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Abstract

The main goal of this PhD thesis is to investigate weakly efficient vectorial minima

under relaxed hypotheses of convexity for the involved functions.

The organization of the thesis is as follows. In the first part, our main concern is

the existence of solutions for the compact case, without hypotheses of convexity and

differentiability. Afterwards, by using notions of generalized convexity and recession

analysis we treat the unbounded case for finite dimensional spaces. We study also

problems for which the range of the involved vectorial function is contained in a fi-

nite or in an infinite dimensional space. For the latter case, we give several conditions

for the nonemptiness and the boundedness of the set of weak solutions. In particular,

we deal with the case of polyhedral and Lorentz cones. Moreover, we seek for weakly

efficient solutions for the case when the domain of the vectorial function is a set of the

real numbers. By the way, we obtain relationships for the nonemptiness of the set of

weak minima and the set of minima of the component functions.

In the second part, we study theorems of alternative for vectorial optimization

problems and we obtain optimal conditions for such theorems. With the aid of such

results we characterize bi-dimensional spaces, we perform an scalarization by means

of the positive polar cone for obtaining weakly efficient points, we characterize the

zero duality gap and we obtain optimality conditions of Fritz-John type for vectorial

optimization problems.

Finally, in connection with the first part, in the third part we seek for weak minima,

when the domain of the vectorial function is a subset of the real numbers, the range is

bi-dimensional and the component functions are quasiconvex without any hypothesis
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of differentiability. This case is totally characterized and this allows us to develop a

finite time algorithm for calculating weakly efficient solutions and the supremum of

the set of weakly efficient minima.
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Resumen

El propósito de esta Tesis es estudiar las propiedades de los mı́nimos vectoriales débilmente

eficientes, bajo hipótesis de convexidad generalizada. En este trabajo se destacan tres partes.

En la primera parte, se resuelve el problema de existencia de soluciones para el caso compacto,

sin hipótesis de convexidad y diferenciabilidad. Posteriormente, junto con una noción de con-

vexidad generalizada y el análisis de recesión, se aborda el caso no acotado para espacios finito

dimensional. Se estudia el problema existencia cuando el recorrido de la función vectorial, esta

contenido en un espacio de dimension infinita y finita. Para el segundo caso, se muestra varias

caracterizaciones para la no vacuidad y compacidad del conjunto solución de mı́nimos débiles,

en particular aplicables a conos de tipo poliédrico y Lorentz. A continuación se estudia el prob-

lema de encontrar mı́nimos débiles eficientes, pero esta vez cuando el dominio de la función

vectorial es un subconjuto de los números reales y cumple un tipo de convexidad generalizada,

sin hipótesis de diferenciabilidad. De esta forma, se obtiene relaciones de no vacuidad del con-

junto solución de mı́nimos débiles y el conjunto de mı́nimos de las funciones componentes.

En la segunda parte, se estudian los teoremas de alternativa para los problemas de optimización

vectorial, encontrando condiciones optimales para dichos teoremas. Estos resultados nos per-

mitiran caracterizar los espacios bi dimensionales , la escalarización por medio del cono polar

positivo para la obtención de puntos débilmente eficientes, la nulidad del gap de dualidad y la

obtención de condiciones de optimalidad de tipo Fritz-John en optimización vectorial.

Finalmente, en conexión con la primera parte se retorna nuevamente el problema de encontrar

mı́nimos débiles, cuando el dominio de la función vectorial es un subconjunto de los números

reales , de recorrido bidimensional y sus componentes son funciones casiconvexas, sin hipótesis

de diferenciabilidad . En esta parte, se caracteriza totalmente este caso, lo que permite elaborar

un algoritmo de tiempo finito, para calcular las soluciones débiles eficientes y el supremo del

conjunto de mı́nimos débiles eficientes.



Glossary of Notations

Spaces

Rn real n−dimensional space

Rn
+ the nonnegative orthant of Rn

R++ the interval ]0, +∞[

X real Hausdorff topological space

Y real locally convex topological vector space

Y ∗ topological dual space

Sets

Ew the weak pareto minimum set

argminfK x̄ ∈ K : f(x̄) ≤ f(x) for all x in K

cone(A) the conic hull of the set A

co(A) the convex hull of the set A

ext(A) the extreme points of the set A

int A the topological interior of the set A

qint A the quasi-interior of the set A

Ā the (topological) closure of the set A

A∗ the (positive) polar cone of the set A

A∞ the asymptotic cone of the set A

T (A; x̄) the contingent cone of A at x̄

Mappings

T : X ⇒ Y a multifunction from X to Y

f : X → R ∪ {+∞} function from X to R ∪ {+∞}

vii
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f∞ the asymptotic function of f

〈·, ·〉 the duality pairing

l.s.c. lower semicontinuity property



Introducción

En optimización vectorial uno de los problemas de interés es el siguiente:

Considere X un espacio topológico (Hausdorff) real, Y un espacio vectorial topológico

real , P ⊆ Y un cono convexo (no necesariamente puntiagudo o cerrado), tal que P 6= Y

y su interior topológico (int P ), es no vacı́o y K ⊆ X . Se requiere

encontrar x̄ ∈ K : F (y)− F (x̄) /∈ −intP para todo y ∈ K (VP),

donde F : K → Y es una función vectorial. El punto x̄ se denomina mı́nimo débil

eficiente, y se denota por Ew al conjunto de estos puntos.

En el caso particular, cuando X = Rn, Y = Rm y P = Rm
+ , la función F puede escribirse

como F (x) = (f1(x), . . . , fm(x)). Si además tenemos que K es un conjunto convexo

y cerrado, cada función componente es convexa y diferenciable, se prueba en [9], la

siguiente caracterización

x̄ ∈ Ew ⇔ ∇F (x̄)(x− x̄) /∈ −intRm
+

A continuación comentaremos algunos resultados existentes en la literatura, corre-

spondiente a los ultimos 15 años del problema (VP).

Para la existencia de soluciones del problema (VP), cuando K es un conjunto compacto,

algunos autores han usado alguna condición de convexidad para la función vectorial

(ver [3, 6, 9, 13, 19, 21]). El motivo de esta hipótesis, es por el uso del lema de Knaster-

Kuratowski- Mazurkiewicz ([4, 17]). Un resultado general de existencia para mı́nimos

vectoriales aplicable en particular al problema (VP) se encuentra en [41].

Por otra parte, también ha sido un problema de interés, caracterizar la no vacuidad y

ix
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compacidad del conjunto Ew, en el artı́culo [13] (Teorema 2.1), se relaciona la compaci-

dad y la no vacuidad de Ew con el conjunto de mı́nimo de las funciones componentes,

con hipótesis de diferenciabilidad y convexidad. En [19], se obtienen estimaciones de

(Ew)∞, para una clase de funciones no convexas. Podemos encontrar en las referencias

[32, 33] más caracterizaciones de compacidad y la no vacuidad de Ew bajo hipótesis de

convexidad y de diferenciabilidad generalizada.

Otro problema que ha tenido relevancia en el análisis convexo, son los teoremas del

tipo alternativo, cuyas aplicaciones en el área de la optimización vectorial, son por

ejemplo las escalarizaciones del problema (VP) por medio del cono polar positivo para

la obtención de puntos débilmente eficientes, la existencia de multiplicadores de La-

grange, resultados de dualidad, etc.

Teóricamente un teorema alternativo en optimización vectorial, tiene la siguiente

presentación:

Sean Y un espacio topológico localmente convexo real, P ⊆ Y un cono convexo cerrado

tal que int P 6= ∅, P ∗ cono polar positivo de P y A ⊆ Y . Se afirma la validez de

exactamente una de las siguientes afirmaciones:

∃ a ∈ A tal que a ∈ −int P ;

∃ p∗ ∈ P ∗, p∗ 6= 0 tal que 〈p∗, a〉 ≥ 0 ∀ a ∈ A.

Notemos que para las aplicaciones de estos teoremas en optimización vectorial se con-

sidera A = F (K).

En la literatura podemos encontrar, al menos dos caminos para probar teoremas de

este tipo, el primero vı́a teoremas minmax, como en [36] y el segundo vı́a separación

convexa, como en las referencias [34, 48, 50, 54, 55].

En esta tesis se estudia el problema (VP), sin hipótesis de diferenciabilidad. Primero

se obtiene un teorema de existencia en espacios de dimension infinita, sin hipótesis

de convexidad, por lo tanto se logra una versión vectorial del teorema de Weierstrass.

Luego, usando nociones de convexidad generalizada para funciones vectoriales, se re-

alizan estimaciones para (Ew)∞, lo que permite dar condiciones necesarias, suficientes



xi

o ambas a la vez, dependiendo de los espacios y conos involucrados, logrando hacer

una descripción muy detallada de Ew, para el caso de la recta real. Los resultados

obtenidos en esta parte generalizan algunos de los resultados de las referencias antes

mencionada.

El contenido de esta parte, corresponde a los trabajos:

• Flores-Bazán F. and Vera C., The vector Weierstrass theorem and generalized

quasi-convex vector optimization, pre-print 2003-04, Depto. Ingenierı́a Matemática

Universidad de Concepción, 2003.

• Flores-Bazán F. and Vera C., Characterization of the nonemptiness and compact-

ness of solution sets in convex/nonconvex vector optimization, J. of Optimization

Theory and Applications, Vol. 130, No 2, 2006.

• Flores-Bazán F. and Vera C., Weak eficiency in quasiconvex vector optimization

without derivatives, sometido (2006).

En la segunda parte de esta Tesis, se estudia la siguiente implicación

A ∩ (−int P ) = ∅ =⇒ co(A) ∩ (−int P ) = ∅,

donde Y un espacio topológico localmente convexo real, P ⊆ Y un cono convexo

cerrado tal que int P 6= ∅. Se logra establecer varias equivalencias de la implicación

anterior, lo que permitió, plantear un teorema alternativo óptimo, aplicable a proble-

mas de optimizacion vectorial, además de caracterizar los espacios bi-dimensionales

en términos de la validez de un teorema de tipo alternativo.

El contenido de esta parte, corresponde al trabajo:

• Flores-Bazán F., Vera C. and Hadjisavvas N., An optimal alternative theorem and

applications to mathematical programming, Journal of Global Optimization, to ap-

pear, 2006.

En la parte Final, se estudia el problema (VP), cuando X = R, Y = R2 y P = R2
+.

Se logra caracterizar totalmente el conjunto Ew, con hipótesis de convexidad general-
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izada, lo que permitió diseñar algunos algoritmos.

El contenido de esta parte, corresponde al trabajo:

• Flores-Bazán F. and Vera C., Weak eficiency in quasiconvex vector optimization

without derivatives, sometido (2006).

A continuación damos una breve descripción de la tesis:

En el Capı́tulo 1 se introduce la notación y se revisan algunos resultados básicos del

análisis convexo y asintótico, algunas definiciones de convexidad generalizada, como

también nociones de mı́nimo vectorial también son revisadas.

El Capı́tulo 2 está dedicado a teoremas de existencia y caracterizaciones compactas

de Ew. En la Sección 2.1, se dá una versión vectorial del teorema de Weierstrass. En la

Sección 2.2 se estudia una noción generalizada de convexidad para funciones vectori-

ales introducidas en [21] y se dan resultados de existencia para un problema general

de optimización. En la Sección 2.3 se estudia el caso cuando X es finito dimensional

del problema (VP). En la Subsección 2.3.1 se estudian dos casos, para el primero se

dan condiciones suficientes para que Ew sea compacto y no vacı́o, cuando Y es de di-

mensión infinita y F cumple una noción de convexidad generalizada . Para el segundo

caso, se obtienen caracterizaciones compactas para el conjunto Ew, cuando F cumple

una condicion de convexidad, Y es finito dimensional y tal que el conjunto puntos ex-

tremales de una base compacta del cono polar positivo de P , es cerrado. En la Sección

2.4 se estudia el caso X = R del problema (VP). En la Subsección 2.4.1, estudiamos los

mismos casos que en la Subsección 2.3.1: para el primer caso se obtienen condiciones

necesarias y suficientes para que Ew sea compacto y no vacı́o; para el segundo caso,

se obtienen caracterizaciones compactas para el conjunto Ew, cuando F satisface una

condicion de convexidad generalizada, Y es finito dimensional y tal que el conjunto

puntos extremales de una base compacta del cono polar positivo de P , es cerrado. En

la Subsección 2.4.2, se obtienen varias caracterizaciones para la no vacuidad del con-

junto Ew, bajo hipótesis de convexidad relajada. En la Subsección 2.4.3, se estudia el
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problema (VP), cuando cada función componente de F es casi-convexa. En tal caso, se

logra obtener varias relaciones entre el cunjunto Ew y el conjunto de mı́nimos de las

funciones componentes.

El Capı́tulo 3 está dedicado a estudiar un problema de separación convexa. En la

Sección 3.1, se obtiene un teorema óptimo para un problema de separación no convexa,

en espacios de dimensión arbitraria, además se prueban algunas equivalencias entre

las nociones de convexidad generalizada, que han utilizado algunos investigadores,

ver [36, 47, 51, 54, 55]. En la Sección 3.2, se caracterizan los espacios bi-dimensionales

por medio del los teoremas del tipo alternativo. En la Sección 3.3, se caracterizan las

condiciones necesarias de optimalidad de tipo Fritz-John en optimizaciø’n vectorial.

En la sección 3.4 se muestran dos aplicaciones: la primera permite caracterizar la nul-

idad del gap de dualidad, la segunda es para caracterizar las soluciones débilmente

eficientes mediante la escalarización standard.

En el Capı́tulo 4, estudiamos el problema (VP), cuando X = R, Y = R2 y P = R2
+,

y se describe completamente el conjunto Ew, con hipótesis de casi convexidad. En

las Secciones 4.1, . . . , 4.5, estudiamos los casos que surgen al asumir que argminKf1

y argminKf2, no se intersectan. En la Sección 4.1, se plantean algunos algoritmos, y

además se muestran los resultados computacionales de las implementaciones de al-

gunos de estos.
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Chapter 1

Notation and Preliminary Facts

1.1 Convex analysis

In this section we introduce several notions and results from Convex Analysis.

Let X be a real vector space and Y be a real locally convex topological (Hausdorff)

vector space. Throughout this work we shall use the following notation (x,y being ele-

ments of X):

[x, y] := {(1− λ)x + λy : λ ∈ [0, 1]}, [x, y[:= {(1− λ)x + λy : λ ∈ [0, 1[},

]x, y[:= {(1− λ)x + λy : λ ∈]0, 1[}.

Let ∅ 6= A ⊆ X .

Definition 1.1.1 A is convex if [x, y] ⊆ A for all x, y ∈ A.

Definition 1.1.2 A is cone if R+A = {λx : λ ≥ 0, x ∈ A} ⊆ A.

1



1.1 Convex analysis 2

Definition 1.1.3

co(A) :=
⋂
{C ⊆ X : A ⊆ C, C convex}

=

{
n∑

i=1

λixi : n ∈ N, (λi)1≤i≤n ⊆ R+,

n∑
i=1

λi = 1

}
,

cone(A) :=
⋂
{C ⊆ X : A ⊆ C, C cone} = {λx : λ ≥ 0, x ∈ A}

=
⋃
t≥0

tA,

cone+(A) := {λx : λ > 0, x ∈ A}=
⋃
t>0

tA,

cone(A) :=
⋂
{C ⊆ X : A ⊆ C, C closed cone}.

Evidently, cone(A) = cone(A), cone(A) = cone+(A) ∪ {0}, and therefore, cone(A) =

cone+(A). In [47, 54, 55] the notation cone(A) instead of cone+(A) is employed.

Given a convex subset K of Y , an element x ∈ K is called a quasi-interior point if

there is no closed hyperplane supporting K at x; i.e., if for all x∗ ∈ Y ∗ the following

implication holds:

〈x∗, y〉 ≥ 〈x∗, x〉 for all y ∈ K ⇒ x∗ = 0.

Equivalently, x is a quasi-interior point if and only if cone(K − x) = Y (see for

instance [8] for details and references on quasi-interiors). We will denote by qint K the

set of quasi-interior points of K. If int K 6= ∅, then int K = qint K. For this reason,

all results in this Tesis involving qint K are also true for int K, provided the latter

set is nonempty. On the other hand, for any p ∈ [1, +∞] the cone lp+ has nonempty

quasi-interior, but its interior (and even the relative algebraic interior) is empty for

all p ∈ [1, +∞). Quasi-interior points share some properties of the interior points; for

instance, if x ∈ qint K and y ∈ K then [x, y[ ⊆ qint K. In particular, qint K is convex

and dense in K whenever it is not empty.

If P is a closed convex cone, then it is easy to check that x ∈ qint P if and only if

〈x∗, x〉 > 0 for all x∗ ∈ P ∗\{0}, or equivalently if the set B = {x∗ ∈ P ∗ : 〈x∗, x〉 = 1} is

a w∗-closed base for P ∗ (we recall that a convex set B is called a base for P ∗ if 0 is not

in the w∗-closed hull of B and P ∗ = cone(B)). If P 6= Y , then 0 /∈ qint P . Note also that

qint P = cone+(qint P ) and P + qint P = qint P .



1.1 Convex analysis 3

In the rest of the Tesis, P ⊆ Y will be a closed convex cone with P 6= Y and qint P 6=
∅.

Some elementary properties of sets to be used later are collected in the next propo-

sition.

Proposition 1.1.1 Let A, M ⊆ Y nonempty sets.

(a) αA+(1−α)A ⊆ cone(A) ∀ α ∈ ]0, 1[ ⇐⇒ cone(A) is convex⇐⇒ co(A) ⊆ cone(A).

(b) αA + (1 − α)A ⊆ cone+(A) ∀ α ∈ ]0, 1[ ⇐⇒ cone+(A) is convex ⇐⇒ co(A) ⊆
cone+(A).

(c) cone+(A + M) = cone+(A) + M provided that M is such that tM ⊆ M ∀ t > 0.

(d) cone(A) + M ⊆ cone(A + M) and cone(A) + M = cone(A + M), provided that M

is a cone.

(e) cone(A+qint P ) = cone(A+P ), provided that P is a convex cone with qint P 6= ∅.

(f) cone+(A + int P ) is convex ⇐⇒ cone(A + int P ) is convex ⇐⇒ cone(A + P ) is

convex, provided that P is a convex cone with int P 6= ∅.

Proof. The proof of (a), (b) and (c) is straightforward.

(d): According to (c), cone+(A) + M = cone+(A + M) ⊆ cone(A + M). On the other

hand, for a fixed a ∈ A, every p ∈ M can be obtained as the limit of 1
n
(a + np). Hence

M ⊆ cone(A + M) and this shows the inclusion in (d). Since obviously cone(A + M) ⊆
cone(A) + M , the equality of closures also follows.

(e): Since qint P ⊆ P , we have cone(A + qint P ) ⊆ cone(A + P ). Also, from P ⊆ qint P

it follows that A + P ⊆ A + qint P ⊆ A + qint P ⊆ cone(A + qint P ), hence (e) follows.

(f): If cone+(A + int P ) is convex, then it easily follows that cone(A + int P ) is convex.

By using (e), we deduce that cone(A + P ) is convex. If cone(A + P ) is convex, then

cone+(A + int P ) is convex by Theorem 2.6 in [49]. 2
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Remark 1.1.1 Proposition 1.1.1(f) does not hold with qint P in the place of int P . In-

deed, let Y = l1 and P = l1+. Then qint l1+ =
{
(αi)i∈N : αi > 0

}
while int l1+ = ∅. Set

A = l1\
(
−qint l1+

)
=
{
(αi)i∈N : ∃ i ∈ N with αi ≥ 0

}
.

Each (ai)i∈N ∈ l1 can be written as a limit of a sequence of elements each of which

has a finite number of nonzero coordinates. Thus A = l1 and cone(A + l1+) = l1 is

convex. However, one can readily check that cone+(A + qint P ) = A + qint P ={
(αi)i∈N : ∃ i ∈ N with αi > 0

}
is not convex.

Definition 1.1.4 Let x0 be a point of a convex set A. x0 is an extreme point of A if x, y

∈ A and tx + (1− t)y = x0 for some t (0 ≤ t ≤ 1) entails x = y = x0.

We denote for ext(A) to the set of extreme points of the set A.

Theorem 1.1.1 Let B be a subset of the compact convex set C ⊆ Y . The following

conditions are equivalent:

(a) co(B) = C ;

(b) ext(C) ⊆ B.

Proof. Can be found in Ref. [29]. 2

Definition 1.1.5 A function f : K → R with K being a convex set:

(a) is said to be semistrictly quasiconvex, if given any u, v in K,f(u) 6= f(v), one has

f(z) < max{f(u), f(v)} for all z ∈]u, v[;

(b) is said to be quasiconvex if each of its level set is a convex set, or equivalently, if

f(tx + (1− t)y) ≤ max{f(x), f(y)} for all x, y in K and all t ∈ [0, 1].

Simple examples show that are functions that are semi-strictly quasiconvex but not

quasiconvex. However, every l.s.c. and semistrictly quasiconvex function is quasicon-

vex [37].
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1.2 Asymptotic analysis

We now assume that X is a reflexive Banach space. For any nonempty set C in X ,

we define the asymptotic cone of C as the set

C∞ =
{

x ∈ X : ∃ tn ↓ 0,∃ xn ∈ C, tnxn ⇀ x
}

,

where “⇀” means convergence in the weak topology. We set ∅∞ = ∅.

In the case when C is weakly closed and starshaped at x0 ∈ C, that is, if for every x ∈ C

one has x0 + t(x− x0) ∈ C for all t ∈ [0, 1[, then

C∞ =
{

v ∈ X : x0 + tv ∈ C ∀ t > 0
}

=
⋂
t>0

t(C − x0).

If C is convex and closed this cone does not depend on x0 ∈ C.

For any given function h : X → R ∪ {+∞}, the asymptotic function of h is defined

as the function h∞ such that

epi h∞ = (epi h)∞.

Here, epi h = {(x, t) ∈ X × R : h(x) ≤ t} is the epigraph of h. Consequently, it is not

difficult to prove that (Ref. [5])

h∞(v) = inf

[
lim inf
n→+∞

tnh(
xn

tn
) : tn ↓ 0, xn ⇀ v

]
.

When h is a convex and lower semicontinuous function, we have

h∞(v) = lim
λ→+∞

h(x0 + λv)− h(x0)

λ
= sup

λ>0

h(x0 + λv)− h(x0)

λ
∀ x0 ∈ dom h,

where as usual, dom h = {x ∈ X : h(x) < +∞}. We notice the independence of h∞ on

the choice of x0. If f : K ⊆ X → R, f∞ will denote the asymptotic function of f , where

we extend f to the whole X by setting f(x) = +∞ if x ∈ X \K.

We collect some basic results on asymptotic cones in the next proposition (see Ref. [46]

for instance) that will be useful in the sequel.

Proposition 1.2.1 The following assertions hold.
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(a) K1 ⊆ K2 implies K∞
1 ⊆ K∞

2 ;

(b) (K + x)∞ = K∞ for all x ∈ X ;

(c) let K ⊆ Rn, then K is bounded if and only if K∞ = {0};

(d) Let (Ki), i = 1, . . . ,m, be any finite family of nonempty sets in X , then( m⋃
i=1

Ki

)∞
=

m⋃
i=1

(Ki)
∞.

(e) Let (Ki), i ∈ I , be any family of nonempty sets in X , then(⋂
i∈I

Ki

)∞
⊆
⋂
i∈I

(Ki)
∞.

If, in addition, ∩iKi 6= ∅ and each set Ki, i ∈ I , is closed and convex, then we

obtain an equality in the previous inclusion.

1.3 Some basic definition in vector optimization

Let X be a real Hausdorff topological space , Y be a real locally convex topological

vector space and P be a convex cone in Y , it will eventually be required to be closed

with nonemtpty interior.

By Y ∗ we denote the topological dual space of Y , and the duality pairing between Y ∗

and Y is denoted by 〈·, ·〉. The set P ∗ ⊆ Y ∗ is the polar (positive) cone of P defined by

P ∗ =
{

p∗ ∈ Y ∗ : 〈p∗, p〉 ≥ 0 ∀ p ∈ P
}

.

The closedness and convexity of the cone P is equivalent to (the bipolar theorem)

P = P ∗∗. In this case,

p ∈ P ⇐⇒ 〈p∗, p〉 ≥ 0 ∀ p∗ ∈ P ∗. (1.3.1)

Moreover,

p ∈ int P ⇐⇒ 〈p∗, p〉 > 0 ∀ p∗ ∈ P ∗ \ {0}. (1.3.2)
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In the following definitions we consider Y a real normed vector space.

Given a nonempty set K ⊆ X , we shall also need the notion of epigraph of F : K → Y .

It is, as usual, the set

epi F
.
=
{

(x, y) ∈ K × Y : y ∈ F (x) + P
}

.

Definition 1.3.1 A mapping F : K → Y is said to be (Refs. [43, 40]) P -lower semicontin-

uous (lsc) at x0 ∈ K if for any open set V ⊆ Y such that F (x0) ∈ V there exists an open

neighborhood U ⊆ X of x0 such that F (U ∩K) ⊆ V + P . We shall say that F is P -lsc

(on K) if it is at every point x0 ∈ K.

We have the following proposition.

Proposition 1.3.1 Let P ⊆ Y be a convex cone, K ⊆ X and S ⊆ Y be closed sets such

that S + P ⊆ S and S 6= Y . Further, we are given F : K → Y . The following assertions

hold.

(a) If F is a P -lsc function, then {x ∈ K : F (x) ∈ λ− S} is closed for all λ ∈ Y ;

(b) Assume int P 6= ∅ and P closed: F is P -lsc if and only if {x ∈ K : F (x)− λ 6∈ int P}
is closed for all λ ∈ Y ;

(c) Assume int P 6= ∅ and P closed: epi F is closed if and only if {x ∈ K : F (x) − λ ∈
−P} is closed for all λ ∈ Y ;

(d) Assume int P 6= ∅ and P closed: if F is P -lsc then epi F is closed.

Proof. Part (a) is taken from Ref. [20], Part (b) can be found in Ref. [6], and (c) in

Theorem 5.8 of Ref [40], Chapter 1. 2

We now recall relaxed notions of convexity that are mostly used in vector optimization.

Definition 1.3.2 Assume P ⊆ Y is a convex cone with int P 6= ∅. The function F : K →
Y , is said to be

(i) P -convex if for all x, y ∈ K,

αF (x) + (1− α)F (y) ∈ F (αx + (1− α)y) + P for all α ∈ ]0, 1[;



1.3 Some basic definition in vector optimization 8

(ii) properly P -quasiconvex ([15]) if for every x, y ∈ K, every α ∈ ]0, 1[,

F (αx + (1− α)y) ∈ F (x)− P or F (αx + (1− α)y) ∈ F (y)− P,

or equivalently, the set {
ξ ∈ K : F (ξ)− λ 6∈ P

}
is convex for all λ ∈ Y ;

(iii) P -quasiconvex ([15, 36]) if the set{
ξ ∈ K : F (ξ) ∈ λ− P

}
is convex for all λ ∈ Y ;

(iv) semi-strictly (Y \ −int P )-quasiconvex ([21]) if for every x, y ∈ K,

F (x)− F (y) 6∈ int P =⇒ F (αx + (1− α)y)− F (y) 6∈ int P ∀ α ∈ ]0, 1[.

As noted in [15] there is no relationship between the notions of P -convexity and

properly P -quasiconvexity except in the situation described in the next theorem.

Certainly, properly P -quasiconvexity and P -quasiconvexity are the more common

generalizations of the notion of quasiconvexity for real-valued functions to the vecto-

rial setting. The semi-strict (Y \ −int P )-quasiconvexity is also another generalization.

The class of P -convex function has been studied extensively in [40]. The following

theorem supplements the previous remarks.

Theorem 1.3.1 Assume K ⊆ X is a convex set and P ⊆ Y a convex cone such that

int P 6= ∅. Concerning Definition 1.3.2 we have the following assertions:

(a) (i) =⇒ (iii);

(b) if in addition P is closed then (iii) =⇒ (iv);

(c) if additionally P ∪ (−P ) = Y then, (iii) ⇐⇒ (ii);
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(d) if additionally P ∪ (−P ) = Y and P is closed, then P = Y \ −int P and

(iv) ⇐⇒ (iii) ⇐⇒ (ii);

(e) if in addition P is closed then

P = Y \−int P ⇐⇒ P∪(−P ) = Y ⇐⇒ ∃ p∗ ∈ P ∗\{0}, P =
{

p ∈ Y : 〈p∗, p〉 ≥ 0
}

.

Proof. See [21]. 2

Definition 1.3.3 ([21])Let K ⊆ X be a convex set and let S ⊆ Y be any non-empty

set. The function H : K → Y is said to be explicitly (S)-quasiconvex, or equivalently,

explicitly (Y \ −S)-quasiconvex, if it is semi-strictly (S)-quasiconvex and semi-strictly

(Y \ −S)-quasiconvex

Regarding others notions related to that of explicit (int P )-quasiconvexity , we have

the following definition.

Definition 1.3.4 Let K ⊆ X be a convex set and P ⊆ Y be a convex cone such that

int P 6= ∅. The function F : K → Y is said to be

(i) explicitly P -quasiconvex ([6]) if it is P -quasiconvex and

semi-strictly (int P )-quasiconvex.

(ii) explicitly properly P -quasiconvex ([39]) if it is properly P -quasiconvex (see Def-

inition 1.3.2) and semi-strictly P -quasiconvex;

(iii) (here Y = Rm and P = Rm
+ ) explicitly quasiconvex componentwise ([45]) if each

component of F is a quasiconvex and semi-strictly quasiconvex real-valued func-

tion.
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Theorem 1.3.2 Let K ⊆ X be a non-empty convex set, let P ⊆ Y be a convex cone

such that int P 6= ∅. Given any function F : K → Y , the following assertions hold:

(a) if F is P -convex, it is explicitly (int P )-quasiconvex;

(b) if F is explicitly properly P -quasiconvex, it is explicitly (int P )-quasiconvex;

(c) (here Y = Rm and P = Rm
+ ) if F is explicitly quasiconvex componentwise, it is

explicitly (int Rm
+ )-quasiconvex.

Proof. See [21] . 2

1.4 Notions of minimum in vector optimization

Let us consider a real topological vector space Y and X a Hausdorff topological

space; a convex cone P ⊆ Y such that P 6= Y and (its topological interior) int P 6= ∅; a

closed set K ⊆ X , and a vector-valued function F : K → Y . A point x̄ ∈ K is said to

be: an ideal or strong minimizer of F on K, if

F (y)− F (x̄) ∈ P for all y ∈ K; (1.4.1)

an efficient or Pareto minimizer of F on K, if (l(P )
.
= P ∩ (−P ))

F (y)− F (x̄) 6∈ −(P \ l(P )) for all y ∈ K; (1.4.2)

a weakly efficient or weakly Pareto minimizer of F on K, if

F (y)− F (x̄) 6∈ −int P for all y ∈ K. (1.4.3)

Since

P ⊆ Y \ −(P \ l(P )) ⊆ Y \ −int P,

every solution to (1.4.1) is a solution to (1.4.2), and every solution to (1.4.2) is a solution

to (1.4.3).

The solutions set to problem (1.4.3) is denoted by Ew(K) or simply Ew. Let us notice
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that in the classic case, that is to said P = Rm
+ , where Rm

+ is the non-negative orthant in

Rn. In this case F (x) = (f1(x), · · · , fm(x)), with fi : K −→ R. Therefore a point x̄ ∈ K

that satisfies 1.4.3 it is equivalent to

find x̄ ∈ K such that ∀ y ∈ K, ∃ i : fi(y)− fi(x̄) ≥ 0. (1.4.4)



Chapter 2

Existence results for weak efficiency

In this chapter we motivate ourselves for the following important theorem.

Given a compact (Hausdorff) topological space X ; a function f : X → R∪{+∞}, the

classical Weierstrass theorem asserts that f reaches its minimum value on X provided

the sets {x ∈ X : f(x) ≤ t} are closed for every t ∈ R, i.e., provided f is lower

semicontinuous.

If we are interested in a vector version of this theorem, we need to specify the mean-

ing of minimizer for f . Among the different notions of minimizer (all of them collapse

in the real-valued case), see chapter 1, section 4.

To be more precise, in addition to X , let us consider a real topological vector space

Y ; a convex cone P ⊆ Y such that P 6= Y and (its topological interior) int P 6= ∅; a

closed set K ⊆ X , and a vector-valued function F : K → Y .

Most of the Weierstrass-type theorems for the vectorial case concern problem (1.4.3)

(see Refs. [3, 6, 9, 13, 19, 21, 31] among others) and only a few problem (1.4.1) (see

Refs. [19, 20]). The existence of solution to (1.4.2) is discussed in Ref. [15] under the

assumption that

Gλ .
= {x ∈ K : F (x)− λ ∈ −P}

is closed for all λ ∈ Y , which is equivalent to the closedness of epi F
.
= {(x, y) ∈

X × Y : y ∈ F (x) + P} provided P is closed, see Theorem 5.8 of Chapter 1 in Ref. [40].

The aim of the present chapter is twofold: the first one, is to provide existence re-

12
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sults for the problem (1.4.3), without convexity on F , by assuming the closedness of

G(y)
.
= {x ∈ K : F (x)− F (y) 6∈ int P}

for all y ∈ K, and in the case when some additional structure on X is assumed, to get

existence of solution under a weaker assumption than convexity (see Definition 2.2.1),

secondly, to derive some equivalences for the nonemptiness and compactness of the

weakly solution set under convexity/quasiconvexity conditions. We have to point out

that the closedness of G(y) for all y ∈ K does not imply the closedness of Gλ, likewise,

the closedness of Gλ for all λ ∈ Y does not imply the closedness of G(y). For the first

assertion, simply take P = R2
+,K = [0, 10] ⊆ R, F (x) = (x, x), x 6= 1, F (1) = (1, 5).

Then, G(y) = [0, y] if y ∈ K \ {1} and G(1) = [0, 5]; whereas Gλ = [0, 1[ ∪ ]1, 4]

for λ = (4, 4). For the second assertion, let us consider again K = [0, 10], P = R2
+

and F (x) = (x, 1
x
) if x 6= 0, F (0) = (1, 3). Then Gλ is closed for all λ ∈ R2, whereas

G(1
2
) = ]0, 1

2
] ∪ [1

2
, 10] = ]0, 10].

2.1 An existence theorem without convexity

Let X be a real Hausdorff topological space, Y be a real normed vector space. Given

a compact set K, a convex cone P ⊆ Y such that int P 6= ∅, and any vector function

F : K → Y , we are interested in the problem (1.4.3), it is to say

find x̄ ∈ K : F (y)− F (x̄) 6∈ −int P for all y ∈ K. (2.1.1)

We derive an existence result for the problem (2.1.1) as a consequence of a more

general result proved in Ref. [41].

We first need three concepts taken from Refs. [40, 41]. We say that a convex cone C ⊆ Y

is correct if

C + C \ l(C) ⊆ C,

or equivalently, C + C \ l(C) ⊆ C \ l(C). Here l(C)
.
= C ∩ (−C). A net {yα : α ∈ J} in

Y for some directed set J , is said to be decreasing if yα − yβ ∈ C and not yβ − yα ∈ C for
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each α, β ∈ J , β > α. The set A ⊆ Y is said to be C-complete if there are no covers of the

form {(yα − C)c} where {yα} is a decreasing net in A.

By E(A|C) we mean the set of all the efficient points of A with respect to C, that is,

the set of ȳ ∈ A such that there is no y ∈ A satisfying

ȳ − y ∈ C and not y − ȳ ∈ C,

or equivalently, y − ȳ ∈ Y \ −(C \ l(C)) for all y ∈ A.

The next theorem was proved in Ref. [41].

Theorem 2.1.1 (Ref. [41], Theorem 2.6]) Suppose that C is a correct convex cone in Y . If

A is nonemtpy C-complete then E(A|C) is nonempty.

From the previous theorem, we will derive an existence result to problem 2.1.1, which

may be considered as a vectorial case of the Weierstrass theorem.

Theorem 2.1.2 Let X, Y be as above and P be a convex cone satisfying P 6= Y and

int P 6= ∅. Furthermore, let K ⊆ X be a compact set. Assume that F : K → Y is such

that G(y)
.
= {x ∈ K : F (x)−F (y) 6∈ int P} is closed for all y ∈ K. Then Ew is nonempty

and compact.

Proof. We first notice that Ew = E(F (K)|C) for C = (int P ) ∪ {0} (a correct cone). The

closedness of Ew being evident it suffices to show that Ew 6= ∅. By assuming Ew = ∅
we arrive at a contradiction if we can show that F (K) is C-complete because of The-

orem 2.1.1 (actually the counter-reciprocal of Theorem 2.1.1 ). If it is not C-complete,

let {F (xα)} be a decreasing net with {(F (xα) − C)c}α forming a recovering of F (K).

By compactness one may assume that xα → x0 for some x0 ∈ K. Since Ew = ∅, there

is y ∈ K such that F (x0) − F (y) ∈ int P . For F (y), there is some index α0 such that

F (y) 6∈ F (xα) − C for all α > α0. This in particular implies F (xα) − F (y) 6∈ int P for

α > α0. The closedness assumption on G(y) yields F (x0)−F (y) 6∈ int P , a contradiction.

This proves Ew is nonempty. 2

We now show another proof for Theorem 2.1.2 using a fixed-point theorem for dis-

crete set-valued mapping.
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Lemma 2.1.1 Let Y be a vector space, Y0 = {v1, . . . , vm} ⊂ Y , m ≥ 2, and Q ⊆ Y be a

non-empty set such that Q + Q ⊆ Q. Define the set-valued map T : Y0 ⇒ Y0 by

T (u) =
{

v ∈ Y0 : u− v ∈ Q
}

.

Then, the following assertions are equivalent:

(a) T (v) 6= ∅ for all v ∈ Y0;

(b) 0 ∈ Q;

(c) vi ∈ T (vi) for all i = 1, . . . ,m.

Proof. (a) =⇒ (b): Let us fix v1. By using (a), for i = 1, . . . ,m, we may recursively find

ji ∈ {1, . . . ,m} such that vji−1
− vji

∈ Q where j0 = 1. It is not hard to check that

there exist i ≤ m, s < i, such that ji = js, (2.1.2)

for if not Y0 must contain at least m + 1 elements, which is impossible. Hence,

0 = vji
− vjs =

i∑
p=s+1

(vjp − vjp−1) ∈ −Q,

proving (b).

The implications (b) =⇒ (c) and (c) =⇒ (a) are obvious. 2

We are now in a position to establish the proof of the theorem 2.1.2.

Clearly,

Ew =
⋂
y∈K

{
x ∈ K : F (x)− F (y) 6∈ int P

}
.

Since each of the sets involved in the intersection is closed (actually compact) by as-

sumption, it suffices to prove that

m⋂
i=1

G(yi) 6= ∅ (2.1.3)
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for every finite set {y1, . . . , ym} in K, where

G(y)
.
=
{

x ∈ K : F (x)− F (y) 6∈ int P
}

. (2.1.4)

Suppose on the contrary, that
m⋂

i=1

G(yi) = ∅. (2.1.5)

Set Y0 = {v1, . . . , vm} ⊂ Y , vi = F (yi). From (2.1.5) it follows that the set-valued map

T : Y0 ⇒ Y0 defined by

T (vi) =
{

v ∈ Y0 : vi − v ∈ int P
}

,

has non-empty values, that is, T (vi) 6= ∅ for all i = 1, . . . ,m. By the previous lemma

0 ∈ int P , which is a contradiction. Thus (2.1.3) holds and hence Ew is non-empty. The

closedness, and so compactness, follows from the assumption.

In the case when K is not compact, we need the following condition:

(C): there exists a nonempty compact set D ⊆ K such that for all x ∈ K \D there exists

y ∈ D such that F (y)− F (x) ∈ −int P .

This condition requires that any element outside D cannot be a candidate for solution

to problem (2.1.1). Therefore Ew ⊆ D, and consequently Ew must be compact, being it

closed.

Corollary 2.1.1 Assume the assumptions on X, Y, P of Theorem 2.1.2 hold and that K

is closed. If condition (C) is satisfied, then Ew is nonempty and compact, and Ew(K) =

Ew(D), where Ew(D) denotes the set of solutions to (2.1.1) on D instead of K.

Proof. By Theorem 2.1.2, there exists x̄ ∈ D such that F (y) − F (x̄) 6∈ −int P for all

y ∈ D. We claim that in fact x̄ ∈ Ew. If y ∈ K \ D, y ∈ K, condition (C) implies the

existence of y0 ∈ D such that F (y0)− F (y) ∈ −int P . Thus

F (y)− F (x̄) = F (y)− F (y0) + F (y0)− F (x̄) ∈ P + (Y \ −int P ) ⊆ Y \ −int P,

proving the desired result. 2
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Example 2.1.1 Let us consider K = R2, P = R2
+, and the function F (x1, x2) = (

√
|x1|+√

|x2|,
√
|x1|+ 2

√
|x2|). Then, condition (C) holds by taking

D = {(x1, x2) : max{|x1|, |x2|} ≤ 1}

and y = (0, 0).

A stronger assumption implying the closedness of G(y) (as required in Theorem

2.1.2) for all y ∈ K, concerns the P -lower semicontinuity of F . In case P is additionally

closed, it is proven in Ref. [6] that F is P -lsc on K if, and only if, the set Gλ
.
= {x ∈

K : F (x)− λ 6∈ int P} is closed for all λ ∈ Y . We notice that the closedness of G(y) for

all y ∈ K does not imply the closedness of Gλ for all λ ∈ Y , as the following example

shows: take P = R2
+, K = [0, 10] ⊆ R, F (x) = (x, x), x 6= 1, F (1) = (1, 5). Then,

G(y) = [0, y] if y ∈ K \{1} and G(1) = [0, 5]; whereas Gλ = [0, 1[ ∪ ]1, 4] for λ = (1/2, 4).

Remark 2.1.1 As mentioned in the introduction, an existence theorem concerning prob-

lem (1.4.2) was established in Ref. [15] by imposing the closedness of

Gλ .
= {x ∈ K : F (x)− λ ∈ −P}

for all λ ∈ Y . It is equivalent to requiring the closedness of epi F
.
= {(x, y) ∈ X×Y : y ∈

F (x) + P}, whenever P is closed (see Theorem 5.8 of Chapter 1 in Ref. [40]). It was

shown in the previous section that, in general, there is no relationship between the

closedness of G(y) for all y ∈ K and the closedness of Gλ for all λ ∈ Y . However, in the

case when Y = Rm, P = Rm
+ and every component of F is bounded from above on K,

it is not hard to prove that

Gλ is closed for all λ ∈ Rm if, and only if, Gλ is closed for all λ ∈ Rm.

2.2 A class of generalized quasiconvex vector mapping:

existence results

Let Y be a real normed vector space and X be a reflexive Banach space. We are

also given a nonempty set S ⊆ Y , a nonempty convex set K ⊆ X , and a mapping
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F : K → Y . It is requested to find

x̄ ∈ K such that F (y)− F (x̄) ∈ S ∀ y ∈ K. (2.2.1)

A point x̄ ∈ K satisfying (2.2.1) is called a (global) S-minimal of F (on K); whereas a

point x̄ is a local S-minimal of F (on K) if there exists an open neighborhood U , x̄ ∈ U ,

such that

F (x)− F (x̄) ∈ S ∀ x ∈ U ∩K. (2.2.2)

The set of S-minimal points of F is denoted by ES .

In connection to problem (2.2.1) the following definition, introduced earlier in Ref.

[35] and independently in Ref. [21] with different uses, will play an important role.

Definition 2.2.1 (Refs. [10, 21]) Given S, K as above with K being convex, the mapping

F : K → Y , is said to be semistrictly (S)-quasiconvex at y ∈ K, if for every x ∈ K,

x 6= y,

F (x)− F (y) ∈ −S =⇒ F (ξ)− F (y) ∈ −S ∀ ξ ∈ ]x, y[.

We say that F is semistrictly (S)-quasiconvex (on K) if it is at every y ∈ K.

One can easily check that the vector functions

F1(x) = (e−x2

, x2), x ∈ R; F2(x1, x2) =
( x2

1

1 + x2
1

, x3
2

)
, (x1, x2) ∈ R2, and

F3(x) = (
1

1 + |x|2
, |x|), x ∈ R,

are semistrictly (R2 \ −int R2
+)-quasiconvex.

Before going further, we have to make some comments. Let us consider the case Y = R.

Semistrict (R+)-quasiconvexity amounts to saying quasiconvexity in the usual sense,

that is, the set {x ∈ K : F (x) ≤ t} is convex for all t ∈ R, or equivalently, given any

x, y ∈ K,

F (x) ≤ F (y) =⇒ F (ξ) ≤ F (y) ∀ ξ ∈ ]x, y[;
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whereas semistrict (R++)-quasiconvexity amounts to saying semistrict quasiconvexity

as usually known in mathematical programming, that is, given any x, y ∈ K,

F (x) < F (y) =⇒ F (ξ) < F (y) ∀ ξ ∈ ]x, y[.

The semistrict (P )-quasiconvexity was mentioned in Ref. [35]. Instead, we will use

semistrictly (Y \ −int P )-quasiconvex functions. In case Y = R2 and P ⊆ R2 is a poly-

hedral, various equivalent conditions to semistrict (P )-quasiconvexity were derived in

Ref. [10], where the term (P, P )-quasiconvexity is used. In particular, one is expressed

in terms of the Jacobian matrix of the function involved. Moreover, it is also proved in

Ref. [10] that semistrict (P )-quasiconvexity is equivalent to P -quasiconvexity when-

ever the function is continuous, and therefore such a function will be semistrictly

(R2 \ −int P )-quasiconvex as Theorem 2.6 in Ref. [21] asserts.

The following theorem encompasses a well known result valid for real-valued func-

tions.

Theorem 2.2.1 (Ref. [35]) Let S, K be nonempty sets as above. Let x̄ ∈ K be a local S-

minimal for F on K. Then, x̄ ∈ ES if and only if F is semistrictly (Y \−S)-quasiconvex

at x̄.

For a given y ∈ K, we set

Sy
.
=
{

x ∈ K : F (x)− F (y) ∈ −S
}

.

The proof of the next lemma follows immediately from Definition 2.2.1.

Lemma 2.2.1 Given S, K as above and F : K → Y , the following two assertions are

equivalent for fixed y ∈ K:

(a) F is semistrictly (S)-quasiconvex at y;

(b) [x, y[ ⊆ Sy for all x ∈ Sy.

In case 0 ∈ S, y ∈ Sy for all y ∈ K, we also obtain
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Theorem 2.2.2 Given S, K as above with 0 ∈ S, and F : K → Y .

(a) F is semistrictly (S)-quasiconvex at y ∈ K if, and only if, Sy is starshaped at y;

(b) Assume X = R. Then, F is semistrictly (S)-quasiconvex ⇐⇒ Sy is convex for all

y ∈ K ⇐⇒ for every finite subset {y1, . . . , ym} of K and for every j ∈ {1, . . . ,m},

F (yi)− F (yj) ∈ −S ∀ i 6= j =⇒ F (ξ)− F (yj) ∈ −S ∀ ξ ∈ co {y1, . . . , ym}, ξ 6= yi ∀ i;

(c) Assume (Y \ −S) + (Y \ −S) ⊆ Y \ −S. If F is semistrictly (S)-quasiconvex, then

for every x, y ∈ K, x 6= y, every ξ ∈ ]x, y[,

F (ξ)− F (x) ∈ −S or F (ξ)− F (y) ∈ −S,

that is, either ξ ∈ Sx or ξ ∈ Sy;

(d) Assume that X = R and (Y \ −S) + (Y \ −S) ⊆ Y \ −S. If F is semistrictly

(S)-quasiconvex, then for all x < y in K, supSx ≥ inf Sy.

Proof. (a): This is straightforward from the definition of Sy and Lemma 2.2.1.

(b): The “if ” part of the first equivalence was proved in (a). The “only if” is as follows:

take x1, x2 ∈ Sy, x1 < x2, and x ∈ ]x1, x2[. If x > y, then x ∈ ]y, x2[, and therefore,

F (x) − F (y) ∈ −S, i.e., x ∈ Sy. In case x < y we proceed in the same manner, proving

the convexity of Sy. This completes the proof of the first equivalence. The “if” part of

the second equivalence is obvious. For the “only if” part, let ξ ∈ co{y1, . . . , yn}, and

assume that F (yi) − F (yj) ∈ −S for all i 6= j. If ξ < yj , then ξ ∈ ]yp, yj[ for some

p ∈ {1, . . . ,m}, and therefore F (ξ)− F (yj) ∈ −S. The case ξ > yj is treated in the same

manner.

(c): If F (ξ)−F (x) 6∈ −S and F (ξ)−F (y) 6∈ −S for some ξ ∈ ]x, y[, then by the semistrict

(S)-quasiconvexity of F , F (x) − F (y) 6∈ −S and F (y) − F (x) 6∈ −S. Thus 0 ∈ Y \ −S,

which is absurd, proving the desired result.

(d): Suppose supSx < inf Sy and take ξ ∈ R such that

x ≤ supSx < ξ < inf Sy ≤ y.

This implies ξ 6∈ Sx and ξ 6∈ Sy, which contradicts (c). 2
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Example 2.2.1 This example shows that the reverse implication in (c) and (d) of the

previous theorem may be false. Take F (x) = (−x, 1 − (x − 1)2), x ∈ K = [0, 2], S =

R2 \−int R2
+. After some calculations, we obtain F (0)−F (3/2) = (3/2,−3/4) ∈ −S but

F (4/5)−F (3/2) = (7/10, 21/100) 6∈ −S, thus F is not semistrictly (S)-quasiconvex. On

the other hand, it is not hard to check that for any x, y ∈ K, x < y, we get F (ξ)−F (x) ∈
−S for all ξ ∈ ]x, y[. Moreover, for all x ∈ K, Sx = [0, 2 − x] ∪ [x, 2] which implies

supSx = 2 and inf Sx = 0.

A simple criterion for a vector mapping to be semistrictly (S)-quasiconvex is given

in the following proposition whose proof is straightforward.

Proposition 2.2.1 Let K, S be nonempty sets as above. If F : K → Y is such that

H(y)
.
= {x ∈ K : F (x) − F (y) 6∈ S} is empty for all y ∈ K, then F is semistrictly

(S)-quasiconvex.

Example 2.2.2 By setting S = R2 \ −int R2
+, the above mentioned function F1 is such

that H(y) = ∅ and Sy = R for all y ∈ R, thus F1 is semistrictly (R2 \ −int R2
+)-

quasiconvex. On the other hand, the function F2 shows that one implication in (b)

of Theorem 2.2.2 may be false if X has dimension greater or equal than two (for S as

above), since in this case

Sy =
(
[−|y1|, |y1|]× R

)
∪
(
R× ]−∞, y2]

)
.

Moreover, even when K ⊆ R, the reverse implication in Proposition 2.2.1 may be false

as the function F (x) = (
√

x, x), x ≥ 0, shows, since H(y) = [0, y[, y > 0.

In the same lines of reasoning as in Refs. [19, 21], we introduce the following cones

in order to deal with the case when K is an unbounded set,

RP
.
=
⋂
y∈K

{
v ∈ K∞ : F (y + λv)− F (y) ∈ −P ∀ λ > 0

}
, (2.2.3)

RS
.
=
⋂
y∈K

{
v ∈ K∞ : F (y + λv)− F (y) ∈ −S ∀ λ > 0

}
. (2.2.4)

We recall that ES denotes the set of x̄ ∈ K satisfying (2.2.1).
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Theorem 2.2.3 Let K be a closed convex set; let P ⊆ Y be a convex cone and S ⊆ Y

be nonempty such that S + P ⊆ S. If the function F : K → Y is semistrictly (S)-

quasiconvex and the set Sy is weakly closed for all y ∈ K, then

ES + RP = ES , and (ES)∞ ⊆ RS. (2.2.5)

Moreover, if ES 6= ∅ and either X = R or Y = R (here P = [0, +∞[), then ES is convex

and

(ES)∞ = RS. (2.2.6)

Proof. Obviously ES ⊆ ES + RP . Both inclusions in (2.2.5) trivially hold if ES = ∅.

Otherwise, take any x̄ ∈ ES and v in RP . Then, for all y ∈ K and all λ > 0,

F (y)− F (x̄ + λv) = F (y)− F (x̄) + F (x̄)− F (x̄ + λv) ∈ S + P ⊆ S.

This completes the proof of the equality in (2.2.5). The second inclusion follows from

the equality

ES =
⋂
y∈K

Sy, (2.2.7)

and Proposition 1.2.1. The equality in (2.2.6) is a consequence of the convexity of Sy

(see (b) of Theorem 2.2.2). 2

Remark 2.2.1 The second inclusion in (2.2.5) may be strict. Indeed, take K = R2, P =

R2
+, S = R2 \ −int R2

+ and F (x1, x2) = (x2
1, e

x2). Then

ES = {0} × R, RS =
(
{0} × R

)
∪
(
R× ]−∞, 0]

)
.

Notice that the components of F are convex. An additional instance in which we have

(ES)∞ = RS will be presented in (b) of Corollary 2.3.1.

We shall need the following definition which has been introduced in Ref. [42].
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Definition 2.2.2 A subset C of a normed vector space X is said to be recessively com-

pact if for all sequence {xn} in K with ||xn|| → +∞ as n → +∞, there exist a subse-

quence {xnk
} of {xn} and a sequence {tk} of positive numbers converging to 0 such

that tkxnk
converges strongly to some non-zero element of X .

Proposition 2.2.2 Let K ⊆ X be a closed convex set and S ⊆ Y be a nonempty set.

Assume that F : K → Y is semistrict (S)-quasiconvex, and that Sy is weakly closed for

all y ∈ K. If K is recessively compact and RS = {0}, then (Kr = {x ∈ K : ||x|| ≤ r} 6=
∅)

∃ r > 0, ∀ x ∈ K \Kr, ∃ y ∈ Kr : F (y)− F (x) 6∈ S. (2.2.8)

Consequently condition (C), introduced in section 2.1, is satisfied for S = Y \ −int P .

Furthermore, if X = R then RS = {0} if and only if (2.2.8) holds.

Proof. Suppose on the contrary that for all n ∈ N there exists xn ∈ K \Kn such that

F (y)− F (xn) ∈ S ∀ y ∈ Kn.

Since ||xn|| > n we have ||xn|| → +∞ as n → +∞, and therefore by the recessive com-

pactness of K there exist a subsequence {xnk
} of {xn} and a sequence {tk} of positive

numbers converging to 0 such that tkxnk
converges strongly to some non-zero element

v of X . Clearly v ∈ K∞. On the other hand, for any fixed y ∈ K, F (y) − F (xn) ∈ S

for all n ∈ N sufficiently large (for instance n > ||y||). Hence, for every λ > 0 and all k

sufficiently large, the semistrict (S)-quasiconvexity of F implies

F ((1− λtk)y + λtkxnk
)− F (y) ∈ −S.

Thus, by the weak closedness assumption, F (y+λv)−F (y) ∈ −S, showing that v ∈ RS ,

which cannot happen if RS = {0} is assumed, proving that (2.2.8) has to hold.

We now consider X = R. Take any x ∈ Kr and assume that 0 6= v ∈ RS . Then, due to the

convexity of K and since v ∈ K∞, we have x+λ0v ∈ K \Kr for some λ0 > 0 sufficiently

large. Then, by (2.2.8), there exists y ∈ Kr ⊆ K such that F (y)− F (x + λ0v) 6∈ S. By the

convexity of K again, there is λ1 > 0 such that x + λ0v = y + λ1v. Hence

F (y)− F (y + λ1v) 6∈ S,
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which says v 6∈ RS , a contradiction. 2

2.3 The finite dimensional case on Rn

2.3.1 Characterizing the nonemptiness and boundedness of the weakly

efficient solution set

This section is devoted to characterizing the nonemptiness and compactness of the

solution set to the problem 2.1.1 where K ⊆ Rn is possibly unbounded. In this part we

study two cases: Y be a real normed vector space and Y = Rm.

We consider the hypothesis

HYPOTHESIS (H0): The set P ⊆ Y is a convex (not necessarily pointed) cone such that

P 6= Y and int P 6= ∅.

The first case
In this situation we use Ew (see (2.1.1)), Rw instead of ES and RS respectively (see 2.2.2

and 2.2.4). More precisely

Rw
.
=
⋂
y∈K

{
v ∈ K∞ : F (y + λv)− F (y) 6∈ int P ∀ λ > 0

}
. (2.3.1)

This cone is always convex whenever K ⊆ R. The next theorem was proved in Ref [21]

under the convexity condition on each H(y)
.
= {x ∈ K : F (x)−F (y) ∈ −int P}, y ∈ K.

This convexity assumption was needed because of the use of the Knaster-Kuratowski-

Mazurkiewicz lemma Ref. [4]; instead we apply Theorem 2.1.2.

Theorem 2.3.1 Let K ⊆ Rn be a closed convex set and P ⊆ Y satisfies hypothesis

(H0). Assume that F : K → Y is semistrictly (Y \ −int P )-quasiconvex and the set

G(y)
.
= {x ∈ K : F (x)− F (y) 6∈ int P} is closed for all y ∈ K. If Rw = {0} then Ew is a

nonempty compact set.

Proof. This a consequence of Corollary 2.1.1 and Proposition 2.2.2 with S = Y \−int P .

2
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Remark 2.3.1 Unfortunately, we do not know whether the condition Rw = {0} is also

necessary for the nonemptiness and compactness of Ew in this general setting. How-

ever, when P = Rm
+ and each component of F is lower semicontinuous and convex,

Rw = {0} becomes also a necessary condition as shown in Ref. [13] (see also Corollary

5.13 in Ref. [20]).

The second case

Since int P 6= ∅, the polar cone P ∗ ⊆ Rm, of P , can be written as P ∗ = cone (B)

where B is a compact convex set such that 0 6∈ B. More precisely, the nonemptiness of

int P allows us to take B = {ξ ∈ Rm : 〈ξ, p0〉 = 1} for some p0 ∈ int P . Here, 〈x, y〉
denotes the inner product of x and y in Rm. One can check that P ∗ is closed convex and

pointed (P ∗ ∩ (−P )∗ = {0}). It is known that

p ∈ int P ⇐⇒ 〈p∗, p〉 > 0 ∀ p∗ ∈ P ∗, p∗ 6= 0 ⇐⇒ 〈p∗, p〉 > 0 ∀ p∗ ∈ B;

p ∈ P ⇐⇒ 〈p∗, p〉 ≥ 0 ∀ p∗ ∈ P ∗ ⇐⇒ 〈p∗, p〉 ≥ 0 ∀ p∗ ∈ B.
(2.3.2)

By the Krein Milman theorem (see Theorem 1.1.1) we have B = co B0 where B0 is the

set of extreme points of B. We actually need the following hypothesis on P ∗.

HYPOTHESIS (H1): Let P be a closed convex cone such that int P 6= ∅ and P ∗ =

cone (co(B0)) where B0 is closed being the set of extreme points of B (hence B0 is

compact).

It is clear that the polhyedral and ice-cream (Lorentz) cones satisfy Hypothesis (H1).

Under hypothesis (H1), (2.3.2) reduces to

p ∈ int P ⇐⇒ 〈q, p〉 > 0 ∀ q ∈ B0;

p ∈ P ⇐⇒ 〈q, p〉 ≥ 0 ∀ q ∈ B0.
(2.3.3)

By recalling that Ew is the solution set to problem (2.1.1), the representation of P ∗

and (2.3.3) imply (for S = Rm \ −int P )

Ew
.
= ES =

⋂
y∈K

⋃
q∈B0

{
x ∈ K : 〈q, F (x)− F (y)〉 ≤ 0

}
, (2.3.4)
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RP =
⋂
y∈K

⋂
λ>0

⋂
q∈B0

{
v ∈ K∞ : 〈q, F (y + λv)− F (y)〉 ≤ 0

}
, (2.3.5)

and (see (2.2.4))

Rw
.
= RS =

⋂
y∈K

⋂
λ>0

⋃
q∈B0

{
v ∈ K∞ : 〈q, F (y + λv)− F (y)〉 ≤ 0

}
. (2.3.6)

Additionally, we also consider the cone

R̃w =
⋂
y∈K

⋃
q∈B0

{
v ∈ K∞ : 〈q, F (y + λv)− F (y)〉 ≤ 0 ∀ λ > 0

}
, (2.3.7)

and finally let us introduce the function

hq(x) = 〈q, F (x)〉, q ∈ P ∗, x ∈ K.

Clearly R̃w ⊆ Rw. Conditions ensuring the equality are given in the next proposi-

tion.

Proposition 2.3.1 Let K ⊆ Rn be closed and convex. Assume that P satisfies hypoth-

esis (H1) and F : K → Rm is such that hq is quasiconvex for all q ∈ B0. Then, for any

fixed y ∈ K,⋂
λ>0

⋃
q∈B0

{
v ∈ K∞ : hq(y + λv) ≤ hq(y)

}
=
⋃

q∈B0

⋂
λ>0

{
v ∈ K∞ : hq(y + λv) ≤ hq(y)

}
.

(2.3.8)

Consequently, R̃w = Rw.

Proof. We only need to prove the inclusion “⊆”. Let v be in the set of the left hand side

in (2.3.8). Then, for all k ∈ N there is qk ∈ B0 such that hqk
(y + kv) ≤ hqk

(y). We may

assume that qk → q0 ∈ B0. Let us fix any λ > 0. The quasiconvexity of hqk
implies that

for all k sufficiently large,

hqk
(y + λv) ≤ max{hqk

(y), hqk
(y + kv)} = hqk

(y).

Letting k → +∞, we obtain hq0(y + λv) ≤ hq0(y). This proves v belongs to the set of the

right hand side of (2.3.8). 2
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Proposition 2.3.2 Let K ⊆ Rn be closed and convex and P satisfies hypothesis (H1).

Assume that F : K → Rm is P -lsc and that hq : K → R, is quasiconvex for all q ∈ B0. If

Ew 6= ∅, we have RP ⊆ (Ew)∞ ⊆ R̃w.

Proof. This follows from Theorem 2.2.3, Proposition 1.3.1 and the previous proposi-

tion since quasiconvexity of hq for all q ∈ B0 implies the semistrict (Rm \ −int P )-

quasiconvexity of F . 2

In the case when the functions fi are convex more precise estimates for (Ew)∞ are

obtained.

Corollary 2.3.1 Assume that hq : K → R is convex for all q ∈ B0, and F : K → Rm is

P -lsc. Then,

• (a) if Ew 6= ∅, we have⋂
q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
⊆ (Ew)∞ ⊆

⋃
q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
; (2.3.9)

• (b) if argminK hq 6= ∅ for all q ∈ B0, then

(Ew)∞ =
⋃

q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
= Rw.

Proof. (a): This is a consequence of Propositions 2.3.1 and 2.3.2 since

RP =
⋂

q∈B0

{
v ∈ K∞ : hq(y + λv)− hq(y) ≤ 0 ∀ λ > 0, ∀ y ∈ K

}
,

R̃w =
⋂
y∈K

⋃
q∈B0

{
v ∈ K∞ : 〈q, F (y + λv)− F (y)〉 ≤ 0 ∀ λ > 0

}
=
⋂
y∈K

⋃
q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
=
⋃

q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
=
⋃

q∈B0

⋂
y∈K

{
v ∈ K∞ : hq(y + λv)− hq(y) ≤ 0 ∀ λ > 0

}
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(b) Since

(argminKhq)
∞ =

{
v ∈ K∞ : h∞q (v) ≤ 0

}
(2.3.10)

and argminKhq ⊆ Ew for all q ∈ B0, we obtain⋃
q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
⊆ (Ew)∞,

which together with (a) the desired result follows. 2

Example 2.3.1

(i) An instance showing that inclusions in (a) of the previous corollary may be strict

was exhibited in Remark 2.2.1.

(ii) Let K = R2 and F (x1, x2) = (x2
1, x

2
2). Then f∞i (v1, v2) = 0 if vi = 0, f∞i (v1, v2) =

+∞ elsewhere. Thus,

RP = {(0, 0)}, Rw =
(
{0} × R

)
∪
(
R× {0}

)
= (Ew)∞ = Ew.

The next result is an extension of Theorem 2.1 in Ref. [13], where P = Rn
+ is consid-

ered.

Theorem 2.3.2 Let K ⊆ Rn be a closed convex set and P be a cone satisfying hypoth-

esis (H1). Assume that F : K → Rm is P -lsc such that 〈q, F (·)〉 : K → R is convex for

all q ∈ B0. The following assertions are equivalent:

(a) Ew is nonempty and compact;

(b) argminK〈q, F (·)〉 is nonempty and compact for all q ∈ B0;

(c) R̃w = {0};

(d) Rw = {0}.
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Proof. (b) =⇒ (a): This results from (b) of Corollary 2.3.1 and (2.3.10) since

(argminKhq)
∞ =

{
v ∈ K∞ : h∞q (v) ≤ 0

}
.

(a) =⇒ (b): Suppose that argminKhq0 = ∅ for some q0 ∈ B0. We take x0 ∈ argminEw
hq0

and x1 ∈ K such that 〈q0, F (x1)〉 < 〈q0, F (x0)〉. We now consider the nonempty closed

convex set

D
.
=
⋂

q∈B0

{
x ∈ K : hq(x) ≤ hq(x1)

}
.

Then

D∞ =
⋂

q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
= {0}

by (a) of Corollary 2.3.1. It means that D is bounded and thus compact. Therefore, by

Theorem 2.1.2 there exists z ∈ D such that

F (x)− F (z) 6∈ −int P ∀ x ∈ D.

It is not difficult to check that z ∈ Ew. We also have

〈q0, F (z)〉 ≤ 〈q0, F (x1)〉 < 〈q0, F (x0)〉,

contradicting the choice of x0. This proves the nonemptiness of argminKhq for all q ∈
B0. The boundedness follows from the inclusion argminKhq ⊆ Ew for all q ∈ B0.

(c) ⇐⇒ (d): This is a consequence of Proposition 2.3.1. 2

When P = Rm
+ the equivalence between (a) and (b) of Theorem 2.3.2 was proved in

Theorem 2.1 of Ref. [13].

2.4 The finite dimensional case on the real-line

2.4.1 Characterizing the nonemptiness and boundedness of the weakly

efficient solution set

We now proceed as in the previous section.

In this part we study two cases: Y be a real normed vector space and Y = Rm.

The first case
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The next theorem extends the result in Theorem 4.1 of Ref. [21].

Theorem 2.4.1 Let K ⊆ R be a closed convex set and assume that P ⊆ Y satisfies

hypothesis (H0). If F : K → Y is semistrictly (Y \ −int P )-quasiconvex such that Sy is

closed for all y ∈ K, then Ew is a closed convex set, and the following assertions are

equivalent:

(a) Rw = {0};

(b) ∃ r > 0, ∀ x ∈ K \Kr, ∃ y ∈ Kr : F (y)− F (x) ∈ −int P , where Kr = [−r, r] ∩K;

(c) Ew is nonempty and bounded (it is already closed and convex).

Proof. (a) ⇐⇒ (c): One implication is a consequence of Theorem 2.3.1, and the other

implication follows from Theorem 2.2.3.

(a) ⇐⇒ (b): This results from Proposition 2.2.2 with S = Y \ −int P . 2

The second case

In this part we consider the same hypothese of the previous section for the cone P .

The following theorem proves the equivalence between (a) and (b) of Theorem 2.3.2

without the convexity assumption. We firstly have the following theorem.

Theorem 2.4.2 Let K ⊆ R be a closed convex set and P be a cone satisfying hypothesis

(H1). Assume that

argminK〈q, F (·)〉 6= ∅ for all q ∈ B0.

If for all q ∈ B0, the function 〈q, F (·)〉 is semistrictly quasiconvex and lsc, then

Ew = co
( ⋃

q∈B0

argminK〈q, F (·)〉
)
.

In case B0 is finite (e.g. P is polhyedra) then we can delete the closure in the pre-

ceding equality.
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Proof. We know that argminK〈q, F (·)〉 is closed. Since every lsc and semistrictly qua-

siconvex real-valued function is quasiconvex, we thus obtain that F is semistrictly

(Rm \ −int P )-quasiconvex. By Theorem 2.2.2 and (2.2.7), Ew is convex. Therefore

A0
.
= co

( ⋃
q∈B0

argminK〈q, F (·)〉
)
⊆ Ew. (2.4.1)

Set hq(x) = 〈q, F (x)〉. Thus, A0 is of the form ] −∞, +∞[, [α, +∞[, ] −∞, α], [α, β] for

some −∞ < α ≤ β < +∞. Obviously, in the first case there is nothing to prove. We

only consider the case A0 = [α, +∞[. If x ∈ Ew \ A0, by (2.3.3) we may choose q ∈ B0

such that hq(x) ≤ hq(α). Take any xq ∈ argmin hq; then hq(xq) < hq(x) since x 6∈ A0, and

therefore hq(α) < hq(x) reaching a contradiction. 2

Remark 2.4.1

(i) The preceding theorem may be false if argminK〈qi, F (·)〉 = ∅ for some i. Indeed,

take P = R2
+, K = R, F (x) = (

√
|x|, x

1+|x|), x ∈ R. Here, Ew = ] − ∞, 0], while

argminRf1 = {0}.

(ii) This instance shows the necessity of semistrict quasiconvexity of all components.

In fact, simply take K = [0, +∞[ and

f1(x) =

{
2 if x /∈ [1, 2],

1 if x ∈ [1, 2],
f2(x) =

{
−e−x+5 if x ≥ 5,

4− x if x ≤ 5.

Here Ew = [1, +∞[.

(iii) Clearly, one cannot expect Theorem 2.4.2 continues to be valid if K ⊆ Rn, n ≥ 2,

since in general Ew is not convex. For instance take F (x1, x2) = (x2
1, x

2
2), (x1, x2) ∈

R2. Here Ew = ({0} × R) ∪ (R× {0}).

The result of the next theorem is optimal in the sense described in Remark 2.3.1.
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Theorem 2.4.3 Let K ⊆ R be a closed convex set and P ⊆ Rm be a cone satisfying

hypothesis (H1). Assume that 〈q, F (·)〉 : K → R is lsc and semistrictly quasiconvex for

all q ∈ B0. The following assertions are equivalent:

(a) Ew is a nonempty compact convex set;

(b) argminK〈q, F (·)〉 is a nonempty compact convex set for all q ∈ B0;

(c) ∃ r > 0, ∀ x ∈ K \Kr, ∃ y ∈ Kr (Kr = [−r, r] ∩K):

〈q, F (y)− F (x)〉 < 0 ∀ q ∈ B0.

Proof. As in the first part of the proof of Theorem 2.4.2, F is semistrictly (Rm \−int P )-

quasiconvex. Therefore, Ew is convex by Theorem 2.2.2 and (2.2.7). The closedness of

Ew follows again from (2.2.7) and Proposition 1.3.1. The implication (b) =⇒ (a) is a

consequence of Theorem 2.4.2 and the remark above. Let us prove (a) =⇒ (b). Clearly⋃
q∈B0

⋂
y∈K

⋂
λ>0

{
v ∈ K∞ : 〈q, F (y + λv)− F (y)〉 ≤ 0

}
⊆

⊆
⋂
y∈K

⋂
λ>0

⋃
q∈B0

{
v ∈ K∞ : 〈q, F (y + λv)− F (y)〉 ≤ 0

}
= (EW )∞ = {0},

where the former equality was obtained by using Theorem 2.2.2 and (2.3.3) together

with the remarks above. Hence, for all q ∈ B0,⋂
y∈K

⋂
λ>0

{
v ∈ K∞ : 〈q, F (y + λv)− F (y)〉 ≤ 0

}
= {0}.

We apply Theorem 2.3.1 (with Y = R, X = R and P = R+) to the function x 7→
〈q, F (x)〉. This allows us to conclude that for all q ∈ B0, argminK〈q, F (·)〉 is nonempty

and bounded, and therefore compact. The convexity easily follows. The equivalence

between (a) and (c) is a consequence of Theorem 2.4.1 and (2.3.3). 2

Remark 2.4.2 Although we were unable to prove the validity of Theorem 2.4.3 in higher

dimension, we believed that it is true, at least in the polyhedral case.
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2.4.2 Characterizations of the nonemptiness of the weakly efficient

solution

We now will center to studying the case P = Rm
+ . Therefore we rewrite the cone

2.3.1 in this particular case

Rw =
⋂
y∈K

{
v ∈ K∞ : F (y + λv)− F (y) ∈ Rm\ − int Rm

+ ∀λ > 0
}

=
⋂
y∈K

⋂
λ>0

m⋃
i=1

{v ∈ K∞ : fi(y + λv)− fi(y) ≤ 0} .

(2.4.2)

When each fi is quasiconvex , then it is easily seen that

Rw =
⋂
y∈K

m⋃
i=1

{v ∈ K∞ : fi(y + λv)− fi(y) ≤ 0 ∀λ > 0} . (2.4.3)

If, each fi is convex and lower semicontinuous in K, then

Rw =
m⋃

i=1

{v ∈ K∞ : f∞i (v) ≤ 0} .

We now present various alternative equivalent conditions for Ew to nonempty. In

what follows |x| stands for the absolute value of x ∈ R.

(C1) : for any sequence {xk} in K satisfying:

(i) |xk| → +∞, xk

|xk|
→ v ∈ Rw, and,

(ii) for all y ∈ K there exists ky such that F (y)− F (xk) /∈ −int Rm
+ for all

k ≥ ky,

we assume the existence of u ∈ K and k̄, such that |u| < |xk̄| and F (u)−F (xk̄) /∈
Rm

+ .

(C2) : there exists a nonempty compact set D ⊆ K such that for all x ∈ K\D there
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exists u ∈ D : F (u)− F (x) /∈ int Rm
+ .

(C3) : there exists u ∈ K and r > |u| such that F (u)− F (x) /∈ int Rm
+ for all x ∈ K,

|x| = r.

(C4) : there exists r > 0 such that Kr = K ∩ [−r, r] 6= ∅ and for all x ∈ K, |x| = r

there exists u ∈ K, |u| < r : F (u)− F (x) /∈ int Rm
+ .

(C5) : for every |xk| → +∞ there exists k̄, u ∈ K, such that |u| < |xk̄| and F (u)−F (xk̄) /∈
int Rm

+ .

We point out that all of these conditions apply to situations in which the solu-

tion set may be unbounded. Notice that the cone Rw is not explicitly mentioned in

Ci, i = 2, 3, 4, 5. Clearly (C2) =⇒ (C1), (C3) =⇒ (C4) and (C5) =⇒ (C1).

We are now in a position to establish the main existence theorem in case K ⊆ R.

Theorem 2.4.4 Let ∅ 6= K ⊆ R be closed and convex. Assume that F : K → Rm

is explicitly (int Rm
+ )-quasiconvex and Sy is closed for all y ∈ K. Then Ew is a closed

convex set, and the following assertions are equivalent:

(a) (C1) is satisfied;

(b) Ew is non-empty;

(c) (C2) is satisfied;

(d) (C3) is satisfied;

(e) (C4) is satisfied;

(f) (C5) is satisfied.
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Proof. The closednees and convexity of Ew follows Theorem 2.2.2.

(c) =⇒ (a) : It is obvious.

(a) =⇒ (b) : For every k ∈ N, set Kk = {x ∈ K : |x| ≤ k}. We may suppose,without

loss of generality, that Kk 6= ∅ for all k ∈ N. Let us consider the problem

find x̄ ∈ Kk such that F (y)− F (x̄) /∈ −int Rm
+ ∀ y ∈ Kk (2.4.4)

By Theorem 2.1.2 , problem (2.4.4) admits a solution, say xk ∈ Kk for all k ∈ N. We

have two possibilities: if {xk} is bounded, then it is no difficult to check that any limit

point of {xk} is a solution to problem (2.1.1); if on the contrary |xk| → +∞, we may

assume, up to a subsequence, that xk

|xk|
→ v, and therefore v ∈ K∞. We shall prove

that v ∈ Rw. Indeed, let us fix any y ∈ K and λ > 0. Then, for all k sufficiently large

(k > |y|), F (y)− F (xk) /∈ −int Rm
+ . The semistrict (Rm\ − int Rm

+ )-quasiconvexity gives

F ((1− λ
|xk|

)y+ λ
|xk|

xk)−F (y) /∈ int Rm
+ for all k sufficiently large. Hence F (y+λv)−F (y) /∈

int Rm
+ because of the closedness of Sy. This show that v ∈ Rw, proving that (i) of

assumption (C1) is satisfied. For any fixed y ∈ K one has, F (y)− F (xk) /∈ −int Rm
+ for

all k ∈ N sufficiently large (k > |y|), showing that condition (ii) of C1 is also satisfied.

We are now in a position to use such an assumption. This implies the existence of u ∈ K

and k̄ such that |u| < |xk̄| and F (u)−F (xk̄) /∈ int Rm
+ . Thus we also have F (u)−F (xk̄) /∈

−int Rm
+ and F (u) − F (xk̄) /∈ −int Rm

+ because of the choice of xk̄. We will prove that

such xk̄ is a solution to (2.1.1). It only remains to check that F (y) − F (xk̄) /∈ −int Rm
+

for all y ∈ K with |y| > k̄. Let us consider the case when xk̄ ∈]u, y[ or xk̄ ∈]y, u[.

If F (u) − F (y) ∈ int Rm
+ , by using the semistrict (int Rm

+ )-quasiconvexity, we have in

particular F (xk̄)−F (u) ∈ −int Rm
+ , giving a contradiction. Hence F (u)−F (y) /∈ int Rm

+ .

By the semistrict (Rm\− int Rm
+ )-quasiconvexity, we have obtain F (xk̄)−F (y) /∈ int Rm

+ ,

which is the desired result. We now consider the case u ∈]y, xk̄[ or u ∈]xk̄, y[: if on the

contrary F (y) − F (xk̄) ∈ −int Rm
+ , the semistrict (int Rm

+ )-quasiconvexity of F yields

in particular F (u) − F (xk̄) ∈ −int Rm
+ , a contradiction. This completes the proof of

(a) =⇒ (b).

(b) =⇒ (c) : It follows by taking any fixed u ∈ Ew and by setting D = {u} in condition

(C2). Similarly (b) =⇒ (d) is proved by choosing u ∈ Ew and r > |u|.
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(d) =⇒ (e) : It is straightforward.

(e) =⇒ (b) : We consider the problem on Kr, see (2.1.2), which admits a solution,

say xr. If |xr| < r, we claim that xr is also solution to problem (2.1.1). Assume there

is y ∈ K with |y| > r such that F (y) − F (xr) ∈ −int Rm
+ . Since F is semiestrictly

(int Rm
+ )-quasiconvex, we have F (ξ) − F (xr) ∈ −int Rm

+ for all ξ ∈]y, xr[ (or ξ ∈]xr, y[).

We may choose z ∈]y, xr[ (or z ∈]xr, y[) with |z| < r since |xr| < r < |y|. Therefore

F (z)− F (xr ∈ −int Rm
+ , contradicting the choice of xr. If |xr| = r, by assumption there

exists u ∈ K, |u| < r such that F (u)−F (xr) /∈ int Rm
+ . Then we proceed as in the second

part of the proof of (a) =⇒ (b), to conclude that xr is also a solution to problem (2.1.1).

(f) =⇒ (a) : It is straightforward.

(b) =⇒ (f) : Take any xk ∈ K with |xk| → +∞. Then (f) is satisfied if we consider u to

be any element in Ew. 2

Example 2.4.1

(i) Let F (x) = (ex, e−x), x ∈ R. A direct computation verifies the validity of condition

(C1) or (C2), showing that Ew = R. Notice that no component of F admits a

minimizer.

(ii) Let us consider any function F : K → Rm such that at least one component has

a minimum point on K. Then, it is not difficult to check that condition (C1) or

(C2) hold. An instance is given by the function F (x) = (
√
|x|, x

1+|x|), x ∈ R. Here

Ew =]−∞, 0] = Rw.

(iii) Let F (x) = (x, min{0,−x}), x ∈ R. It is R2
+-quasiconvex and therefore semistrictly

(R2\ − int R2
+)-quasiconvex. Moreover, it is semistrictly (intR2

+)-quasiconvex. All

others asumptions of Theorem (2.4.4) are satisfied as well. Here Ew = R.

(iv) Let F (x) = ( 1
1+|x|2 , |x|), x ∈ R. It is semistrictly (R2\ − int R2

+) (but not R2
+-

quasiconvex). Moreover it is semistrictly (int R2
+)-quasiconvex. All others asump-

tions of Theorem (2.4.4) are satisfied as well. Here Ew = R.
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(v) Let F (x) = (x,−x2), x ∈] − ∞, 0]. This function is semistrictly (R2\ − int R2
+)-

quasiconvex and semistrictly (int R2
+)-quasiconvex. Such a function satisfies the

assumptions of Theorem (2.4.4) except condition (C1). It is easy to check that

Ew = ∅.

2.4.3 Quasiconvex vector minimization

We start with a preliminary result which will be used subsequently.

Lemma 2.4.1 Let ∅ 6= K ⊆ R be convex and h : K → R be a quasiconvex and lsc

function. Assume that h(α2) < h(α1) for some α1, α2 ∈ K, α2 > α1 (resp. α2 < α1). The

following assertions hold:

(a) h(α) ≥ h(α1) ∀α < α1 (resp. ∀ α > α1) and h is non-increasing in ] −∞, α1[∩K

(resp. h is non-decreasing in ]α1, +∞[∩K);

(b) if argminKh = ∅ then h(α) ≤ h(α2) ∀α > α2 (resp. ∀α < α2) and h is non-

increasing in ]α2, +∞[∩K (resp. h is non-decreasing in ] − ∞, α2[∩K ). Conse-

quently, h is non-increasing (resp. non-decreasing) in K.

Proof. (a) The first part is obvious. Take α and β in K satisfying α < β < α1, then

h(β) ≤ max{h(α), h(α1)} = h(α) by the first part.

(b) If there is α > α2 such that h(α) > h(α2), then h is non-decreasing in ]α, +∞[∩K,

and since h is also non-increasing in ]−∞, α1[∩K, we obtain

inf
K

h = inf
[α1,α]

h.

Thus argminKh 6= ∅, a contradiction. This proves the first part of (b). For the second

part we reason as follows. If on the contrary, there exist α
′

< α
′′
, α

′
> α2 such that

h(α
′
) < h(α′′), then h is non-decreasing in ]α

′′
, +∞[∩K, and since h is non-increasing

in ]−∞, α1[∩K, we conclude

inf
K

h = inf
[α1,α

′′
]
h,
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implying that argminKh 6= ∅, a contradiction. The remaining situation is treated in a

similar way. 2

In what follows the closednees of Sy for all y ∈ K will be substituted by the stronger

assumption of lower semicontinuity (lsc) of fi, i = 1, . . . . . . ,m.

Theorem 2.4.5 Let K ⊆ R be a convex closed set; fi : K → R be lsc and quasiconvex

for all i = 1, . . . ,m. The following assertions hold:

(a) if Ew 6= ∅ and compact then argminKfi 6= ∅ and compact for all i = 1, . . . ,m;

(b) if ∅ 6= Ew 6= R, then there exists j such that argminKfj 6= ∅;

(c) if K 6= R, then

Ew 6= ∅ ⇐⇒ ∃ j, argminKfj 6= ∅.

Proof. (a): Assume that Ew is bounded. It is known from the previous section that Ew

is closed convex and (Ew)∞ = Rw. We have

m⋃
i=1

⋂
y∈K

⋂
λ>0

{v ∈ K∞ : fi(y + λv) ≤ fi(y)} ⊆

⊆
⋂
y∈K

⋂
λ>0

m⋃
i=1

{v ∈ K∞ : fi(y + λv) ≤ fi(y)} = (Ew)∞ = {0},

Hence, for all i = 1, . . . ,m,⋂
y∈K

⋂
λ>0

{v ∈ K∞ : fi(y + λv) ≤ fi(y)} = {0}.

We apply Theorem 2.4.1 to the function fi. This allows us to conclude that for all

i = 1, . . . ,m, argminKfi is nonempty and bounded, and therefore compact.

(b): we consider the case Ew = [α, +∞[ with α ∈ R and K = [a, +∞[ with a ≤ α (the

case Ew =] −∞, α] and K =] −∞, a] is analyzed in a similar manner ). Suppose that

argminKfi = ∅ for all i = 1, . . . ,m. We can choose for i = 1, . . . ,m, ai > ai−1 such that
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fi(ai) < fi(ai−1) with a0 = α. By using the previous lemma, f1 is non-increasing in

[a, +∞[. Thus f1(a2) ≤ f1(a1) < f1(α) and therefore f1(α) > f1(αm). One recursively

may also deduce that fi(am) < fi(α) for i = 1, . . . ,m, which imply α /∈ Ew. This proves

(b) when K = [a, +∞[.

We now consider the case Ew = [α, +∞[ and K = R (again when Ew =] −∞, α] and

K = R the reasoning is similar). We can choose for i = 1, . . . ,m, ai ∈ R such that

|ai| > |ai−1| and fi(ai) < fi(ai−1) with a0 = α.

We first prove that

a1 < a0 = α =⇒ am < am−1 < . . . < a1 < a0; (2.4.5)

a1 > a0 = α =⇒ am > am−1 > . . . > a1 > a0. (2.4.6)

By symmetry we only check (2.4.5). If a1 < a0 = α, we apply the previous lemma

to conclude that f1 is non-decreasing in R. If a1 < a2 and since f2(a2) < f2(a1) then

f2 is non-increasing in K. Both assertions show that Ew = R, which is impossible by

assumption. Hence a2 < a1 and since f2(a2) < f2(a1) again, f2 is non-decreasing in

R. We proceed recursively to conclude that am < am−1 < . . . < a1 < a0 with fi being

non-decreasing in R for i = 1, . . . ,m. This fact allows us to deduce that, as before,

fi(am) < fi(α) for i = 1, . . . ,m, implying that α /∈ Ew, which yields a contradiction.

This completes the proof of (b). Part (c) is then straightforward. 2

Example 2.4.2 We now exhibit four instances showing the results of the previous The-

orem are, in some sense, optimal.

(i) We see, in general, the reverse implication in (a) of the previous theorem fails to

hold (except when K is bounded). In fact, take K = [0, +∞[ and

f1(x) =

{
2 if x /∈ [1, 2],

1 if x ∈ [1, 2],
f2(x) =

{
2 if x /∈ [3, 4],

1 if x ∈ [3, 4].

Here Ew = [0, +∞[.

(ii) The quasiconvexity of all the functions fi required in (a) cannot be removed as the

following function shows: The necessity of the quasiconvexity of all components of (a)

is showed by the function:
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f1(x) = e−x, f2(x) =

{
e−x2+1 if x ≥ 1,

x if x ≤ 1,
K = [0, +∞[.

Here Ew = {0}, while argminKf1 = ∅ 6= argminKf2.

(iii) Part (b) (resp. (c)) of the previous theorem may be false if the assumption Ew 6= R
(resp. K = R ) is deleted. Simply take K = R, and f1(x) = x, f2(x) = −x. In this case

Ew = R.

(iv) part (b) cannot be extended to higher dimension. Take for instance f1(x1, x2) = ex1 ,

f2(x1, x2) = −x1 + x2
2, (x1, x2) ∈ R2. Here Ew = R× {0}, while argminR2fi = ∅, i = 1, 2.

In what follows, we set

J = {i ∈ {1, . . . ,m} : argminKfi 6= ∅}

Theorem 2.4.6 Let ∅ 6= K ⊆ R be closed and convex and fi : K → R be lsc and

semistrictly quasiconvex for all i = 1, . . . ,m. Assume that Ew 6= ∅. Then

extr(Ew) ⊆
⋃
j∈J

argminKfj.

Proof. If extr(Ew) = ∅ there is nothing to prove. Thus, suppose that extr(Ew) 6= ∅.
Then, Ew 6= R and by Theorem 2.4.5 J 6= ∅. Let α ∈ extr(Ew). We choose, for j ∈ J, xj ∈
argminKfj, and, for i /∈ J, xi ∈ K such that fi(xi) < fi(α). Since α is an extreme point of

Ew, xj ≥ α for all j ∈ J or xj ≤ α for all j ∈ J. Let us suppose xj > α and α /∈ argminKfi

for all j ∈ J. Then fj(xj) < fj(α) for all j ∈ J. If for all i /∈ J, α < xi, we reach a

contradiction since, by quasiconvexity, it is not difficult to prove that fi(x̄) < fi(α) for

all i = 1, . . . ,m, with x̄ = min{xi : i = 1, . . . ,m}. The latter implies that α /∈ Ew. If there

exists xi ∈ K, i /∈ J, such that xi < α. Since fi(xi) < fi(α), we apply Lemma 2.4.1 to

deduce that fi is non-decreasing in K. It follows that xi ∈ Ew. In fact: for x > xi one has

fi(x) ≥ fi(xi), and for x < xi, one obtains fj(x) ≥ fj(xi) since fj is non-increasing in

]−∞, xj]∩K, proving that xi ∈ Ew. The fact that xi < α < xj contradicts the extremality

of α. Therefore the proof of the theorem is completed. 2
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Example 2.4.3 We really need that all the components be semistrictly quasiconvex in

Theorem 2.4.6. In fact, take K = [0, +∞[ and

f1(x) =

{
2 if x /∈ [1, 2],

1 if x ∈ [1, 2],
f2(x) = |x− 5|.

Here Ew = [1, 8].

Theorem 2.4.7 Let ∅ 6= K ⊆ R be closed and convex and fi : K → R be lsc and

semistrictly quasiconvex for all i = 1, . . . ,m. Assume that Ew 6= ∅. Then, either

Ew = R or Ew = co

(⋃
j∈J

argminKfj

)
+ Rw. (2.4.7)

Moreover, if argminKfi 6= ∅ ∀i = 1, . . . ,m, then

Ew = co

(
m⋃

i=1

argminKfj

)
. (2.4.8)

Proof. Assume that Ew 6= R. Since Ew is convex, extr(Ew) 6= ∅. By Theorem 2.4.5,

J 6= ∅, and from Theorem 2.4.6 extr(Ew) ⊆
⋃

j∈J argminKfj. Hence, the convexity and

closedness of Ew imply

Ew = co(extr(Ew)) + (Ew)∞ ⊆ co

(⋃
j∈J

argminKfj

)
+ Rw ⊆ Ew + Rw = Ew,

which is the desired result.

We now prove the last part. Assume first that Ew = [α, β] with −∞ < α < β < +∞.

Thus Rw = {0} and by Theorem 2.4.5 argminKfi is nonempty and compact for all

i = 1, . . . ,m, that is, J = {1, . . . ,m}, proving the result.

We consider the case Ew = [α, +∞[ (when Ew =] −∞, α], a similar reasoning may be

applied). Thus, Rw = [0, +∞[ and α ∈ argminKfi1 for some i1. Since, Ew is bounded if

only if Rw = {0}, argminKfi2 = [β, +∞[ for some i2 and β ≥ α. If β = α there is nothing
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to prove. If β > α, one may easily check that every α′ ∈ Ew is in the set of the right

hand side of (2.4.8). 2

On combining Theorems 2.4.5 and 2.4.7 immediately obtains the following result

which is a special case of the one established in [23].

Corollary 2.4.1 Let ∅ 6= K ⊆ R be closed and convex and fi : K → R be lsc and

semistrictly quasiconvex for all i = 1, . . . ,m. The following assertions are equivalent:

(a) Ew is nonempty and compact;

(b) argminKfi is nonempty and compact for all i = 1, . . . ,m.

Example 2.4.4 (i) We see the result in (2.4.7) may be false if at least one function is not

semistrictly quasiconvex. In fact, let K = [0, +∞[ and

f1(x) = |x− 1|, f2(x) =

{
1 if 0 ≤ x ≤ 2,

−e−(x−2) if x ≥ 2.

Here Ew = [0, +∞[= Rw.

(ii) This instance illustrates that (2.4.8) fails to hold if at least one function fi is not

semisrictly quasiconvex. Take K = [0, +∞[ and

f1(x) =

{
2 if x /∈ [1, 2],

1 if x ∈ [1, 2],
f2(x) =

{
−e−x+5 if x ≥ 5,

4− x if x ≤ 5.

Here Ew = [1, +∞[. An instance with the same purpose but with Ew bounded is exhib-

ited in Example 2.4.3.

(iii) The preceding theorem may be false if argminKfi = ∅ for some i. Indeed, take K =

R, f1(x) =
√
|x|, f2(x) = x

1+|x| , x ∈ R. Here, Ew =]−∞, 0], while argminRf1 = {0}.

Actually, corollary 2.4.1 remains valid if Rm
+ is substituted by a more general closed

convex cone (including the polyhedral and ice-cream cones) as proved in [23], Theorem

5.3. Although we were unable to find any counter-example in higher dimension, we
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conjecture that it is still true, at least for polyhedral cones. Certainly in the convex case,

i.e., when each fi is convex, corollary 2.4.1 holds when K ⊆ Rn [13], even for more

general cones as described above [23], Theorem 5.1.

We now present a result which may be useful to understand the problem when

n > 1.

Theorem 2.4.8 Let ∅ 6= K ⊆ Rn be convex and closed; fi : K → R be lsc for all

i = 1, . . . ,m. Assume that Ew is nonempty bounded and that exists i0 ∈ {1, . . . ,m} such

that fi0 is convex and argminKfi0 is nonempty compact. Then argminKfi is nonempty

compact for all i = 1, . . . ,m.

Proof. By assumption Ew is compact. Suppose that it exists j such that argminKfj = ∅.

Take any x1 ∈ argminEw
fj and z ∈ K such that fj(z) < fj(x1). Let C = {x ∈ K :

fi(x) ≤ fi(z)∀ i = 1, . . . ,m}. Clearly C is a nonempty and closed set. We will prove

that Ew is a bounded; and since

C∞ ⊆ {x ∈ K : fi0(x) ≤ fi0(z)}∞ = {v ∈ K∞ : f∞i0 (v) ≤ 0} = {0},

C is a bounded set. We apply the Theorem 3.2 of [23], to conclude that there exists

c̄ ∈ C such that F (y) − F (c̄) /∈ −int Rm
+ ∀ y ∈ C. We claim that c̄ ∈ Ew, indeed, if

y ∈ K\C there is iy such that fiy(z) < fiy(y), which implies that fiy(c̄) < fiy(y), proving

the claim. On the other hand fj(c̄) ≤ fj(z) < fj(x1), which contradicts the choice of x1.

Hence argminKfi is nonempty compact for all i = 1, . . . ,m. 2

We can relax the convexity assumption of fi0 at the price of requiring K to be a

subset of R.

Theorem 2.4.9 Let ∅ 6= K ⊆ R be convex and closed; fi : K → R be lsc for all

i = 1, . . . ,m. Assume that Ew is nonempty bounded and that exists i0 ∈ {1, . . . ,m}
such that fi0 is quasiconvex and argminKfi0 is nonempty compact. Then argminKfi is

nonempty compact for all i = 1, . . . ,m.

Proof. By assumption Ew ⊆ [a, b] ⊆ K for some a, b ∈ R. Suppose that argminKfi1 = ∅
for some i1, we will show that Ew * [a, b] yielding a contradiction. since argminKfi1 =
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∅, there exists z /∈ [a, b] such that fi1(z) < fi1(x) for all x ∈ [a, b]. We only consider the

case z > b (when z < a a similar reasoning can be applied). Take z̄ ∈ argmin[b,z]fi1 . We

distinguish two situations: (1) for all y < a, y ∈ K : either fi1(z̄) ≤ fi1(y) or fi0(z̄) ≤
fi0(y); (2) there exists yi1 < a, yi1 ∈ K such that fi1(yi1) < fi1(z̄) and fi0(yi1) < fi0(z̄).

We now check that in both situations a contradiction will be obtained. In case (1), we

will prove that z ∈ Ew. In fact, if x < a then either fi1(z̄) ≤ fi1(x) or fi0(z̄) ≤ fi0(x); if

a ≤ x ≤ b (resp. b < x ≤ z) then fi1(z̄) ≤ fi1(z) < fi1(x) by the choice of z̄ and z (resp.

fi1(z̄) ≤ fi1(x) by the choice of z̄); if x > z, we take x0 ∈ argminKfi0 ⊆ [a, b] and thus

fi0(z̄) ≤ max{fi0(x0), fi0(x)} = fi0(x), which completes the proof that z̄ ∈ Ew. This is

impossible since z̄ > b and Ew ⊆ [a, b]. If (2) occurs, let ȳ ∈ argmin[yi1
,a]fi1 . We proceed

as in the previous case to prove that ȳ ∈ Ew. This again is impossible if Ew ⊆ [a, b] and

ȳ < a. Thus argminKfi it is nonempty compact for all i = 1, . . . ,m. 2

Example 2.4.5 The preceding result may be false if we remove the quasiconvexity on

the function whose argmin is compact. In fact, let K = [0, +∞[ and f1(x) = e−x2 ,

f2(x) = e−x2 if x 6= 0 and f2(0) = 0. Here, Ew = {0}.



Chapter 3

An optimal alternative theorem and

applications to vector optimization

Alternative theorems are very useful to derive many important results in convex

and nonconvex optimization theory: the existence of Lagrange multipliers, duality re-

sults, scalarization of vector functions, etc. To be precise, let us consider a real locally

convex topological vector space Y and a closed convex cone P ⊆ Y such that int P 6= ∅.

We denote by Y ∗ the topological dual space of Y , and by P ∗ the (positive) polar cone

of P . Given a nonempty set A ⊆ Y , alternative theorems assert the validity of exactly

one of the following assertions:

∃ a ∈ A such that a ∈ −int P ; (3.0.1)

∃ p∗ ∈ P ∗, p∗ 6= 0, such that 〈p∗, a〉 ≥ 0 ∀ a ∈ A. (3.0.2)

Here 〈·, ·〉 stands for the duality pairing between Y and Y ∗ and int P denotes the

topological interior of P . We recall that P ∗ is defined by

P ∗ = {p∗ ∈ Y ∗ : 〈p∗, p〉 ≥ 0 ∀ p ∈ P}

and closedness and convexity of the cone P is equivalent to P = P ∗∗ by the bipolar

theorem. In this case,

p ∈ P ⇐⇒ 〈p∗, p〉 ≥ 0 ∀ p∗ ∈ P ∗.

45
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Moreover,

p ∈ int P ⇐⇒ 〈p∗, p〉 > 0 ∀ p∗ ∈ P ∗ \ {0}. (3.0.3)

A separation theorem for convex sets and the above remarks allow us to write (3.0.1)

and (3.0.2) in an equivalent way as, respectively,

A ∩ (−int P ) 6= ∅, (3.0.4)

co(A) ∩ (−int P ) = ∅. (3.0.5)

While the inconsistency of both assertions (3.0.4) and (3.0.5) is straightforward, the

proof of the validity of (3.0.5) assuming (3.0.4) does not hold, in other words, the proof

of the implication

A ∩ (−int P ) = ∅ =⇒ co(A) ∩ (−int P ) = ∅, (3.0.6)

requires a careful analysis due to the lack of convexity of A. One of the goals of the

present chapter is to characterize those sets A for which implication (3.0.6) is true. Most

papers appearing in the literature (see for instance [1, 36, 47, 54, 55] and the references

therein) were concerned with providing some (sufficient) conditions implying (3.0.6).

Throughout the chapter, X will be a vector space and Y a real locally convex vector

space. We will denote by 〈·, ·〉 the duality pairing between Y and Y ∗.

3.1 An optimal theorem in spaces of arbitrary dimension

In search of conditions implying the validity of (3.0.6), several relaxed notions of

convexity have appeared in the literature. Before reviewing and comparing some of

them, we will first reformulate the conclusion of the alternative theorem in terms of

the cone cone (A + qint P ). We recall the definition of pointedness for a cone that is not

necessarily convex (see for instance [46]).

Definition 3.1.1 A cone K ⊆ Y is called “pointed” if x1 + . . . + xk = 0 is impossible for

x1, x2, . . . , xk in K unless x1 = x2 = . . . = xk = 0.
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Our first result is the following:

Theorem 3.1.2 Let A ⊆ Y be any nonempty set and P ⊆ Y , P 6= Y , be a convex and

closed cone such that qint P 6= ∅. The following assertions are equivalent:

(a) cone(A + qint P ) is pointed;

(b) co(A) ∩ (−qint P ) = ∅.

Proof. We first prove

cone(A + qint P ) is pointed =⇒ A ∩ (−qint P ) = ∅. (3.1.1)

If there exists x ∈ A ∩ (−qint P ), then x = 2(x − x
2
) ∈ cone(A + qint P ) and −x =

x + (−2x) ∈ A + qint P ⊆ cone(A + qint P ). By pointedness, x = 0, hence 0 ∈ qint P .

As noted in Section 2, this implies P = Y , a contradiction.

Now assume that (a) holds. If (b) does not hold, then there exists x ∈ −qint P such

that x =
∑m

i=1 λiai with
∑m

i=1 λi = 1, λi > 0, ai ∈ A. Thus, 0 =
∑m

i=1 λi(ai−x). Using (a)

we infer that λi(ai − x) = 0 for all i = 1, . . . ,m. This contradicts (3.1.1).

Conversely, assume that (b) holds. If cone(A+qint P ) is not pointed, then there exist

xi ∈ cone(A + qint P )\{0}, i = 1, 2, . . . n, such that
∑n

i=1 xi = 0. Each xi can be written

as xi = λi(yi + ui) with λi > 0, yi ∈ A and ui ∈ qint P . Hence
∑n

i=1 λiyi = −
∑n

i=1 λiui.

Setting µi = λi/
∑n

j=1 λj we get
∑n

i=1 µiyi = −
∑n

i=1 µiui ∈ co(A) ∩ (−qint P ), a contra-

diction. 2

When int P 6= ∅, then by the separation theorem co(A)∩ (−qint P ) = ∅ is equivalent

to the existence of p∗ ∈ P ∗\{0} such that 〈p∗, y〉 ≥ 0 for all y ∈ A. Thus, in case the

set A is the image of some vector-valued mapping, the previous theorem implies the

following

Corollary 3.1.3 Let K ⊆ X be any nonempty set, P ⊆ Y be a closed convex cone such

that int P 6= ∅, and G : K → Y be any mapping. Then the following assertions are

equivalent:
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(a) cone(G(K) + int P ) is pointed;

(b) ∃ p∗ ∈ P ∗, p∗ 6= 0, 〈p∗, G(x)〉 ≥ 0 ∀ x ∈ K.

We now recall the most general among the relaxed notions of convexity that were

used in alternative theorems.

Definition 3.1.4 Let P ⊆ Y be a closed convex cone with nonempty interior. A set

A ⊆ Y is called:

(a) generalized subconvexlike [55] if ∃ u ∈ int P, ∀ x1, x2 ∈ A, ∀ α ∈ ]0, 1[, ∀ ε > 0,

∃ ρ > 0 such that

εu + αx1 + (1− α)x2 ∈ ρA + P ; (3.1.2)

(b) presubconvexlike if ∃ u ∈ Y, ∀ x1, x2 ∈ A, ∀ α ∈ ]0, 1[, ∀ ε > 0, ∃ ρ > 0 such

that (3.1.2) holds;

(c) nearly subconvexlike [47, 54] if cone(A + P ) is convex.

Note that the definition of presubconvexlike sets is a transcription of an analogous

definition for Y -valued functions given in [56]. Also, from Proposition 1.1.1(f) it fol-

lows that (c) above is equivalent to the convexity of cone+(A + int P ) and also to the

convexity of cone(A + int P ). In fact, we will show that all three notions of generalized

convexity of sets given in Definition 3.1.4 are equivalent.

Proposition 3.1.5 In Definition 3.1.4, (a), (b) and (c) are equivalent.

Proof. (a) ⇔ (b): It is obvious that (a) implies (b). If A is presubconvexlike, let u ∈ Y

be the element whose existence is required by (b). Since int P − int P = Y (see, cg.,

[44]) we can write u = v − w with v, w ∈ int P . By assumption, for every x1, x2 ∈
A, α ∈ ]0, 1[, ε > 0 there exists ρ > 0 such that (3.1.2) holds. Then

εv + αx1 + (1− α)x2 ∈ ρA + P + εw ⊆ ρA + P.

Thus, A is generalized subconvexlike.
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(a) ⇒ (c): In Theorem 2.1 of [55], it is shown that a generalized subconvexlike set A

is such that the set cone+(A) + int P is convex. By Proposition 1.1.1(c)(f), cone(A + P ) is

convex.

(c) ⇒ (a): If cone(A + P ) is convex then by Proposition 1.1.1(f), cone+(A + int P ) is

convex. From (a) of the same proposition applied to the set A + int P it follows that

αA + (1− α)A + int P ⊆ cone+(A + int P ) ∀ α ∈ ]0, 1[.

This allows us to conclude that A is generalized subconvexlike. 2

Thus, the two alternative theorems in [54] and [55] (with “int” instead of “qint”) can

be unified and extended as follows:

Theorem 3.1.6 Let A ⊆ Y be any nonempty set. Assume that A ∩ (−qint P ) = ∅. Then

cone+(A + qint P ) is convex =⇒ co(A) ∩ (−qint P ) = ∅.

It is now clear that Theorem 3.1.6 is a consequence of Theorem 3.1.2 and the follow-

ing easy proposition:

Proposition 3.1.7 If cone+(A + qint P ) is convex and A ∩ (−qint P ) = ∅, then cone(A +

qint P ) is pointed.

Proof. Since cone(A + qint P ) is also a convex cone, we have to show that whenever

x,−x ∈ cone(A+qint P ), then x = 0. Indeed, assume that x 6= 0. Then x,−x ∈ cone+(A+

qint P ). This last set is convex, hence 0 = x + (−x) ∈ cone+(A + qint P ). Thus, there

exist λ > 0, y ∈ A and u ∈ qint P such that 0 = λ(y + u). Then y ∈ A ∩ (−qint P ), a

contradiction. 2

The converse of Proposition 3.1.7 (or Theorem 3.1.6) does not hold, as shown by the

following example.

Example 3.1.8 Let us consider in R3 the polyhedral (closed convex) cone P = cone(B),

where

B =
{

(1,−x2, x3) : 0 ≤ x2, 0 ≤ x3, x2 + x3 ≤ 1
}

,
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and the set

A =
{

(x1, 1,
√

1− x2
1) : 0 ≤ x1 ≤ 1

}
.

It is not difficult to check that co(A) ∩ (−int P ) = ∅ thus cone(A + int P ) is pointed.

However, we will see that cone(A + P ) is nonconvex. To this end, it is enough to show

that z = (1
2
, 1, 1

2
) 6∈ cone(A + P ) since z = 1

2
x + 1

2
y with x = (0, 1, 1) ∈ A and y =

(1, 1, 0) ∈ A. Assume on the contrary that there exist sequences 0 ≤ xk
1 ≤ 1, 0 ≤ xk

2 ≤ 1,

0 ≤ xk
3 ≤ 1 and βk, λk ≥ 0 such that

λk(x
k
1 + βk) →

1

2
, (3.1.3)

λk(1− βkx
k
2) → 1, (3.1.4)

λk(
√

1− (xk
1)

2 + βkx
k
3) →

1

2
. (3.1.5)

If λk is bounded, we may assume that λk → λ for some λ ≥ 0. From (3.1.4), we obtain

λ ≥ 1. On the other hand, up to a subsequence xk
1 → x1, thus (3.1.3) implies x1 ≤ 1

2
.

By (3.1.5) we get
√

1− x2
1 ≤ 1

2
, which in turn gives x1 ≥

√
3

2
, contradicting a previous

inequality. We now assume that λk → +∞. From (3.1.3) it follows xk
1 → 0. Taking k

sufficiently large, (3.1.5) yields a contradiction.

The preceding definitions of relaxed convexity for sets induce corresponding defi-

nitions for vector valued mappings: given a nonempty convex subset K of X , a mul-

tivalued mapping G : K ⇒ Y is called generalized subconvexlike [55] (respectively,

nearly subconvexlike [47, 54], presubconvexlike [56]) if the set G(K) is generalized

subconvexlike (resp., nearly subconvexlike, presubconvexlike) . According to Proposi-

tion 3.1.5, these three notions are identical. Other definitions of generalized convexity

for (single-valued) vector valued functions in view of using them to alternative theo-

rems were given in [36] and [51]. A mapping G : K → Y is called ∗-quasiconvex [36]

if 〈x∗, G(·)〉 is quasiconvex for all x∗ ∈ P ∗. It is called naturally-P -quasiconvex [51] if

for all x, y ∈ K, G([x, y]) ⊆ [G(x), G(y)] − P . We will first show that these notions are

equivalent:
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Proposition 3.1.9 Let K ⊆ X be any nonempty convex set and P ⊆ Y be a closed

convex cone with nonempty interior. Then a mapping G : K → Y is ∗-quasiconvex if

and only if it is naturally-P -quasiconvex.

Proof. Assume that G is naturally-P -quasiconvex. We need to check that given t ∈ R
and x∗ ∈ P ∗, the set Kt = {z ∈ K : 〈x∗, G(z)〉 ≤ t} is convex. Indeed, if x, y ∈ Kt then

by natural-P -quasiconvexity of G, for all z ∈ [x, y] there exists λ ∈ [0, 1] and u ∈ P such

that G(z) = λG(x) + (1− λ)G(y)− u. Hence,

〈x∗, G(z)〉 = λ 〈x∗, G(x)〉+ (1− λ) 〈x∗, G(y)〉 − 〈x∗, u〉 ≤ t

thus z ∈ Kt, so Kt is convex.

Conversely, assume that G is not naturally-P -quasiconvex. Then there exist x, y ∈ K

and z ∈ ]x, y[ such that for all µ ∈ [0, 1], G(z) 6∈ µG(x)+(1−µ)G(y)−P . Thus for every

µ ∈ [0, 1] there exists x∗ ∈ Y ∗ \ {0} such that

〈x∗, G(z)〉 > 〈x∗, µG(x) + (1− µ)G(y)− u〉 ∀ u ∈ P.

Since P is a cone, we get 〈x∗, u〉 ≥ 0 for all u ∈ P , i.e., x∗ ∈ P ∗, and also

〈x∗, G(z)− µG(x)− (1− µ)G(y)〉 > 0. Since by assumption int P 6= ∅, there exists a

w∗-compact base B of P ∗. Setting f(y∗, µ) = 〈y∗, G(z)− µG(x)− (1− µ)G(y)〉 we get

max
y∗∈B

min
µ∈[0,1]

f(y∗, µ) = min
µ∈[0,1]

max
y∗∈B

f(y∗, µ) > 0.

Hence there exists x∗ ∈ B such that

〈x∗, G(z)〉 > µ〈x∗, G(x)〉+ (1− µ)〈x∗, G(y)〉 ∀ µ ∈ [0, 1].

In particular, we get 〈x∗, G(z)〉 > 〈x∗, G(x)〉 and 〈x∗, G(z)〉 > 〈x∗, G(y)〉. Thus G is not

∗-quasiconvex. 2

In [36] it is proven that implication (3.0.6) holds for A = G(K) under the ∗-quasiconvexity

of G and the assumption

∀p∗ ∈ P ∗, the restriction of 〈p∗, G(·)〉 on any line segment of K is lower semicontinuous.

(3.1.6)
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We will see that the ∗-quasiconvexity of G together with (3.1.6) imply the convexity

of cone(G(K) + int P ) thus, in particular, that G is nearly subconvexlike. This follows

from the next proposition which is of interest by itself. We refer the reader to [30] for

the definition of upper semicontinuity and other properties of multivalued mappings

that will be used in the proof.

Proposition 3.1.10 Let K ⊆ X be any nonempty convex set, P ⊆ Y be a closed convex

cone and G : K → Y be naturally-P -quasiconvex and satisfying (3.1.6). Then

∀ x, y ∈ K, [G(x), G(y)] ⊆ G([x, y]) + P. (3.1.7)

Proof. Given x, y ∈ K, define H : [x, y] ⇒ [G(x), G(y)] by H(z) = (G(z) + P ) ∩
([G(x), G(y)]). We show first that H is closed. Let (zn, wn), n ∈ N, be a sequence in

the graph of H , converging to (z, w). Then wn ∈ H(zn) ⊆ [G(x), G(y)]. Obviously,

w ∈ [G(x), G(y)]. Also, for every n ∈ N there exists vn ∈ P such that wn = G(zn) + vn.

For each p∗ ∈ P ∗ we get by assumption (3.1.6):

〈p∗, w −G(z)〉 ≥ lim 〈p∗, wn〉 − lim inf 〈p∗, G(zn)〉

= lim 〈p∗, wn〉+ lim sup 〈p∗,−G(zn)〉

= lim sup 〈p∗, vn〉 ≥ 0.

Since this is true for all p∗ ∈ P ∗, we deduce that w −G(z) ∈ P , i.e., w ∈ H(z) and H

is closed. Hence, H is upper semicontinuous.

Also, for every z ∈ [x, y], H(z) 6= ∅ by the definition of natural-P -quasiconvexity.

In addition, H(z) is connected, being convex. Hence, the image of [x, y] through H

is connected (cf. Proposition 2.24, pg. 43 in [30]). This image is a subset of the line

segment [G(x), G(y)]. Since G(x) ∈ H(x) and G(y) ∈ H(y), we deduce that H ([x, y]) =

[G(x), G(y)]. Thus, for every w ∈ [G(x), G(y)] there exists z ∈ [x, y] such that w ∈ H(z),

i.e., w = G(z) + u for some u ∈ P . This shows inclusion (3.1.7). 2

We deduce the following:

Corollary 3.1.11 Let X, Y, P, G be as in the previous proposition. Then G(K) + P is

convex.
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Proof. It is sufficient to show that whenever t ∈ [0, 1], x, y ∈ K and u ∈ P then tG(x) +

(1− t)G(y) + u ∈ G(K) + P . But this is obvious in view of the proposition. 2

Thus, given a cone P with int P 6= ∅, if a mapping G is ∗-quasiconvex (or, equiva-

lently, naturally-P -quasiconvex) and satisfies (3.1.6), then G(K) + P is convex. This

implies that G is nearly subconvexlike, so the alternative theorems of [36] and [51] are

included in Theorem 3.1.6 and in particular in Theorem 3.1.2. The converse does not

hold: the mapping G(x) = (x, f(x)), x ∈ [−1, 1], where f(x) = 1 − |x|, is clearly nearly

subconvexlike (with Y = R2, P = R2
+), but the real-valued function x ∈ [−1, 1] 7→

〈(0, 1), (x, f(x))〉 = f(x) is not quasiconvex, that is, G is not ∗-quasiconvex.

3.2 Characterizing the two-dimensionality through the al-

ternative theorem

According to Theorem 3.1.6 (see also Proposition 1.1.1(f)), whenever A∩ (−int P ) =

∅ holds, the convexity of cone(A+int P ) is a sufficient condition for co(A)∩(−int P ) = ∅
to hold. We will now see that in case Y = R2, it is also necessary.

Theorem 3.2.1 Let P ⊆ R2 be a convex closed cone such that int P 6= ∅, and A ⊆ R2

be any nonempty set satisfying A ∩ (−int P ) = ∅. Then the following assertions are

equivalent:

(a) co(A) ∩ (−int P ) = ∅;

(b) cone(A + P ) is convex;

(c) cone(A + int P ) is convex;

(d) cone(A) + P is convex;

(e) cone(A + P ) is convex.



3.2 Characterizing the two-dimensionality through the alternative theorem 54

Proof. According to Proposition 1.1.1(f), (c) ⇐⇒ (e). Also

cone(A + int P ) ⊆ cone(A + P ) ⊆ cone(A) + P ⊆ cone(A + P ) (3.2.1)

where the last inclusion follows from Proposition 1.1.1(d). If cone(A + int P ) is con-

vex, then its closure cone(A + P ) (see Proposition 1.1.1(e)) is convex. Due to the two-

dimensionality of the space, we deduce that cone(A + P ) and cone(A) + P are convex.

Thus, (b), (c), (d) and (e) are equivalent.

That (e) implies (a) follows from Theorem 3.1.6 and Proposition 1.1.1(f).

(a) ⇒ (b): There exists x∗ ∈ R2 such that 〈x∗, x〉 ≥ 〈x∗, u〉 for all x ∈ A and u ∈ −int P .

It follows that x∗ ∈ P ∗ and 〈x∗, x〉 ≥ 0 for all x ∈ A, thus also for all x ∈ cone(A + P ).

Choose u ∈ int P . Let y, z ∈ A. Then obviously

cone({y}) + cone({u}) = {λy + µu : λ, µ ≥ 0}

is a closed convex cone containing y and u and contained in cone(A + P ). The same

is true for the cone cone({z}) + cone({u}). The two cones have the line cone({u})
in common and their union is contained in cone(A + P ), thus it is contained in

the halfspace {x ∈ R2 : 〈x∗, x〉 ≥ 0}. Hence, the set B
.
= (cone({y}) + cone({u})) ∪

(cone({z}) + cone({u})) is a convex cone. Since y, z ∈ B we deduce that [y, z] ⊆ B ⊆
cone(A + P ) thus co(A) ⊆ co(B) = B ⊆ cone(A + P ). We deduce that cone(A + P ) is

convex. 2

We now show that the equivalence between (a) and one of (b), (c), (d), (e) in The-

orem 3.2.1 is characteristic of 2–dimensional spaces. Since, say, (b) ⇒ (a) is a conse-

quence of Theorem 3.1.6, we only consider the implication (a) ⇒ (b) etc.

Theorem 3.2.2 Let Y be a locally convex space and P ⊆ Y be a closed, convex cone

such that int P 6= ∅ and int P ∗ 6= ∅. The following assertions are equivalent:

(a) for all sets A ⊆ Y one has

co(A) ∩ (−int P ) = ∅ ⇒ cone(A + P ) is convex;



3.2 Characterizing the two-dimensionality through the alternative theorem 55

(b) for all sets A ⊆ Y one has

co(A) ∩ (−int P ) = ∅ ⇒ cone(A) + P is convex;

(c) for all sets A ⊆ Y one has

co(A) ∩ (−int P ) = ∅ ⇒ cone(A + int P ) is convex;

(d) Y is at most two-dimensional.

Proof. We show first that (a) implies (d). Assume that the dimension of Y is at least

3. Let x∗ ∈ int P ∗. Then for all x ∈ P\{0}, 〈x∗, x〉 > 0. Fix x ∈ int P , and choose

linearly independent y, z ∈ Y such that 〈x∗, y〉 = 〈x∗, z〉 = 0 (this is possible since

the dimension of the kernel of x∗ is at least 2). In particular, y and z are not zero. Let

A be the set [y + z, y + x] ∪ [y + x, y − z]. Every element w of A has the form: w =

t (y ± z) + (1− t) (y + x) with t ∈ [0, 1]. Hence 〈x∗, w〉 = (1− t) 〈x∗, x〉 ≥ 0. It follows

that for every w ∈ co(A), 〈x∗, w〉 ≥ 0. Since for every u ∈ −int P , 〈x∗, u〉 < 0, it follows

that co(A) ∩ (−int P ) = ∅.

We now show that cone(A + P ) is not convex. Since y = y+z
2

+ y−z
2

∈ co(A) ⊆
co (cone (A + P )), it is sufficient to show that y /∈ cone (A + P ). Suppose to the contrary

that y ∈ cone (A + P ). Then there exist λi ≥ 0, ti ∈ [0, 1], ui ∈ P such that

λi(ti(y ± z) + (1− ti)(y + x)) + ui → y. (3.2.2)

Then

〈x∗, λi(ti(y ± z) + (1− ti)(y + x)) + ui〉 → 〈x∗, y〉 = 0 ⇒

λi(1− ti) 〈x∗, x〉+ 〈x∗, ui〉 → 0 ⇒

λi(1− ti) → 0 and 〈x∗, ui〉 → 0.
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If there is a subsequence of {λi} converging to 0 then we get from (3.2.2) that ui → y

(since λi is multiplied with a bounded vector). This implies that y ∈ P = P which

contradicts 〈x∗, y〉 = 0.

If there is a subsequence of {λi} converging to a number λ ∈ ]0, +∞[ then ti → 1

and we get from (3.2.2) that ui → y − λ(y ± z). Since P is closed, this implies that

y − λ(y ± z) ∈ P . But 〈x∗, y − λ(y ± z)〉 = 0 while 〈x∗, u〉 > 0 for all u ∈ P \ {0}. Hence

y − λ(y ± z) = 0. This is impossible, in view of the linear independence of y and z.

It follows that λi → +∞. Then ti → 1, and from λi(1− ti) → 0 and (3.2.2) we obtain

λiti(y ± z) + ui → y. Thus, y ± z + ui

λiti
→ 0 and ui

λiti
→ −(y ± z). However, ui

λiti
∈ P

thus its limit should be in P . As before, this should imply that y ± z = 0 which again

contradicts the linear independence of y and z.

Thus, y /∈ cone (A + P ). Since y ∈ co (cone (A + P )), we deduce that cone (A + P ) is

not convex. This contradicts (a).

To show that (b) implies (a), we simply remark that if cone (A)+P is convex then its

closure cone (A) + P is convex, and this is equal to cone (A + P ) by Proposition 1.1.1(d).

The same proposition shows that (c) implies (a). Finally, (d) implies (b) and (c) by

Theorem 3.2.1. 2

Remark 3.2.1 The assumption int P ∗ 6= ∅ (which corresponds to pointedness of P

when Y is finite-dimensional) cannot be removed. Indeed, let P = {y ∈ Y : 〈p∗, y〉 ≥ 0}
where p∗ ∈ Y ∗\{0}. Then P ∗ = cone ({p∗}), int P ∗ = ∅. For any nonempty A ⊆ Y , the

set A+int P is convex. Thus, (c) in Theorem 3.2.2 holds independently of the dimension

of the space Y .

3.3 Characterizing a necessary optimality condition of the

Fritz-John type

For simplicity we now consider X to be a real normed vector space. It is well known

that if x̄ is a local minimum point (in the usual sense) for the real-valued differentiable
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function F on K, then

∇F (x̄) ∈ (T (K; x̄))∗. (3.3.1)

Here, T (C; x̄) denotes the contingent cone of C at x̄ ∈ C, defined as the set of vectors v

such that there exist tk ↓ 0, vk ∈ X , vk → v such that x̄ + tkvk ∈ C for all k; C∗ denotes

the (positive) polar cone of C.

It is now our purpose to extend the previous optimality condition to the vector case

without smoothness assumptions. More precisely, let K ⊆ X be closed and consider a

mapping F : K → Rn. Given a closed convex cone P ⊆ Rn with nonempty interior,

a vector x̄ ∈ K is a local weakly efficient solution for F on K, if there exists an open

neighborhood V of x̄ such that

(F (K ∩ V )− F (x̄)) ∩ (−int P ) = ∅. (3.3.2)

Following [50], we say that a function h : X → R admits a Hadamard directional

derivative at x̄ ∈ X in the direction v if

lim
(t,u)→(0+,v)

h(x̄ + tu)− h(x̄)

t
∈ R.

In this case, we denote such a limit by dh(x̄; v).

If F = (f1, . . . , fn), we set

F(v)
.
= ((df1(x̄; v), . . . , dfn(x̄; v)), F(T (K; x̄)) = {F(v) ∈ Rn : v ∈ T (K; x̄)}.

It is known that if dfi(x̄; ·), i = 1, . . . , n do exist in T (K; x̄), and x̄ ∈ K is a local weakly

efficient solution for F on K, i.e., x̄ satisfies (3.3.2), then (see for instance Lemma 3.2 of

[50])

(df1(x̄; v), . . . , dfn(x̄; v)) ∈ Rn \ −int P, ∀ v ∈ T (K; x̄),

or equivalently, F(T (K; x̄)) ∩ (−int P ) = ∅. The following theorems provide complete

characterizations for the validity of (a) as a necessary condition for x̄ to be a local

weakly efficient solution for F on K.

Theorem 3.3.1 Let K ⊆ X be a closed set, P ⊆ Rn be a closed convex cone such that

int P 6= ∅, and F : K → Rn be a mapping. Set F = (f1, . . . , fn) and assume that
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x̄ ∈ K and dfi(x̄; ·), i = 1, . . . , n do exist in T (K; x̄). Then, the following assertions are

equivalent:

(a) ∃ (α∗1, . . . , α
∗
n) ∈ P ∗ \ {0}, α∗1df1(x̄, v) + . . . + α∗ndfn(x̄, v) ≥ 0 ∀ v ∈ T (K; x̄);

(b) cone(F(T (K; x̄)) + int P ) is pointed.

Proof. We apply Corollary 3.1.3 to obtain the desired result. 2

When Y = R2, more precise formulations can be obtained from Theorem 3.2.1.

Theorem 3.3.2 Let K ⊆ X be a closed set, P ⊆ R2 be a closed convex cone such that

int P 6= ∅. Set F = (f1, f2) and assume that x̄ ∈ K and dfi(x̄; ·), i = 1, 2 do exist in

T (K; x̄). Then, the following assertions are equivalent:

(a) ∃ (α∗1, α
∗
2) ∈ P ∗ \ {0}, α∗1df1(x̄, v) + α∗2df2(x̄, v) ≥ 0 ∀ v ∈ T (K; x̄);

(b) F(T (K; x̄)) ∩ (−int P ) = ∅ and cone(F(T (K; x̄)) + int P ) is convex.

Remark 3.3.1 When P = Rn
+ and f1, . . . , fn are differentiable, Part (a) in Theorem 3.3.1

can be written as

co({∇fi(x̄) : i = 1, . . . , n}) ∩ (T (K; x̄))∗ 6= ∅, (3.3.3)

which is the natural extension of (3.3.1). However, we have to point out that (3.3.3) is

not in general a necessary optimality condition for x̄ to be a local weakly efficient solu-

tion. This is shown in R2 by the example taken from [2], see also [12, 53] for additional

discussion:

K = {(x1, x2) : (x1 + 2x2)(2x1 + x2) ≤ 0}, fi(x1, x2) = xi, x̄ = (0, 0).

In this case T (K; x̄) = K, which is nonconvex, thus (T (K; x̄))∗ = {(0, 0)}, and therefore

(3.3.3) does not hold since co ({∇f1(x̄),∇f2(x̄)}) = co {(1, 0), (0, 1)}. Notice also that

cone(F(T (K; x̄)) + R2
+) =

⋃
t≥0

t(T (K; x̄) + R2
+)



3.4 Further applications 59

is nonconvex. On the other hand, due to the linearity of F (when f1 and f2 are differ-

entiable), if T (K; x̄) is convex then

cone(F(T (K; x̄)) + R2
+) =

⋃
t≥0

t(F(T (K; x̄)) + R2
+)

is also convex. This fact was point out earlier in [52] (see also [12]). Therefore, (3.3.3)

holds if T (K; x̄) is convex. The following example shows that the necessary optimality

condition (3.3.3) may be true without the convexity of T (K; x̄). Take the same mapping

F as before and

K = {(x1, x2) ∈ R2
+ : x1x2 = 0}, x̄ = (0, 0).

Then, (3.3.3) holds since in this case, T (K; x̄) = K, (T (K; x̄))∗ = R2
+ and

co ({∇f1(x̄),∇f2(x̄)}) = co {(1, 0), (0, 1)} .

3.4 Further applications

3.4.1 Characterizing the zero (Lagrangian) duality gap

We now obtain various equivalent conditions to the zero (Lagrangian) duality gap

for a class of nonconvex minimization problems under a Slater-type condition.

Let us consider the following constrained minimization problem

µ
.
= inf

x∈K
f(x), (3.4.1)

where K
.
= {x ∈ C : g(x) ∈ −P}, C is a nonempty subset of a real locally convex

topological vector space X , f : C → R, and g : C → Y , with Y as before and P ⊆ Y is

a closed convex cone with nonempty interior. Let us introduce the Lagrangian

L(λ∗, x) = f(x) + 〈λ∗, g(x)〉.

Obviously,

µ ≥ inf
x∈C

L(λ∗, x) ∀ λ∗ ∈ P ∗. (3.4.2)

We set

A
.
=
{

(f(x)− µ, g(x)) ∈ R× Y : x ∈ C
}

.
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Theorem 3.4.1 Let us consider problem (3.4.1). If µ is finite and the Slater-type condi-

tion that for some x0 ∈ C, 〈y∗, g(x0)〉 < 0 for all y∗ ∈ P ∗ \ {0} holds, then the following

assertions are equivalent:

(a) there exists a Lagrange multiplier λ∗ ∈ P ∗ such that

inf
x∈K

f(x) = inf
x∈C

L(λ∗, x);

(b)

inf
x∈K

f(x) = max
λ∗∈P ∗

inf
x∈C

L(λ∗, x);

(c) cone(A + int( R+ × P ∗)) is pointed.

Proof. (a) ⇐⇒ (b): One implication is obvious. From (a) it follows that

µ ≤ max
λ∗∈P ∗

inf
x∈C

L(λ∗, x),

which together with (3.4.2) imply (b).

(c) =⇒ (a): Applying Theorem 3.1.2 we infer that co(A) ∩ (−int( R+ × P )) = ∅. By the

convex separation theorem, we obtain γ∗ ≥ 0 and λ∗ ∈ P ∗, not both zero, satisfying

γ∗f(x) + 〈λ∗, g(x)〉 ≥ γ∗µ ∀ x ∈ C. (3.4.3)

If γ∗ = 0, then 0 6= λ∗ ∈ P ∗ and 〈λ∗, g(x)〉 ≥ 0 for all x ∈ C, contradicting the Slater-type

condition. Therefore, we may assume γ∗ = 1 in (3.4.3). Hence,

f(x) + 〈λ∗, g(x)〉 ≥ µ ∀ x ∈ C, (3.4.4)

which implies

inf
x∈C

L(λ∗, x) ≥ µ.

This together with (3.4.2) yield the desired result.

(a) =⇒ (c): From (a), (3.4.4) holds, and this amounts to writing

〈(1, λ∗), (f(x)− µ, g(x))〉 ≥ 0 ∀ x ∈ C.

We then apply Theorem 3.1.2 to get (c). 2
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3.4.2 Characterizing weakly efficient solutions

Let X be a real vector space K ⊆ X a convex set and Y a real locally convex topo-

logical vector space. Given a vector mapping F : K → Y , we consider the problem of

finding

x̄ ∈ K : F (x)− F (x̄) 6∈ −int P, ∀ x ∈ K,

where P ⊆ Y is a closed convex cone such that int P 6= ∅ (see Section 3.1). The set of

such x̄ is denoted by Ew, and its elements are termed weakly efficient solutions. Clearly

x̄ ∈ Ew ⇐⇒ (F (K)− F (x̄)) ∩ (−int P ) = ∅.

For a real-valued function h, by argminKh we mean the set of minimum points of h on

K.

The next theorem is a direct consequence of Corollary 3.1.3 with G(x) = F (x)−F (x̄).

Theorem 3.4.2 Let K ⊆ X be a convex set and F, P as above. The following assertions

are equivalent:

(a)

x̄ ∈
⋃

p∗∈P ∗,p∗ 6=0

argminK〈p∗, F (·)〉;

(b) cone(F (K)− F (x̄) + int P ) is pointed.

In case Y = R2, we get the following theorem whose proof follows from Theorem

3.2.1.

Theorem 3.4.3 Let K ⊆ X be a convex set and F, P as above with Y = R2. Then the

following assertions are equivalent:

(a)

x̄ ∈
⋃

p∗∈P ∗,p∗ 6=0

argminK〈p∗, F (·)〉;

(b) x̄ ∈ Ew and cone(F (K)− F (x̄) + int P ) is convex.
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Notice that the cone appearing in (b) of the preceding theorem may be substituted

by others cones by virtue of Theorem 3.2.1.

Remark 3.4.1 Some sufficient and in some situations also necessary conditions to get

Ew 6= ∅ are established in [19, 23].



Chapter 4

The bicriteria case on the real-line and

algorithms without derivatives

This chapter is motivated for the problem 1.4.3 in the finite dimensional case, this

is given a nonempty set K ⊆ Rn, P = Rm
+ and a function F : K → Rm. We will be

interested

find x̄ ∈ K such that F (y)− F (x̄) ∈ Rm\ − int Rm
+ ∀ y ∈ K. (4.0.1)

On the other hand, by algorithmic (to develop some gradient-type method as in

[27]) and theoretical purposes (to develop a well-posedness theory Ref. [14], or opti-

mality conditions) motivated by aplications, one needs the equivalence

x̄ ∈ Ew ⇐⇒ x̄ ∈
⋃

p∗∈Rm
+ , p∗ 6=0

argminK〈p
∗ , F (·)〉. (4.0.2)

Actually, this union may be taken over the set ∆ = {ξ ∈ Rm
+ :

∑m
i=1 ξi = 1}. It is

well known that the equivalence ( 4.0.2) is true whenever each component of F is

convex. However, it still holds under weaker assumptions than convexity on F , as

shown in Ref. [36]. The authors in [24] obtained a necessary and sufficient condition

in order the equivalence in ( 4.0.2) holds: in case m = 2, it requires the convexity of

M = cone(F (K)− F (x̄)) + R2
+ = cone(F (K)− F (x̄) + R2

+) . The convexity of M holds

if each component of F is convex, and it is independently obtained of x̄, as expected.

63
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It is now our purpose to discuss situations in which the equivalence in ( 4.0.2) is

no longer true, that is, when the convexity of M fails in case m = 2. The implication

“ ⇐= ” in ( 4.0.2), which always holds without any further assumption on F , gives

rise to the so-called scalarization approach, or weighting method, for solving problem

( 4.0.1). It is known that there are many efficient algorithms for solving

min
x∈K

〈p∗, F (x)〉, p∗ ∈ ∆ (4.0.3)

at least, for smooth functions F . The main drawback lies on the choice of P ∗ since it

is not known in advance for the decision-maker or modeler. In fact, take the example

discussed in [28], F (x) = (x,
√

1 + x2), x ∈ K = R. Here , each component of F is

convex, but if p∗1 > p∗2 > 0, then the optimal value of ( 4.0.3) is −∞. However Ew =

]−∞, 0]. Our Theorem 4.2.1 apply to this example.

On the other hand, when at least one component or F is quasiconvex but nonconvex

(hence ( 4.0.2) does not necessarily hold), it may there be solutions to ( 4.0.1) that are not

solutions to ( 4.0.3) for any p∗ ∈ ∆, as the following function shows: take K =]0, +∞]

and F = (f1, f2), where,

f1(x) =

{
2 if x /∈ [1, 2],

1 if x ∈ [1, 2],
f2(x) = |x− 5|.

Here Ew = [1, 8] while the set of the right-hand side in ( 4.0.2) is [1, 5]. Our Theorem

4.1.3 applies in this case.

More precisely, in the present chapter, under the quasiconvexity (and lower semi-

continuity) assumption on each component of F , we completely describe Ew without

using any kind of derivative when K ⊆ R and m = 2. In this situation, it is proven in

[23] that Ew is closed and convex.
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The following proposition suggests us the case we will study in this chapter.

Proposition 4.0.1 Let ∅ 6= K ⊆ Rn be convex and closed, fi : K → R, i = 1, . . . ,m be

functions such that
m⋂

i=1

argminKfi 6= ∅.

Then

Ew =
m⋃

i=1

argminKfi.

Proof. Let x̄ ∈ argminKfi for all i = 1, . . . ,m, and z /∈
m⋃

i=1

argminKfi. Then fi(x̄) < fi(z)

for all i = 1, . . . ,m implying z /∈ Ew. This prove Ew ⊆
m⋃

i=1

argminKfi, and then the proof

is completed. 2

The inclusion
m⋃

i=1

argminKfi ⊆ Ew,

in general is true. However, as illustrated in Example 2.4.3, there are solutions which

does not belong to the set on the left-hand side. This section is devoted to the full

description of Ew, and it will be done in the case of two-objective functions under qua-

siconvexity conditions on each fi.

By virtue of Proposition 4.0.1 we will consider

argminKf1 ∩ argminKf2 = ∅.

For i = 1, 2 and t ∈ R, we set

Si[t] = {x ∈ K : fi(x) ≤ t}, S+
i [t] = {x ∈ K : fi(x) < t}.



4.1 The first case: argminKf1 and argminKf2 are compact 66

4.1 The first case: argminKf1 and argminKf2 are compact

[α1, β1] = argminKf1, [α2, β2] = argminKf2.

In this case we will assume:

−∞ < α1 ≤ β1 < α2 ≤ β2 < +∞. (4.1.1)

Set

A+ = {x ∈ [β1, α2] : f1(x) = f1(α2)}, A− = {x ∈ [β1, α2] : f2(x) = f2(β1)}.

Theorem 4.1.1 Let ∅ 6= K ⊆ R be convex and closed, fi : K → R be lsc and quasicon-

vex for i = 1, 2. Assume that (4.1.1) holds. Then A+ and A− are convex and nonempty.

Moreover, we also have:

(a) if A+ =]α+
0 , α2], α+

0 ≥ β1, then

S2[f2(α
+
0 )] ∩ {x ∈ K : x > β2, f1(x) = f1(α2)} = Ew ∩ {x ∈ K : x > β2}; (4.1.2)

(b) if A+ = [α+
0 , α2], α+

0 > β1, then

S2[λ+] ∩ {x ∈ K : x > β2, f1(x) = f1(α2)} = Ew ∩ {x ∈ K : x > β2}; (4.1.3)

where λ+ = limt↓0 f2(α
+
0 − t) = infy<α+

0
f2(y).

(c) if A− = [β1, α
−
0 [, α−0 ≤ α2, then

S1[f1(α
−
0 )] ∩ {x ∈ K : x < α1, f2(x) = f2(β1)} = Ew ∩ {x ∈ K : x < α1};

(d) if A− = [β1, α
−
0 ], α−0 < α2, then

S1[λ−] ∩ {x ∈ K : x < α1, f2(x) = f2(β1)} = Ew ∩ {x ∈ K : x < α1},

where λ− = limt↓0 f1(α
−
0 + t) = infy>α−0

f1(y).
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Proof. We only prove the convexity of A+. Take yi ∈ A+, i = 1, 2 with y1 < y2, and

consider y such that y1 < y < y2. Then by quasiconvexity, f1(y) ≤ f1(α2). On the other

hand, since β1 < y1 < y, we obtain f1(α2) = f1(y1) ≤ f1(y) by quasiconvexity. Thus

y ∈ A+. Hence either A+ =]α+
0 , α2] or A+ = [α+

0 , α2] for some α+
0 .

(a): Let x̄ in the set of the left hand-side of (4.1.2). We will check that x̄ ∈ Ew. If x > x̄

and x ∈ K, then f2(x̄) ≤ f2(x) since f2(α2) < f2(x̄); if x ∈]α+
0 , α2] = A+ then obviously

f1(x) = f1(α2) = f1(x̄); if x ∈]α2, x̄[ then, since β1 < α+
0 < β2 < x < x̄, we have

f1(x) ≤ max{(f1(α2), f1(x̄)} = f1(x̄) and f1(x̄) = f1(α2) ≤ max{f1(β1), f1(x)} = f1(x),

and then f1(x) = f1(x̄); if x < α+
0 , then f2(α

+
0 ) ≤ max{f2(α2), f2(x)} = f2(x) since

α+
0 < α2. We also have f2(x̄) ≤ f2(α

+
0 ). Thus f2(x̄) ≤ f2(x). This completes the proof

that x̄ ∈ Ew, proving one inclusion in (4.1.2).

Let us prove the other inclusion. Take any x̄ ∈ K, x̄ > β2.

If x̄ /∈ S2[f2(α
+
0 )], then f2(x̄) > f2(α

+
0 ). On the other hand, f1(x̄) > f1(β1) and therefore

f1(α
+
0 ) ≤ f1(x̄); in case f1(α

+
0 ) = f1(x̄) we had α+

0 ∈ A+, giving a contradiction. Thus

f1(α
+
0 ) < f1(x̄) implying that x̄ /∈ Ew.

If f1(x̄) 6= f1(α2), then f1(x̄) > f1(α2) since f1(β1) < f1(α2) and f1 is quasiconvex. We

also have f2(α2) < f2(x̄). Hence x̄ /∈ Ew.

(b) : Let x̄ in the set of the left hand-side of (4.1.3). We now check that x̄ ∈ Ew. If x > x̄

and x ∈ K, then f2(x̄) ≤ f2(x) since f2(β2) < f2(x); if x ∈]α+
0 , x̄[ then obviously f1(x̄) =

f1(α
+
0 ) = f1(α2) and therefore f1(x) ≤ f1(α

+
0 ). Since f1(β1) < f1(x), f1(α

+
0 ) ≤ f1(x), and

hence f1(x) = f1(α
+
0 ); If x < α+

0 and x ∈ K, then f2(x̄) ≤ λ+ ≤ f2(y) for all y < α+
0

because of monotonicity of f2 in such an interval. This completes the proof that x̄ ∈ Ew

and thus one inclusion in (4.1.3) is proved.

For the other inclusion, take any x̄ ∈ K, x̄ > β2.

If x̄ /∈ S2[λ+], f2(x̄) > λ+. Since β1 < α+
0 , there is t > 0 such that β1 < α+

0 − t < α+
0

and f2(x̄) > f2(α
+
0 − t). On the other hand, f1(α

+
0 − t) ≤ f1(α

+
0 ) = f1(α2). Obviously

f1(α
+
0 −t) < f1(α2) since otherwise α+

0 −t ∈ A+, which is impossible. By quasiconvexity

f1(α2) ≤ f1(x̄), and hence f1(α
+
0 − t) < f1(x̄) implying x̄ /∈ Ew.

If f1(x̄) 6= f1(α2), then f1(x̄) > f1(α2) since f1(β1) < f1(α2) and f1 is quasiconvex. We

also have f1(α2) < f2(x̄). This shows x̄ /∈ Ew.
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(c), (d) : The proof of these parts is totally symmetrical to used in (a) and (b) . 2

We use the following notation:

γ+ =

 f2(α
+
0 ) if A+ =]α+

0 , α2]

λ+ if A+ = [α+
0 , α2]

, γ− =

 f1(α
−
0 ) if A− =]β1, α

−
0 ]

λ+ if A− = [β1, α
−
0 ]

Let use consider the sets

M+
1 = {x ∈ K : x > β2, f1(x) = f1(α2)}, M+

2 = {x ∈ K : x > β2, f2(x) = γ+},

and

M−
1 = {x ∈ K : x < α1, f1(x) = γ−}, M−

2 = {x ∈ K : x < α1, f2(x) = f2(β1)}.

Corollary 4.1.1 Assume the assumptions of Theorem 4.1.1 hold. Then M+
i and M−

i ,

i=1,2, are convex.

(a) If M+
1 ∩M+

2 6= ∅, then

sup Ew = min{sup M+
1 , sup M+

2 } = sup M+
1 ∩M+

2 ,

(b) If M−
1 ∩M−

2 6= ∅, then

inf Ew = max{inf M−
1 , inf M−

2 } = inf M−
1 ∩M−

2 .

Proof. Due to the quasiconvexity of f1 and f2, it is not difficult to check that M+
i and

M−
i , i = 1, 2, are convex. We only check (a)(for the case (b) we proceed in a similar

way). We analyze the different situations.

• sup M+
1 < +∞ and sup M+

2 < +∞: in this case we can prove that sup M+
i ∈ M+

i for

i = 1, 2. Set x̄ = min{sup M+
1 , sup M+

2 }. If x̄ ∈ M+
1 then f1(x̄) = f1(α2), and side x̄ ∈ M+

2 ,

we obtain f2(x̄) = γ+, showing that x̄ ∈ Ew by the previous theorem. We now prove

that, z > x̄, z ∈ K implies that z /∈ Ew. In fact, f1(z) 6= f1(α2) whenever z > x̄, inK.

This implies tat z /∈ Ew again by the previous theorem. We now consider the case in
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which x̄ = max M+.
2 Then f2(x̄) = γ+, and since x̄ ∈ M+

1 , we obtain f1(x̄) = f1(α2),

showing that x̄ ∈ Ew again by the previous theorem. We now prove that, z > x̄, z ∈ K

implies z /∈ Ew. In fact, f2(z) 6= γ+ whenever z > x̄, z ∈ K. This automatically implies

that z /∈ Ew by the previous theorem.

• max M+
1 < +∞ and sup M+

2 = +∞ (the case sup M+
1 = +∞ and max M+

2 < +∞ is

treated similarly): set x̄ = max M+
1 ∈ M+

1 . The quasiconvexity of f2 and the fact that

sup M+
2 = +∞ along with M+

1 ∩M+
2 6= ∅ imply f2(x̄) = f2(α

+
0 ). This shows that x̄ ∈ Ew.

Obviously, if z > x̄, ∈ K, then z /∈ Ew by the quasiconvexity of f1.

• sup M+
1 = +∞ and sup M+

2 = +∞ : in this case sup Ew = +∞, since for x̄ ∈ M+
1 ∩M+

2 ,

every z > x̄ is in Ew by the previous theorem and the convexity of M+
1 ∩M+

2 .

The remaining equalities in (a) and (b) are easily check. 2

Corollary 4.1.2 Assume the assumptions of Theorem 4.1.1 hold.

(a) If M+
1 = ∅ (resp. M−

2 = ∅), then max Ew = β2 (resp. min Ew = α1 ).

(b) If M+
1 ∩M+

2 = ∅ and M+
1 6= ∅, then

sup Ew = min{sup M+
1 , sup{x ∈ K : x ≥ β2, f2(x) ≤ γ+}}. (4.1.4)

(c) If M−
1 ∩M−

2 ∅ and M−
1 6= ∅, then

inf Ew = max{inf M−
2 , inf{x ∈ K : x ≤ α1, f1(x) ≤ γ−}}.

Proof. (a) Assume that M+
1 = ∅ if (M−

2 = ∅ a similar reasoning may be applied). Then

f1(α2) 6= f1(x) for all x > β2, x ∈ K. Since β1 < α2 ≤ β2 we obtain that f1(α2) ≤
f1(x) for all x > β2 by quasiconvexity, and therefore f1(α2) < f2(x) for all x > β2.

Consequently max Ew = β2.

(b) We now consider M+
1 6= ∅.

• sup M+
1 < +∞: in this case x̄ = sup M+

1 ∈ M+
1 . By assumption x̄ /∈ M+

2 , thus f2(x̄) 6=
γ+. If f2(x̄) < γ+ then x̄ ∈ Ew by Theorem 4.1.1, and

x̄ ≤ sup{x ∈ K : x ≥ β2, f2(x) ≤ γ+}.
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Obviously, every z ∈ K, z > x̄ is not in Ew, proving that sup Ew = x̄, and hence (4.1.4)

is proved. If f2(x̄) > γ+, we claim that

z̄ = sup{x ∈ K : x ≥ β2, f2(x) ≤ γ+} = sup Ew. (4.1.5)

First, since f2(x̄) > γ+, we obtain z̄ < x̄ because of the quasiconvexity of f2, and since

f1(x) = f1(α2) for all x ∈]β2, x̄], we also get z̄ ∈ Ew by Theorem 4.1.1, and if z ∈ K with

z > z̄, then z /∈ Ew, as claimed.

• sup M+
1 = +∞: in this case (4.1.5) is also verified as easily seen. 2

We now present an algorithm which we approximated the value of γ+. Let us remem-

ber that γ+ is fundamental in the characterization presented in the Theorem 4.1.1. In

this algorithm we consider f2 be continuous and the tolerance like the length of the

interval of search in every iterations. Let ε > 0 be tolerance.

Algorithm 1.

0. Set x0 := β1, y0 := α2 and k := 0.

1a. zk := xk+yk

2
.

1b. Evaluate f1(zk). If f1(zk) = f1(α2) then

yk+1 := zk, xk+1 := xk, k := k + 1 and GOTO 1d;

else

1c. xk+1 := zk, yk+1 := yk, k := k + 1 and GOTO 1a;

1d. Evaluate f2(xk) and f2(yk). If f2(xk)− f2(yk) ≤ ε STOP,

α+
0 (approx) := yk and γ+(approx) := f2(yk).

else
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1e. GOTO 1a.

Let us notice that if f1 is lsc and semistrictly quasiconvex then A+ = {α+
0 } = {α2}.

Therefore if f2 be continuous then γ+ = f2(α2).

On the other hand, xk−1 ≤ xk < α+
0 ≤ yk ≤ yk−1 and f2(yk−1) ≤ f2(yk) ≤ f2(α

+
0 ) ≤

f2(xk) ≤ f2(xk−1). Therefore yk − α+
0 ≤ yk − xk = 1

2k (α2 − β1), α+
0 − xk ≤ yk − xk =

1
2k (α2 − β1) and f2(α

+
0 ) − f2(yk) ≤ f2(xk) − f2(yk). Thus f2(xk) − f2(yk) → 0 and

f2(yk) → f2(α
+
0 ), k → +∞.

We now state our second algorithm based on Theorem 4.1.1 which determines a

point x̄ ∈ Ew, if any, strictly greater than β2.

Algorithm 2.

0. Take x0 ∈ K, x0 > β2. Set k = 0.

1a. Evaluate f2(xk). If f2(xk) ≤ γ+, GOTO 2a;

else

1b. Set xk+1 := xk+β2

2
, and GOTO 1a.

2a. Evaluate f1(xk). If f1(xk) = f1(α2) STOP, xk ∈ Ew;

else

2b. Set xk+1 := xk+β2

2
, k := k + 1 and GOTO 2a.

Let us notice that xk > xk+1 > β2, since xk − xk+1 = 1
2k (x0 − β2) and xk+1 = xk+β2

2
.

Thus the finiteness of this procedure is guaranteed if we know, a priori, that Ew ∩ {x ∈
K : x > β2} 6= ∅. Otherwise, the infinite sequence generated by the algorithm will

converge to β2 in which case max Ew = β2. This happens, for instance if M+
1 = ∅ as

Corollary 4.1.2 shows.

Observe that once we arrive at step 2b, the inequality in step la continues to be valid
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for the next iterate; and f1(xk) 6= f1(α2) amount to writing f1(xk) > f1(α2) since f1 (and

also f2) is non-decreasing in [β2, +∞[∩K.

The following procedure may used to compute z̄ in case compact, precisely when

K = [a, b]. In the same way as in the algorithm 1 we will consider the tolerance like the

length of the interval of search in every iterations.

Algorithm 3.

0a. Evaluate f2(b) and f1(b). If (f2(b) ≤ γ+ and f1(b) = f1(α2)), STOP sup Ew = b.

else

0b. Set x0 := β2, y0 := b. and k := 0.

1b. Set zk := xk+yk

2

1c. Evaluate f1(zk). If f1(zk) = f1(α2) then

xk+1 := zk, yk+1 := yk, k := k + 1 and GOTO 1e

else

1d. xk+1 := xk, yk+1 := zk, k := k + 1 and GOTO 1b;

1e. If yk − xk > ε then GOTO 1b;

else GOTO 2a.

2a. Evaluate f2(xk). If f2(xk) ≤ γ+ then
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STOP, sup Ew(approx) = xk

else

Set x0 := β2, y0 := xk and k := 0.

2b. zk := xk+yk

2
.

2c. Evaluate f2(zk). If f2(zk) ≤ γ+ then

xk+1 := zk, yk+1 := yk, k := k + 1 and GOTO 2e.

else

2d. xk+1 := xk, yk+1 := zk, k := k + 1 and GOTO 2b;

2e. If yk − xk > ε then GOTO 2b;

else STOP, sup Ew(approx) = xk

A reasonning similar to the realized on in the algorithm 1, shows the convergence

of this algorithm.

Based on the algorithms 1 and 3, let us show them proved obtained with imple-

mentation computational of these, applied to 2 examples.

Example 4.1.1 Let us consider the Example 2.4.3, take y0 = 108. (see figure 1). We will

determine the sup Ew (see table 1).

f1(x) =

{
2 if x /∈ [1, 2],

1 if x ∈ [1, 2],
f2(x) = |x− 5|.
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Here Ew = [1, 8].

figure 1

TABLE 1

error total cpu time γ+/iterations sup Ew/iterations

10−3 0.0150000000 2.9992675781/12 7.9993314775/40

10−4 0.0160000000 2.999908443/15 7.9999226491/42

10−5 0.0160000000 2.9999942780/19 7.9999965455/45

10−6 0.0160000000 2.9999992847/22 7.9999993877/49

Example 4.1.2 In this Example (see figure 2), take y0 = 108, here Ew = [0, 7]. The

approximations of the sup Ew can turn in the table 2

f1(x) =


2 if x < 1,

1 if x ∈ [1, 2],

2 if x ∈]2, 7[,
√

x− 7 + 2 if x > 7,

f2(x) =

{
6− x if x < 4,

−e−(x−4)2 + 3 if x ≥ 4,

figura 2

TABLE 2
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error total cpu time γ+/iterations sup Ew/iterations

10−3 0.014000 3.9990234375/11 6.9999681538/40

10−4 0.015000 3.9999389648/15 6.9999908912/42

10−5 0.015000 3.9999923706/18 6.9999997729/48

10−6 0.016000 3.9999990463/21 6.9999997729/48

Theorem 4.1.2 Let ∅ 6= K ⊆ R be convex and closed, fi : K → R be lsc for i = 1, 2,

with f1 being quasiconvex and f2 semistrictly quasiconvex. Assume that (4.1.1) holds.

Then min Ew = α1, and if x̄ ∈ K, the following assertion are equivalent:

(a) x̄ > β2, x̄ ∈ Ew;

(b) x̄ > β2, f1(α2) = f1(x̄),

S+
1 [f1(α2)] ∩ S+

2 [f2(x̄)] = ∅;

(c) x̄ > β2,

S+
2 [f2(x̄)] ⊆ ]β1, x̄[, S+

2 [f2(x̄)] ⊆ {x ∈ K : f1(x) = f1(x̄)}.

Proof. The semistrict quasiconvexity of f2 implies M−
2 = ∅, the first part is a conse-

quence of Corollary 4.1.2.

(a) =⇒ (b) : From Theorem 4.1.1 it follows that f1(α2) = f1(x̄). Let x ∈ S+
1 [f1(α2)] : then

f1(x) < f1(α2) = f1(x̄), and therefore f2(x̄) ≤ f2(x) since x̄ ∈ Ew.

(b) =⇒ (c) : Let x ∈ S+
2 [f2(x̄)] and suppose that x > x̄. Since f2(α2) < f2(x), the

semistrict quasiconvexity of f2 implies that f2(x̄) < f2(x), giving a contradiction, and

x < x̄. suppose now that x ≤ β1, then f2(β1) < f2(x̄) by the semistrict quasicon-

vexity of f2 and the choice of x. By assumption and a previous inequality it follows

that f1(β1) ≤ f1(α2), yielding a contradiction. Finally, we observe that β1 /∈ S+
2 [f2(x̄)].

This complete the proof of the first part in (c). We now prove de second inclusion.

Take any x ∈ S+
2 [f2(x̄)]. Then f1(x) ≥ f1(α2) = f1(x̄). The quasiconvexity implies that

f1(x) = f1(x̄).

(c) =⇒ (a) : We need to prove that x̄ ∈ Ew. Because of the second inclusion of (c), it

suffices to check that f2(x̄) ≤ f2(x) for all x /∈ S+
2 [f2(x̄)], but it is straightforward. 2
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Theorem 4.1.3 Let ∅ 6= K ⊆ R be convex and closed, fi : K → R be lsc and quasicon-

vex for i = 1, 2. Assume that (4.1.1) holds.

(a) If f2 is semistrictly quasiconvex and M+
1 ∩ M+

2 6= ∅, then Ew = [α1, x̄], where

x̄ ∈ K solves the system

x̄ > β2 f1(x̄) = f1(α2), f2(x̄) = γ+.

(b) If f1 is semistrictly quasiconvex and M−
1 ∩ M−

2 6= ∅, then Ew = [x̄, β2], where

x̄ ∈ K solves the system

x̄ < α1 f2(x̄) = f2(β1), f1(x̄) = γ−.

Proof. (a) By of Corollary 4.1.2, min Ew = α1, and by virtue of Corollary 4.1.1, it sufficies

to prove that M+
1 ∩M+

2 = {x̄}, which easily follows from the semistrict quasiconvexity

of f2. Part (b) follows from Corollaries 4.1.2 (b) and 4.1.1. 2

4.2 The second case: argminKf1 compact and argminKf2 empty

In this case we will assume:

[α, β] = argminKf1, −∞ < α ≤ β < +∞. (4.2.1)

Set

B+ = {x ∈ K : x ≤ α, f2(x) = f2(α)}, B− = {x ∈ K : x ≥ β, f2(x) = f2(β)}.

We recall from Lemma 2.4.1 that every lsc and quasiconvex function h on K ⊆ R such

that argminKh = ∅, is non-constant and monotone. This fact we will be used in the

remaining of this chapter.

Theorem 4.2.1 Let ∅ 6= K ⊆ R be convex and closed, fi : K → R be lsc and quasicon-

vex for i = 1, 2. Assume that (4.2.1) holds along with argminKf2 = ∅. Then, B+, B− are

convex, nonempty. Moreover, the following assertions hold.
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(a) If f2 is non-decreasing then ]−∞, β] ⊆ Ew and B+ is bounded: in case B+ =]α+, α]

(α+ < α) we have

S1[f1(α
+)] ∩ {x ∈ K : x > β, f2(x) = f2(α)} = Ew ∩ {x ∈ K : x > β}; (4.2.2)

in case B+ = [α+, α] (α+ ≤ α) we have

S1[µ+] ∩ {x ∈ K : x > β, f2(x) = f2(α)} = Ew ∩ {x ∈ K : x > β}; (4.2.3)

where µ+ = limt↓0 f1(α
+ − t) = infy<α+ f1(y).

(b) If f2 is non-increasing then [α, +∞[⊆ Ew and B− is bounded : in case B− = [β, β−[

(β < β−) we have

S1[f1(β
−)] ∩ {x ∈ K : x < α, f2(x) = f2(β)} = Ew ∩ {x ∈ K : x < α};

in case B− = [β, β−] (β ≤ β−) we have

S1[µ−] ∩ {x ∈ K : x < α, f2(x) = f2(β)} = Ew ∩ {x ∈ K : x < α},

where µ− = limt↓0 f1(β
− + t).

Proof. We only prove the convexity of B+. Take yi ∈ B+, i = 1, 2, with y1 < y2, and

consider y such that y1 < y < y2. By quasiconvexity, f2(y) ≤ f2(α). If on the contrary

f2(y) < f2(α) then f2 is non-decreasing by Lemma 2.4.1. Hence, f2(α) = f2(y1) ≤ f2(y),

a contradiction, proving that B+ is convex.

(a) : By assumption there exists z < α such that f2(z) < f2(α). We now check x̄ < z,

imply x̄ ∈ Ew. If x̄ < x then f2(x̄) ≤ f2(x) by monotonicity; if x < x̄ then f1(x̄) ≤
max{f1(x), f1(α)} = f1(x). This prove that x̄ ∈ Ew, and since x̄ < z was arbitrary we

conclude that ]−∞, β] ⊆ Ew. The boundedness of B+ is a consequence of argminKf2 =

∅. Let us prove (4.2.2). Take x̄ in the set of the left hand-side of (4.2.2). We will check

that x̄ ∈ Ew. If x > x̄ then f2(x̄) ≤ f2(x) for all x ≤ x̄ because of f2 is non-decreasing. By

the choice of α+ and x̄, we actually obtain that f2(x̄) ≤ f2(x) for all x > α+. If x ≤ α+,

x ∈ K, then f1(x̄) ≤ f1(α
+) ≤ f1(x) by quasiconvexity and the choice of x̄. This proves

one inclusion in (4.2.2).
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Let us prove the other inclusion. Take any x̄ ∈ K, x̄ > β. The monotonicity of f2

along with the choice of B+ imply f2(α
+) < f2(α) ≤ f2(x̄). Therefore, if x̄ ∈ Ew then

f1(x̄) ≤ f1(α
+) and so x̄ ∈ S1[f1(α

+)]. We already know that f2(α) ≤ f2(x̄). We also

have f1(α) < f1(x̄). Both inequalities imply f2(α) = f2(x̄), which completes the proof

of (4.2.2).

Let x̄ in the set of the left hand-side of (4.2.3). We now check that x̄ ∈ Ew. If x > x̄ and

x ∈ K, then, as in (a), we obtain f2(x̄) ≤ f2(x) for all x ≥ α+. If x < α+, and x ∈ K, then

f1(x̄) ≤ µ+ ≤ f1(y) for all y < α+ because of the monotonicity of f1 in such an interval

(see Lemma 2.4.1). This completes the proof that x̄ ∈ Ew and thus one inclusion in

(4.2.3) is proved.

For the other inclusion, take any x̄ ∈ K, x̄ > β.

If x̄ /∈ S1[µ+], f1(x̄) > µ+. Thus there exists t > 0 such that f1(x̄) > f1(α
+ − t). Since f2

is non-decreasing, f2(α
+ − t) ≤ f2(α). By the choice of B+, f2(α

+ − t) < f2(α), and

since f2(α
+ − t) < f2(x̄). Hence x̄ /∈ Ew.

If f2(x̄) 6= f2(α), then f2(x̄) > f2(α) by monotonicity. We also have f1(α) < f1(x̄) since

x̄ > β. This shows x̄ /∈ Ew. 2

We use the following notation:

γ̃+ =

 f1(α
+) if B+ =]α+, α]

µ+ if B+ = [α+, α]
, γ̃− =

 f2(β
−) if B− = [β, β−[

µ− if B− = [β, β−]

Let use consider the sets

N+
1 = {x ∈ K : x > β, f1(x) = γ̃+}, N+

2 = {x ∈ K : x > β, f2(x) = f2(α)},

and

N−
1 = {x ∈ K : x < α1, f1(x) = γ̃−}, N−

2 = {x ∈ K : x < α, f2(x) = f2(β)}.

It is not difficult to check that N+
i , N−

i , i = 1, 2, are convex, and if sup N+
i ∈ R then

sup N+
i ∈ N+

i . A similar result is obtained for N−
i .
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Corollary 4.2.1 Let ∅ 6= K ⊆ R be closed and convex fi : K → R be lsc and qua-

siconvex for i = 1, 2. Assume that (4.2.1) holds along with argminKf2 = ∅, and f1is

semistrictly quasiconvex.

(a) If f2 is non-decreasing and N+
1 ∩N+

2 6= ∅, then Ew =]−∞, x̄], were x̄ ∈ K solves

the system

x̄ > β f2(x̄) = f2(α), f1(x̄) = γ̃+, (4.2.4)

(b) If f2 is non-increasing and N−
1 ∩ N−

2 6= ∅, then Ew = [x̄, +∞[, were x̄ ∈ K solves

the system

x̄ < α f2(x̄) = f2(β), f1(x̄) = γ̃−. (4.2.5)

Proof. We only check (4.2.4). It is easy to see that N+
1 ∩N+

2 is a singleton due to semistric

quasiconvexity of f1. Also, every x̄ ∈ K satisfying (4.2.4) is in Ew. We now prove

that every z > x̄, z ∈ K, it does not belong to Ew. Indeed, if such a z ∈ Ew, then

f1(z) ≤ γ̃+ by Theorem 4.2.1. The case f1(z) = γ̃+, is excluded because of the semistrict

quasiconvexity of f1. Thus, we consider the case f1(z) < γ̃+, but it is impossible since

γ̃+ = f1(x̄) ≤ f1(z) by quasiconvexity. This contradiction proves (4.2.4). Obviously

N+
1 ∩N+

2 = {x̄}. 2

Corollary 4.2.2 Let ∅ 6= K ⊆ R be closed and convex fi : K → R be lsc and qua-

siconvex for i = 1, 2. Assume that (4.2.1) holds along with argminKf2 = ∅. If f2 is

semistrictly quasiconvex then either Ew =] − ∞, β] (in case f2 is non-decreasing) or

Ew = [α, +∞[ (in case f2 is non-increasing).

Proof. It is a consequence of Theorem 4.2.1. 2

4.3 The third case: argminKf1 unbounded and argminKf2

empty

Theorem 4.3.1 Let ∅ 6= K ⊆ R be closed and convex and fi : K → R be lsc and qua-

siconvex for i = 1, 2. Assume that argminKf2 = ∅ and α ∈ R. The following assertions
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hold:

(a) If argminKf1 = [α, +∞[ then either Ew = R (in case f2 is non-decreasing) or Ew =

[α, +∞[ (in the case f2 is non-increasing);

(b) If argminKf1 =] − ∞, α] then either Ew = R (in the case f2 is non-increasing)

or Ew =]−∞, α] (in case f2 is non-decreasing).

Proof. We only prove (a), being the other enterely similar. By assumption there exists

z ∈ K such that f2(z) < f2(α). (1) Assume first that z < α. Then, Lemma 2.4.1 asserts

that f2 is non-decreasing in K. We now check x̄ < z, x̄ ∈ K, imply x̄ ∈ Ew. If x̄ < x then

f2(x̄) ≤ f2(x) by monotonicity; if x < x̄ then f1(x̄) ≤ max{f1(x), f1(α)} = f1(x). This

prove that x̄ ∈ Ew, and x̄ < z since was arbitrary, we conclude that Ew = R because of

the convexity of Ew. (2) Assume now that z > α. By Lemma 2.4.1, f2 is non-increasing

in K. We will prove that x̄ < α, x̄ ∈ K, imply x̄ /∈ Ew. In fact, f2(z) < f2(α) ≤ f2(x̄),

and the other hand, f1(z) < f1(x̄) since x̄ < α. This completes the proof that x̄ /∈ Ew,

and therefore Ew = [α, +∞[. 2

4.4 The fourth case: argminKf1 and argminKf2 empty

In this case we obtain the following single theorem.

Theorem 4.4.1 Let ∅ 6= K ⊆ R be closed and convex and fi : K → R be lsc and

quasiconvex for i = 1, 2. (hence K is unbounded). The following assertions hold:

(a) if K 6= R then Ew = ∅;

(b) if K = R and f1, f2 are both non-decreasing or non-increasing, then Ew = ∅;

(c) if K = R and f1 is non-decreasing (resp. non-increasing) and f2 is non-increasing

(resp. non-decreasing), then Ew = R.
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Proof. We see that if K = [a, +∞[ (resp. K =] −∞, a]) (a > −∞) then f1, f2 are non-

increasing (resp. non-decreasing) and therefore Ew = ∅. This proves (a). Parts (b) and

(c) result follows a similar reasoning. 2

The following case is present for the sake completennes.

4.5 The fifth case: argminKf1 and argminKf2 are unbounded

In this case K = R. We will assume:

]−∞, α] = argminKf1, [β, +∞[= argminKf2, −∞ < α < β < +∞. (4.5.1)

Theorem 4.5.1 Let fi : R → R be lsc and quasiconvex for i = 1, 2. Assume that (4.5.1)

holds. Then Ew = R.

Proof. By assumption Ew is convex, therefore Ew = R. 2
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