 ∩ S.

The characterization of regular matrices (Theorem 4.5.6) was the starting point
of the results of this section. We present an alternative proof.

Theorem 5.3.2 Let d > 0. Then

M ∈ G(d) ∩ Qb ⇐⇒ M ∈ R(d).

Proof. From (5.6) we can write G(d) ∩ Qb = G(d) ∩ Q ∩ R0 = R(d) ∩ Q since
G(d) ∩ R0 = R(d). Thus, one implication is straightforward. The other is a
consequence of Theorems 9 and 11 of [40] (see also Theorem 3.1 of [49] and
(5.5)).

From the previous theorem we obtain the following result which generalizes
Lemma 1 of [62] and thus also Lemma 1 of [4],

Corollary 5.3.3 Let M ∈ G(d) for some d > 0. Then

M ∈ S ⇐= M ∈ Q ⇐= M ∈ Qb ⇐⇒ M ∈ R0 ⇐⇒ M ∈ R(d).
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The above matrix M7 and M9 =

(

1 1

1 0

)

show that E0∩Q 6⊆ Qb and E0∩S 6⊆ Q

respectively. Here, S(0, M9) = {(0, v2)
T : v2 ≥ 0}.

Our second main theorem generalizes Theorem 1.1 of [62].

Theorem 5.3.4 Let d > 0 and M ∈ G(d) ∩ F1. The following assertions are equiva-
lent:

(a) M ∈ R(d);

(b) M ∈ R0;

(c) M ∈ Qb;

(d) M ∈ Q;

(e) M ∈ S.

Proof. The equivalences (a)-(d) follow from Theorem 5.3.1 and Corollary 5.3.3.
Obviously (d) implies (e). For the implication (e) ⇒ (b) use Theorem 5.3.1.

We now give matrices for which we can apply the previous theorem and not
Theorem 5.1.2 (since they are not in L): the matrices M3 ∈ (G(d) ∩ F1) for all
d > 0 and M6 ∈ G( l1) ∩ F1 are not Q-matrices since they are not in R0; the
matrix M2 ∈ (R0 ∩ G( l1)) \ E0 is a Q-matrix.
Finally, the matrices M7 and

M10 =

(

−1 1

2 −1

)

∈ (R0 ∩ Q) \ G(d) ∀ d > 0

show that Theorem 5.3.4 may be false if M 6∈ G(d) ∩ F1.

Concerning PSBD-matrices, the following result is obtained.

Theorem 5.3.5 Let M be a PSBD-matrix:
If rank(M) = 1. The following assertions are equivalent.



5.3 Main results 101

(a) M ∈ E0 ∩ R0;

(b) M ∈ R(d) for some d > 0;

(c) M ∈ Qb;

(d) M ∈ R0 ∩ S.

If rank(M) ≥ 2, then M is either copositive-star (hence M ∈ L and Theorem 5.1.2
could be applied) or M 6∈ S.

Proof. The implication (a) ⇒ (b) is straightforward; that (b) implies (c) and (c)

implies (d) follow from Theorem 5.3.2 and (5.6) respectively since Q ⊆ S. It
remains to check that R0 ∩S ⊆ E0. Thus, we need to prove that S(d′, M) = {0}
for all d′ > 0. Take 0 6= v ∈ S(d′, M), then 〈Mv, v〉 < 0. By hypothesis, MTv ≤ 0.
We apply (5.3) and (5.4) to obtain 〈q, v〉 ≥ 0 for all q ∈ Rn. Whence v = 0, a
contradiction.
In the case when rank(M) ≥ 2, by Theorem 2.2 and Lemma 3.2 of [56], M is
either copositive-star (and hence M ∈ L by Proposition 7 of [35]), or M ≤ 0,
and then M 6∈ S.

The PSBD-matrices with rank equal one M4 ∈ (S ∩ E0) \ (R0 ∪ F1 ∪ Q) and

M11 =

(

1 0

0 0

)

∈ (E0 ∩ E1) \ R0,

show that assertions (d) and (a) in the previous theorem cannot be substituted
by assertions M ∈ S and M ∈ E0 ∩ E1 = L) respectively. The matrix M4

also shows that in general M ∈ S does not imply M ∈ Q. Here S(0, M4) =

S(0, M11) = {(0, v2)
T : v2 ≥ 0} and S(q, M4) = ∅ if q = (−1,−2)T. Theorem 5.3.5

can be applied for the PSBD-matrix

M12 =

(

1 1

1 1

)

∈ S ∩ R0 ∩ E0.
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As is recalled above PSBD-matrices with rank greater than one are either
copositive-star or nonpositive and we can use Theorem 5.1.2 for them. It re-
mains to deal with PSBD-matrices with rank equal one, such matrices are eas-
ily studied with the help of definitions (see Proposition 2.1 of [17]). The next
corollary is a consequence of the previous theorem. To the best of our knowl-
edge, such a corollary has not been pointed out before.

Corollary 5.3.6 Let M ∈ R0 be a PSBD-matrix with rank(M) = 1. Then

M ∈ E0 ⇐⇒ M ∈ G(d) for some d > 0 ⇐⇒ M ∈ Q ⇐⇒ M ∈ S.
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