UNIVERSIDAD DE CONCEPCIÓN ESCUELA DE GRADUADOS CONCEPCIÓN - CHILE

EXISTENCIA Y CONDICIONES DE OPTIMALIDAD EN OPTIMIZACIÓN VECTORIAL NO CONVEXA

Tesis para optar al título de Doctor en Ciencias Aplicadas con mención en Ingeniería Matemática

Cristián Alejandro Vera Donoso

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

Agradecimientos

Quiero agradecer antes que todo a Dios por su permanente ayuda. A Santa Teresita y Santo Alberto Hurtado por su intervención.

Agradezco a mi esposa Ximena y mi hijito Cristián por su compañia, apoyo, amor y paciencia.

Agradezco A mis padres Alejandro y Mercedes. A mis muy queridos hermanos Alejandro, Isabel, Luis, Viviana, Patricio, Jimena y Juan Pablo.

Agradezco a Fabián Flores mi director de tesis, por haber creido en mi, por haberme iniciado en la investigación matemática por medio de los cursos dictados y trabajos conjuntos. Al director del programa Mauricio S., por su preocupación. A los profesores del programa, Juan M., Freddy P., Fernando C. y Roberto R. A Cecilia, María Estrella, René y Claudio por su gran amabilida.

Agradezco a la Universidad Católica de la Santisima Concepción, por haberme dado todas las facilidades para concluir este trabajo. Agradezco en especial a Oscar Cornejo (Jefe del Área de ciencias básicas) y Hubert Mennickent (Decano de la faculatad de Ingeniería) por haber confiado en mi.

Agradezco a la familia Echeverria Aguayo, por haber recibido su apoyo y cariño, haciendo más llevaderos este tiempo en Concepción.

Agradezco a mis colegas y amigos de la Universidad Católica de la Santisima Concepción, a: Ruben L y Gloria, por su gran amistad y permanente apoyo, Sergio M., Galina G., Oscar C., Ricardo C., Violeta V., Tomás B., Luis G., Lidia R., Hugo A., Nelson S., Miguel N., Marco U. y Pato M.

Agradezco mis amigos de la Cabina 6, a: María Eugenia, Chelo, Ricardo, Quiridi,

Marcela, Antonino, Tomacho, Ramiro y Sandra, por compartir tanto tiempo, creando un muy buen ambiente.

Agradezco a los profesores J. Amaya, Vicente Novo y Michel Théra. por evaluar el trabajo y aceptar ser parte del jurado.

Agradezco a mi programa de doctorado, Escuela de Graduados, a CONICYT por su Beca Doctoral, que financió totalmente el tercer y cuarto año del doctorado, al proyecto MECESUP UCO9907, por medio del cual me financió completamente los dos primeros años iniciales y la estadia de investigación en el (ICTP) International Center of Theoretical Physics.

Abstract

The main goal of this PhD thesis is to investigate weakly efficient vectorial minima under relaxed hypotheses of convexity for the involved functions.

The organization of the thesis is as follows. In the first part, our main concern is the existence of solutions for the compact case, without hypotheses of convexity and differentiability. Afterwards, by using notions of generalized convexity and recession analysis we treat the unbounded case for finite dimensional spaces. We study also problems for which the range of the involved vectorial function is contained in a finite or in an infinite dimensional space. For the latter case, we give several conditions for the nonemptiness and the boundedness of the set of weak solutions. In particular, we deal with the case of polyhedral and Lorentz cones. Moreover, we seek for weakly efficient solutions for the case when the domain of the vectorial function is a set of the real numbers. By the way, we obtain relationships for the nonemptiness of the set of weak minima and the set of minima of the component functions.

In the second part, we study theorems of alternative for vectorial optimization problems and we obtain optimal conditions for such theorems. With the aid of such results we characterize bi-dimensional spaces, we perform an scalarization by means of the positive polar cone for obtaining weakly efficient points, we characterize the zero duality gap and we obtain optimality conditions of Fritz-John type for vectorial optimization problems.

Finally, in connection with the first part, in the third part we seek for weak minima, when the domain of the vectorial function is a subset of the real numbers, the range is bi-dimensional and the component functions are quasiconvex without any hypothesis
of differentiability. This case is totally characterized and this allows us to develop a finite time algorithm for calculating weakly efficient solutions and the supremum of the set of weakly efficient minima.

Resumen

El propósito de esta Tesis es estudiar las propiedades de los mínimos vectoriales débilmente eficientes, bajo hipótesis de convexidad generalizada. En este trabajo se destacan tres partes. En la primera parte, se resuelve el problema de existencia de soluciones para el caso compacto, sin hipótesis de convexidad y diferenciabilidad. Posteriormente, junto con una noción de convexidad generalizada y el análisis de recesión, se aborda el caso no acotado para espacios finito dimensional. Se estudia el problema existencia cuando el recorrido de la función vectorial, esta contenido en un espacio de dimension infinita y finita. Para el segundo caso, se muestra varias caracterizaciones para la no vacuidad y compacidad del conjunto solución de mínimos débiles, en particular aplicables a conos de tipo poliédrico y Lorentz. A continuación se estudia el problema de encontrar mínimos débiles eficientes, pero esta vez cuando el dominio de la función vectorial es un subconjuto de los números reales y cumple un tipo de convexidad generalizada, sin hipótesis de diferenciabilidad. De esta forma, se obtiene relaciones de no vacuidad del conjunto solución de mínimos débiles y el conjunto de mínimos de las funciones componentes. En la segunda parte, se estudian los teoremas de alternativa para los problemas de optimización vectorial, encontrando condiciones optimales para dichos teoremas. Estos resultados nos permitiran caracterizar los espacios bi dimensionales, la escalarización por medio del cono polar positivo para la obtención de puntos débilmente eficientes, la nulidad del gap de dualidad y la obtención de condiciones de optimalidad de tipo Fritz-John en optimización vectorial. Finalmente, en conexión con la primera parte se retorna nuevamente el problema de encontrar mínimos débiles, cuando el dominio de la función vectorial es un subconjunto de los números reales, de recorrido bidimensional y sus componentes son funciones casiconvexas, sin hipótesis de diferenciabilidad. En esta parte, se caracteriza totalmente este caso, lo que permite elaborar un algoritmo de tiempo finito, para calcular las soluciones débiles eficientes y el supremo del conjunto de mínimos débiles eficientes.

Glossary of Notations

Spaces	
\mathbb{R}^{n}	real n-dimensional space
\mathbb{R}_{+}^{n}	the nonnegative orthant of \mathbb{R}^{n}
\mathbb{R}_{++}	the interval $] 0,+\infty[$
X	real Hausdorff topological space
Y	real locally convex topological vector space
Y^{*}	topological dual space
Sets	
E_{w}	the weak pareto minimum set
$\operatorname{argmin} f_{K}$	$\bar{x} \in K: f(\bar{x}) \leq f(x)$ for all x in K
cone (A)	the conic hull of the set A
$\operatorname{co}(A)$	the convex hull of the set A
$\operatorname{ext}(A)$	the extreme points of the set A
int A	the topological interior of the set A
qint A	the quasi-interior of the set A
\bar{A}	the (topological) closure of the set A
A^{*}	the (positive) polar cone of the set A
A^{∞}	the asymptotic cone of the set A
$T(A ; \bar{x})$	the contingent cone of A at \bar{x}
Mappings	
$T: X \rightrightarrows Y$	a multifunction from X to Y
$f: X \rightarrow \mathbb{R} \cup\{+\infty\}$	function from X to $\mathbb{R} \cup\{+\infty\}$

$f^{\infty} \quad$ the asymptotic function of f
$\langle\cdot, \cdot\rangle$
1.s.c.
the duality pairing
lower semicontinuity property

Introducción

En optimización vectorial uno de los problemas de interés es el siguiente: Considere X un espacio topológico (Hausdorff) real, Y un espacio vectorial topológico real, $P \subseteq Y$ un cono convexo (no necesariamente puntiagudo o cerrado), tal que $P \neq Y$ y su interior topológico (int P), es no vacío y $K \subseteq X$. Se requiere

$$
\begin{equation*}
\text { encontrar } \bar{x} \in K: F(y)-F(\bar{x}) \notin-\operatorname{int} P \quad \text { para todo } y \in K \tag{VP}
\end{equation*}
$$

donde $F: K \rightarrow Y$ es una función vectorial. El punto \bar{x} se denomina mínimo débil eficiente, y se denota por E_{w} al conjunto de estos puntos.
En el caso particular, cuando $X=\mathbb{R}^{n}, Y=\mathbb{R}^{m}$ y $P=\mathbb{R}_{+}^{m}$, la función F puede escribirse como $F(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$. Si además tenemos que K es un conjunto convexo y cerrado, cada función componente es convexa y diferenciable, se prueba en [9], la siguiente caracterización

$$
\bar{x} \in E_{w} \Leftrightarrow \nabla F(\bar{x})(x-\bar{x}) \notin-\operatorname{int} \mathbb{R}_{+}^{m}
$$

A continuación comentaremos algunos resultados existentes en la literatura, correspondiente a los ultimos 15 años del problema (VP).
Para la existencia de soluciones del problema (VP), cuando K es un conjunto compacto, algunos autores han usado alguna condición de convexidad para la función vectorial (ver $[3,6,9,13,19,21]$). El motivo de esta hipótesis, es por el uso del lema de Knaster-Kuratowski- Mazurkiewicz $([4,17])$. Un resultado general de existencia para mínimos vectoriales aplicable en particular al problema (VP) se encuentra en [41]. Por otra parte, también ha sido un problema de interés, caracterizar la no vacuidad y
compacidad del conjunto E_{w}, en el artículo [13] (Teorema 2.1), se relaciona la compacidad y la no vacuidad de E_{w} con el conjunto de mínimo de las funciones componentes, con hipótesis de diferenciabilidad y convexidad. En [19], se obtienen estimaciones de $\left(E_{w}\right)^{\infty}$, para una clase de funciones no convexas. Podemos encontrar en las referencias [32,33] más caracterizaciones de compacidad y la no vacuidad de E_{w} bajo hipótesis de convexidad y de diferenciabilidad generalizada.
Otro problema que ha tenido relevancia en el análisis convexo, son los teoremas del tipo alternativo, cuyas aplicaciones en el área de la optimización vectorial, son por ejemplo las escalarizaciones del problema (VP) por medio del cono polar positivo para la obtención de puntos débilmente eficientes, la existencia de multiplicadores de Lagrange, resultados de dualidad, etc.

Teóricamente un teorema alternativo en optimización vectorial, tiene la siguiente presentación:
Sean Y un espacio topológico localmente convexo real, $P \subseteq Y$ un cono convexo cerrado tal que int $P \neq \emptyset, P^{*}$ cono polar positivo de P y $A \subseteq Y$. Se afirma la validez de exactamente una de las siguientes afirmaciones:

$$
\begin{gathered}
\exists a \in A \quad \text { tal que } a \in-\operatorname{int} P \\
\exists p^{*} \in P^{*}, \quad p^{*} \neq 0 \quad \text { tal que } \quad\left\langle p^{*}, a\right\rangle \geq 0 \quad \forall a \in A .
\end{gathered}
$$

Notemos que para las aplicaciones de estos teoremas en optimización vectorial se considera $A=F(K)$.
En la literatura podemos encontrar, al menos dos caminos para probar teoremas de este tipo, el primero vía teoremas minmax, como en [36] y el segundo vía separación convexa, como en las referencias [34, 48, 50, 54, 55].
En esta tesis se estudia el problema (VP), sin hipótesis de diferenciabilidad. Primero se obtiene un teorema de existencia en espacios de dimension infinita, sin hipótesis de convexidad, por lo tanto se logra una versión vectorial del teorema de Weierstrass. Luego, usando nociones de convexidad generalizada para funciones vectoriales, se realizan estimaciones para $\left(E_{w}\right)^{\infty}$, lo que permite dar condiciones necesarias, suficientes
o ambas a la vez, dependiendo de los espacios y conos involucrados, logrando hacer una descripción muy detallada de E_{w}, para el caso de la recta real. Los resultados obtenidos en esta parte generalizan algunos de los resultados de las referencias antes mencionada.
El contenido de esta parte, corresponde a los trabajos:

- Flores-Bazán F. and Vera C., The vector Weierstrass theorem and generalized quasi-convex vector optimization, pre-print 2003-04, Depto. Ingeniería Matemática Universidad de Concepción, 2003.
- Flores-Bazán F. and Vera C., Characterization of the nonemptiness and compactness of solution sets in convex/nonconvex vector optimization, J. of Optimization Theory and Applications, Vol. 130, No 2, 2006.
- Flores-Bazán F. and Vera C., Weak eficiency in quasiconvex vector optimization without derivatives, sometido (2006).

En la segunda parte de esta Tesis, se estudia la siguiente implicación

$$
A \cap(-\operatorname{int} P)=\emptyset \Longrightarrow \operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset
$$

donde Y un espacio topológico localmente convexo real, $P \subseteq Y$ un cono convexo cerrado tal que int $P \neq \emptyset$. Se logra establecer varias equivalencias de la implicación anterior, lo que permitió, plantear un teorema alternativo óptimo, aplicable a problemas de optimizacion vectorial, además de caracterizar los espacios bi-dimensionales en términos de la validez de un teorema de tipo alternativo.
El contenido de esta parte, corresponde al trabajo:

- Flores-Bazán F., Vera C. and Hadjisavvas N., An optimal alternative theorem and applications to mathematical programming, Journal of Global Optimization, to appear, 2006.

En la parte Final, se estudia el problema (VP), cuando $X=\mathbb{R}, Y=\mathbb{R}^{2}$ y $P=\mathbb{R}_{+}^{2}$. Se logra caracterizar totalmente el conjunto E_{w}, con hipótesis de convexidad general-
izada, lo que permitió diseñar algunos algoritmos.
El contenido de esta parte, corresponde al trabajo:

- Flores-Bazán F. and Vera C., Weak eficiency in quasiconvex vector optimization without derivatives, sometido (2006).

A continuación damos una breve descripción de la tesis:

En el Capítulo 1 se introduce la notación y se revisan algunos resultados básicos del análisis convexo y asintótico, algunas definiciones de convexidad generalizada, como también nociones de mínimo vectorial también son revisadas.

El Capítulo 2 está dedicado a teoremas de existencia y caracterizaciones compactas de E_{w}. En la Sección 2.1, se dá una versión vectorial del teorema de Weierstrass. En la Sección 2.2 se estudia una noción generalizada de convexidad para funciones vectoriales introducidas en [21] y se dan resultados de existencia para un problema general de optimización. En la Sección 2.3 se estudia el caso cuando X es finito dimensional del problema (VP). En la Subsección 2.3.1 se estudian dos casos, para el primero se dan condiciones suficientes para que E_{w} sea compacto y no vacío, cuando Y es de dimensión infinita y F cumple una noción de convexidad generalizada. Para el segundo caso, se obtienen caracterizaciones compactas para el conjunto E_{w}, cuando F cumple una condicion de convexidad, Y es finito dimensional y tal que el conjunto puntos extremales de una base compacta del cono polar positivo de P, es cerrado. En la Sección 2.4 se estudia el caso $X=\mathbb{R}$ del problema (VP). En la Subsección 2.4.1, estudiamos los mismos casos que en la Subsección 2.3.1: para el primer caso se obtienen condiciones necesarias y suficientes para que E_{w} sea compacto y no vacío; para el segundo caso, se obtienen caracterizaciones compactas para el conjunto E_{w}, cuando F satisface una condicion de convexidad generalizada, Y es finito dimensional y tal que el conjunto puntos extremales de una base compacta del cono polar positivo de P, es cerrado. En la Subsección 2.4.2, se obtienen varias caracterizaciones para la no vacuidad del conjunto E_{w}, bajo hipótesis de convexidad relajada. En la Subsección 2.4.3, se estudia el
problema (VP), cuando cada función componente de F es casi-convexa. En tal caso, se logra obtener varias relaciones entre el cunjunto E_{w} y el conjunto de mínimos de las funciones componentes.

El Capítulo 3 está dedicado a estudiar un problema de separación convexa. En la Sección 3.1, se obtiene un teorema óptimo para un problema de separación no convexa, en espacios de dimensión arbitraria, además se prueban algunas equivalencias entre las nociones de convexidad generalizada, que han utilizado algunos investigadores, ver [36, 47, 51, 54, 55]. En la Sección 3.2, se caracterizan los espacios bi-dimensionales por medio del los teoremas del tipo alternativo. En la Sección 3.3, se caracterizan las condiciones necesarias de optimalidad de tipo Fritz-John en optimizaciø'n vectorial. En la sección 3.4 se muestran dos aplicaciones: la primera permite caracterizar la nulidad del gap de dualidad, la segunda es para caracterizar las soluciones débilmente eficientes mediante la escalarización standard.

En el Capítulo 4, estudiamos el problema (VP), cuando $X=\mathbb{R}, Y=\mathbb{R}^{2}$ y $P=\mathbb{R}_{+}^{2}$, y se describe completamente el conjunto E_{w}, con hipótesis de casi convexidad. En las Secciones $4.1, \ldots, 4.5$, estudiamos los casos que surgen al asumir que $\operatorname{argmin}_{K} f_{1}$ y $\operatorname{argmin}_{K} f_{2}$, no se intersectan. En la Sección 4.1, se plantean algunos algoritmos, y además se muestran los resultados computacionales de las implementaciones de algunos de estos.

Contents

Abstract iv
Glossary of notations vii
Introduction ix
1 Notation and Preliminary Facts 1
1.1 Convex analysis 1
1.2 Asymptotic analysis 5
1.3 Some basic definition in vector optimization 6
1.4 Notions of minimum in vector optimization 10
2 Existence results for weak efficiency 12
2.1 An existence theorem without convexity 13
2.2 A class of generalized quasiconvex vector mapping: existence results 17
2.3 The finite dimensional case on \mathbb{R}^{n} 24
2.3.1 Characterizing the nonemptiness and boundedness of the weakly efficient solution set 24
2.4 The finite dimensional case on the real-line 29
2.4.1 Characterizing the nonemptiness and boundedness of the weakly efficient solution set 29
2.4.2 Characterizations of the nonemptiness of the weakly efficient so- lution 33
CONTENTS xV
2.4.3 Quasiconvex vector minimization 37
3 An optimal alternative theorem and applications to vector optimization 45
3.1 An optimal theorem in spaces of arbitrary dimension 46
3.2 Characterizing the two-dimensionality through the alternative theorem 53
3.3 Characterizing a necessary optimality condition of the Fritz-John type 56
3.4 Further applications 59
3.4.1 Characterizing the zero (Lagrangian) duality gap 59
3.4.2 Characterizing weakly efficient solutions 61
4 The bicriteria case on the real-line and algorithms without derivatives 63
4.1 The first case: $\operatorname{argmin}_{K} f_{1}$ and $\operatorname{argmin}_{K} f_{2}$ are compact 66
4.2 The second case: $\operatorname{argmin}_{K} f_{1}$ compact and $\operatorname{argmin}_{K} f_{2}$ empty 76
4.3 The third case: $\operatorname{argmin}_{K} f_{1}$ unbounded and $\operatorname{argmin}_{K} f_{2}$ empty 80
4.4 The fourth case: $\operatorname{argmin}_{K} f_{1}$ and $\operatorname{argmin}_{K} f_{2}$ empty 81
4.5 The fifth case: $\operatorname{argmin}_{K} f_{1}$ and $\operatorname{argmin}_{K} f_{2}$ are unbounded 81
Bibliography 82

Chapter 1

Notation and Preliminary Facts

1.1 Convex analysis

In this section we introduce several notions and results from Convex Analysis.
Let X be a real vector space and Y be a real locally convex topological (Hausdorff) vector space. Throughout this work we shall use the following notation (x, y being elements of X):
$[x, y]:=\{(1-\lambda) x+\lambda y: \lambda \in[0,1]\},[x, y[:=\{(1-\lambda) x+\lambda y: \lambda \in[0,1[\}$,
$] x, y[:=\{(1-\lambda) x+\lambda y: \lambda \in] 0,1[\}$.
Let $\emptyset \neq A \subseteq X$.

Definition 1.1.1 A is convex if $[x, y] \subseteq A$ for all $x, y \in A$.
Definition 1.1.2 A is cone if $\mathbb{R}_{+} A=\{\lambda x: \lambda \geq 0, \quad x \in A\} \subseteq A$.

Definition 1.1.3

$$
\begin{aligned}
\operatorname{co}(A) & :=\bigcap\{C \subseteq X: A \subseteq C, \quad C \text { convex }\} \\
& =\left\{\sum_{i=1}^{n} \lambda_{i} x_{i}: n \in \mathbb{N},\left(\lambda_{i}\right)_{1 \leq i \leq n} \subseteq \mathbb{R}_{+}, \sum_{i=1}^{n} \lambda_{i}=1\right\} \\
\operatorname{cone}(A) & :=\bigcap\{C \subseteq X: A \subseteq C, \quad C \text { cone }\}=\{\lambda x: \lambda \geq 0, \quad x \in A\} \\
& =\bigcup_{t \geq 0} t A \\
\operatorname{cone}_{+}(A) & :=\{\lambda x: \lambda>0, \quad x \in A\}=\bigcup_{t>0} t A \\
\overline{\operatorname{cone}}(A) & :=\bigcap\{C \subseteq X: A \subseteq C, \quad C \text { closed cone }\}
\end{aligned}
$$

Evidently, $\overline{\operatorname{cone}(A)} \overline{\operatorname{cone}(A)}$, cone $(A)=\operatorname{cone}_{+}(A) \cup\{0\}$, and therefore, $\overline{\operatorname{cone}(A)}=$ $\overline{\text { cone }_{+}(A)}$. In $[47,54,55]$ the notation cone (A) instead of cone (A) is employed.

Given a convex subset K of Y, an element $x \in K$ is called a quasi-interior point if there is no closed hyperplane supporting K at x; i.e., if for all $x^{*} \in Y^{*}$ the following implication holds:

$$
\left\langle x^{*}, y\right\rangle \geq\left\langle x^{*}, x\right\rangle \text { for all } y \in K \Rightarrow x^{*}=0
$$

Equivalently, x is a quasi-interior point if and only if $\overline{\text { cone }}(K-x)=Y$ (see for instance [8] for details and references on quasi-interiors). We will denote by qint K the set of quasi-interior points of K. If int $K \neq \emptyset$, then int $K=$ qint K. For this reason, all results in this Tesis involving qint K are also true for int K, provided the latter set is nonempty. On the other hand, for any $p \in[1,+\infty]$ the cone l_{+}^{p} has nonempty quasi-interior, but its interior (and even the relative algebraic interior) is empty for all $p \in[1,+\infty)$. Quasi-interior points share some properties of the interior points; for instance, if $x \in$ qint K and $y \in K$ then $[x, y[\subseteq$ qint K. In particular, qint K is convex and dense in K whenever it is not empty.

If P is a closed convex cone, then it is easy to check that $x \in$ qint P if and only if $\left\langle x^{*}, x\right\rangle>0$ for all $x^{*} \in P^{*} \backslash\{0\}$, or equivalently if the set $B=\left\{x^{*} \in P^{*}:\left\langle x^{*}, x\right\rangle=1\right\}$ is a w ${ }^{*}$-closed base for P^{*} (we recall that a convex set B is called a base for P^{*} if 0 is not in the w^{*}-closed hull of B and $\left.P^{*}=\operatorname{cone}(B)\right)$. If $P \neq Y$, then $0 \notin$ qint P. Note also that qint $P=$ cone $_{+}(q \operatorname{int} P)$ and $P+\operatorname{qint} P=$ qint P.

In the rest of the Tesis, $P \subseteq Y$ will be a closed convex cone with $P \neq Y$ and qint $P \neq$ \emptyset.

Some elementary properties of sets to be used later are collected in the next proposition.

Proposition 1.1.1 Let $A, M \subseteq Y$ nonempty sets.
(a) $\alpha A+(1-\alpha) A \subseteq \operatorname{cone}(A) \forall \alpha \in] 0,1[\Longleftrightarrow \operatorname{cone}(A)$ is convex $\Longleftrightarrow \operatorname{co}(A) \subseteq \operatorname{cone}(A)$.
(b) $\left.\alpha A+(1-\alpha) A \subseteq \operatorname{cone}_{+}(A) \forall \alpha \in\right] 0,1\left[\Longleftrightarrow \operatorname{cone}_{+}(A)\right.$ is convex $\Longleftrightarrow \operatorname{co}(A) \subseteq$ cone $_{+}(A)$.
(c) cone $_{+}(A+M)=$ cone $_{+}(A)+M$ provided that M is such that $t M \subseteq M \forall t>0$.
(d) $\operatorname{cone}(A)+M \subseteq \overline{\operatorname{cone}}(A+M)$ and $\overline{\operatorname{cone}(A)+M}=\overline{\operatorname{cone}}(A+M)$, provided that M is a cone.
(e) $\overline{\overline{c o n e}}(A+\operatorname{qint} P)=\overline{\operatorname{cone}}(A+P)$, provided that P is a convex cone with qint $P \neq \emptyset$.
(f) cone $_{+}(A+\operatorname{int} P)$ is convex $\Longleftrightarrow \operatorname{cone}(A+\operatorname{int} P)$ is convex $\Longleftrightarrow \overline{\operatorname{cone}}(A+P)$ is convex, provided that P is a convex cone with int $P \neq \emptyset$.

Proof. The proof of $(a),(b)$ and (c) is straightforward.
(d) : According to (c), cone $_{+}(A)+M=\operatorname{cone}_{+}(A+M) \subseteq \overline{\operatorname{cone}}(A+M)$. On the other hand, for a fixed $a \in A$, every $p \in M$ can be obtained as the limit of $\frac{1}{n}(a+n p)$. Hence $M \subseteq \overline{\operatorname{cone}}(A+M)$ and this shows the inclusion in (d). Since obviously cone $(A+M) \subseteq$ cone $(A)+M$, the equality of closures also follows.
(e): Since qint $P \subseteq P$, we have $\overline{\text { cone }}(A+$ qint $P) \subseteq \overline{\operatorname{cone}}(A+P)$. Also, from $P \subseteq \overline{\text { qint } P}$ it follows that $A+P \subseteq A+\overline{\text { qint } P} \subseteq \overline{A+\text { qint } P} \subseteq \overline{\operatorname{cone}}(A+$ qint $P)$, hence (e) follows. (f) : If cone ${ }_{+}(A+\operatorname{int} P)$ is convex, then it easily follows that cone $(A+\operatorname{int} P)$ is convex. By using (e), we deduce that $\overline{\text { cone }}(A+P)$ is convex. If $\overline{c o n e}(A+P)$ is convex, then cone $_{+}(A+\operatorname{int} P)$ is convex by Theorem 2.6 in [49].

Remark 1.1.1 Proposition 1.1.1 (f) does not hold with qint P in the place of int P. Indeed, let $Y=l^{1}$ and $P=l_{+}^{1}$. Then qint $l_{+}^{1}=\left\{\left(\alpha_{i}\right)_{i \in \mathbb{N}}: \alpha_{i}>0\right\}$ while int $l_{+}^{1}=\emptyset$. Set

$$
A=l^{1} \backslash\left(-q \operatorname{int} l_{+}^{1}\right)=\left\{\left(\alpha_{i}\right)_{i \in \mathbb{N}}: \exists i \in \mathbb{N} \text { with } \alpha_{i} \geq 0\right\}
$$

Each $\left(a_{i}\right)_{i \in \mathbb{N}} \in l^{1}$ can be written as a limit of a sequence of elements each of which has a finite number of nonzero coordinates. Thus $\bar{A}=l^{1}$ and $\overline{\operatorname{cone}}\left(A+l_{+}^{1}\right)=l^{1}$ is convex. However, one can readily check that cone $_{+}(A+$ qint $P)=A+$ qint $P=$ $\left\{\left(\alpha_{i}\right)_{i \in \mathbb{N}}: \exists i \in \mathbb{N}\right.$ with $\left.\alpha_{i}>0\right\}$ is not convex.

Definition 1.1.4 Let x_{0} be a point of a convex set A. x_{0} is an extreme point of A if x, y $\in A$ and $t x+(1-t) y=x_{0}$ for some $t(0 \leq t \leq 1)$ entails $x=y=x_{0}$.

We denote for $\operatorname{ext}(A)$ to the set of extreme points of the set A.
Theorem 1.1.1 Let B be a subset of the compact convex set $C \subseteq Y$. The following conditions are equivalent:
(a) $\overline{\mathrm{co}}(B)=C$;
(b) $\operatorname{ext}(C) \subseteq \bar{B}$.

Proof. Can be found in Ref. [29].

Definition 1.1.5 A function $f: K \rightarrow \mathbb{R}$ with K being a convex set:
(a) is said to be semistrictly quasiconvex, if given any u, v in $K, f(u) \neq f(v)$, one has $f(z)<\max \{f(u), f(v)\}$ for all $z \in] u, v[;$
(b) is said to be quasiconvex if each of its level set is a convex set, or equivalently, if $f(t x+(1-t) y) \leq \max \{f(x), f(y)\}$ for all x, y in K and all $t \in[0,1]$.

Simple examples show that are functions that are semi-strictly quasiconvex but not quasiconvex. However, every l.s.c. and semistrictly quasiconvex function is quasiconvex [37].

1.2 Asymptotic analysis

We now assume that X is a reflexive Banach space. For any nonempty set C in X, we define the asymptotic cone of C as the set

$$
C^{\infty}=\left\{x \in X: \exists t_{n} \downarrow 0, \exists x_{n} \in C, t_{n} x_{n} \rightharpoonup x\right\}
$$

where " Δ " means convergence in the weak topology. We set $\emptyset^{\infty}=\emptyset$.
In the case when C is weakly closed and starshaped at $x_{0} \in C$, that is, if for every $x \in C$ one has $x_{0}+t\left(x-x_{0}\right) \in C$ for all $t \in[0,1[$, then

$$
C^{\infty}=\left\{v \in X: \quad x_{0}+t v \in C \forall t>0\right\}=\bigcap_{t>0} t\left(C-x_{0}\right)
$$

If C is convex and closed this cone does not depend on $x_{0} \in C$.
For any given function $h: X \rightarrow \mathbb{R} \cup\{+\infty\}$, the asymptotic function of h is defined as the function h^{∞} such that

$$
\text { epi } h^{\infty}=(\text { epi } h)^{\infty} \text {. }
$$

Here, epi $h=\{(x, t) \in X \times \mathbb{R}: h(x) \leq t\}$ is the epigraph of h. Consequently, it is not difficult to prove that (Ref. [5])

$$
h^{\infty}(v)=\inf \left[\liminf _{n \rightarrow+\infty} t_{n} h\left(\frac{x_{n}}{t_{n}}\right): t_{n} \downarrow 0, x_{n} \rightharpoonup v\right] .
$$

When h is a convex and lower semicontinuous function, we have

$$
h^{\infty}(v)=\lim _{\lambda \rightarrow+\infty} \frac{h\left(x_{0}+\lambda v\right)-h\left(x_{0}\right)}{\lambda}=\sup _{\lambda>0} \frac{h\left(x_{0}+\lambda v\right)-h\left(x_{0}\right)}{\lambda} \forall x_{0} \in \operatorname{dom} h
$$

where as usual, dom $h=\{x \in X: h(x)<+\infty\}$. We notice the independence of h^{∞} on the choice of x_{0}. If $f: K \subseteq X \rightarrow \mathbb{R}, f^{\infty}$ will denote the asymptotic function of f, where we extend f to the whole X by setting $f(x)=+\infty$ if $x \in X \backslash K$.

We collect some basic results on asymptotic cones in the next proposition (see Ref. [46] for instance) that will be useful in the sequel.

Proposition 1.2.1 The following assertions hold.
(a) $K_{1} \subseteq K_{2}$ implies $K_{1}^{\infty} \subseteq K_{2}^{\infty}$;
(b) $(K+x)^{\infty}=K^{\infty}$ for all $x \in X$;
(c) let $K \subseteq \mathbb{R}^{n}$, then K is bounded if and only if $K^{\infty}=\{0\}$;
(d) Let $\left(K_{i}\right), i=1, \ldots, m$, be any finite family of nonempty sets in X, then

$$
\left(\bigcup_{i=1}^{m} K_{i}\right)^{\infty}=\bigcup_{i=1}^{m}\left(K_{i}\right)^{\infty}
$$

(e) Let $\left(K_{i}\right), i \in I$, be any family of nonempty sets in X, then

$$
\left(\bigcap_{i \in I} K_{i}\right)^{\infty} \subseteq \bigcap_{i \in I}\left(K_{i}\right)^{\infty}
$$

If, in addition, $\cap_{i} K_{i} \neq \emptyset$ and each set $K_{i}, i \in I$, is closed and convex, then we obtain an equality in the previous inclusion.

1.3 Some basic definition in vector optimization

Let X be a real Hausdorff topological space, Y be a real locally convex topological vector space and P be a convex cone in Y, it will eventually be required to be closed with nonemtpty interior.
By Y^{*} we denote the topological dual space of Y, and the duality pairing between Y^{*} and Y is denoted by $\langle\cdot, \cdot\rangle$. The set $P^{*} \subseteq Y^{*}$ is the polar (positive) cone of P defined by

$$
P^{*}=\left\{p^{*} \in Y^{*}:\left\langle p^{*}, p\right\rangle \geq 0 \forall p \in P\right\}
$$

The closedness and convexity of the cone P is equivalent to (the bipolar theorem) $P=P^{* *}$. In this case,

$$
\begin{equation*}
p \in P \Longleftrightarrow\left\langle p^{*}, p\right\rangle \geq 0 \forall p^{*} \in P^{*} . \tag{1.3.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
p \in \operatorname{int} P \Longleftrightarrow\left\langle p^{*}, p\right\rangle>0 \forall p^{*} \in P^{*} \backslash\{0\} . \tag{1.3.2}
\end{equation*}
$$

In the following definitions we consider Y a real normed vector space.
Given a nonempty set $K \subseteq X$, we shall also need the notion of epigraph of $F: K \rightarrow Y$. It is, as usual, the set

$$
\text { epi } F \doteq\{(x, y) \in K \times Y: y \in F(x)+P\}
$$

Definition 1.3.1 A mapping $F: K \rightarrow Y$ is said to be (Refs. [43, 40]) P-lower semicontinuous (lsc) at $x_{0} \in K$ if for any open set $V \subseteq Y$ such that $F\left(x_{0}\right) \in V$ there exists an open neighborhood $U \subseteq X$ of x_{0} such that $F(U \cap K) \subseteq V+P$. We shall say that F is P-lsc (on K) if it is at every point $x_{0} \in K$.

We have the following proposition.
Proposition 1.3.1 Let $P \subseteq Y$ be a convex cone, $K \subseteq X$ and $S \subseteq Y$ be closed sets such that $S+P \subseteq S$ and $S \neq Y$. Further, we are given $F: K \rightarrow Y$. The following assertions hold.
(a) If F is a P-lsc function, then $\{x \in K: F(x) \in \lambda-S\}$ is closed for all $\lambda \in Y$;
(b) Assume int $P \neq \emptyset$ and P closed: F is P-lsc if and only if $\{x \in K: F(x)-\lambda \notin$ int $P\}$ is closed for all $\lambda \in Y$;
(c) Assume int $P \neq \emptyset$ and P closed: epi F is closed if and only if $\{x \in K: F(x)-\lambda \in$ $-P\}$ is closed for all $\lambda \in Y$;
(d) Assume int $P \neq \emptyset$ and P closed: if F is P-lsc then epi F is closed.

Proof. Part (a) is taken from Ref. [20], Part (b) can be found in Ref. [6], and (c) in Theorem 5.8 of Ref [40], Chapter 1.

We now recall relaxed notions of convexity that are mostly used in vector optimization.
Definition 1.3.2 Assume $P \subseteq Y$ is a convex cone with int $P \neq \emptyset$. The function $F: K \rightarrow$ Y, is said to be
(i) P-convex if for all $x, y \in K$,

$$
\alpha F(x)+(1-\alpha) F(y) \in F(\alpha x+(1-\alpha) y)+P \text { for all } \alpha \in] 0,1[
$$

(ii) properly P-quasiconvex ([15]) if for every $x, y \in K$, every $\alpha \in] 0,1[$,

$$
F(\alpha x+(1-\alpha) y) \in F(x)-P \quad \text { or } \quad F(\alpha x+(1-\alpha) y) \in F(y)-P
$$

or equivalently, the set

$$
\{\xi \in K: F(\xi)-\lambda \notin P\}
$$

is convex for all $\lambda \in Y$;
(iii) P-quasiconvex $([15,36])$ if the set

$$
\{\xi \in K: F(\xi) \in \lambda-P\}
$$

is convex for all $\lambda \in Y$;
(iv) semi-strictly $(Y \backslash-\operatorname{int} P)$-quasiconvex ([21]) if for every $x, y \in K$,

$$
F(x)-F(y) \notin \operatorname{int} P \Longrightarrow F(\alpha x+(1-\alpha) y)-F(y) \notin \operatorname{int} P \quad \forall \alpha \in] 0,1[.
$$

As noted in [15] there is no relationship between the notions of P-convexity and properly P-quasiconvexity except in the situation described in the next theorem.

Certainly, properly P-quasiconvexity and P-quasiconvexity are the more common generalizations of the notion of quasiconvexity for real-valued functions to the vectorial setting. The semi-strict ($Y \backslash-\operatorname{int} P$)-quasiconvexity is also another generalization.

The class of P-convex function has been studied extensively in [40]. The following theorem supplements the previous remarks.

Theorem 1.3.1 Assume $K \subseteq X$ is a convex set and $P \subseteq Y$ a convex cone such that int $P \neq \emptyset$. Concerning Definition 1.3.2 we have the following assertions:
(a) $(i) \Longrightarrow(i i i)$;
(b) if in addition P is closed then $(i i i) \Longrightarrow(i v)$;
(c) if additionally $P \cup(-P)=Y$ then, $(i i i) \Longleftrightarrow(i i)$;
(d) if additionally $P \cup(-P)=Y$ and P is closed, then $P=Y \backslash-\operatorname{int} P$ and

$$
(i v) \Longleftrightarrow(i i i) \Longleftrightarrow(i i) ;
$$

(e) if in addition P is closed then

$$
P=Y \backslash-\operatorname{int} P \Longleftrightarrow P \cup(-P)=Y \Longleftrightarrow \exists p^{*} \in P^{*} \backslash\{0\}, P=\left\{p \in Y:\left\langle p^{*}, p\right\rangle \geq 0\right\}
$$

Proof. See [21].

Definition 1.3.3 ([21])Let $K \subseteq X$ be a convex set and let $S \subseteq Y$ be any non-empty set. The function $H: K \rightarrow Y$ is said to be explicitly (S)-quasiconvex, or equivalently, explicitly $(Y \backslash-S)$-quasiconvex, if it is semi-strictly (S)-quasiconvex and semi-strictly $(Y \backslash-S)$-quasiconvex

Regarding others notions related to that of explicit (int P)-quasiconvexity, we have the following definition.

Definition 1.3.4 Let $K \subseteq X$ be a convex set and $P \subseteq Y$ be a convex cone such that int $P \neq \emptyset$. The function $F: K \rightarrow Y$ is said to be
(i) explicitly P-quasiconvex ([6]) if it is P-quasiconvex and semi-strictly (int P)-quasiconvex.
(ii) explicitly properly P-quasiconvex ([39]) if it is properly P-quasiconvex (see Definition 1.3.2) and semi-strictly P-quasiconvex;
(iii) (here $Y=\mathbb{R}^{m}$ and $P=\mathbb{R}_{+}^{m}$) explicitly quasiconvex componentwise ([45]) if each component of F is a quasiconvex and semi-strictly quasiconvex real-valued function.

Theorem 1.3.2 Let $K \subseteq X$ be a non-empty convex set, let $P \subseteq Y$ be a convex cone such that int $P \neq \emptyset$. Given any function $F: K \rightarrow Y$, the following assertions hold:
(a) if F is P-convex, it is explicitly (int P)-quasiconvex;
(b) if F is explicitly properly P-quasiconvex, it is explicitly (int P)-quasiconvex;
(c) (here $Y=\mathbb{R}^{m}$ and $P=\mathbb{R}_{+}^{m}$) if F is explicitly quasiconvex componentwise, it is explicitly (int \mathbb{R}_{+}^{m})-quasiconvex.

Proof. See [21] .

1.4 Notions of minimum in vector optimization

Let us consider a real topological vector space Y and X a Hausdorff topological space; a convex cone $P \subseteq Y$ such that $P \neq Y$ and (its topological interior) int $P \neq \emptyset$; a closed set $K \subseteq X$, and a vector-valued function $F: K \rightarrow Y$. A point $\bar{x} \in K$ is said to be: an ideal or strong minimizer of F on K, if

$$
\begin{equation*}
F(y)-F(\bar{x}) \in P \text { for all } y \in K \tag{1.4.1}
\end{equation*}
$$

an efficient or Pareto minimizer of F on K, if $(l(P) \doteq P \cap(-P))$

$$
\begin{equation*}
F(y)-F(\bar{x}) \notin-(P \backslash l(P)) \text { for all } y \in K \tag{1.4.2}
\end{equation*}
$$

a weakly efficient or weakly Pareto minimizer of F on K, if

$$
\begin{equation*}
F(y)-F(\bar{x}) \notin-\operatorname{int} P \text { for all } y \in K \tag{1.4.3}
\end{equation*}
$$

Since

$$
P \subseteq Y \backslash-(P \backslash l(P)) \subseteq Y \backslash-\operatorname{int} P
$$

every solution to (1.4.1) is a solution to (1.4.2), and every solution to (1.4.2) is a solution to (1.4.3).
The solutions set to problem (1.4.3) is denoted by $E_{w}(K)$ or simply E_{w}. Let us notice
that in the classic case, that is to said $P=\mathbb{R}_{+}^{m}$, where \mathbb{R}_{+}^{m} is the non-negative orthant in \mathbb{R}^{n}. In this case $F(x)=\left(f_{1}(x), \cdots, f_{m}(x)\right)$, with $f_{i}: K \longrightarrow \mathbb{R}$. Therefore a point $\bar{x} \in K$ that satisfies 1.4.3 it is equivalent to

$$
\begin{equation*}
\text { find } \overline{\mathbf{x}} \in K \quad \text { such that } \forall y \in K, \exists i: f_{i}(y)-f_{i}(\bar{x}) \geq 0 \tag{1.4.4}
\end{equation*}
$$

Chapter 2

Existence results for weak efficiency

In this chapter we motivate ourselves for the following important theorem.
Given a compact (Hausdorff) topological space X; a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$, the classical Weierstrass theorem asserts that f reaches its minimum value on X provided the sets $\{x \in X: f(x) \leq t\}$ are closed for every $t \in \mathbb{R}$, i.e., provided f is lower semicontinuous.

If we are interested in a vector version of this theorem, we need to specify the meaning of minimizer for f. Among the different notions of minimizer (all of them collapse in the real-valued case), see chapter 1 , section 4 .

To be more precise, in addition to X, let us consider a real topological vector space Y; a convex cone $P \subseteq Y$ such that $P \neq Y$ and (its topological interior) int $P \neq \emptyset$; a closed set $K \subseteq X$, and a vector-valued function $F: K \rightarrow Y$.

Most of the Weierstrass-type theorems for the vectorial case concern problem (1.4.3) (see Refs. $[3,6,9,13,19,21,31]$ among others) and only a few problem (1.4.1) (see Refs. [19, 20]). The existence of solution to (1.4.2) is discussed in Ref. [15] under the assumption that

$$
G^{\lambda} \doteq\{x \in K: F(x)-\lambda \in-P\}
$$

is closed for all $\lambda \in Y$, which is equivalent to the closedness of epi $F \doteq\{(x, y) \in$ $X \times Y: y \in F(x)+P\}$ provided P is closed, see Theorem 5.8 of Chapter 1 in Ref. [40].

The aim of the present chapter is twofold: the first one, is to provide existence re-
sults for the problem (1.4.3), without convexity on F, by assuming the closedness of

$$
G(y) \doteq\{x \in K: F(x)-F(y) \notin \operatorname{int} P\}
$$

for all $y \in K$, and in the case when some additional structure on X is assumed, to get existence of solution under a weaker assumption than convexity (see Definition 2.2.1), secondly, to derive some equivalences for the nonemptiness and compactness of the weakly solution set under convexity/quasiconvexity conditions. We have to point out that the closedness of $G(y)$ for all $y \in K$ does not imply the closedness of G^{λ}, likewise, the closedness of G^{λ} for all $\lambda \in Y$ does not imply the closedness of $G(y)$. For the first assertion, simply take $P=\mathbb{R}_{+}^{2}, K=[0,10] \subseteq \mathbb{R}, F(x)=(x, x), x \neq 1, F(1)=(1,5)$. Then, $G(y)=[0, y]$ if $y \in K \backslash\{1\}$ and $G(1)=[0,5]$; whereas $G^{\lambda}=[0,1[\cup] 1,4]$ for $\lambda=(4,4)$. For the second assertion, let us consider again $K=[0,10], P=\mathbb{R}_{+}^{2}$ and $F(x)=\left(x, \frac{1}{x}\right)$ if $x \neq 0, F(0)=(1,3)$. Then G^{λ} is closed for all $\lambda \in \mathbb{R}^{2}$, whereas $\left.\left.\left.\left.G\left(\frac{1}{2}\right)=\right] 0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 10\right]=\right] 0,10\right]$.

2.1 An existence theorem without convexity

Let X be a real Hausdorff topological space, Y be a real normed vector space. Given a compact set K, a convex cone $P \subseteq Y$ such that int $P \neq \emptyset$, and any vector function $F: K \rightarrow Y$, we are interested in the problem (1.4.3), it is to say

$$
\begin{equation*}
\text { find } \bar{x} \in K: F(y)-F(\bar{x}) \notin-\operatorname{int} P \text { for all } y \in K \tag{2.1.1}
\end{equation*}
$$

We derive an existence result for the problem (2.1.1) as a consequence of a more general result proved in Ref. [41].

We first need three concepts taken from Refs. [40,41]. We say that a convex cone $C \subseteq Y$ is correct if

$$
\bar{C}+C \backslash l(C) \subseteq C
$$

or equivalently, $\bar{C}+C \backslash l(C) \subseteq C \backslash l(C)$. Here $l(C) \doteq C \cap(-C)$. A net $\left\{y_{\alpha}: \alpha \in J\right\}$ in Y for some directed set J, is said to be decreasing if $y_{\alpha}-y_{\beta} \in C$ and not $y_{\beta}-y_{\alpha} \in C$ for
each $\alpha, \beta \in J, \beta>\alpha$. The set $A \subseteq Y$ is said to be C-complete if there are no covers of the form $\left\{\left(y_{\alpha}-\bar{C}\right)^{c}\right\}$ where $\left\{y_{\alpha}\right\}$ is a decreasing net in A.

By $E(A \mid C)$ we mean the set of all the efficient points of A with respect to C, that is, the set of $\bar{y} \in A$ such that there is no $y \in A$ satisfying

$$
\bar{y}-y \in C \text { and not } y-\bar{y} \in C
$$

or equivalently, $y-\bar{y} \in Y \backslash-(C \backslash l(C))$ for all $y \in A$.
The next theorem was proved in Ref. [41].
Theorem 2.1.1 (Ref. [41], Theorem 2.6]) Suppose that C is a correct convex cone in Y. If A is nonemtpy C-complete then $E(A \mid C)$ is nonempty.

From the previous theorem, we will derive an existence result to problem 2.1.1, which may be considered as a vectorial case of the Weierstrass theorem.

Theorem 2.1.2 Let X, Y be as above and P be a convex cone satisfying $P \neq Y$ and int $P \neq \emptyset$. Furthermore, let $K \subseteq X$ be a compact set. Assume that $F: K \rightarrow Y$ is such that $G(y) \doteq\{x \in K: F(x)-F(y) \notin$ int $P\}$ is closed for all $y \in K$. Then E_{w} is nonempty and compact.

Proof. We first notice that $E_{w}=E(F(K) \mid C)$ for $C=($ int $P) \cup\{0\}$ (a correct cone). The closedness of E_{w} being evident it suffices to show that $E_{w} \neq \emptyset$. By assuming $E_{w}=\emptyset$ we arrive at a contradiction if we can show that $F(K)$ is C-complete because of Theorem 2.1.1 (actually the counter-reciprocal of Theorem 2.1.1). If it is not C-complete, let $\left\{F\left(x_{\alpha}\right)\right\}$ be a decreasing net with $\left\{\left(F\left(x_{\alpha}\right)-\bar{C}\right)^{c}\right\}_{\alpha}$ forming a recovering of $F(K)$. By compactness one may assume that $x_{\alpha} \rightarrow x_{0}$ for some $x_{0} \in K$. Since $E_{w}=\emptyset$, there is $y \in K$ such that $F\left(x_{0}\right)-F(y) \in$ int P. For $F(y)$, there is some index α_{0} such that $F(y) \notin F\left(x_{\alpha}\right)-\bar{C}$ for all $\alpha>\alpha_{0}$. This in particular implies $F\left(x_{\alpha}\right)-F(y) \notin$ int P for $\alpha>\alpha_{0}$. The closedness assumption on $G(y)$ yields $F\left(x_{0}\right)-F(y) \notin \operatorname{int} P$, a contradiction. This proves E_{w} is nonempty.

We now show another proof for Theorem 2.1.2 using a fixed-point theorem for discrete set-valued mapping.

Lemma 2.1.1 Let Y be a vector space, $Y_{0}=\left\{v_{1}, \ldots, v_{m}\right\} \subset Y, m \geq 2$, and $Q \subseteq Y$ be a non-empty set such that $Q+Q \subseteq Q$. Define the set-valued map $T: Y_{0} \rightrightarrows Y_{0}$ by

$$
T(u)=\left\{v \in Y_{0}: u-v \in Q\right\} .
$$

Then, the following assertions are equivalent:
(a) $T(v) \neq \emptyset$ for all $v \in Y_{0}$;
(b) $0 \in Q$;
(c) $v_{i} \in T\left(v_{i}\right)$ for all $i=1, \ldots, m$.

Proof. $(a) \Longrightarrow(b)$: Let us fix v_{1}. By using (a), for $i=1, \ldots, m$, we may recursively find $j_{i} \in\{1, \ldots, m\}$ such that $v_{j_{i-1}}-v_{j_{i}} \in Q$ where $j_{0}=1$. It is not hard to check that

$$
\begin{equation*}
\text { there exist } i \leq m, s<i \text {, such that } j_{i}=j_{s} \text {, } \tag{2.1.2}
\end{equation*}
$$

for if not Y_{0} must contain at least $m+1$ elements, which is impossible. Hence,

$$
0=v_{j_{i}}-v_{j_{s}}=\sum_{p=s+1}^{i}\left(v_{j_{p}}-v_{j_{p-1}}\right) \in-Q
$$

proving (b).
The implications $(b) \Longrightarrow(c)$ and $(c) \Longrightarrow(a)$ are obvious.
We are now in a position to establish the proof of the theorem 2.1.2.
Clearly,

$$
E_{w}=\bigcap_{y \in K}\{x \in K: F(x)-F(y) \notin \operatorname{int} P\} .
$$

Since each of the sets involved in the intersection is closed (actually compact) by assumption, it suffices to prove that

$$
\begin{equation*}
\bigcap_{i=1}^{m} G\left(y_{i}\right) \neq \emptyset \tag{2.1.3}
\end{equation*}
$$

for every finite set $\left\{y_{1}, \ldots, y_{m}\right\}$ in K, where

$$
\begin{equation*}
G(y) \doteq\{x \in K: F(x)-F(y) \notin \operatorname{int} P\} \tag{2.1.4}
\end{equation*}
$$

Suppose on the contrary, that

$$
\begin{equation*}
\bigcap_{i=1}^{m} G\left(y_{i}\right)=\emptyset \tag{2.1.5}
\end{equation*}
$$

Set $Y_{0}=\left\{v_{1}, \ldots, v_{m}\right\} \subset Y, v_{i}=F\left(y_{i}\right)$. From (2.1.5) it follows that the set-valued map $T: Y_{0} \rightrightarrows Y_{0}$ defined by

$$
T\left(v_{i}\right)=\left\{v \in Y_{0}: v_{i}-v \in \operatorname{int} P\right\}
$$

has non-empty values, that is, $T\left(v_{i}\right) \neq \emptyset$ for all $i=1, \ldots, m$. By the previous lemma $0 \in \operatorname{int} P$, which is a contradiction. Thus (2.1.3) holds and hence E_{w} is non-empty. The closedness, and so compactness, follows from the assumption.

In the case when K is not compact, we need the following condition:
(C) : there exists a nonempty compact set $D \subseteq K$ such that for all $x \in K \backslash D$ there exists $y \in D$ such that $F(y)-F(x) \in-\operatorname{int} P$.

This condition requires that any element outside D cannot be a candidate for solution to problem (2.1.1). Therefore $E_{w} \subseteq D$, and consequently E_{w} must be compact, being it closed.

Corollary 2.1.1 Assume the assumptions on X, Y, P of Theorem 2.1.2 hold and that K is closed. If condition (C) is satisfied, then E_{w} is nonempty and compact, and $E_{w}(K)=$ $E_{w}(D)$, where $E_{w}(D)$ denotes the set of solutions to (2.1.1) on D instead of K.

Proof. By Theorem 2.1.2, there exists $\bar{x} \in D$ such that $F(y)-F(\bar{x}) \notin$-int P for all $y \in D$. We claim that in fact $\bar{x} \in E_{w}$. If $y \in K \backslash D, y \in K$, condition (C) implies the existence of $y_{0} \in D$ such that $F\left(y_{0}\right)-F(y) \in-\operatorname{int} P$. Thus

$$
F(y)-F(\bar{x})=F(y)-F\left(y_{0}\right)+F\left(y_{0}\right)-F(\bar{x}) \in P+(Y \backslash-\operatorname{int} P) \subseteq Y \backslash-\operatorname{int} P,
$$

proving the desired result.

Example 2.1.1 Let us consider $K=\mathbb{R}^{2}, P=\mathbb{R}_{+}^{2}$, and the function $F\left(x_{1}, x_{2}\right)=\left(\sqrt{\left|x_{1}\right|}+\right.$ $\left.\sqrt{\left|x_{2}\right|}, \sqrt{\left|x_{1}\right|}+2 \sqrt{\left|x_{2}\right|}\right)$. Then, condition (C) holds by taking

$$
D=\left\{\left(x_{1}, x_{2}\right): \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\} \leq 1\right\}
$$

and $y=(0,0)$.
A stronger assumption implying the closedness of $G(y)$ (as required in Theorem 2.1.2) for all $y \in K$, concerns the P-lower semicontinuity of F. In case P is additionally closed, it is proven in Ref. [6] that F is P-lsc on K if, and only if, the set $G_{\lambda} \doteq\{x \in$ $K: F(x)-\lambda \notin \operatorname{int} P\}$ is closed for all $\lambda \in Y$. We notice that the closedness of $G(y)$ for all $y \in K$ does not imply the closedness of G_{λ} for all $\lambda \in Y$, as the following example shows: take $P=\mathbb{R}_{+}^{2}, K=[0,10] \subseteq \mathbb{R}, F(x)=(x, x), x \neq 1, F(1)=(1,5)$. Then, $G(y)=[0, y]$ if $y \in K \backslash\{1\}$ and $G(1)=[0,5]$; whereas $G_{\lambda}=[0,1[\cup] 1,4]$ for $\lambda=(1 / 2,4)$.

Remark 2.1.1 As mentioned in the introduction, an existence theorem concerning problem (1.4.2) was established in Ref. [15] by imposing the closedness of

$$
G^{\lambda} \doteq\{x \in K: F(x)-\lambda \in-P\}
$$

for all $\lambda \in Y$. It is equivalent to requiring the closedness of epi $F \doteq\{(x, y) \in X \times Y: y \in$ $F(x)+P\}$, whenever P is closed (see Theorem 5.8 of Chapter 1 in Ref. [40]). It was shown in the previous section that, in general, there is no relationship between the closedness of $G(y)$ for all $y \in K$ and the closedness of G^{λ} for all $\lambda \in Y$. However, in the case when $Y=\mathbb{R}^{m}, P=\mathbb{R}_{+}^{m}$ and every component of F is bounded from above on K, it is not hard to prove that
G^{λ} is closed for all $\lambda \in \mathbb{R}^{m}$ if, and only if, G_{λ} is closed for all $\lambda \in \mathbb{R}^{m}$.

2.2 A class of generalized quasiconvex vector mapping: existence results

Let Y be a real normed vector space and X be a reflexive Banach space. We are also given a nonempty set $S \subseteq Y$, a nonempty convex set $K \subseteq X$, and a mapping
$F: K \rightarrow Y$. It is requested to find

$$
\begin{equation*}
\bar{x} \in K \text { such that } F(y)-F(\bar{x}) \in S \forall y \in K . \tag{2.2.1}
\end{equation*}
$$

A point $\bar{x} \in K$ satisfying (2.2.1) is called a (global) S-minimal of F (on K); whereas a point \bar{x} is a local S-minimal of F (on K) if there exists an open neighborhood $U, \bar{x} \in U$, such that

$$
\begin{equation*}
F(x)-F(\bar{x}) \in S \forall x \in U \cap K \tag{2.2.2}
\end{equation*}
$$

The set of S-minimal points of F is denoted by E_{S}.

In connection to problem (2.2.1) the following definition, introduced earlier in Ref. [35] and independently in Ref. [21] with different uses, will play an important role.

Definition 2.2.1 (Refs. [10,21]) Given S, K as above with K being convex, the mapping $F: K \rightarrow Y$, is said to be semistrictly (S)-quasiconvex at $y \in K$, if for every $x \in K$, $x \neq y$,

$$
F(x)-F(y) \in-S \Longrightarrow F(\xi)-F(y) \in-S \quad \forall \xi \in] x, y[.
$$

We say that F is semistrictly (S)-quasiconvex (on K) if it is at every $y \in K$.
One can easily check that the vector functions

$$
\begin{gathered}
F_{1}(x)=\left(e^{-x^{2}}, x^{2}\right), x \in \mathbb{R} ; F_{2}\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}^{2}}{1+x_{1}^{2}}, x_{2}^{3}\right), \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \text { and } \\
F_{3}(x)=\left(\frac{1}{1+|x|^{2}},|x|\right), \quad x \in \mathbb{R}
\end{gathered}
$$

are semistrictly $\left(\mathbb{R}^{2} \backslash\right.$-int $\left.\mathbb{R}_{+}^{2}\right)$-quasiconvex.
Before going further, we have to make some comments. Let us consider the case $Y=\mathbb{R}$. Semistrict $\left(\mathbb{R}_{+}\right)$-quasiconvexity amounts to saying quasiconvexity in the usual sense, that is, the set $\{x \in K: F(x) \leq t\}$ is convex for all $t \in \mathbb{R}$, or equivalently, given any $x, y \in K$,

$$
F(x) \leq F(y) \Longrightarrow F(\xi) \leq F(y) \forall \xi \in] x, y[
$$

whereas semistrict $\left(\mathbb{R}_{++}\right)$-quasiconvexity amounts to saying semistrict quasiconvexity as usually known in mathematical programming, that is, given any $x, y \in K$,

$$
F(x)<F(y) \Longrightarrow F(\xi)<F(y) \forall \xi \in] x, y[
$$

The semistrict (P)-quasiconvexity was mentioned in Ref. [35]. Instead, we will use semistrictly $(Y \backslash-\operatorname{int} P)$-quasiconvex functions. In case $Y=\mathbb{R}^{2}$ and $P \subseteq \mathbb{R}^{2}$ is a polyhedral, various equivalent conditions to semistrict (P)-quasiconvexity were derived in Ref. [10], where the term (P, P)-quasiconvexity is used. In particular, one is expressed in terms of the Jacobian matrix of the function involved. Moreover, it is also proved in Ref. [10] that semistrict (P)-quasiconvexity is equivalent to P-quasiconvexity whenever the function is continuous, and therefore such a function will be semistrictly $\left(\mathbb{R}^{2} \backslash\right.$-int P)-quasiconvex as Theorem 2.6 in Ref. [21] asserts.

The following theorem encompasses a well known result valid for real-valued functions.

Theorem 2.2.1 (Ref. [35]) Let S, K be nonempty sets as above. Let $\bar{x} \in K$ be a local S minimal for F on K. Then, $\bar{x} \in E_{S}$ if and only if F is semistrictly $(Y \backslash-S)$-quasiconvex at \bar{x}.

For a given $y \in K$, we set

$$
\mathcal{S}_{y} \doteq\{x \in K: F(x)-F(y) \in-S\} .
$$

The proof of the next lemma follows immediately from Definition 2.2.1.
Lemma 2.2.1 Given S, K as above and $F: K \rightarrow Y$, the following two assertions are equivalent for fixed $y \in K$:
(a) F is semistrictly (S)-quasiconvex at y;
(b) $\left[x, y\left[\subseteq \mathcal{S}_{y}\right.\right.$ for all $x \in \mathcal{S}_{y}$.

In case $0 \in S, y \in \mathcal{S}_{y}$ for all $y \in K$, we also obtain

Theorem 2.2.2 Given S, K as above with $0 \in S$, and $F: K \rightarrow Y$.
(a) F is semistrictly (S)-quasiconvex at $y \in K$ if, and only if, \mathcal{S}_{y} is starshaped at y;
(b) Assume $X=\mathbb{R}$. Then, F is semistrictly (S)-quasiconvex $\Longleftrightarrow \mathcal{S}_{y}$ is convex for all $y \in K \Longleftrightarrow$ for every finite subset $\left\{y_{1}, \ldots, y_{m}\right\}$ of K and for every $j \in\{1, \ldots, m\}$,

$$
F\left(y_{i}\right)-F\left(y_{j}\right) \in-S \forall i \neq j \Longrightarrow F(\xi)-F\left(y_{j}\right) \in-S \quad \forall \xi \in \operatorname{co}\left\{y_{1}, \ldots, y_{m}\right\}, \xi \neq y_{i} \forall i
$$

(c) Assume $(Y \backslash-S)+(Y \backslash-S) \subseteq Y \backslash-S$. If F is semistrictly (S)-quasiconvex, then for every $x, y \in K, x \neq y$, every $\xi \in] x, y[$,

$$
F(\xi)-F(x) \in-S \text { or } F(\xi)-F(y) \in-S
$$

that is, either $\xi \in \mathcal{S}_{x}$ or $\xi \in \mathcal{S}_{y}$;
(d) Assume that $X=\mathbb{R}$ and $(Y \backslash-S)+(Y \backslash-S) \subseteq Y \backslash-S$. If F is semistrictly
(S)-quasiconvex, then for all $x<y$ in $K, \sup \mathcal{S}_{x} \geq \inf \mathcal{S}_{y}$.

Proof. (a): This is straightforward from the definition of \mathcal{S}_{y} and Lemma 2.2.1.
(b): The "if " part of the first equivalence was proved in (a). The "only if" is as follows: take $x_{1}, x_{2} \in \mathcal{S}_{y}, x_{1}<x_{2}$, and $\left.x \in\right] x_{1}, x_{2}[$. If $x>y$, then $x \in] y, x_{2}$ [, and therefore, $F(x)-F(y) \in-S$, i.e., $x \in \mathcal{S}_{y}$. In case $x<y$ we proceed in the same manner, proving the convexity of \mathcal{S}_{y}. This completes the proof of the first equivalence. The "if" part of the second equivalence is obvious. For the "only if" part, let $\xi \in \operatorname{co}\left\{y_{1}, \ldots, y_{n}\right\}$, and assume that $F\left(y_{i}\right)-F\left(y_{j}\right) \in-S$ for all $i \neq j$. If $\xi<y_{j}$, then $\left.\xi \in\right] y_{p}, y_{j}[$ for some $p \in\{1, \ldots, m\}$, and therefore $F(\xi)-F\left(y_{j}\right) \in-S$. The case $\xi>y_{j}$ is treated in the same manner.
(c): If $F(\xi)-F(x) \notin-S$ and $F(\xi)-F(y) \notin-S$ for some $\xi \in] x, y[$, then by the semistrict (S)-quasiconvexity of $F, F(x)-F(y) \notin-S$ and $F(y)-F(x) \notin-S$. Thus $0 \in Y \backslash-S$, which is absurd, proving the desired result.
(d): Suppose $\sup \mathcal{S}_{x}<\inf \mathcal{S}_{y}$ and take $\xi \in \mathbb{R}$ such that

$$
x \leq \sup \mathcal{S}_{x}<\xi<\inf \mathcal{S}_{y} \leq y
$$

This implies $\xi \notin \mathcal{S}_{x}$ and $\xi \notin \mathcal{S}_{y}$, which contradicts (c).

Example 2.2.1 This example shows that the reverse implication in (c) and (d) of the previous theorem may be false. Take $F(x)=\left(-x, 1-(x-1)^{2}\right), x \in K=[0,2], S=$ $\mathbb{R}^{2} \backslash$-int \mathbb{R}_{+}^{2}. After some calculations, we obtain $F(0)-F(3 / 2)=(3 / 2,-3 / 4) \in-S$ but $F(4 / 5)-F(3 / 2)=(7 / 10,21 / 100) \notin-S$, thus F is not semistrictly (S)-quasiconvex. On the other hand, it is not hard to check that for any $x, y \in K, x<y$, we get $F(\xi)-F(x) \in$ $-S$ for all $\xi \in] x, y\left[\right.$. Moreover, for all $x \in K, \mathcal{S}_{x}=[0,2-x] \cup[x, 2]$ which implies $\sup \mathcal{S}_{x}=2$ and $\inf \mathcal{S}_{x}=0$.

A simple criterion for a vector mapping to be semistrictly (S)-quasiconvex is given in the following proposition whose proof is straightforward.

Proposition 2.2.1 Let K, S be nonempty sets as above. If $F: K \rightarrow Y$ is such that $H(y) \doteq\{x \in K: F(x)-F(y) \notin S\}$ is empty for all $y \in K$, then F is semistrictly (S)-quasiconvex.

Example 2.2.2 By setting $S=\mathbb{R}^{2} \backslash$-int \mathbb{R}_{+}^{2}, the above mentioned function F_{1} is such that $H(y)=\emptyset$ and $S_{y}=\mathbb{R}$ for all $y \in \mathbb{R}$, thus F_{1} is semistrictly $\left(\mathbb{R}^{2} \backslash\right.$-int $\left.\mathbb{R}_{+}^{2}\right)$ quasiconvex. On the other hand, the function F_{2} shows that one implication in (b) of Theorem 2.2.2 may be false if X has dimension greater or equal than two (for S as above), since in this case

$$
\left.\left.\mathcal{S}_{y}=\left(\left[-\left|y_{1}\right|,\left|y_{1}\right|\right] \times \mathbb{R}\right) \cup(\mathbb{R} \times]-\infty, y_{2}\right]\right)
$$

Moreover, even when $K \subseteq \mathbb{R}$, the reverse implication in Proposition 2.2.1 may be false as the function $F(x)=(\sqrt{x}, x), x \geq 0$, shows, since $H(y)=[0, y[, y>0$.

In the same lines of reasoning as in Refs. [19, 21], we introduce the following cones in order to deal with the case when K is an unbounded set,

$$
\begin{align*}
& R_{P} \doteq \bigcap_{y \in K}\left\{v \in K^{\infty}: F(y+\lambda v)-F(y) \in-P \forall \lambda>0\right\} \tag{2.2.3}\\
& R_{S} \doteq \bigcap_{y \in K}\left\{v \in K^{\infty}: F(y+\lambda v)-F(y) \in-S \forall \lambda>0\right\} \tag{2.2.4}
\end{align*}
$$

We recall that E_{S} denotes the set of $\bar{x} \in K$ satisfying (2.2.1).

Theorem 2.2.3 Let K be a closed convex set; let $P \subseteq Y$ be a convex cone and $S \subseteq Y$ be nonempty such that $S+P \subseteq S$. If the function $F: K \rightarrow Y$ is semistrictly (S)quasiconvex and the set \mathcal{S}_{y} is weakly closed for all $y \in K$, then

$$
\begin{equation*}
E_{S}+R_{P}=E_{S}, \text { and }\left(E_{S}\right)^{\infty} \subseteq R_{S} \tag{2.2.5}
\end{equation*}
$$

Moreover, if $E_{S} \neq \emptyset$ and either $X=\mathbb{R}$ or $Y=\mathbb{R}$ (here $P=\left[0,+\infty\left[\right.\right.$), then E_{S} is convex and

$$
\begin{equation*}
\left(E_{S}\right)^{\infty}=R_{S} \tag{2.2.6}
\end{equation*}
$$

Proof. Obviously $E_{S} \subseteq E_{S}+R_{P}$. Both inclusions in (2.2.5) trivially hold if $E_{S}=\emptyset$. Otherwise, take any $\bar{x} \in E_{S}$ and v in R_{P}. Then, for all $y \in K$ and all $\lambda>0$,

$$
F(y)-F(\bar{x}+\lambda v)=F(y)-F(\bar{x})+F(\bar{x})-F(\bar{x}+\lambda v) \in S+P \subseteq S
$$

This completes the proof of the equality in (2.2.5). The second inclusion follows from the equality

$$
\begin{equation*}
E_{S}=\bigcap_{y \in K} \mathcal{S}_{y} \tag{2.2.7}
\end{equation*}
$$

and Proposition 1.2.1. The equality in (2.2.6) is a consequence of the convexity of \mathcal{S}_{y} (see (b) of Theorem 2.2.2).

Remark 2.2.1 The second inclusion in (2.2.5) may be strict. Indeed, take $K=\mathbb{R}^{2}, P=$ $\mathbb{R}_{+}^{2}, S=\mathbb{R}^{2} \backslash$-int \mathbb{R}_{+}^{2} and $F\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, e^{x_{2}}\right)$. Then

$$
\left.\left.E_{S}=\{0\} \times \mathbb{R}, \quad R_{S}=(\{0\} \times \mathbb{R}) \cup(\mathbb{R} \times]-\infty, 0\right]\right)
$$

Notice that the components of F are convex. An additional instance in which we have $\left(E_{S}\right)^{\infty}=R_{S}$ will be presented in (b) of Corollary 2.3.1.

We shall need the following definition which has been introduced in Ref. [42].

Definition 2.2.2 A subset C of a normed vector space X is said to be recessively compact if for all sequence $\left\{x_{n}\right\}$ in K with $\left\|x_{n}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$, there exist a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ and a sequence $\left\{t_{k}\right\}$ of positive numbers converging to 0 such that $t_{k} x_{n_{k}}$ converges strongly to some non-zero element of X.

Proposition 2.2.2 Let $K \subseteq X$ be a closed convex set and $S \subseteq Y$ be a nonempty set. Assume that $F: K \rightarrow Y$ is semistrict (S)-quasiconvex, and that \mathcal{S}_{y} is weakly closed for all $y \in K$. If K is recessively compact and $R_{S}=\{0\}$, then $\left(K_{r}=\{x \in K:\|x\| \leq r\} \neq\right.$ Ø)

$$
\begin{equation*}
\exists r>0, \forall x \in K \backslash K_{r}, \exists y \in K_{r}: F(y)-F(x) \notin S \tag{2.2.8}
\end{equation*}
$$

Consequently condition (C), introduced in section 2.1, is satisfied for $S=Y \backslash-\operatorname{int} P$. Furthermore, if $X=\mathbb{R}$ then $R_{S}=\{0\}$ if and only if (2.2.8) holds.

Proof. Suppose on the contrary that for all $n \in \mathbb{N}$ there exists $x_{n} \in K \backslash K_{n}$ such that

$$
F(y)-F\left(x_{n}\right) \in S \forall y \in K_{n} .
$$

Since $\left\|x_{n}\right\|>n$ we have $\left\|x_{n}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$, and therefore by the recessive compactness of K there exist a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ and a sequence $\left\{t_{k}\right\}$ of positive numbers converging to 0 such that $t_{k} x_{n_{k}}$ converges strongly to some non-zero element v of X. Clearly $v \in K^{\infty}$. On the other hand, for any fixed $y \in K, F(y)-F\left(x_{n}\right) \in S$ for all $n \in \mathbb{N}$ sufficiently large (for instance $n>\|y\|)$. Hence, for every $\lambda>0$ and all k sufficiently large, the semistrict (S)-quasiconvexity of F implies

$$
F\left(\left(1-\lambda t_{k}\right) y+\lambda t_{k} x_{n_{k}}\right)-F(y) \in-S
$$

Thus, by the weak closedness assumption, $F(y+\lambda v)-F(y) \in-S$, showing that $v \in R_{S}$, which cannot happen if $R_{S}=\{0\}$ is assumed, proving that (2.2.8) has to hold.
We now consider $X=\mathbb{R}$. Take any $x \in K_{r}$ and assume that $0 \neq v \in R_{S}$. Then, due to the convexity of K and since $v \in K^{\infty}$, we have $x+\lambda_{0} v \in K \backslash K_{r}$ for some $\lambda_{0}>0$ sufficiently large. Then, by (2.2.8), there exists $y \in K_{r} \subseteq K$ such that $F(y)-F\left(x+\lambda_{0} v\right) \notin S$. By the convexity of K again, there is $\lambda_{1}>0$ such that $x+\lambda_{0} v=y+\lambda_{1} v$. Hence

$$
F(y)-F\left(y+\lambda_{1} v\right) \notin S,
$$

which says $v \notin R_{S}$, a contradiction.

2.3 The finite dimensional case on \mathbb{R}^{n}

2.3.1 Characterizing the nonemptiness and boundedness of the weakly efficient solution set

This section is devoted to characterizing the nonemptiness and compactness of the solution set to the problem 2.1.1 where $K \subseteq \mathbb{R}^{n}$ is possibly unbounded. In this part we study two cases: Y be a real normed vector space and $Y=\mathbb{R}^{m}$.
We consider the hypothesis
HYPOTHESIS (H0): The set $P \subseteq Y$ is a convex (not necessarily pointed) cone such that $P \neq Y$ and int $P \neq \emptyset$.

The first case

In this situation we use E_{w} (see (2.1.1)), R_{w} instead of E_{S} and R_{S} respectively (see 2.2.2 and 2.2.4). More precisely

$$
\begin{equation*}
R_{w} \doteq \bigcap_{y \in K}\left\{v \in K^{\infty}: F(y+\lambda v)-F(y) \notin \operatorname{int} P \forall \lambda>0\right\} . \tag{2.3.1}
\end{equation*}
$$

This cone is always convex whenever $K \subseteq \mathbb{R}$. The next theorem was proved in Ref [21] under the convexity condition on each $H(y) \doteq\{x \in K: F(x)-F(y) \in-\operatorname{int} P\}, y \in K$. This convexity assumption was needed because of the use of the Knaster-KuratowskiMazurkiewicz lemma Ref. [4]; instead we apply Theorem 2.1.2.

Theorem 2.3.1 Let $K \subseteq \mathbb{R}^{n}$ be a closed convex set and $P \subseteq Y$ satisfies hypothesis (H0). Assume that $F: K \rightarrow Y$ is semistrictly $(Y \backslash-$ int P)-quasiconvex and the set $G(y) \doteq\{x \in K: F(x)-F(y) \notin \operatorname{int} P\}$ is closed for all $y \in K$. If $R_{w}=\{0\}$ then E_{w} is a nonempty compact set.

Proof. This a consequence of Corollary 2.1.1 and Proposition 2.2.2 with $S=Y \backslash-\operatorname{int} P$.

Remark 2.3.1 Unfortunately, we do not know whether the condition $R_{w}=\{0\}$ is also necessary for the nonemptiness and compactness of E_{w} in this general setting. However, when $P=\mathbb{R}_{+}^{m}$ and each component of F is lower semicontinuous and convex, $R_{w}=\{0\}$ becomes also a necessary condition as shown in Ref. [13] (see also Corollary 5.13 in Ref. [20]).

The second case

Since int $P \neq \emptyset$, the polar cone $P^{*} \subseteq \mathbb{R}^{m}$, of P, can be written as $P^{*}=$ cone (B) where B is a compact convex set such that $0 \notin B$. More precisely, the nonemptiness of int P allows us to take $B=\left\{\xi \in \mathbb{R}^{m}:\left\langle\xi, p_{0}\right\rangle=1\right\}$ for some $p_{0} \in \operatorname{int} P$. Here, $\langle x, y\rangle$ denotes the inner product of x and y in \mathbb{R}^{m}. One can check that P^{*} is closed convex and pointed $\left(P^{*} \cap(-P)^{*}=\{0\}\right)$. It is known that

$$
\begin{align*}
p \in \operatorname{int} P & \Longleftrightarrow\left\langle p^{*}, p\right\rangle>0 \forall p^{*} \in P^{*}, p^{*} \neq 0 \tag{2.3.2}
\end{align*} \quad \Longleftrightarrow\left\langle p^{*}, p\right\rangle>0 \forall p^{*} \in B ; ~ 子 \quad\left\langle p^{*}, p\right\rangle \geq 0 \forall p^{*} \in P^{*} \quad \Longleftrightarrow\left\langle p^{*}, p\right\rangle \geq 0 \forall p^{*} \in B .
$$

By the Krein Milman theorem (see Theorem 1.1.1) we have $B=$ co B_{0} where B_{0} is the set of extreme points of B. We actually need the following hypothesis on P^{*}.

HYPOTHESIS (H1): Let P be a closed convex cone such that int $P \neq \emptyset$ and $P^{*}=$ cone $\left(\operatorname{co}\left(B_{0}\right)\right)$ where B_{0} is closed being the set of extreme points of B (hence B_{0} is compact).

It is clear that the polhyedral and ice-cream (Lorentz) cones satisfy Hypothesis (H1).
Under hypothesis (H1), (2.3.2) reduces to

$$
\begin{align*}
p \in \operatorname{int} P & \Longleftrightarrow\langle q, p\rangle>0 \forall q \in B_{0} \tag{2.3.3}\\
p \in P & \Longleftrightarrow\langle q, p\rangle \geq 0 \forall q \in B_{0} .
\end{align*}
$$

By recalling that E_{w} is the solution set to problem (2.1.1), the representation of P^{*} and (2.3.3) imply (for $S=\mathbb{R}^{m} \backslash-\operatorname{int} P$)

$$
\begin{equation*}
E_{w} \doteq E_{S}=\bigcap_{y \in K} \bigcup_{q \in B_{0}}\{x \in K:\langle q, F(x)-F(y)\rangle \leq 0\} \tag{2.3.4}
\end{equation*}
$$

$$
\begin{equation*}
R_{P}=\bigcap_{y \in K} \bigcap_{\lambda>0} \bigcap_{q \in B_{0}}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0\right\}, \tag{2.3.5}
\end{equation*}
$$

and (see (2.2.4))

$$
\begin{equation*}
R_{w} \doteq R_{S}=\bigcap_{y \in K} \bigcap_{\lambda>0} \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0\right\} \tag{2.3.6}
\end{equation*}
$$

Additionally, we also consider the cone

$$
\begin{equation*}
\tilde{R}_{w}=\bigcap_{y \in K} \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0 \forall \lambda>0\right\}, \tag{2.3.7}
\end{equation*}
$$

and finally let us introduce the function

$$
h_{q}(x)=\langle q, F(x)\rangle, q \in P^{*}, x \in K
$$

Clearly $\tilde{R}_{w} \subseteq R_{w}$. Conditions ensuring the equality are given in the next proposition.

Proposition 2.3.1 Let $K \subseteq \mathbb{R}^{n}$ be closed and convex. Assume that P satisfies hypothesis (H1) and $F: K \rightarrow \mathbb{R}^{m}$ is such that h_{q} is quasiconvex for all $q \in B_{0}$. Then, for any fixed $y \in K$,

$$
\begin{equation*}
\bigcap_{\lambda>0} \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}(y+\lambda v) \leq h_{q}(y)\right\}=\bigcup_{q \in B_{0}} \bigcap_{\lambda>0}\left\{v \in K^{\infty}: h_{q}(y+\lambda v) \leq h_{q}(y)\right\} . \tag{2.3.8}
\end{equation*}
$$

Consequently, $\tilde{R}_{w}=R_{w}$.
Proof. We only need to prove the inclusion " \subseteq ". Let v be in the set of the left hand side in (2.3.8). Then, for all $k \in \mathbb{N}$ there is $q_{k} \in B_{0}$ such that $h_{q_{k}}(y+k v) \leq h_{q_{k}}(y)$. We may assume that $q_{k} \rightarrow q_{0} \in B_{0}$. Let us fix any $\lambda>0$. The quasiconvexity of $h_{q_{k}}$ implies that for all k sufficiently large,

$$
h_{q_{k}}(y+\lambda v) \leq \max \left\{h_{q_{k}}(y), h_{q_{k}}(y+k v)\right\}=h_{q_{k}}(y) .
$$

Letting $k \rightarrow+\infty$, we obtain $h_{q_{0}}(y+\lambda v) \leq h_{q_{0}}(y)$. This proves v belongs to the set of the right hand side of (2.3.8).

Proposition 2.3.2 Let $K \subseteq \mathbb{R}^{n}$ be closed and convex and P satisfies hypothesis (H1). Assume that $F: K \rightarrow \mathbb{R}^{m}$ is P-lsc and that $h_{q}: K \rightarrow \mathbb{R}$, is quasiconvex for all $q \in B_{0}$. If $E_{w} \neq \emptyset$, we have $R_{P} \subseteq\left(E_{w}\right)^{\infty} \subseteq \tilde{R}_{w}$.

Proof. This follows from Theorem 2.2.3, Proposition 1.3.1 and the previous proposition since quasiconvexity of h_{q} for all $q \in B_{0}$ implies the semistrict ($\mathbb{R}^{m} \backslash$-int P)quasiconvexity of F.

In the case when the functions f_{i} are convex more precise estimates for $\left(E_{w}\right)^{\infty}$ are obtained.

Corollary 2.3.1 Assume that $h_{q}: K \rightarrow \mathbb{R}$ is convex for all $q \in B_{0}$, and $F: K \rightarrow \mathbb{R}^{m}$ is P-lsc. Then,

- (a) if $E_{w} \neq \emptyset$, we have

$$
\begin{equation*}
\bigcap_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} \subseteq\left(E_{w}\right)^{\infty} \subseteq \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} ; \tag{2.3.9}
\end{equation*}
$$

- (b) if $\operatorname{argmin}_{\mathrm{K}} h_{q} \neq \emptyset$ for all $q \in B_{0}$, then

$$
\left(E_{w}\right)^{\infty}=\bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\}=R_{w}
$$

Proof. (a): This is a consequence of Propositions 2.3.1 and 2.3.2 since

$$
\begin{aligned}
& R_{P}=\bigcap_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}(y+\lambda v)-h_{q}(y) \leq 0 \forall \lambda>0, \forall y \in K\right\}, \\
\tilde{R}_{w} & =\bigcap \bigcup_{y \in K} \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0 \forall \lambda>0\right\} \\
& =\bigcap_{y \in K} \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\}=\bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} \\
& =\bigcup_{q \in B_{0}} \bigcap_{y \in K}\left\{v \in K^{\infty}: h_{q}(y+\lambda v)-h_{q}(y) \leq 0 \forall \lambda>0\right\}
\end{aligned}
$$

(b) Since

$$
\begin{equation*}
\left(\operatorname{argmin}_{K} h_{q}\right)^{\infty}=\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} \tag{2.3.10}
\end{equation*}
$$

and $\operatorname{argmin}_{K} h_{q} \subseteq E_{w}$ for all $q \in B_{0}$, we obtain

$$
\bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} \subseteq\left(E_{w}\right)^{\infty}
$$

which together with (a) the desired result follows.

Example 2.3.1

(i) An instance showing that inclusions in (a) of the previous corollary may be strict was exhibited in Remark 2.2.1.
(ii) Let $K=\mathbb{R}^{2}$ and $F\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}^{2}\right)$. Then $f_{i}^{\infty}\left(v_{1}, v_{2}\right)=0$ if $v_{i}=0, f_{i}^{\infty}\left(v_{1}, v_{2}\right)=$ $+\infty$ elsewhere. Thus,

$$
R_{P}=\{(0,0)\}, R_{w}=(\{0\} \times \mathbb{R}) \cup(\mathbb{R} \times\{0\})=\left(E_{w}\right)^{\infty}=E_{w}
$$

The next result is an extension of Theorem 2.1 in Ref. [13], where $P=\mathbb{R}_{+}^{n}$ is considered.

Theorem 2.3.2 Let $K \subseteq \mathbb{R}^{n}$ be a closed convex set and P be a cone satisfying hypothesis (H1). Assume that $F: K \rightarrow \mathbb{R}^{m}$ is P-lsc such that $\langle q, F(\cdot)\rangle: K \rightarrow \mathbb{R}$ is convex for all $q \in B_{0}$. The following assertions are equivalent:
(a) E_{w} is nonempty and compact;
(b) $\operatorname{argmin}_{K}\langle q, F(\cdot)\rangle$ is nonempty and compact for all $q \in B_{0}$;
(c) $\tilde{R}_{w}=\{0\}$;
(d) $R_{w}=\{0\}$.

Proof. $(b) \Longrightarrow(a)$: This results from (b) of Corollary 2.3.1 and (2.3.10) since

$$
\left(\operatorname{argmin}_{K} h_{q}\right)^{\infty}=\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} .
$$

$(a) \Longrightarrow(b)$: Suppose that $\operatorname{argmin}_{K} h_{q_{0}}=\emptyset$ for some $q_{0} \in B_{0}$. We take $x_{0} \in \operatorname{argmin}_{E_{w}} h_{q_{0}}$ and $x_{1} \in K$ such that $\left\langle q_{0}, F\left(x_{1}\right)\right\rangle<\left\langle q_{0}, F\left(x_{0}\right)\right\rangle$. We now consider the nonempty closed convex set

$$
D \doteq \bigcap_{q \in B_{0}}\left\{x \in K: h_{q}(x) \leq h_{q}\left(x_{1}\right)\right\} .
$$

Then

$$
D^{\infty}=\bigcap_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\}=\{0\}
$$

by (a) of Corollary 2.3.1. It means that D is bounded and thus compact. Therefore, by Theorem 2.1.2 there exists $z \in D$ such that

$$
F(x)-F(z) \notin-\operatorname{int} P \quad \forall x \in D .
$$

It is not difficult to check that $z \in E_{w}$. We also have

$$
\left\langle q_{0}, F(z)\right\rangle \leq\left\langle q_{0}, F\left(x_{1}\right)\right\rangle<\left\langle q_{0}, F\left(x_{0}\right)\right\rangle
$$

contradicting the choice of x_{0}. This proves the nonemptiness of $\operatorname{argmin}_{K} h_{q}$ for all $q \in$ B_{0}. The boundedness follows from the inclusion $\operatorname{argmin}_{K} h_{q} \subseteq E_{w}$ for all $q \in B_{0}$.
$(c) \Longleftrightarrow(d)$: This is a consequence of Proposition 2.3.1.
When $P=\mathbb{R}_{+}^{m}$ the equivalence between (a) and (b) of Theorem 2.3.2 was proved in Theorem 2.1 of Ref. [13].

2.4 The finite dimensional case on the real-line

2.4.1 Characterizing the nonemptiness and boundedness of the weakly efficient solution set

We now proceed as in the previous section.
In this part we study two cases: Y be a real normed vector space and $Y=\mathbb{R}^{m}$.
The first case

The next theorem extends the result in Theorem 4.1 of Ref. [21].

Theorem 2.4.1 Let $K \subseteq \mathbb{R}$ be a closed convex set and assume that $P \subseteq Y$ satisfies hypothesis (H0). If $F: K \rightarrow Y$ is semistrictly $(Y \backslash-\operatorname{int} P)$-quasiconvex such that \mathcal{S}_{y} is closed for all $y \in K$, then E_{w} is a closed convex set, and the following assertions are equivalent:
(a) $R_{w}=\{0\} ;$
(b) $\exists r>0, \forall x \in K \backslash K_{r}, \exists y \in K_{r}: F(y)-F(x) \in-\operatorname{int} P$, where $K_{r}=[-r, r] \cap K$;
(c) E_{w} is nonempty and bounded (it is already closed and convex).

Proof. $(a) \Longleftrightarrow(c)$: One implication is a consequence of Theorem 2.3.1, and the other implication follows from Theorem 2.2.3.
$(a) \Longleftrightarrow(b)$: This results from Proposition 2.2 .2 with $S=Y \backslash$-int P.

The second case

In this part we consider the same hypothese of the previous section for the cone P.
The following theorem proves the equivalence between (a) and (b) of Theorem 2.3.2 without the convexity assumption. We firstly have the following theorem.

Theorem 2.4.2 Let $K \subseteq \mathbb{R}$ be a closed convex set and P be a cone satisfying hypothesis (H1). Assume that

$$
\operatorname{argmin}_{K}\langle q, F(\cdot)\rangle \neq \emptyset \text { for all } q \in B_{0} .
$$

If for all $q \in B_{0}$, the function $\langle q, F(\cdot)\rangle$ is semistrictly quasiconvex and lsc, then

$$
E_{w}=\overline{\mathrm{co}}\left(\bigcup_{q \in B_{0}} \operatorname{argmin}_{K}\langle q, F(\cdot)\rangle\right) .
$$

In case B_{0} is finite (e.g. P is polhyedra) then we can delete the closure in the preceding equality.

Proof. We know that $\operatorname{argmin}_{K}\langle q, F(\cdot)\rangle$ is closed. Since every lsc and semistrictly quasiconvex real-valued function is quasiconvex, we thus obtain that F is semistrictly $\left(\mathbb{R}^{m} \backslash\right.$-int P)-quasiconvex. By Theorem 2.2.2 and (2.2.7), E_{w} is convex. Therefore

$$
\begin{equation*}
A_{0} \doteq \overline{\mathrm{co}}\left(\bigcup_{q \in B_{0}} \operatorname{argmin}_{K}\langle q, F(\cdot)\rangle\right) \subseteq E_{w} . \tag{2.4.1}
\end{equation*}
$$

Set $h_{q}(x)=\langle q, F(x)\rangle$. Thus, A_{0} is of the form $]-\infty,+\infty[,[\alpha,+\infty[]-,\infty, \alpha],[\alpha, \beta]$ for some $-\infty<\alpha \leq \beta<+\infty$. Obviously, in the first case there is nothing to prove. We only consider the case $A_{0}=\left[\alpha,+\infty\left[\right.\right.$. If $x \in E_{w} \backslash A_{0}$, by (2.3.3) we may choose $q \in B_{0}$ such that $h_{q}(x) \leq h_{q}(\alpha)$. Take any $x_{q} \in \operatorname{argmin} h_{q}$; then $h_{q}\left(x_{q}\right)<h_{q}(x)$ since $x \notin A_{0}$, and therefore $h_{q}(\alpha)<h_{q}(x)$ reaching a contradiction.

Remark 2.4.1

(i) The preceding theorem may be false if $\operatorname{argmin}_{K}\left\langle q_{i}, F(\cdot)\right\rangle=\emptyset$ for some i. Indeed, take $P=\mathbb{R}_{+}^{2}, K=\mathbb{R}, F(x)=\left(\sqrt{|x|}, \frac{x}{1+|x|}\right), x \in \mathbb{R}$. Here, $\left.\left.E_{w}=\right]-\infty, 0\right]$, while $\operatorname{argmin}_{\mathbb{R}} f_{1}=\{0\}$.
(ii) This instance shows the necessity of semistrict quasiconvexity of all components. In fact, simply take $K=[0,+\infty[$ and

$$
f_{1}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \notin[1,2], \\
1 & \text { if } & x \in[1,2],
\end{array} \quad f_{2}(x)=\left\{\begin{array}{lll}
-e^{-x+5} & \text { if } & x \geq 5 \\
4-x & \text { if } & x \leq 5
\end{array}\right.\right.
$$

Here $E_{w}=[1,+\infty[$.
(iii) Clearly, one cannot expect Theorem 2.4.2 continues to be valid if $K \subseteq \mathbb{R}^{n}, n \geq 2$, since in general E_{w} is not convex. For instance take $F\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, x_{2}^{2}\right),\left(x_{1}, x_{2}\right) \in$ \mathbb{R}^{2}. Here $E_{w}=(\{0\} \times \mathbb{R}) \cup(\mathbb{R} \times\{0\})$.

The result of the next theorem is optimal in the sense described in Remark 2.3.1.

Theorem 2.4.3 Let $K \subseteq \mathbb{R}$ be a closed convex set and $P \subseteq \mathbb{R}^{m}$ be a cone satisfying hypothesis (H1). Assume that $\langle q, F(\cdot)\rangle: K \rightarrow \mathbb{R}$ is lsc and semistrictly quasiconvex for all $q \in B_{0}$. The following assertions are equivalent:
(a) E_{w} is a nonempty compact convex set;
(b) $\operatorname{argmin}_{K}\langle q, F(\cdot)\rangle$ is a nonempty compact convex set for all $q \in B_{0}$;
(c) $\exists r>0, \forall x \in K \backslash K_{r}, \exists y \in K_{r}\left(K_{r}=[-r, r] \cap K\right):$

$$
\langle q, F(y)-F(x)\rangle<0 \forall q \in B_{0}
$$

Proof. As in the first part of the proof of Theorem 2.4.2, F is semistrictly $\left(\mathbb{R}^{m} \backslash\right.$-int P)quasiconvex. Therefore, E_{w} is convex by Theorem 2.2.2 and (2.2.7). The closedness of E_{w} follows again from (2.2.7) and Proposition 1.3.1. The implication $(b) \Longrightarrow(a)$ is a consequence of Theorem 2.4.2 and the remark above. Let us prove $(a) \Longrightarrow(b)$. Clearly

$$
\begin{gathered}
\bigcup_{q \in B_{0}} \bigcap_{y \in K} \bigcap_{\lambda>0}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0\right\} \subseteq \\
\subseteq \bigcap_{y \in K} \bigcap_{\lambda>0} \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0\right\}=\left(E_{W}\right)^{\infty}=\{0\},
\end{gathered}
$$

where the former equality was obtained by using Theorem 2.2.2 and (2.3.3) together with the remarks above. Hence, for all $q \in B_{0}$,

$$
\bigcap_{y \in K} \bigcap_{\lambda>0}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0\right\}=\{0\} .
$$

We apply Theorem 2.3.1 (with $Y=\mathbb{R}, X=\mathbb{R}$ and $P=\mathbb{R}_{+}$) to the function $x \mapsto$ $\langle q, F(x)\rangle$. This allows us to conclude that for all $q \in B_{0}, \operatorname{argmin}_{K}\langle q, F(\cdot)\rangle$ is nonempty and bounded, and therefore compact. The convexity easily follows. The equivalence between (a) and (c) is a consequence of Theorem 2.4.1 and (2.3.3).

Remark 2.4.2 Although we were unable to prove the validity of Theorem 2.4.3 in higher dimension, we believed that it is true, at least in the polyhedral case.

2.4.2 Characterizations of the nonemptiness of the weakly efficient solution

We now will center to studying the case $P=\mathbb{R}_{+}^{m}$. Therefore we rewrite the cone 2.3.1 in this particular case

$$
\begin{align*}
R_{w} & =\bigcap_{y \in K}\left\{v \in K^{\infty}: F(y+\lambda v)-F(y) \in \mathbb{R}^{m} \backslash-\operatorname{int} \mathbb{R}_{+}^{m} \quad \forall \lambda>0\right\} \\
& =\bigcap_{y \in K} \bigcap_{\lambda>0} \bigcup_{i=1}^{m}\left\{v \in K^{\infty}: f_{i}(y+\lambda v)-f_{i}(y) \leq 0\right\} \tag{2.4.2}
\end{align*}
$$

When each f_{i} is quasiconvex, then it is easily seen that

$$
\begin{equation*}
R_{w}=\bigcap_{y \in K} \bigcup_{i=1}^{m}\left\{v \in K^{\infty}: f_{i}(y+\lambda v)-f_{i}(y) \leq 0 \quad \forall \lambda>0\right\} . \tag{2.4.3}
\end{equation*}
$$

If, each f_{i} is convex and lower semicontinuous in K, then

$$
R_{w}=\bigcup_{i=1}^{m}\left\{v \in K^{\infty}: f_{i}^{\infty}(v) \leq 0\right\}
$$

We now present various alternative equivalent conditions for E_{w} to nonempty. In what follows $|x|$ stands for the absolute value of $x \in \mathbb{R}$.
$\left(C_{1}\right)$: for any sequence $\left\{x_{k}\right\}$ in K satisfying:
(i) $\left|x_{k}\right| \rightarrow+\infty, \frac{x_{k}}{\left|x_{k}\right|} \rightarrow v \in R_{w}$, and,
(ii) for all $y \in K$ there exists k_{y} such that $F(y)-F\left(x_{k}\right) \notin-$ int \mathbb{R}_{+}^{m} for all $k \geq k_{y}$,
we assume the existence of $u \in K$ and \bar{k}, such that $|u|<\left|x_{\bar{k}}\right|$ and $F(u)-F\left(x_{\bar{k}}\right) \notin$ \mathbb{R}_{+}^{m}.
$\left(C_{2}\right)$: there exists a nonempty compact set $D \subseteq K$ such that for all $x \in K \backslash D$ there
exists $u \in D: F(u)-F(x) \notin \operatorname{int} \mathbb{R}_{+}^{m}$.
$\left(C_{3}\right)$: there exists $u \in K$ and $r>|u|$ such that $F(u)-F(x) \notin$ int R_{+}^{m} for all $x \in K$, $|x|=r$.
$\left(C_{4}\right)$: there exists $r>0$ such that $K_{r}=K \cap[-r, r] \neq \emptyset$ and for all $x \in K,|x|=r$ there exists $u \in K,|u|<r: F(u)-F(x) \notin \operatorname{int} \mathbb{R}_{+}^{m}$.
$\left(C_{5}\right)$: for every $\left|x_{k}\right| \rightarrow+\infty$ there exists $\bar{k}, u \in K$, such that $|u|<\left|x_{\bar{k}}\right|$ and $F(u)-F\left(x_{\bar{k}}\right) \notin$ int \mathbb{R}_{+}^{m}.

We point out that all of these conditions apply to situations in which the solution set may be unbounded. Notice that the cone R_{w} is not explicitly mentioned in $C_{i}, i=2,3,4,5$. Clearly $\left(C_{2}\right) \Longrightarrow\left(C_{1}\right),\left(C_{3}\right) \Longrightarrow\left(C_{4}\right)$ and $\left(C_{5}\right) \Longrightarrow\left(C_{1}\right)$.

We are now in a position to establish the main existence theorem in case $K \subseteq \mathbb{R}$.
Theorem 2.4.4 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex. Assume that $F: K \rightarrow \mathbb{R}^{m}$ is explicitly (int \mathbb{R}_{+}^{m})-quasiconvex and S_{y} is closed for all $y \in K$. Then E_{w} is a closed convex set, and the following assertions are equivalent:
(a) $\left(C_{1}\right)$ is satisfied;
(b) E_{w} is non-empty;
(c) $\left(C_{2}\right)$ is satisfied;
(d) $\left(C_{3}\right)$ is satisfied;
(e) $\left(C_{4}\right)$ is satisfied;
$(f)\left(C_{5}\right)$ is satisfied.

Proof. The closednees and convexity of E_{w} follows Theorem 2.2.2.
$(c) \Longrightarrow(a)$: It is obvious.
$(a) \Longrightarrow(b):$ For every $k \in \mathbb{N}$, set $K_{k}=\{x \in K:|x| \leq k\}$. We may suppose,without loss of generality, that $K_{k} \neq \emptyset$ for all $k \in \mathbb{N}$. Let us consider the problem

$$
\begin{equation*}
\text { find } \quad \bar{x} \in K_{k} \quad \text { such } \quad \text { that } \quad F(y)-F(\bar{x}) \notin-\operatorname{int} \mathbb{R}_{+}^{m} \quad \forall y \in K_{k} \tag{2.4.4}
\end{equation*}
$$

By Theorem 2.1.2, problem (2.4.4) admits a solution, say $x_{k} \in K_{k}$ for all $k \in \mathbb{N}$. We have two possibilities: if $\left\{x_{k}\right\}$ is bounded, then it is no difficult to check that any limit point of $\left\{x_{k}\right\}$ is a solution to problem (2.1.1); if on the contrary $\left|x_{k}\right| \rightarrow+\infty$, we may assume, up to a subsequence, that $\frac{x_{k}}{\left|x_{k}\right|} \rightarrow v$, and therefore $v \in K^{\infty}$. We shall prove that $v \in R_{w}$. Indeed, let us fix any $y \in K$ and $\lambda>0$. Then, for all k sufficiently large $(k>|y|), F(y)-F\left(x_{k}\right) \notin-\operatorname{int} \mathbb{R}_{+}^{m}$. The semistrict $\left(\mathbb{R}^{m} \backslash-\operatorname{int} \mathbb{R}_{+}^{m}\right)$-quasiconvexity gives $F\left(\left(1-\frac{\lambda}{\left|x_{k}\right|}\right) y+\frac{\lambda}{\left|x_{k}\right|} x_{k}\right)-F(y) \notin \operatorname{int} \mathbb{R}_{+}^{m}$ for all k sufficiently large. Hence $F(y+\lambda v)-F(y) \notin$ int \mathbb{R}_{+}^{m} because of the closedness of S_{y}. This show that $v \in R_{w}$, proving that (i) of assumption $\left(C_{1}\right)$ is satisfied. For any fixed $y \in K$ one has, $F(y)-F\left(x_{k}\right) \notin-$ int \mathbb{R}_{+}^{m} for all $k \in \mathbb{N}$ sufficiently large $(k>|y|)$, showing that condition $(i i)$ of C_{1} is also satisfied. We are now in a position to use such an assumption. This implies the existence of $u \in K$ and \bar{k} such that $|u|<\left|x_{\bar{k}}\right|$ and $F(u)-F\left(x_{\bar{k}}\right) \notin \operatorname{int} \mathbb{R}_{+}^{m}$. Thus we also have $F(u)-F\left(x_{\bar{k}}\right) \notin$ -int \mathbb{R}_{+}^{m} and $F(u)-F\left(x_{\bar{k}}\right) \notin-\operatorname{int} \mathbb{R}_{+}^{m}$ because of the choice of $x_{\bar{k}}$. We will prove that such $x_{\bar{k}}$ is a solution to (2.1.1). It only remains to check that $F(y)-F\left(x_{\bar{k}}\right) \notin-$ int \mathbb{R}_{+}^{m} for all $y \in K$ with $|y|>\bar{k}$. Let us consider the case when $\left.x_{\bar{k}} \in\right] u, y\left[\right.$ or $\left.x_{\bar{k}} \in\right] y, u[$. If $F(u)-F(y) \in \operatorname{int} \mathbb{R}_{+}^{m}$, by using the semistrict (int \mathbb{R}_{+}^{m})-quasiconvexity, we have in particular $F\left(x_{\bar{k}}\right)-F(u) \in-\operatorname{int} \mathbb{R}_{+}^{m}$, giving a contradiction. Hence $F(u)-F(y) \notin \operatorname{int} \mathbb{R}_{+}^{m}$. By the semistrict $\left(\mathbb{R}^{m} \backslash-\operatorname{int} \mathbb{R}_{+}^{m}\right)$-quasiconvexity, we have obtain $F\left(x_{\bar{k}}\right)-F(y) \notin \operatorname{int} \mathbb{R}_{+}^{m}$, which is the desired result. We now consider the case $u \in] y, x_{\bar{k}}[$ or $u \in] x_{\bar{k}}, y[$: if on the contrary $F(y)-F\left(x_{\bar{k}}\right) \in-$ int \mathbb{R}_{+}^{m}, the semistrict (int \mathbb{R}_{+}^{m})-quasiconvexity of F yields in particular $F(u)-F\left(x_{\bar{k}}\right) \in-$ int \mathbb{R}_{+}^{m}, a contradiction. This completes the proof of $(a) \Longrightarrow(b)$.
$(b) \Longrightarrow(c)$: It follows by taking any fixed $u \in E_{w}$ and by setting $D=\{u\}$ in condition $\left(C_{2}\right)$. Similarly $(b) \Longrightarrow(d)$ is proved by choosing $u \in E_{w}$ and $r>|u|$.
$(d) \Longrightarrow(e):$ It is straightforward.
$(e) \Longrightarrow(b):$ We consider the problem on K_{r}, see (2.1.2), which admits a solution, say x_{r}. If $\left|x_{r}\right|<r$, we claim that x_{r} is also solution to problem (2.1.1). Assume there is $y \in K$ with $|y|>r$ such that $F(y)-F\left(x_{r}\right) \in-\operatorname{int} \mathbb{R}_{+}^{m}$. Since F is semiestrictly (int \mathbb{R}_{+}^{m})-quasiconvex, we have $F(\xi)-F\left(x_{r}\right) \in-$ int \mathbb{R}_{+}^{m} for all $\left.\xi \in\right] y, x_{r}[$ (or $\xi \in] x_{r}, y[$). We may choose $z \in] y, x_{r}[$ (or $z \in] x_{r}, y\left[\right.$) with $|z|<r$ since $\left|x_{r}\right|<r<|y|$. Therefore $F(z)-F\left(x_{r} \in-\operatorname{int} \mathbb{R}_{+}^{m}\right.$, contradicting the choice of x_{r}. If $\left|x_{r}\right|=r$, by assumption there exists $u \in K,|u|<r$ such that $F(u)-F\left(x_{r}\right) \notin \operatorname{int} \mathbb{R}_{+}^{m}$. Then we proceed as in the second part of the proof of $(a) \Longrightarrow(b)$, to conclude that x_{r} is also a solution to problem (2.1.1). $(f) \Longrightarrow(a)$: It is straightforward.
$(b) \Longrightarrow(f)$: Take any $x_{k} \in K$ with $\left|x_{k}\right| \rightarrow+\infty$. Then (f) is satisfied if we consider u to be any element in E_{w}.

Example 2.4.1

(i) Let $F(x)=\left(e^{x}, e^{-x}\right), x \in \mathbb{R}$. A direct computation verifies the validity of condition $\left(C_{1}\right)$ or $\left(C_{2}\right)$, showing that $E_{w}=\mathbb{R}$. Notice that no component of F admits a minimizer.
(ii) Let us consider any function $F: K \rightarrow \mathbb{R}^{m}$ such that at least one component has a minimum point on K. Then, it is not difficult to check that condition $\left(C_{1}\right)$ or $\left(C_{2}\right)$ hold. An instance is given by the function $F(x)=\left(\sqrt{|x|}, \frac{x}{1+|x|}\right), x \in \mathbb{R}$. Here $\left.\left.E_{w}=\right]-\infty, 0\right]=\mathbb{R}_{w}$.
(iii) Let $F(x)=(x, \min \{0,-x\}), x \in \mathbb{R}$. It is \mathbb{R}_{+}^{2}-quasiconvex and therefore semistrictly $\left(\mathbb{R}^{2} \backslash\right.$ - int $\left.\mathbb{R}_{+}^{2}\right)$-quasiconvex. Moreover, it is semistrictly (int $\left.\mathbb{R}_{+}^{2}\right)$-quasiconvex. All others asumptions of Theorem (2.4.4) are satisfied as well. Here $E_{w}=\mathbb{R}$.
(iv) Let $F(x)=\left(\frac{1}{1+|x|^{2}},|x|\right), x \in \mathbb{R}$. It is semistrictly $\left(\mathbb{R}^{2} \backslash-\operatorname{int} \mathbb{R}_{+}^{2}\right)$ (but not \mathbb{R}_{+}^{2} quasiconvex). Moreover it is semistrictly (int \mathbb{R}_{+}^{2})-quasiconvex. All others asumptions of Theorem (2.4.4) are satisfied as well. Here $E_{w}=\mathbb{R}$.
(v) Let $\left.\left.F(x)=\left(x,-x^{2}\right), x \in\right]-\infty, 0\right]$. This function is semistrictly $\left(\mathbb{R}^{2} \backslash-\operatorname{int} \mathbb{R}_{+}^{2}\right)$ quasiconvex and semistrictly (int \mathbb{R}_{+}^{2})-quasiconvex. Such a function satisfies the assumptions of Theorem (2.4.4) except condition $\left(C_{1}\right)$. It is easy to check that $E_{w}=\emptyset$.

2.4.3 Quasiconvex vector minimization

We start with a preliminary result which will be used subsequently.
Lemma 2.4.1 Let $\emptyset \neq K \subseteq \mathbb{R}$ be convex and $h: K \rightarrow \mathbb{R}$ be a quasiconvex and lsc function. Assume that $h\left(\alpha_{2}\right)<h\left(\alpha_{1}\right)$ for some $\alpha_{1}, \alpha_{2} \in K, \alpha_{2}>\alpha_{1}$ (resp. $\alpha_{2}<\alpha_{1}$). The following assertions hold:
(a) $h(\alpha) \geq h\left(\alpha_{1}\right) \forall \alpha<\alpha_{1}$ (resp. $\forall \quad \alpha>\alpha_{1}$) and h is non-increasing in $]-\infty, \alpha_{1}[\cap K$ (resp. h is non-decreasing in $] \alpha_{1},+\infty[\cap K$);
(b) if $\operatorname{argmin}_{K} h=\emptyset$ then $h(\alpha) \leq h\left(\alpha_{2}\right) \forall \alpha>\alpha_{2}$ (resp. $\forall \alpha<\alpha_{2}$) and h is nonincreasing in $] \alpha_{2},+\infty[\cap K$ (resp. h is non-decreasing in $]-\infty, \alpha_{2}[\cap K$). Consequently, h is non-increasing (resp. non-decreasing) in K.

Proof. (a) The first part is obvious. Take α and β in K satisfying $\alpha<\beta<\alpha_{1}$, then $h(\beta) \leq \max \left\{h(\alpha), h\left(\alpha_{1}\right)\right\}=h(\alpha)$ by the first part.
(b) If there is $\alpha>\alpha_{2}$ such that $h(\alpha)>h\left(\alpha_{2}\right)$, then h is non-decreasing in $] \alpha,+\infty[\cap K$, and since h is also non-increasing in $]-\infty, \alpha_{1}[\cap K$, we obtain

$$
\inf _{K} h=\inf _{\left[\alpha_{1}, \alpha\right]} h .
$$

Thus $\operatorname{argmin}_{K} h \neq \emptyset$, a contradiction. This proves the first part of (b). For the second part we reason as follows. If on the contrary, there exist $\alpha^{\prime}<\alpha^{\prime \prime}, \alpha^{\prime}>\alpha_{2}$ such that $h\left(\alpha^{\prime}\right)<h\left(\alpha_{\prime \prime}\right)$, then h is non-decreasing in $] \alpha^{\prime \prime},+\infty[\cap K$, and since h is non-increasing in $]-\infty, \alpha_{1}[\cap K$, we conclude

$$
\inf _{K} h=\inf _{\left[\alpha_{1}, \alpha^{\prime \prime}\right]} h,
$$

implying that $\operatorname{argmin}_{K} h \neq \emptyset$, a contradiction. The remaining situation is treated in a similar way.

In what follows the closednees of S_{y} for all $y \in K$ will be substituted by the stronger assumption of lower semicontinuity (lsc) of $f_{i}, i=1, \ldots \ldots, m$.

Theorem 2.4.5 Let $K \subseteq \mathbb{R}$ be a convex closed set; $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for all $i=1, \ldots, m$. The following assertions hold:
(a) if $E_{w} \neq \emptyset$ and compact then $\operatorname{argmin}_{K} f_{i} \neq \emptyset$ and compact for all $i=1, \ldots, m$;
(b) if $\emptyset \neq E_{w} \neq \mathbb{R}$, then there exists j such that $\operatorname{argmin}_{K} f_{j} \neq \emptyset$;
(c) if $K \neq \mathbb{R}$, then

$$
E_{w} \neq \emptyset \Longleftrightarrow \exists j, \quad \operatorname{argmin}_{K} f_{j} \neq \emptyset
$$

Proof. (a): Assume that E_{w} is bounded. It is known from the previous section that E_{w} is closed convex and $\left(E_{w}\right)^{\infty}=R_{w}$. We have

$$
\begin{gathered}
\bigcup_{i=1}^{m} \bigcap_{y \in K} \bigcap_{\lambda>0}\left\{v \in K^{\infty}: f_{i}(y+\lambda v) \leq f_{i}(y)\right\} \subseteq \\
\subseteq \bigcap_{y \in K} \bigcap_{\lambda>0} \bigcup_{i=1}^{m}\left\{v \in K^{\infty}: f_{i}(y+\lambda v) \leq f_{i}(y)\right\}=\left(E_{w}\right)^{\infty}=\{0\},
\end{gathered}
$$

Hence, for all $i=1, \ldots, m$,

$$
\bigcap_{y \in K} \bigcap_{\lambda>0}\left\{v \in K^{\infty}: f_{i}(y+\lambda v) \leq f_{i}(y)\right\}=\{0\}
$$

We apply Theorem 2.4 .1 to the function f_{i}. This allows us to conclude that for all $i=1, \ldots, m, \operatorname{argmin}_{K} f_{i}$ is nonempty and bounded, and therefore compact.
(b): we consider the case $E_{w}=[\alpha,+\infty[$ with $\alpha \in \mathbb{R}$ and $K=[a,+\infty[$ with $a \leq \alpha$ (the case $\left.\left.E_{w}=\right]-\infty, \alpha\right]$ and $\left.\left.K=\right]-\infty, a\right]$ is analyzed in a similar manner). Suppose that $\operatorname{argmin}_{K} f_{i}=\emptyset$ for all $i=1, \ldots, m$. We can choose for $i=1, \ldots, m, a_{i}>a_{i-1}$ such that
$f_{i}\left(a_{i}\right)<f_{i}\left(a_{i-1}\right)$ with $a_{0}=\alpha$. By using the previous lemma, f_{1} is non-increasing in $\left[a,+\infty\left[\right.\right.$. Thus $f_{1}\left(a_{2}\right) \leq f_{1}\left(a_{1}\right)<f_{1}(\alpha)$ and therefore $f_{1}(\alpha)>f_{1}\left(\alpha_{m}\right)$. One recursively may also deduce that $f_{i}\left(a_{m}\right)<f_{i}(\alpha)$ for $i=1, \ldots, m$, which imply $\alpha \notin E_{w}$. This proves (b) when $K=[a,+\infty[$.

We now consider the case $E_{w}=\left[\alpha,+\infty\left[\right.\right.$ and $K=\mathbb{R}$ (again when $\left.\left.E_{w}=\right]-\infty, \alpha\right]$ and $K=\mathbb{R}$ the reasoning is similar). We can choose for $i=1, \ldots, m, a_{i} \in \mathbb{R}$ such that $\left|a_{i}\right|>\left|a_{i-1}\right|$ and $f_{i}\left(a_{i}\right)<f_{i}\left(a_{i-1}\right)$ with $a_{0}=\alpha$.
We first prove that

$$
\begin{align*}
& a_{1}<a_{0}=\alpha \Longrightarrow a_{m}<a_{m-1}<\ldots<a_{1}<a_{0} \tag{2.4.5}\\
& a_{1}>a_{0}=\alpha \Longrightarrow a_{m}>a_{m-1}>\ldots>a_{1}>a_{0} . \tag{2.4.6}
\end{align*}
$$

By symmetry we only check (2.4.5). If $a_{1}<a_{0}=\alpha$, we apply the previous lemma to conclude that f_{1} is non-decreasing in \mathbb{R}. If $a_{1}<a_{2}$ and since $f_{2}\left(a_{2}\right)<f_{2}\left(a_{1}\right)$ then f_{2} is non-increasing in K. Both assertions show that $E_{w}=\mathbb{R}$, which is impossible by assumption. Hence $a_{2}<a_{1}$ and since $f_{2}\left(a_{2}\right)<f_{2}\left(a_{1}\right)$ again, f_{2} is non-decreasing in \mathbb{R}. We proceed recursively to conclude that $a_{m}<a_{m-1}<\ldots<a_{1}<a_{0}$ with f_{i} being non-decreasing in \mathbb{R} for $i=1, \ldots, m$. This fact allows us to deduce that, as before, $f_{i}\left(a_{m}\right)<f_{i}(\alpha)$ for $i=1, \ldots, m$, implying that $\alpha \notin E_{w}$, which yields a contradiction. This completes the proof of (b). Part (c) is then straightforward.

Example 2.4.2 We now exhibit four instances showing the results of the previous Theorem are, in some sense, optimal.
(i) We see, in general, the reverse implication in (a) of the previous theorem fails to hold (except when K is bounded). In fact, take $K=[0,+\infty[$ and

$$
f_{1}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \notin[1,2], \\
1 & \text { if } & x \in[1,2],
\end{array} \quad f_{2}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \notin[3,4] \\
1 & \text { if } & x \in[3,4] .
\end{array}\right.\right.
$$

Here $E_{w}=[0,+\infty[$.
(ii) The quasiconvexity of all the functions f_{i} required in (a) cannot be removed as the following function shows: The necessity of the quasiconvexity of all components of (a) is showed by the function:

$$
f_{1}(x)=e^{-x}, \quad f_{2}(x)=\left\{\begin{array}{ll}
e^{-x^{2}+1} & \text { if } \quad x \geq 1, \\
x & \text { if } \quad x \leq 1,
\end{array} \quad K=[0,+\infty[.\right.
$$

Here $E_{w}=\{0\}$, while $\operatorname{argmin}_{K} f_{1}=\emptyset \neq \operatorname{argmin}_{K} f_{2}$.
(iii) Part (b) (resp. (c)) of the previous theorem may be false if the assumption $E_{w} \neq \mathbb{R}$ (resp. $K=\mathbb{R}$) is deleted. Simply take $K=\mathbb{R}$, and $f_{1}(x)=x, f_{2}(x)=-x$. In this case $E_{w}=\mathbb{R}$.
(iv) part (b) cannot be extended to higher dimension. Take for instance $f_{1}\left(x_{1}, x_{2}\right)=e^{x_{1}}$, $f_{2}\left(x_{1}, x_{2}\right)=-x_{1}+x_{2}^{2},\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Here $E_{w}=\mathbb{R} \times\{0\}$, while $\operatorname{argmin}_{\mathbb{R}^{2}} f_{i}=\emptyset, i=1,2$.

In what follows, we set

$$
J=\left\{i \in\{1, \ldots, m\}: \operatorname{argmin}_{K} f_{i} \neq \emptyset\right\}
$$

Theorem 2.4.6 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex and $f_{i}: K \rightarrow \mathbb{R}$ be lsc and semistrictly quasiconvex for all $i=1, \ldots, m$. Assume that $E_{w} \neq \emptyset$. Then

$$
\operatorname{extr}\left(E_{w}\right) \subseteq \bigcup_{j \in J} \operatorname{argmin}_{K} f_{j}
$$

Proof. If $\operatorname{extr}\left(E_{w}\right)=\emptyset$ there is nothing to prove. Thus, suppose that $\operatorname{extr}\left(E_{w}\right) \neq \emptyset$. Then, $E_{w} \neq \mathbb{R}$ and by Theorem 2.4.5 $J \neq \emptyset$. Let $\alpha \in \operatorname{extr}\left(E_{w}\right)$. We choose, for $j \in J, x_{j} \in$ $\operatorname{argmin}_{K} f_{j}$, and, for $i \notin J, x_{i} \in K$ such that $f_{i}\left(x_{i}\right)<f_{i}(\alpha)$. Since α is an extreme point of $E_{w}, x_{j} \geq \alpha$ for all $j \in J$ or $x_{j} \leq \alpha$ for all $j \in J$. Let us suppose $x_{j}>\alpha$ and $\alpha \notin \operatorname{argmin}_{K} f_{i}$ for all $j \in J$. Then $f_{j}\left(x_{j}\right)<f_{j}(\alpha)$ for all $j \in J$. If for all $i \notin J, \alpha<x_{i}$, we reach a contradiction since, by quasiconvexity, it is not difficult to prove that $f_{i}(\bar{x})<f_{i}(\alpha)$ for all $i=1, \ldots, m$, with $\bar{x}=\min \left\{x_{i}: i=1, \ldots, m\right\}$. The latter implies that $\alpha \notin E_{w}$. If there exists $x_{i} \in K, \quad i \notin J$, such that $x_{i}<\alpha$. Since $f_{i}\left(x_{i}\right)<f_{i}(\alpha)$, we apply Lemma 2.4.1 to deduce that f_{i} is non-decreasing in K. It follows that $x_{i} \in E_{w}$. In fact: for $x>x_{i}$ one has $f_{i}(x) \geq f_{i}\left(x_{i}\right)$, and for $x<x_{i}$, one obtains $f_{j}(x) \geq f_{j}\left(x_{i}\right)$ since f_{j} is non-increasing in $\left.]-\infty, x_{j}\right] \cap K$, proving that $x_{i} \in E_{w}$. The fact that $x_{i}<\alpha<x_{j}$ contradicts the extremality of α. Therefore the proof of the theorem is completed.

Example 2.4.3 We really need that all the components be semistrictly quasiconvex in Theorem 2.4.6. In fact, take $K=[0,+\infty[$ and

$$
f_{1}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \notin[1,2], \\
1 & \text { if } & x \in[1,2],
\end{array} \quad f_{2}(x)=|x-5|\right.
$$

Here $E_{w}=[1,8]$.
Theorem 2.4.7 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex and $f_{i}: K \rightarrow \mathbb{R}$ be lsc and semistrictly quasiconvex for all $i=1, \ldots, m$. Assume that $E_{w} \neq \emptyset$. Then, either

$$
\begin{equation*}
E_{w}=\mathbb{R} \quad \text { or } \quad E_{w}=\operatorname{co}\left(\bigcup_{j \in J} \operatorname{argmin}_{K} f_{j}\right)+R_{w} \tag{2.4.7}
\end{equation*}
$$

Moreover, if $\operatorname{argmin}_{K} f_{i} \neq \emptyset \forall i=1, \ldots, m$, then

$$
\begin{equation*}
E_{w}=\mathrm{co}\left(\bigcup_{i=1}^{m} \operatorname{argmin}_{K} f_{j}\right) \tag{2.4.8}
\end{equation*}
$$

Proof. Assume that $E_{w} \neq \mathbb{R}$. Since E_{w} is convex, $\operatorname{extr}\left(E_{w}\right) \neq \emptyset$. By Theorem 2.4.5, $J \neq \emptyset$, and from Theorem 2.4.6 $\operatorname{extr}\left(E_{w}\right) \subseteq \bigcup_{j \in J} \operatorname{argmin}_{K} f_{j}$. Hence, the convexity and closedness of E_{w} imply

$$
E_{w}=\operatorname{co}\left(\operatorname{extr}\left(E_{w}\right)\right)+\left(E_{w}\right)^{\infty} \subseteq \operatorname{co}\left(\bigcup_{j \in J}^{\operatorname{argmin}_{K} f_{j}}\right)+R_{w} \subseteq E_{w}+R_{w}=E_{w}
$$

which is the desired result.
We now prove the last part. Assume first that $E_{w}=[\alpha, \beta]$ with $-\infty<\alpha<\beta<+\infty$. Thus $R_{w}=\{0\}$ and by Theorem 2.4.5 $\operatorname{argmin}_{K} f_{i}$ is nonempty and compact for all $i=1, \ldots, m$, that is, $J=\{1, \ldots, m\}$, proving the result.
We consider the case $E_{w}=\left[\alpha,+\infty\left[\right.\right.$ (when $\left.\left.E_{w}=\right]-\infty, \alpha\right]$, a similar reasoning may be applied). Thus, $R_{w}=\left[0,+\infty\left[\right.\right.$ and $\alpha \in \operatorname{argmin}_{K} f_{i_{1}}$ for some i_{1}. Since, E_{w} is bounded if only if $R_{w}=\{0\}, \operatorname{argmin}_{K} f_{i_{2}}=\left[\beta,+\infty\left[\right.\right.$ for some i_{2} and $\beta \geq \alpha$. If $\beta=\alpha$ there is nothing
to prove. If $\beta>\alpha$, one may easily check that every $\alpha^{\prime} \in E_{w}$ is in the set of the right hand side of (2.4.8).

On combining Theorems 2.4.5 and 2.4.7 immediately obtains the following result which is a special case of the one established in [23].

Corollary 2.4.1 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex and $f_{i}: K \rightarrow \mathbb{R}$ be lsc and semistrictly quasiconvex for all $i=1, \ldots, m$. The following assertions are equivalent:
(a) E_{w} is nonempty and compact;
(b) $\operatorname{argmin}_{K} f_{i}$ is nonempty and compact for all $i=1, \ldots, m$.

Example 2.4.4 (i) We see the result in (2.4.7) may be false if at least one function is not semistrictly quasiconvex. In fact, let $K=[0,+\infty[$ and

$$
f_{1}(x)=|x-1|, \quad f_{2}(x)=\left\{\begin{array}{lll}
1 & \text { if } & 0 \leq x \leq 2 \\
-e^{-(x-2)} & \text { if } & x \geq 2
\end{array}\right.
$$

Here $E_{w}=\left[0,+\infty\left[=R_{w}\right.\right.$.
(ii) This instance illustrates that (2.4.8) fails to hold if at least one function f_{i} is not semisrictly quasiconvex. Take $K=[0,+\infty[$ and

$$
f_{1}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \notin[1,2], \\
1 & \text { if } & x \in[1,2],
\end{array} \quad f_{2}(x)=\left\{\begin{array}{lll}
-e^{-x+5} & \text { if } & x \geq 5 \\
4-x & \text { if } & x \leq 5
\end{array}\right.\right.
$$

Here $E_{w}=\left[1,+\infty\left[\right.\right.$. An instance with the same purpose but with E_{w} bounded is exhibited in Example 2.4.3.
(iii) The preceding theorem may be false if $\operatorname{argmin}_{K} f_{i}=\emptyset$ for some i. Indeed, take $K=$ $\mathbb{R}, f_{1}(x)=\sqrt{|x|}, f_{2}(x)=\frac{x}{1+|x|}, \quad x \in \mathbb{R}$. Here, $\left.\left.E_{w}=\right]-\infty, 0\right]$, while $\operatorname{argmin}_{\mathbb{R}} f_{1}=\{0\}$.

Actually, corollary 2.4.1 remains valid if \mathbb{R}_{+}^{m} is substituted by a more general closed convex cone (including the polyhedral and ice-cream cones) as proved in [23], Theorem 5.3. Although we were unable to find any counter-example in higher dimension, we
conjecture that it is still true, at least for polyhedral cones. Certainly in the convex case, i.e., when each f_{i} is convex, corollary 2.4.1 holds when $K \subseteq \mathbb{R}^{n}$ [13], even for more general cones as described above [23], Theorem 5.1.

We now present a result which may be useful to understand the problem when $n>1$.

Theorem 2.4.8 Let $\emptyset \neq K \subseteq \mathbb{R}^{n}$ be convex and closed; $f_{i}: K \rightarrow \mathbb{R}$ be lsc for all $i=1, \ldots, m$. Assume that E_{w} is nonempty bounded and that exists $i_{0} \in\{1, \ldots, m\}$ such that $f_{i_{0}}$ is convex and $\operatorname{argmin}_{K} f_{i_{0}}$ is nonempty compact. Then $\operatorname{argmin}_{K} f_{i}$ is nonempty compact for all $i=1, \ldots, m$.

Proof. By assumption E_{w} is compact. Suppose that it exists j such that $\operatorname{argmin}_{K} f_{j}=\emptyset$. Take any $x_{1} \in \operatorname{argmin}_{E_{w}} f_{j}$ and $z \in K$ such that $f_{j}(z)<f_{j}\left(x_{1}\right)$. Let $C=\{x \in K$: $\left.f_{i}(x) \leq f_{i}(z) \forall i=1, \ldots, m\right\}$. Clearly C is a nonempty and closed set. We will prove that E_{w} is a bounded; and since

$$
C^{\infty} \subseteq\left\{x \in K: f_{i_{0}}(x) \leq f_{i_{0}}(z)\right\}^{\infty}=\left\{v \in K^{\infty}: f_{i_{0}}^{\infty}(v) \leq 0\right\}=\{0\}
$$

C is a bounded set. We apply the Theorem 3.2 of [23], to conclude that there exists $\bar{c} \in C$ such that $F(y)-F(\bar{c}) \notin-\operatorname{int} \mathbb{R}_{+}^{m} \quad \forall y \in C$. We claim that $\bar{c} \in E_{w}$, indeed, if $y \in K \backslash C$ there is i_{y} such that $f_{i_{y}}(z)<f_{i_{y}}(y)$, which implies that $f_{i_{y}}(\bar{c})<f_{i_{y}}(y)$, proving the claim. On the other hand $f_{j}(\bar{c}) \leq f_{j}(z)<f_{j}\left(x_{1}\right)$, which contradicts the choice of x_{1}. Hence $\operatorname{argmin}_{K} f_{i}$ is nonempty compact for all $i=1, \ldots, m$.

We can relax the convexity assumption of $f_{i_{0}}$ at the price of requiring K to be a subset of \mathbb{R}.

Theorem 2.4.9 Let $\emptyset \neq K \subseteq \mathbb{R}$ be convex and closed; $f_{i}: K \rightarrow \mathbb{R}$ be lsc for all $i=1, \ldots, m$. Assume that E_{w} is nonempty bounded and that exists $i_{0} \in\{1, \ldots, m\}$ such that $f_{i_{0}}$ is quasiconvex and $\operatorname{argmin}_{K} f_{i_{0}}$ is nonempty compact. Then $\operatorname{argmin}_{K} f_{i}$ is nonempty compact for all $i=1, \ldots, m$.

Proof. By assumption $E_{w} \subseteq[a, b] \subseteq K$ for some $a, b \in R$. Suppose that $\operatorname{argmin}_{K} f_{i_{1}}=\emptyset$ for some i_{1}, we will show that $E_{w} \nsubseteq[a, b]$ yielding a contradiction. since $\operatorname{argmin}_{K} f_{i_{1}}=$
\emptyset, there exists $z \notin[a, b]$ such that $f_{i_{1}}(z)<f_{i_{1}}(x)$ for all $x \in[a, b]$. We only consider the case $z>b$ (when $z<a$ a similar reasoning can be applied). Take $\bar{z} \in \operatorname{argmin}_{[b, z]} f_{i_{1}}$. We distinguish two situations: (1) for all $y<a, y \in K$: either $f_{i_{1}}(\bar{z}) \leq f_{i_{1}}(y)$ or $f_{i_{0}}(\bar{z}) \leq$ $f_{i_{0}}(y)$; (2) there exists $y_{i_{1}}<a, y_{i_{1}} \in K$ such that $f_{i_{1}}\left(y_{i_{1}}\right)<f_{i_{1}}(\bar{z})$ and $f_{i_{0}}\left(y_{i_{1}}\right)<f_{i_{0}}(\bar{z})$. We now check that in both situations a contradiction will be obtained. In case (1), we will prove that $z \in E_{w}$. In fact, if $x<a$ then either $f_{i_{1}}(\bar{z}) \leq f_{i_{1}}(x)$ or $f_{i_{0}}(\bar{z}) \leq f_{i_{0}}(x)$; if $a \leq x \leq b$ (resp. $b<x \leq z$) then $f_{i_{1}}(\bar{z}) \leq f_{i_{1}}(z)<f_{i_{1}}(x)$ by the choice of \bar{z} and z (resp. $f_{i_{1}}(\bar{z}) \leq f_{i_{1}}(x)$ by the choice of $\left.\bar{z}\right)$; if $x>z$, we take $x_{0} \in \operatorname{argmin}_{K} f_{i_{0}} \subseteq[a, b]$ and thus $f_{i_{0}}(\bar{z}) \leq \max \left\{f_{i_{0}}\left(x_{0}\right), f_{i_{0}}(x)\right\}=f_{i_{0}}(x)$, which completes the proof that $\bar{z} \in E_{w}$. This is impossible since $\bar{z}>b$ and $E_{w} \subseteq[a, b]$. If (2) occurs, let $\bar{y} \in \operatorname{argmin}_{\left[y_{i_{1}}, a\right]} f_{i_{1}}$. We proceed as in the previous case to prove that $\bar{y} \in E_{w}$. This again is impossible if $E_{w} \subseteq[a, b]$ and $\bar{y}<a$. Thus $\operatorname{argmin}_{K} f_{i}$ it is nonempty compact for all $i=1, \ldots, m$.

Example 2.4.5 The preceding result may be false if we remove the quasiconvexity on the function whose argmin is compact. In fact, let $K=\left[0,+\infty\left[\right.\right.$ and $f_{1}(x)=e^{-x^{2}}$, $f_{2}(x)=e^{-x^{2}}$ if $x \neq 0$ and $f_{2}(0)=0$. Here, $E_{w}=\{0\}$.

Chapter 3

An optimal alternative theorem and applications to vector optimization

Alternative theorems are very useful to derive many important results in convex and nonconvex optimization theory: the existence of Lagrange multipliers, duality results, scalarization of vector functions, etc. To be precise, let us consider a real locally convex topological vector space Y and a closed convex cone $P \subseteq Y$ such that int $P \neq \emptyset$. We denote by Y^{*} the topological dual space of Y, and by P^{*} the (positive) polar cone of P. Given a nonempty set $A \subseteq Y$, alternative theorems assert the validity of exactly one of the following assertions:

$$
\begin{gather*}
\exists a \in A \text { such that } a \in-\operatorname{int} P \tag{3.0.1}\\
\exists p^{*} \in P^{*}, p^{*} \neq 0, \text { such that }\left\langle p^{*}, a\right\rangle \geq 0 \quad \forall a \in A . \tag{3.0.2}
\end{gather*}
$$

Here $\langle\cdot, \cdot\rangle$ stands for the duality pairing between Y and Y^{*} and int P denotes the topological interior of P. We recall that P^{*} is defined by

$$
P^{*}=\left\{p^{*} \in Y^{*}:\left\langle p^{*}, p\right\rangle \geq 0 \forall p \in P\right\}
$$

and closedness and convexity of the cone P is equivalent to $P=P^{* *}$ by the bipolar theorem. In this case,

$$
p \in P \Longleftrightarrow\left\langle p^{*}, p\right\rangle \geq 0 \forall p^{*} \in P^{*}
$$

Moreover,

$$
\begin{equation*}
p \in \operatorname{int} P \Longleftrightarrow\left\langle p^{*}, p\right\rangle>0 \forall p^{*} \in P^{*} \backslash\{0\} \tag{3.0.3}
\end{equation*}
$$

A separation theorem for convex sets and the above remarks allow us to write (3.0.1) and (3.0.2) in an equivalent way as, respectively,

$$
\begin{gather*}
A \cap(-\operatorname{int} P) \neq \emptyset, \tag{3.0.4}\\
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset . \tag{3.0.5}
\end{gather*}
$$

While the inconsistency of both assertions (3.0.4) and (3.0.5) is straightforward, the proof of the validity of (3.0.5) assuming (3.0.4) does not hold, in other words, the proof of the implication

$$
\begin{equation*}
A \cap(-\operatorname{int} P)=\emptyset \Longrightarrow \operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \tag{3.0.6}
\end{equation*}
$$

requires a careful analysis due to the lack of convexity of A. One of the goals of the present chapter is to characterize those sets A for which implication (3.0.6) is true. Most papers appearing in the literature (see for instance $[1,36,47,54,55]$ and the references therein) were concerned with providing some (sufficient) conditions implying (3.0.6).

Throughout the chapter, X will be a vector space and Y a real locally convex vector space. We will denote by $\langle\cdot, \cdot\rangle$ the duality pairing between Y and Y^{*}.

3.1 An optimal theorem in spaces of arbitrary dimension

In search of conditions implying the validity of (3.0.6), several relaxed notions of convexity have appeared in the literature. Before reviewing and comparing some of them, we will first reformulate the conclusion of the alternative theorem in terms of the cone cone $(A+$ qint $P)$. We recall the definition of pointedness for a cone that is not necessarily convex (see for instance [46]).

Definition 3.1.1 A cone $K \subseteq Y$ is called "pointed" if $x_{1}+\ldots+x_{k}=0$ is impossible for $x_{1}, x_{2}, \ldots, x_{k}$ in K unless $x_{1}=x_{2}=\ldots=x_{k}=0$.

Our first result is the following:
Theorem 3.1.2 Let $A \subseteq Y$ be any nonempty set and $P \subseteq Y, P \neq Y$, be a convex and closed cone such that qint $P \neq \emptyset$. The following assertions are equivalent:
(a) cone $(A+$ qint $P)$ is pointed;
(b) $\operatorname{co}(A) \cap(-q \operatorname{int} P)=\emptyset$.

Proof. We first prove

$$
\begin{equation*}
\operatorname{cone}(A+\operatorname{qint} P) \text { is pointed } \Longrightarrow A \cap(-\operatorname{qint} P)=\emptyset \tag{3.1.1}
\end{equation*}
$$

If there exists $x \in A \cap(-$ qint $P)$, then $x=2\left(x-\frac{x}{2}\right) \in \operatorname{cone}(A+$ qint $P)$ and $-x=$ $x+(-2 x) \in A+$ qint $P \subseteq \operatorname{cone}(A+$ qint $P)$. By pointedness, $x=0$, hence $0 \in$ qint P. As noted in Section 2, this implies $P=Y$, a contradiction.

Now assume that (a) holds. If (b) does not hold, then there exists $x \in-$ qint P such that $x=\sum_{i=1}^{m} \lambda_{i} a_{i}$ with $\sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i}>0, a_{i} \in A$. Thus, $0=\sum_{i=1}^{m} \lambda_{i}\left(a_{i}-x\right)$. Using (a) we infer that $\lambda_{i}\left(a_{i}-x\right)=0$ for all $i=1, \ldots, m$. This contradicts (3.1.1).

Conversely, assume that (b) holds. If cone $(A+$ qint $P)$ is not pointed, then there exist $x_{i} \in \operatorname{cone}(A+$ qint $P) \backslash\{0\}, i=1,2, \ldots n$, such that $\sum_{i=1}^{n} x_{i}=0$. Each x_{i} can be written as $x_{i}=\lambda_{i}\left(y_{i}+u_{i}\right)$ with $\lambda_{i}>0, y_{i} \in A$ and $u_{i} \in$ qint P. Hence $\sum_{i=1}^{n} \lambda_{i} y_{i}=-\sum_{i=1}^{n} \lambda_{i} u_{i}$. Setting $\mu_{i}=\lambda_{i} / \sum_{j=1}^{n} \lambda_{j}$ we get $\sum_{i=1}^{n} \mu_{i} y_{i}=-\sum_{i=1}^{n} \mu_{i} u_{i} \in \operatorname{co}(A) \cap(-q i n t P)$, a contradiction.

When int $P \neq \emptyset$, then by the separation theorem $\operatorname{co}(A) \cap(-$ qint $P)=\emptyset$ is equivalent to the existence of $p^{*} \in P^{*} \backslash\{0\}$ such that $\left\langle p^{*}, y\right\rangle \geq 0$ for all $y \in A$. Thus, in case the set A is the image of some vector-valued mapping, the previous theorem implies the following

Corollary 3.1.3 Let $K \subseteq X$ be any nonempty set, $P \subseteq Y$ be a closed convex cone such that int $P \neq \emptyset$, and $G: K \rightarrow Y$ be any mapping. Then the following assertions are equivalent:
(a) cone $(G(K)+\operatorname{int} P)$ is pointed;
(b) $\exists p^{*} \in P^{*}, p^{*} \neq 0,\left\langle p^{*}, G(x)\right\rangle \geq 0 \forall x \in K$.

We now recall the most general among the relaxed notions of convexity that were used in alternative theorems.

Definition 3.1.4 Let $P \subseteq Y$ be a closed convex cone with nonempty interior. A set $A \subseteq Y$ is called:
(a) generalized subconvexlike [55] if $\left.\exists u \in \operatorname{int} P, \forall x_{1}, x_{2} \in A, \forall \alpha \in\right] 0,1[, \forall \varepsilon>0$, $\exists \rho>0$ such that

$$
\begin{equation*}
\varepsilon u+\alpha x_{1}+(1-\alpha) x_{2} \in \rho A+P \tag{3.1.2}
\end{equation*}
$$

(b) presubconvexlike if $\left.\exists u \in Y, \forall x_{1}, x_{2} \in A, \forall \alpha \in\right] 0,1[, \forall \varepsilon>0, \exists \rho>0$ such that (3.1.2) holds;
(c) nearly subconvexlike $[47,54]$ if $\overline{\text { cone }}(A+P)$ is convex.

Note that the definition of presubconvexlike sets is a transcription of an analogous definition for Y-valued functions given in [56]. Also, from Proposition 1.1.1(f) it follows that (c) above is equivalent to the convexity of cone ${ }_{+}(A+\operatorname{int} P)$ and also to the convexity of cone $(A+\operatorname{int} P)$. In fact, we will show that all three notions of generalized convexity of sets given in Definition 3.1.4 are equivalent.

Proposition 3.1.5 In Definition 3.1.4, (a), (b) and (c) are equivalent.
Proof. $(a) \Leftrightarrow(b)$: It is obvious that (a) implies (b). If A is presubconvexlike, let $u \in Y$ be the element whose existence is required by (b). Since int $P-$ int $P=Y$ (see, cg., [44]) we can write $u=v-w$ with $v, w \in \operatorname{int} P$. By assumption, for every $x_{1}, x_{2} \in$ $A, \alpha \in] 0,1[, \varepsilon>0$ there exists $\rho>0$ such that (3.1.2) holds. Then

$$
\varepsilon v+\alpha x_{1}+(1-\alpha) x_{2} \in \rho A+P+\varepsilon w \subseteq \rho A+P .
$$

Thus, A is generalized subconvexlike.
$(a) \Rightarrow(c)$: In Theorem 2.1 of [55], it is shown that a generalized subconvexlike set A is such that the set cone ${ }_{+}(A)+\operatorname{int} P$ is convex. By Proposition 1.1.1(c)(f), $\overline{\operatorname{cone}}(A+P)$ is convex.
$(c) \Rightarrow(a)$: If $\overline{\operatorname{cone}}(A+P)$ is convex then by Proposition 1.1.1(f), cone ${ }_{+}(A+\operatorname{int} P)$ is convex. From (a) of the same proposition applied to the set $A+\operatorname{int} P$ it follows that

$$
\left.\alpha A+(1-\alpha) A+\operatorname{int} P \subseteq \operatorname{cone}_{+}(A+\operatorname{int} P) \forall \alpha \in\right] 0,1[.
$$

This allows us to conclude that A is generalized subconvexlike.
Thus, the two alternative theorems in [54] and [55] (with "int" instead of "qint") can be unified and extended as follows:

Theorem 3.1.6 Let $A \subseteq Y$ be any nonempty set. Assume that $A \cap(-q \operatorname{int} P)=\emptyset$. Then

$$
\operatorname{cone}_{+}(A+\operatorname{qint} P) \text { is convex } \Longrightarrow \operatorname{co}(A) \cap(- \text { qint } P)=\emptyset .
$$

It is now clear that Theorem 3.1.6 is a consequence of Theorem 3.1.2 and the following easy proposition:

Proposition 3.1.7 If cone ${ }_{+}(A+$ qint $P)$ is convex and $A \cap(-q \operatorname{int} P)=\emptyset$, then cone $(A+$ qint P) is pointed.

Proof. Since cone $(A+$ qint $P)$ is also a convex cone, we have to show that whenever $x,-x \in \operatorname{cone}(A+q \operatorname{int} P)$, then $x=0$. Indeed, assume that $x \neq 0$. Then $x,-x \in$ cone $_{+}(A+$ qint $P)$. This last set is convex, hence $0=x+(-x) \in$ cone $_{+}(A+$ qint $P)$. Thus, there exist $\lambda>0, y \in A$ and $u \in$ qint P such that $0=\lambda(y+u)$. Then $y \in A \cap(-q \operatorname{int} P)$, a contradiction.

The converse of Proposition 3.1.7 (or Theorem 3.1.6) does not hold, as shown by the following example.

Example 3.1.8 Let us consider in \mathbb{R}^{3} the polyhedral (closed convex) cone $P=\operatorname{cone}(B)$, where

$$
B=\left\{\left(1,-x_{2}, x_{3}\right): 0 \leq x_{2}, 0 \leq x_{3}, x_{2}+x_{3} \leq 1\right\},
$$

and the set

$$
A=\left\{\left(x_{1}, 1, \sqrt{1-x_{1}^{2}}\right): 0 \leq x_{1} \leq 1\right\}
$$

It is not difficult to check that $\operatorname{co}(A) \cap(-$ int $P)=\emptyset$ thus $\operatorname{cone}(A+\operatorname{int} P)$ is pointed. However, we will see that $\overline{\text { cone }}(A+P)$ is nonconvex. To this end, it is enough to show that $z=\left(\frac{1}{2}, 1, \frac{1}{2}\right) \notin \overline{\operatorname{cone}}(A+P)$ since $z=\frac{1}{2} x+\frac{1}{2} y$ with $x=(0,1,1) \in A$ and $y=$ $(1,1,0) \in A$. Assume on the contrary that there exist sequences $0 \leq x_{1}^{k} \leq 1,0 \leq x_{2}^{k} \leq 1$, $0 \leq x_{3}^{k} \leq 1$ and $\beta_{k}, \lambda_{k} \geq 0$ such that

$$
\begin{gather*}
\lambda_{k}\left(x_{1}^{k}+\beta_{k}\right) \rightarrow \frac{1}{2} \tag{3.1.3}\\
\lambda_{k}\left(1-\beta_{k} x_{2}^{k}\right) \rightarrow 1 \tag{3.1.4}\\
\lambda_{k}\left(\sqrt{1-\left(x_{1}^{k}\right)^{2}}+\beta_{k} x_{3}^{k}\right) \rightarrow \frac{1}{2} . \tag{3.1.5}
\end{gather*}
$$

If λ_{k} is bounded, we may assume that $\lambda_{k} \rightarrow \lambda$ for some $\lambda \geq 0$. From (3.1.4), we obtain $\lambda \geq 1$. On the other hand, up to a subsequence $x_{1}^{k} \rightarrow x_{1}$, thus (3.1.3) implies $x_{1} \leq \frac{1}{2}$. By (3.1.5) we get $\sqrt{1-x_{1}^{2}} \leq \frac{1}{2}$, which in turn gives $x_{1} \geq \frac{\sqrt{3}}{2}$, contradicting a previous inequality. We now assume that $\lambda_{k} \rightarrow+\infty$. From (3.1.3) it follows $x_{1}^{k} \rightarrow 0$. Taking k sufficiently large, (3.1.5) yields a contradiction.

The preceding definitions of relaxed convexity for sets induce corresponding definitions for vector valued mappings: given a nonempty convex subset K of X, a multivalued mapping $G: K \rightrightarrows Y$ is called generalized subconvexlike [55] (respectively, nearly subconvexlike [47,54], presubconvexlike [56]) if the set $G(K)$ is generalized subconvexlike (resp., nearly subconvexlike, presubconvexlike). According to Proposition 3.1.5, these three notions are identical. Other definitions of generalized convexity for (single-valued) vector valued functions in view of using them to alternative theorems were given in [36] and [51]. A mapping $G: K \rightarrow Y$ is called $*$-quasiconvex [36] if $\left\langle x^{*}, G(\cdot)\right\rangle$ is quasiconvex for all $x^{*} \in P^{*}$. It is called naturally- P-quasiconvex [51] if for all $x, y \in K, G([x, y]) \subseteq[G(x), G(y)]-P$. We will first show that these notions are equivalent:

Proposition 3.1.9 Let $K \subseteq X$ be any nonempty convex set and $P \subseteq Y$ be a closed convex cone with nonempty interior. Then a mapping $G: K \rightarrow Y$ is $*$-quasiconvex if and only if it is naturally- P-quasiconvex.

Proof. Assume that G is naturally- P-quasiconvex. We need to check that given $t \in \mathbb{R}$ and $x^{*} \in P^{*}$, the set $K_{t}=\left\{z \in K:\left\langle x^{*}, G(z)\right\rangle \leq t\right\}$ is convex. Indeed, if $x, y \in K_{t}$ then by natural-P-quasiconvexity of G, for all $z \in[x, y]$ there exists $\lambda \in[0,1]$ and $u \in P$ such that $G(z)=\lambda G(x)+(1-\lambda) G(y)-u$. Hence,

$$
\left\langle x^{*}, G(z)\right\rangle=\lambda\left\langle x^{*}, G(x)\right\rangle+(1-\lambda)\left\langle x^{*}, G(y)\right\rangle-\left\langle x^{*}, u\right\rangle \leq t
$$

thus $z \in K_{t}$, so K_{t} is convex.
Conversely, assume that G is not naturally- P-quasiconvex. Then there exist $x, y \in K$ and $z \in] x, y[$ such that for all $\mu \in[0,1], G(z) \notin \mu G(x)+(1-\mu) G(y)-P$. Thus for every $\mu \in[0,1]$ there exists $x^{*} \in Y^{*} \backslash\{0\}$ such that

$$
\left\langle x^{*}, G(z)\right\rangle>\left\langle x^{*}, \mu G(x)+(1-\mu) G(y)-u\right\rangle \forall u \in P .
$$

Since P is a cone, we get $\left\langle x^{*}, u\right\rangle \geq 0$ for all $u \in P$, i.e., $x^{*} \in P^{*}$, and also $\left\langle x^{*}, G(z)-\mu G(x)-(1-\mu) G(y)\right\rangle>0$. Since by assumption int $P \neq \emptyset$, there exists a w^{*}-compact base B of P^{*}. Setting $f\left(y^{*}, \mu\right)=\left\langle y^{*}, G(z)-\mu G(x)-(1-\mu) G(y)\right\rangle$ we get

$$
\max _{y^{*} \in B} \min _{\mu \in[0,1]} f\left(y^{*}, \mu\right)=\min _{\mu \in[0,1]} \max _{y^{*} \in B} f\left(y^{*}, \mu\right)>0 .
$$

Hence there exists $x^{*} \in B$ such that

$$
\left\langle x^{*}, G(z)\right\rangle>\mu\left\langle x^{*}, G(x)\right\rangle+(1-\mu)\left\langle x^{*}, G(y)\right\rangle \forall \mu \in[0,1] .
$$

In particular, we get $\left\langle x^{*}, G(z)\right\rangle>\left\langle x^{*}, G(x)\right\rangle$ and $\left\langle x^{*}, G(z)\right\rangle>\left\langle x^{*}, G(y)\right\rangle$. Thus G is not *-quasiconvex.

In [36] it is proven that implication (3.0.6) holds for $A=G(K)$ under the $*$-quasiconvexity of G and the assumption
$\forall p^{*} \in P^{*}$, the restriction of $\left\langle p^{*}, G(\cdot)\right\rangle$ on any line segment of K is lower semicontinuous.

We will see that the $*$-quasiconvexity of G together with (3.1.6) imply the convexity of cone $(G(K)+\operatorname{int} P)$ thus, in particular, that G is nearly subconvexlike. This follows from the next proposition which is of interest by itself. We refer the reader to [30] for the definition of upper semicontinuity and other properties of multivalued mappings that will be used in the proof.

Proposition 3.1.10 Let $K \subseteq X$ be any nonempty convex set, $P \subseteq Y$ be a closed convex cone and $G: K \rightarrow Y$ be naturally- P-quasiconvex and satisfying (3.1.6). Then

$$
\begin{equation*}
\forall x, y \in K,[G(x), G(y)] \subseteq G([x, y])+P \tag{3.1.7}
\end{equation*}
$$

Proof. Given $x, y \in K$, define $H:[x, y] \rightrightarrows[G(x), G(y)]$ by $H(z)=(G(z)+P) \cap$ ([G(x),G(y)]). We show first that H is closed. Let $\left(z_{n}, w_{n}\right), n \in \mathbb{N}$, be a sequence in the graph of H, converging to (z, w). Then $w_{n} \in H\left(z_{n}\right) \subseteq[G(x), G(y)]$. Obviously, $w \in[G(x), G(y)]$. Also, for every $n \in \mathbb{N}$ there exists $v_{n} \in P$ such that $w_{n}=G\left(z_{n}\right)+v_{n}$. For each $p^{*} \in P^{*}$ we get by assumption (3.1.6):

$$
\begin{aligned}
\left\langle p^{*}, w-G(z)\right\rangle & \geq \lim \left\langle p^{*}, w_{n}\right\rangle-\lim \inf \left\langle p^{*}, G\left(z_{n}\right)\right\rangle \\
& =\lim \left\langle p^{*}, w_{n}\right\rangle+\lim \sup \left\langle p^{*},-G\left(z_{n}\right)\right\rangle \\
& =\limsup \left\langle p^{*}, v_{n}\right\rangle \geq 0
\end{aligned}
$$

Since this is true for all $p^{*} \in P^{*}$, we deduce that $w-G(z) \in P$, i.e., $w \in H(z)$ and H is closed. Hence, H is upper semicontinuous.

Also, for every $z \in[x, y], H(z) \neq \emptyset$ by the definition of natural- P-quasiconvexity. In addition, $H(z)$ is connected, being convex. Hence, the image of $[x, y]$ through H is connected (cf. Proposition 2.24, pg. 43 in [30]). This image is a subset of the line segment $[G(x), G(y)]$. Since $G(x) \in H(x)$ and $G(y) \in H(y)$, we deduce that $H([x, y])=$ $[G(x), G(y)]$. Thus, for every $w \in[G(x), G(y)]$ there exists $z \in[x, y]$ such that $w \in H(z)$, i.e., $w=G(z)+u$ for some $u \in P$. This shows inclusion (3.1.7).

We deduce the following:
Corollary 3.1.11 Let X, Y, P, G be as in the previous proposition. Then $G(K)+P$ is convex.

Proof. It is sufficient to show that whenever $t \in[0,1], x, y \in K$ and $u \in P$ then $t G(x)+$ $(1-t) G(y)+u \in G(K)+P$. But this is obvious in view of the proposition.

Thus, given a cone P with int $P \neq \emptyset$, if a mapping G is $*$-quasiconvex (or, equivalently, naturally- P-quasiconvex) and satisfies (3.1.6), then $G(K)+P$ is convex. This implies that G is nearly subconvexlike, so the alternative theorems of [36] and [51] are included in Theorem 3.1.6 and in particular in Theorem 3.1.2. The converse does not hold: the mapping $G(x)=(x, f(x)), x \in[-1,1]$, where $f(x)=1-|x|$, is clearly nearly subconvexlike (with $Y=\mathbb{R}^{2}, P=\mathbb{R}_{+}^{2}$), but the real-valued function $x \in[-1,1] \mapsto$ $\langle(0,1),(x, f(x))\rangle=f(x)$ is not quasiconvex, that is, G is not $*$-quasiconvex.

3.2 Characterizing the two-dimensionality through the alternative theorem

According to Theorem 3.1.6 (see also Proposition 1.1.1(f)), whenever $A \cap(-\operatorname{int} P)=$ \emptyset holds, the convexity of cone $(A+\operatorname{int} P)$ is a sufficient condition for $\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset$ to hold. We will now see that in case $Y=\mathbb{R}^{2}$, it is also necessary.

Theorem 3.2.1 Let $P \subseteq \mathbb{R}^{2}$ be a convex closed cone such that int $P \neq \emptyset$, and $A \subseteq \mathbb{R}^{2}$ be any nonempty set satisfying $A \cap(-\operatorname{int} P)=\emptyset$. Then the following assertions are equivalent:
(a) $\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset ;$
(b) cone $(A+P)$ is convex;
(c) $\operatorname{cone}(A+\operatorname{int} P)$ is convex;
(d) cone $(A)+P$ is convex;
(e) $\overline{\operatorname{cone}}(A+P)$ is convex.

Proof. According to Proposition 1.1.1 $(f),(c) \Longleftrightarrow(e)$. Also

$$
\begin{equation*}
\operatorname{cone}(A+\operatorname{int} P) \subseteq \operatorname{cone}(A+P) \subseteq \operatorname{cone}(A)+P \subseteq \overline{\operatorname{cone}}(A+P) \tag{3.2.1}
\end{equation*}
$$

where the last inclusion follows from Proposition 1.1.1(d). If cone $(A+\operatorname{int} P)$ is convex, then its closure $\overline{\text { cone }}(A+P)$ (see Proposition 1.1.1(e)) is convex. Due to the twodimensionality of the space, we deduce that cone $(A+P)$ and cone $(A)+P$ are convex. Thus, $(b),(c),(d)$ and (e) are equivalent.

That (e) implies (a) follows from Theorem 3.1.6 and Proposition 1.1.1(f).
$(a) \Rightarrow(b)$: There exists $x^{*} \in \mathbb{R}^{2}$ such that $\left\langle x^{*}, x\right\rangle \geq\left\langle x^{*}, u\right\rangle$ for all $x \in A$ and $u \in-\operatorname{int} P$. It follows that $x^{*} \in P^{*}$ and $\left\langle x^{*}, x\right\rangle \geq 0$ for all $x \in A$, thus also for all $x \in \operatorname{cone}(A+P)$.

Choose $u \in \operatorname{int} P$. Let $y, z \in A$. Then obviously

$$
\operatorname{cone}(\{y\})+\operatorname{cone}(\{u\})=\{\lambda y+\mu u: \lambda, \mu \geq 0\}
$$

is a closed convex cone containing y and u and contained in cone $(A+P)$. The same is true for the cone cone $(\{z\})+\operatorname{cone}(\{u\})$. The two cones have the line cone $(\{u\})$ in common and their union is contained in cone $(A+P)$, thus it is contained in the halfspace $\left\{x \in \mathbb{R}^{2}:\left\langle x^{*}, x\right\rangle \geq 0\right\}$. Hence, the set $B \doteq(\operatorname{cone}(\{y\})+\operatorname{cone}(\{u\})) \cup$ $(\operatorname{cone}(\{z\})+\operatorname{cone}(\{u\}))$ is a convex cone. Since $y, z \in B$ we deduce that $[y, z] \subseteq B \subseteq$ cone $(A+P)$ thus $\operatorname{co}(A) \subseteq \operatorname{co}(B)=B \subseteq \operatorname{cone}(A+P)$. We deduce that $\operatorname{cone}(A+P)$ is convex.

We now show that the equivalence between (a) and one of $(b),(c),(d),(e)$ in Theorem 3.2.1 is characteristic of 2 -dimensional spaces. Since, say, $(b) \Rightarrow(a)$ is a consequence of Theorem 3.1.6, we only consider the implication $(a) \Rightarrow(b)$ etc.

Theorem 3.2.2 Let Y be a locally convex space and $P \subseteq Y$ be a closed, convex cone such that int $P \neq \emptyset$ and int $P^{*} \neq \emptyset$. The following assertions are equivalent:
(a) for all sets $A \subseteq Y$ one has

$$
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \Rightarrow \overline{\operatorname{cone}}(A+P) \text { is convex; }
$$

(b) for all sets $A \subseteq Y$ one has

$$
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \Rightarrow \operatorname{cone}(A)+P \text { is convex; }
$$

(c) for all sets $A \subseteq Y$ one has

$$
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \Rightarrow \operatorname{cone}(A+\operatorname{int} P) \text { is convex; }
$$

(d) Y is at most two-dimensional.

Proof. We show first that (a) implies (d). Assume that the dimension of Y is at least 3. Let $x^{*} \in \operatorname{int} P^{*}$. Then for all $x \in P \backslash\{0\},\left\langle x^{*}, x\right\rangle>0$. Fix $x \in$ int P, and choose linearly independent $y, z \in Y$ such that $\left\langle x^{*}, y\right\rangle=\left\langle x^{*}, z\right\rangle=0$ (this is possible since the dimension of the kernel of x^{*} is at least 2). In particular, y and z are not zero. Let A be the set $[y+z, y+x] \cup[y+x, y-z]$. Every element w of A has the form: $w=$ $t(y \pm z)+(1-t)(y+x)$ with $t \in[0,1]$. Hence $\left\langle x^{*}, w\right\rangle=(1-t)\left\langle x^{*}, x\right\rangle \geq 0$. It follows that for every $w \in \operatorname{co}(A),\left\langle x^{*}, w\right\rangle \geq 0$. Since for every $u \in-\operatorname{int} P,\left\langle x^{*}, u\right\rangle<0$, it follows that $\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset$.

We now show that $\overline{\text { cone }}(A+P)$ is not convex. Since $y=\frac{y+z}{2}+\frac{y-z}{2} \in \operatorname{co}(A) \subseteq$ co $(\overline{\text { cone }}(A+P))$, it is sufficient to show that $y \notin \overline{\text { cone }}(A+P)$. Suppose to the contrary that $y \in \overline{\operatorname{cone}}(A+P)$. Then there exist $\lambda_{i} \geq 0, t_{i} \in[0,1], u_{i} \in P$ such that

$$
\begin{equation*}
\lambda_{i}\left(t_{i}(y \pm z)+\left(1-t_{i}\right)(y+x)\right)+u_{i} \rightarrow y \tag{3.2.2}
\end{equation*}
$$

Then

$$
\begin{gathered}
\left\langle x^{*}, \lambda_{i}\left(t_{i}(y \pm z)+\left(1-t_{i}\right)(y+x)\right)+u_{i}\right\rangle \rightarrow\left\langle x^{*}, y\right\rangle=0 \Rightarrow \\
\lambda_{i}\left(1-t_{i}\right)\left\langle x^{*}, x\right\rangle+\left\langle x^{*}, u_{i}\right\rangle \rightarrow 0 \Rightarrow \\
\lambda_{i}\left(1-t_{i}\right) \rightarrow 0 \text { and }\left\langle x^{*}, u_{i}\right\rangle \rightarrow 0 .
\end{gathered}
$$

If there is a subsequence of $\left\{\lambda_{i}\right\}$ converging to 0 then we get from (3.2.2) that $u_{i} \rightarrow y$ (since λ_{i} is multiplied with a bounded vector). This implies that $y \in \bar{P}=P$ which contradicts $\left\langle x^{*}, y\right\rangle=0$.

If there is a subsequence of $\left\{\lambda_{i}\right\}$ converging to a number $\left.\lambda \in\right] 0,+\infty\left[\right.$ then $t_{i} \rightarrow 1$ and we get from (3.2.2) that $u_{i} \rightarrow y-\lambda(y \pm z)$. Since P is closed, this implies that $y-\lambda(y \pm z) \in P$. But $\left\langle x^{*}, y-\lambda(y \pm z)\right\rangle=0$ while $\left\langle x^{*}, u\right\rangle>0$ for all $u \in P \backslash\{0\}$. Hence $y-\lambda(y \pm z)=0$. This is impossible, in view of the linear independence of y and z.

It follows that $\lambda_{i} \rightarrow+\infty$. Then $t_{i} \rightarrow 1$, and from $\lambda_{i}\left(1-t_{i}\right) \rightarrow 0$ and (3.2.2) we obtain $\lambda_{i} t_{i}(y \pm z)+u_{i} \rightarrow y$. Thus, $y \pm z+\frac{u_{i}}{\lambda_{i} t_{i}} \rightarrow 0$ and $\frac{u_{i}}{\lambda_{i} t_{i}} \rightarrow-(y \pm z)$. However, $\frac{u_{i}}{\lambda_{i} t_{i}} \in P$ thus its limit should be in P. As before, this should imply that $y \pm z=0$ which again contradicts the linear independence of y and z.

Thus, $y \notin \overline{\text { cone }}(A+P)$. Since $y \in \operatorname{co}(\overline{\text { cone }}(A+P))$, we deduce that $\overline{\text { cone }}(A+P)$ is not convex. This contradicts (a).

To show that (b) implies (a), we simply remark that if cone $(A)+P$ is convex then its closure $\overline{\text { cone }(\mathrm{A})+\mathrm{P}}$ is convex, and this is equal to $\overline{\overline{c o n e}}(A+P)$ by Proposition 1.1.1(d). The same proposition shows that (c) implies (a). Finally, (d) implies (b) and (c) by Theorem 3.2.1.

Remark 3.2.1 The assumption int $P^{*} \neq \emptyset$ (which corresponds to pointedness of P when Y is finite-dimensional) cannot be removed. Indeed, let $P=\left\{y \in Y:\left\langle p^{*}, y\right\rangle \geq 0\right\}$ where $p^{*} \in Y^{*} \backslash\{0\}$. Then $P^{*}=\operatorname{cone}\left(\left\{p^{*}\right\}\right)$, int $P^{*}=\emptyset$. For any nonempty $A \subseteq Y$, the set $A+\operatorname{int} P$ is convex. Thus, (c) in Theorem 3.2.2 holds independently of the dimension of the space Y.

3.3 Characterizing a necessary optimality condition of the Fritz-John type

For simplicity we now consider X to be a real normed vector space. It is well known that if \bar{x} is a local minimum point (in the usual sense) for the real-valued differentiable
function F on K, then

$$
\begin{equation*}
\nabla F(\bar{x}) \in(T(K ; \bar{x}))^{*} \tag{3.3.1}
\end{equation*}
$$

Here, $T(C ; \bar{x})$ denotes the contingent cone of C at $\bar{x} \in C$, defined as the set of vectors v such that there exist $t_{k} \downarrow 0, v_{k} \in X, v_{k} \rightarrow v$ such that $\bar{x}+t_{k} v_{k} \in C$ for all $k ; C^{*}$ denotes the (positive) polar cone of C.

It is now our purpose to extend the previous optimality condition to the vector case without smoothness assumptions. More precisely, let $K \subseteq X$ be closed and consider a mapping $F: K \rightarrow \mathbb{R}^{n}$. Given a closed convex cone $P \subseteq \mathbb{R}^{n}$ with nonempty interior, a vector $\bar{x} \in K$ is a local weakly efficient solution for F on K, if there exists an open neighborhood V of \bar{x} such that

$$
\begin{equation*}
(F(K \cap V)-F(\bar{x})) \cap(-\operatorname{int} P)=\emptyset \tag{3.3.2}
\end{equation*}
$$

Following [50], we say that a function $h: X \rightarrow \mathbb{R}$ admits a Hadamard directional derivative at $\bar{x} \in X$ in the direction v if

$$
\lim _{(t, u) \rightarrow\left(0^{+}, v\right)} \frac{h(\bar{x}+t u)-h(\bar{x})}{t} \in \mathbb{R}
$$

In this case, we denote such a limit by $d h(\bar{x} ; v)$.
If $F=\left(f_{1}, \ldots, f_{n}\right)$, we set

$$
\mathcal{F}(v) \doteq\left(\left(d f_{1}(\bar{x} ; v), \ldots, d f_{n}(\bar{x} ; v)\right), \quad \mathcal{F}(T(K ; \bar{x}))=\left\{\mathcal{F}(v) \in \mathbb{R}^{n}: v \in T(K ; \bar{x})\right\}\right.
$$

It is known that if $d f_{i}(\bar{x} ; \cdot), i=1, \ldots, n$ do exist in $T(K ; \bar{x})$, and $\bar{x} \in K$ is a local weakly efficient solution for F on K, i.e., \bar{x} satisfies (3.3.2), then (see for instance Lemma 3.2 of [50])

$$
\left(d f_{1}(\bar{x} ; v), \ldots, d f_{n}(\bar{x} ; v)\right) \in \mathbb{R}^{n} \backslash-\operatorname{int} P, \forall v \in T(K ; \bar{x}),
$$

or equivalently, $\mathcal{F}(T(K ; \bar{x})) \cap(-\operatorname{int} P)=\emptyset$. The following theorems provide complete characterizations for the validity of (a) as a necessary condition for \bar{x} to be a local weakly efficient solution for F on K.

Theorem 3.3.1 Let $K \subseteq X$ be a closed set, $P \subseteq \mathbb{R}^{n}$ be a closed convex cone such that int $P \neq \emptyset$, and $F: K \rightarrow \mathbb{R}^{n}$ be a mapping. Set $F=\left(f_{1}, \ldots, f_{n}\right)$ and assume that
$\bar{x} \in K$ and $d f_{i}(\bar{x} ; \cdot), i=1, \ldots, n$ do exist in $T(K ; \bar{x})$. Then, the following assertions are equivalent:
(a) $\exists\left(\alpha_{1}^{*}, \ldots, \alpha_{n}^{*}\right) \in P^{*} \backslash\{0\}, \alpha_{1}^{*} d f_{1}(\bar{x}, v)+\ldots+\alpha_{n}^{*} d f_{n}(\bar{x}, v) \geq 0 \quad \forall v \in T(K ; \bar{x})$;
(b) $\operatorname{cone}(\mathcal{F}(T(K ; \bar{x}))+\operatorname{int} P)$ is pointed.

Proof. We apply Corollary 3.1.3 to obtain the desired result.
When $Y=\mathbb{R}^{2}$, more precise formulations can be obtained from Theorem 3.2.1.
Theorem 3.3.2 Let $K \subseteq X$ be a closed set, $P \subseteq \mathbb{R}^{2}$ be a closed convex cone such that int $P \neq \emptyset$. Set $F=\left(f_{1}, f_{2}\right)$ and assume that $\bar{x} \in K$ and $d f_{i}(\bar{x} ; \cdot), i=1,2$ do exist in $T(K ; \bar{x})$. Then, the following assertions are equivalent:
(a) $\exists\left(\alpha_{1}^{*}, \alpha_{2}^{*}\right) \in P^{*} \backslash\{0\}, \alpha_{1}^{*} d f_{1}(\bar{x}, v)+\alpha_{2}^{*} d f_{2}(\bar{x}, v) \geq 0 \quad \forall v \in T(K ; \bar{x})$;
(b) $\mathcal{F}(T(K ; \bar{x})) \cap(-\operatorname{int} P)=\emptyset \quad$ and $\quad \operatorname{cone}(\mathcal{F}(T(K ; \bar{x}))+\operatorname{int} P)$ is convex.

Remark 3.3.1 When $P=\mathbb{R}_{+}^{n}$ and f_{1}, \ldots, f_{n} are differentiable, Part (a) in Theorem 3.3.1 can be written as

$$
\begin{equation*}
\operatorname{co}\left(\left\{\nabla f_{i}(\bar{x}): i=1, \ldots, n\right\}\right) \cap(T(K ; \bar{x}))^{*} \neq \emptyset \tag{3.3.3}
\end{equation*}
$$

which is the natural extension of (3.3.1). However, we have to point out that (3.3.3) is not in general a necessary optimality condition for \bar{x} to be a local weakly efficient solution. This is shown in \mathbb{R}^{2} by the example taken from [2], see also [12,53] for additional discussion:

$$
K=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}+2 x_{2}\right)\left(2 x_{1}+x_{2}\right) \leq 0\right\}, f_{i}\left(x_{1}, x_{2}\right)=x_{i}, \bar{x}=(0,0)
$$

In this case $T(K ; \bar{x})=K$, which is nonconvex, thus $(T(K ; \bar{x}))^{*}=\{(0,0)\}$, and therefore (3.3.3) does not hold since $\operatorname{co}\left(\left\{\nabla f_{1}(\bar{x}), \nabla f_{2}(\bar{x})\right\}\right)=\operatorname{co}\{(1,0),(0,1)\}$. Notice also that

$$
\operatorname{cone}\left(\mathcal{F}(T(K ; \bar{x}))+\mathbb{R}_{+}^{2}\right)=\bigcup_{t \geq 0} t\left(T(K ; \bar{x})+\mathbb{R}_{+}^{2}\right)
$$

is nonconvex. On the other hand, due to the linearity of \mathcal{F} (when f_{1} and f_{2} are differentiable), if $T(K ; \bar{x})$ is convex then

$$
\operatorname{cone}\left(\mathcal{F}(T(K ; \bar{x}))+\mathbb{R}_{+}^{2}\right)=\bigcup_{t \geq 0} t\left(\mathcal{F}(T(K ; \bar{x}))+\mathbb{R}_{+}^{2}\right)
$$

is also convex. This fact was point out earlier in [52] (see also [12]). Therefore, (3.3.3) holds if $T(K ; \bar{x})$ is convex. The following example shows that the necessary optimality condition (3.3.3) may be true without the convexity of $T(K ; \bar{x})$. Take the same mapping F as before and

$$
K=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}: x_{1} x_{2}=0\right\}, \bar{x}=(0,0)
$$

Then, (3.3.3) holds since in this case, $T(K ; \bar{x})=K,(T(K ; \bar{x}))^{*}=\mathbb{R}_{+}^{2}$ and

$$
\operatorname{co}\left(\left\{\nabla f_{1}(\bar{x}), \nabla f_{2}(\bar{x})\right\}\right)=\operatorname{co}\{(1,0),(0,1)\}
$$

3.4 Further applications

3.4.1 Characterizing the zero (Lagrangian) duality gap

We now obtain various equivalent conditions to the zero (Lagrangian) duality gap for a class of nonconvex minimization problems under a Slater-type condition.

Let us consider the following constrained minimization problem

$$
\begin{equation*}
\mu \doteq \inf _{x \in K} f(x) \tag{3.4.1}
\end{equation*}
$$

where $K \doteq\{x \in C: g(x) \in-P\}, C$ is a nonempty subset of a real locally convex topological vector space $X, f: C \rightarrow \mathbb{R}$, and $g: C \rightarrow Y$, with Y as before and $P \subseteq Y$ is a closed convex cone with nonempty interior. Let us introduce the Lagrangian

$$
L\left(\lambda^{*}, x\right)=f(x)+\left\langle\lambda^{*}, g(x)\right\rangle
$$

Obviously,

$$
\begin{equation*}
\mu \geq \inf _{x \in C} L\left(\lambda^{*}, x\right) \forall \lambda^{*} \in P^{*} \tag{3.4.2}
\end{equation*}
$$

We set

$$
A \doteq\{(f(x)-\mu, g(x)) \in \mathbb{R} \times Y: x \in C\}
$$

Theorem 3.4.1 Let us consider problem (3.4.1). If μ is finite and the Slater-type condition that for some $x_{0} \in C,\left\langle y^{*}, g\left(x_{0}\right)\right\rangle<0$ for all $y^{*} \in P^{*} \backslash\{0\}$ holds, then the following assertions are equivalent:
(a) there exists a Lagrange multiplier $\lambda^{*} \in P^{*}$ such that

$$
\inf _{x \in K} f(x)=\inf _{x \in C} L\left(\lambda^{*}, x\right) ;
$$

(b)

$$
\inf _{x \in K} f(x)=\max _{\lambda^{*} \in P^{*}} \inf _{x \in C} L\left(\lambda^{*}, x\right) ;
$$

(c) cone $\left(A+\operatorname{int}\left(\mathbb{R}_{+} \times P^{*}\right)\right)$ is pointed.

Proof. $(a) \Longleftrightarrow(b)$: One implication is obvious. From (a) it follows that

$$
\mu \leq \max _{\lambda^{*} \in P^{*}} \inf _{x \in C} L\left(\lambda^{*}, x\right)
$$

which together with (3.4.2) imply (b).
$(c) \Longrightarrow(a)$: Applying Theorem 3.1.2 we infer that $\operatorname{co}(A) \cap\left(-\operatorname{int}\left(\mathbb{R}_{+} \times P\right)\right)=\emptyset$. By the convex separation theorem, we obtain $\gamma^{*} \geq 0$ and $\lambda^{*} \in P^{*}$, not both zero, satisfying

$$
\begin{equation*}
\gamma^{*} f(x)+\left\langle\lambda^{*}, g(x)\right\rangle \geq \gamma^{*} \mu \forall x \in C . \tag{3.4.3}
\end{equation*}
$$

If $\gamma^{*}=0$, then $0 \neq \lambda^{*} \in P^{*}$ and $\left\langle\lambda^{*}, g(x)\right\rangle \geq 0$ for all $x \in C$, contradicting the Slater-type condition. Therefore, we may assume $\gamma^{*}=1$ in (3.4.3). Hence,

$$
\begin{equation*}
f(x)+\left\langle\lambda^{*}, g(x)\right\rangle \geq \mu \forall x \in C \tag{3.4.4}
\end{equation*}
$$

which implies

$$
\inf _{x \in C} L\left(\lambda^{*}, x\right) \geq \mu
$$

This together with (3.4.2) yield the desired result.
$(a) \Longrightarrow(c)$: From (a), (3.4.4) holds, and this amounts to writing

$$
\left\langle\left(1, \lambda^{*}\right),(f(x)-\mu, g(x))\right\rangle \geq 0 \quad \forall x \in C .
$$

We then apply Theorem 3.1.2 to get (c).

3.4.2 Characterizing weakly efficient solutions

Let X be a real vector space $K \subseteq X$ a convex set and Y a real locally convex topological vector space. Given a vector mapping $F: K \rightarrow Y$, we consider the problem of finding

$$
\bar{x} \in K: F(x)-F(\bar{x}) \notin-\operatorname{int} P, \forall x \in K,
$$

where $P \subseteq Y$ is a closed convex cone such that int $P \neq \emptyset$ (see Section 3.1). The set of such \bar{x} is denoted by E_{w}, and its elements are termed weakly efficient solutions. Clearly

$$
\bar{x} \in E_{w} \Longleftrightarrow(F(K)-F(\bar{x})) \cap(-\operatorname{int} P)=\emptyset .
$$

For a real-valued function h, by $\operatorname{argmin}_{K} h$ we mean the set of minimum points of h on K.

The next theorem is a direct consequence of Corollary 3.1.3 with $G(x)=F(x)-F(\bar{x})$.
Theorem 3.4.2 Let $K \subseteq X$ be a convex set and F, P as above. The following assertions are equivalent:
(a)

$$
\bar{x} \in \bigcup_{p^{*} \in P^{*}, p^{*} \neq 0} \operatorname{argmin}_{K}\left\langle p^{*}, F(\cdot)\right\rangle ;
$$

(b) $\operatorname{cone}(F(K)-F(\bar{x})+\operatorname{int} P)$ is pointed.

In case $Y=\mathbb{R}^{2}$, we get the following theorem whose proof follows from Theorem 3.2.1.

Theorem 3.4.3 Let $K \subseteq X$ be a convex set and F, P as above with $Y=\mathbb{R}^{2}$. Then the following assertions are equivalent:
(a)

$$
\bar{x} \in \bigcup_{p^{*} \in P^{*}, p^{*} \neq 0} \operatorname{argmin}_{K}\left\langle p^{*}, F(\cdot)\right\rangle ;
$$

(b) $\bar{x} \in E_{w}$ and cone $(F(K)-F(\bar{x})+\operatorname{int} P)$ is convex.

Notice that the cone appearing in (b) of the preceding theorem may be substituted by others cones by virtue of Theorem 3.2.1.

Remark 3.4.1 Some sufficient and in some situations also necessary conditions to get $E_{w} \neq \emptyset$ are established in $[19,23]$.

Chapter 4

The bicriteria case on the real-line and algorithms without derivatives

This chapter is motivated for the problem 1.4.3 in the finite dimensional case, this is given a nonempty set $K \subseteq \mathbb{R}^{n}, P=\mathbb{R}_{+}^{m}$ and a function $F: K \rightarrow \mathbb{R}^{m}$. We will be interested

$$
\begin{equation*}
\text { find } \quad \bar{x} \in K \quad \text { such that } \quad F(y)-F(\bar{x}) \in \mathbb{R}^{m} \backslash-\operatorname{int} \mathbb{R}_{+}^{m} \quad \forall y \in K \tag{4.0.1}
\end{equation*}
$$

On the other hand, by algorithmic (to develop some gradient-type method as in [27]) and theoretical purposes (to develop a well-posedness theory Ref. [14], or optimality conditions) motivated by aplications, one needs the equivalence

$$
\begin{equation*}
\bar{x} \in E_{w} \Longleftrightarrow \bar{x} \in \bigcup_{p^{*} \in R_{+}^{m}, p^{*} \neq 0} \operatorname{argmin}_{K}\left\langle p^{*}, F(\cdot)\right\rangle . \tag{4.0.2}
\end{equation*}
$$

Actually, this union may be taken over the set $\Delta=\left\{\xi \in R_{+}^{m}: \sum_{i=1}^{m} \xi_{i}=1\right\}$. It is well known that the equivalence (4.0.2) is true whenever each component of F is convex. However, it still holds under weaker assumptions than convexity on F, as shown in Ref. [36]. The authors in [24] obtained a necessary and sufficient condition in order the equivalence in (4.0.2) holds: in case $m=2$, it requires the convexity of $M=\operatorname{cone}(F(K)-F(\bar{x}))+\mathbb{R}_{+}^{2}=\operatorname{cone}\left(F(K)-F(\bar{x})+\mathbb{R}_{+}^{2}\right)$. The convexity of M holds if each component of F is convex, and it is independently obtained of \bar{x}, as expected.

Chapter 4. The bicriteria case on the real-line and algorithms without derivatives 64

It is now our purpose to discuss situations in which the equivalence in (4.0.2) is no longer true, that is, when the convexity of M fails in case $m=2$. The implication $" \Longleftarrow "$ in (4.0.2), which always holds without any further assumption on F, gives rise to the so-called scalarization approach, or weighting method, for solving problem (4.0.1). It is known that there are many efficient algorithms for solving

$$
\begin{equation*}
\min _{x \in K}\left\langle p^{*}, F(x)\right\rangle, \quad p^{*} \in \Delta \tag{4.0.3}
\end{equation*}
$$

at least, for smooth functions F. The main drawback lies on the choice of P^{*} since it is not known in advance for the decision-maker or modeler. In fact, take the example discussed in [28], $F(x)=\left(x, \sqrt{1+x^{2}}\right), x \in K=\mathbb{R}$. Here, each component of F is convex, but if $p_{1}^{*}>p_{2}^{*}>0$, then the optimal value of (4.0.3) is $-\infty$. However $E_{w}=$ $]-\infty, 0]$. Our Theorem 4.2.1 apply to this example.

On the other hand, when at least one component or F is quasiconvex but nonconvex (hence (4.0.2) does not necessarily hold), it may there be solutions to (4.0.1) that are not solutions to (4.0.3) for any $p^{*} \in \Delta$, as the following function shows: take $\left.K=\right] 0,+\infty$] and $F=\left(f_{1}, f_{2}\right)$, where,

$$
f_{1}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \notin[1,2], \\
1 & \text { if } & x \in[1,2],
\end{array} \quad f_{2}(x)=|x-5|\right.
$$

Here $E_{w}=[1,8]$ while the set of the right-hand side in (4.0.2) is $[1,5]$. Our Theorem 4.1.3 applies in this case.

More precisely, in the present chapter, under the quasiconvexity (and lower semicontinuity) assumption on each component of F, we completely describe E_{w} without using any kind of derivative when $K \subseteq \mathbb{R}$ and $m=2$. In this situation, it is proven in [23] that E_{w} is closed and convex.

Chapter 4. The bicriteria case on the real-line and algorithms without derivatives 65

The following proposition suggests us the case we will study in this chapter.
Proposition 4.0.1 Let $\emptyset \neq K \subseteq \mathbb{R}^{n}$ be convex and closed, $f_{i}: K \rightarrow \mathbb{R}, i=1, \ldots, m$ be functions such that

$$
\bigcap_{i=1}^{m} \operatorname{argmin}_{K} f_{i} \neq \emptyset
$$

Then

$$
E_{w}=\bigcup_{i=1}^{m} \operatorname{argmin}_{K} f_{i} .
$$

Proof. Let $\bar{x} \in \operatorname{argmin}_{K} f_{i}$ for all $i=1, \ldots, m$, and $z \notin \bigcup_{i=1}^{m} \operatorname{argmin}_{K} f_{i}$. Then $f_{i}(\bar{x})<f_{i}(z)$ for all $i=1, \ldots, m$ implying $z \notin E_{w}$. This prove $E_{w} \subseteq \bigcup_{i=1}^{m} \operatorname{argmin}_{K} f_{i}$, and then the proof is completed.

The inclusion

$$
\bigcup_{i=1}^{m} \operatorname{argmin}_{K} f_{i} \subseteq E_{w},
$$

in general is true. However, as illustrated in Example 2.4.3, there are solutions which does not belong to the set on the left-hand side. This section is devoted to the full description of E_{w}, and it will be done in the case of two-objective functions under quasiconvexity conditions on each f_{i}.

By virtue of Proposition 4.0.1 we will consider

$$
\operatorname{argmin}_{K} f_{1} \cap \operatorname{argmin}_{K} f_{2}=\emptyset
$$

For $i=1,2$ and $t \in \mathbb{R}$, we set

$$
S_{i}[t]=\left\{x \in K: f_{i}(x) \leq t\right\}, \quad S_{i}^{+}[t]=\left\{x \in K: f_{i}(x)<t\right\} .
$$

4.1 The first case: $\operatorname{argmin}_{K} f_{1}$ and $\operatorname{argmin}_{K} f_{2}$ are compact $\left[\alpha_{1}, \beta_{1}\right]=\operatorname{argmin}_{K} f_{1},\left[\alpha_{2}, \beta_{2}\right]=\operatorname{argmin}_{K} f_{2}$.

In this case we will assume:

$$
\begin{equation*}
-\infty<\alpha_{1} \leq \beta_{1}<\alpha_{2} \leq \beta_{2}<+\infty . \tag{4.1.1}
\end{equation*}
$$

Set

$$
A_{+}=\left\{x \in\left[\beta_{1}, \alpha_{2}\right]: f_{1}(x)=f_{1}\left(\alpha_{2}\right)\right\}, \quad A_{-}=\left\{x \in\left[\beta_{1}, \alpha_{2}\right]: f_{2}(x)=f_{2}\left(\beta_{1}\right)\right\} .
$$

Theorem 4.1.1 Let $\emptyset \neq K \subseteq \mathbb{R}$ be convex and closed, $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. Assume that (4.1.1) holds. Then A_{+}and A_{-}are convex and nonempty. Moreover, we also have:
(a) if $\left.\left.A_{+}=\right] \alpha_{0}^{+}, \alpha_{2}\right], \alpha_{0}^{+} \geq \beta_{1}$, then

$$
\begin{equation*}
S_{2}\left[f_{2}\left(\alpha_{0}^{+}\right)\right] \cap\left\{x \in K: x>\beta_{2}, f_{1}(x)=f_{1}\left(\alpha_{2}\right)\right\}=E_{w} \cap\left\{x \in K: x>\beta_{2}\right\} ; \tag{4.1.2}
\end{equation*}
$$

(b) if $A_{+}=\left[\alpha_{0}^{+}, \alpha_{2}\right], \alpha_{0}^{+}>\beta_{1}$, then

$$
\begin{equation*}
S_{2}\left[\lambda_{+}\right] \cap\left\{x \in K: x>\beta_{2}, f_{1}(x)=f_{1}\left(\alpha_{2}\right)\right\}=E_{w} \cap\left\{x \in K: x>\beta_{2}\right\} ; \tag{4.1.3}
\end{equation*}
$$

where $\lambda_{+}=\lim _{t \downarrow 0} f_{2}\left(\alpha_{0}^{+}-t\right)=\inf _{y<\alpha_{0}^{+}} f_{2}(y)$.
(c) if $A_{-}=\left[\beta_{1}, \alpha_{0}^{-}\left[, \alpha_{0}^{-} \leq \alpha_{2}\right.\right.$, then

$$
S_{1}\left[f_{1}\left(\alpha_{0}^{-}\right)\right] \cap\left\{x \in K: x<\alpha_{1}, f_{2}(x)=f_{2}\left(\beta_{1}\right)\right\}=E_{w} \cap\left\{x \in K: x<\alpha_{1}\right\} ;
$$

(d) if $A_{-}=\left[\beta_{1}, \alpha_{0}^{-}\right], \alpha_{0}^{-}<\alpha_{2}$, then

$$
S_{1}\left[\lambda_{-}\right] \cap\left\{x \in K: x<\alpha_{1}, f_{2}(x)=f_{2}\left(\beta_{1}\right)\right\}=E_{w} \cap\left\{x \in K: x<\alpha_{1}\right\},
$$

where $\lambda_{-}=\lim _{t \downarrow 0} f_{1}\left(\alpha_{0}^{-}+t\right)=\inf _{y>\alpha_{0}^{-}} f_{1}(y)$.

Proof. We only prove the convexity of A_{+}. Take $y_{i} \in A_{+}, i=1,2$ with $y_{1}<y_{2}$, and consider y such that $y_{1}<y<y_{2}$. Then by quasiconvexity, $f_{1}(y) \leq f_{1}\left(\alpha_{2}\right)$. On the other hand, since $\beta_{1}<y_{1}<y$, we obtain $f_{1}\left(\alpha_{2}\right)=f_{1}\left(y_{1}\right) \leq f_{1}(y)$ by quasiconvexity. Thus $y \in A_{+}$. Hence either $\left.\left.A_{+}=\right] \alpha_{0}^{+}, \alpha_{2}\right]$ or $A_{+}=\left[\alpha_{0}^{+}, \alpha_{2}\right]$ for some α_{0}^{+}.
(a): Let \bar{x} in the set of the left hand-side of (4.1.2). We will check that $\bar{x} \in E_{w}$. If $x>\bar{x}$ and $x \in K$, then $f_{2}(\bar{x}) \leq f_{2}(x)$ since $f_{2}\left(\alpha_{2}\right)<f_{2}(\bar{x})$; if $\left.\left.x \in\right] \alpha_{0}^{+}, \alpha_{2}\right]=A_{+}$then obviously $f_{1}(x)=f_{1}\left(\alpha_{2}\right)=f_{1}(\bar{x})$; if $\left.x \in\right] \alpha_{2}, \bar{x}\left[\right.$ then, since $\beta_{1}<\alpha_{0}^{+}<\beta_{2}<x<\bar{x}$, we have $f_{1}(x) \leq \max \left\{\left(f_{1}\left(\alpha_{2}\right), f_{1}(\bar{x})\right\}=f_{1}(\bar{x})\right.$ and $f_{1}(\bar{x})=f_{1}\left(\alpha_{2}\right) \leq \max \left\{f_{1}\left(\beta_{1}\right), f_{1}(x)\right\}=f_{1}(x)$, and then $f_{1}(x)=f_{1}(\bar{x})$; if $x<\alpha_{0}^{+}$, then $f_{2}\left(\alpha_{0}^{+}\right) \leq \max \left\{f_{2}\left(\alpha_{2}\right), f_{2}(x)\right\}=f_{2}(x)$ since $\alpha_{0}^{+}<\alpha_{2}$. We also have $f_{2}(\bar{x}) \leq f_{2}\left(\alpha_{0}^{+}\right)$. Thus $f_{2}(\bar{x}) \leq f_{2}(x)$. This completes the proof that $\bar{x} \in E_{w}$, proving one inclusion in (4.1.2).
Let us prove the other inclusion. Take any $\bar{x} \in K, \bar{x}>\beta_{2}$.
If $\bar{x} \notin S_{2}\left[f_{2}\left(\alpha_{0}^{+}\right)\right]$, then $f_{2}(\bar{x})>f_{2}\left(\alpha_{0}^{+}\right)$. On the other hand, $f_{1}(\bar{x})>f_{1}\left(\beta_{1}\right)$ and therefore $f_{1}\left(\alpha_{0}^{+}\right) \leq f_{1}(\bar{x})$; in case $f_{1}\left(\alpha_{0}^{+}\right)=f_{1}(\bar{x})$ we had $\alpha_{0}^{+} \in A_{+}$, giving a contradiction. Thus $f_{1}\left(\alpha_{0}^{+}\right)<f_{1}(\bar{x})$ implying that $\bar{x} \notin E_{w}$.
If $f_{1}(\bar{x}) \neq f_{1}\left(\alpha_{2}\right)$, then $f_{1}(\bar{x})>f_{1}\left(\alpha_{2}\right)$ since $f_{1}\left(\beta_{1}\right)<f_{1}\left(\alpha_{2}\right)$ and f_{1} is quasiconvex. We also have $f_{2}\left(\alpha_{2}\right)<f_{2}(\bar{x})$. Hence $\bar{x} \notin E_{w}$.
(b) : Let \bar{x} in the set of the left hand-side of (4.1.3). We now check that $\bar{x} \in E_{w}$. If $x>\bar{x}$ and $x \in K$, then $f_{2}(\bar{x}) \leq f_{2}(x)$ since $f_{2}\left(\beta_{2}\right)<f_{2}(x)$; if $\left.x \in\right] \alpha_{0}^{+}, \bar{x}$ [then obviously $f_{1}(\bar{x})=$ $f_{1}\left(\alpha_{0}^{+}\right)=f_{1}\left(\alpha_{2}\right)$ and therefore $f_{1}(x) \leq f_{1}\left(\alpha_{0}^{+}\right)$. Since $f_{1}\left(\beta_{1}\right)<f_{1}(x), f_{1}\left(\alpha_{0}^{+}\right) \leq f_{1}(x)$, and hence $f_{1}(x)=f_{1}\left(\alpha_{0}^{+}\right)$; If $x<\alpha_{0}^{+}$and $x \in K$, then $f_{2}(\bar{x}) \leq \lambda_{+} \leq f_{2}(y)$ for all $y<\alpha_{0}^{+}$ because of monotonicity of f_{2} in such an interval. This completes the proof that $\bar{x} \in E_{w}$ and thus one inclusion in (4.1.3) is proved.
For the other inclusion, take any $\bar{x} \in K, \bar{x}>\beta_{2}$.
If $\bar{x} \notin S_{2}\left[\lambda_{+}\right], f_{2}(\bar{x})>\lambda_{+}$. Since $\beta_{1}<\alpha_{0}^{+}$, there is $t>0$ such that $\beta_{1}<\alpha_{0}^{+}-t<\alpha_{0}^{+}$ and $f_{2}(\bar{x})>f_{2}\left(\alpha_{0}^{+}-t\right)$. On the other hand, $f_{1}\left(\alpha_{0}^{+}-t\right) \leq f_{1}\left(\alpha_{0}^{+}\right)=f_{1}\left(\alpha_{2}\right)$. Obviously $f_{1}\left(\alpha_{0}^{+}-t\right)<f_{1}\left(\alpha_{2}\right)$ since otherwise $\alpha_{0}^{+}-t \in A_{+}$, which is impossible. By quasiconvexity $f_{1}\left(\alpha_{2}\right) \leq f_{1}(\bar{x})$, and hence $f_{1}\left(\alpha_{0}^{+}-t\right)<f_{1}(\bar{x})$ implying $\bar{x} \notin E_{w}$.
If $f_{1}(\bar{x}) \neq f_{1}\left(\alpha_{2}\right)$, then $f_{1}(\bar{x})>f_{1}\left(\alpha_{2}\right)$ since $f_{1}\left(\beta_{1}\right)<f_{1}\left(\alpha_{2}\right)$ and f_{1} is quasiconvex. We also have $f_{1}\left(\alpha_{2}\right)<f_{2}(\bar{x})$. This shows $\bar{x} \notin E_{w}$.
$(c),(d)$: The proof of these parts is totally symmetrical to used in (a) and (b).
We use the following notation:

$$
\gamma_{+}=\left\{\begin{array}{lll}
f_{2}\left(\alpha_{0}^{+}\right) & \text {if } & \left.\left.A_{+}=\right] \alpha_{0}^{+}, \alpha_{2}\right] \\
\lambda_{+} & \text {if } & A_{+}=\left[\alpha_{0}^{+}, \alpha_{2}\right]
\end{array}, \quad \gamma_{-}=\left\{\begin{array}{lll}
f_{1}\left(\alpha_{0}^{-}\right) & \text {if } & \left.\left.A_{-}=\right] \beta_{1}, \alpha_{0}^{-}\right] \\
\lambda_{+} & \text {if } & A_{-}=\left[\beta_{1}, \alpha_{0}^{-}\right]
\end{array}\right.\right.
$$

Let use consider the sets

$$
M_{1}^{+}=\left\{x \in K: x>\beta_{2}, \quad f_{1}(x)=f_{1}\left(\alpha_{2}\right)\right\}, \quad M_{2}^{+}=\left\{x \in K: x>\beta_{2}, \quad f_{2}(x)=\gamma^{+}\right\},
$$

and

$$
M_{1}^{-}=\left\{x \in K: x<\alpha_{1}, \quad f_{1}(x)=\gamma_{-}\right\}, \quad M_{2}^{-}=\left\{x \in K: x<\alpha_{1}, \quad f_{2}(x)=f_{2}\left(\beta_{1}\right)\right\} .
$$

Corollary 4.1.1 Assume the assumptions of Theorem 4.1.1 hold. Then M_{i}^{+}and M_{i}^{-}, $i=1,2$, are convex.
(a) If $M_{1}^{+} \cap M_{2}^{+} \neq \emptyset$, then

$$
\sup E_{w}=\min \left\{\sup M_{1}^{+}, \sup M_{2}^{+}\right\}=\sup M_{1}^{+} \cap M_{2}^{+}
$$

(b) If $M_{1}^{-} \cap M_{2}^{-} \neq \emptyset$, then

$$
\inf E_{w}=\max \left\{\inf M_{1}^{-}, \inf M_{2}^{-}\right\}=\inf M_{1}^{-} \cap M_{2}^{-}
$$

Proof. Due to the quasiconvexity of f_{1} and f_{2}, it is not difficult to check that M_{i}^{+}and $M_{i}^{-}, i=1,2$, are convex. We only check (a) (for the case (b) we proceed in a similar way). We analyze the different situations.

- $\sup M_{1}^{+}<+\infty$ and $\sup M_{2}^{+}<+\infty$: in this case we can prove that $\sup M_{i}^{+} \in M_{i}^{+}$for $i=1,2$. Set $\bar{x}=\min \left\{\sup M_{1}^{+}, \sup M_{2}^{+}\right\}$. If $\bar{x} \in M_{1}^{+}$then $f_{1}(\bar{x})=f_{1}\left(\alpha_{2}\right)$, and side $\bar{x} \in M_{2}^{+}$, we obtain $f_{2}(\bar{x})=\gamma_{+}$, showing that $\bar{x} \in E_{w}$ by the previous theorem. We now prove that, $z>\bar{x}, z \in K$ implies that $z \notin E_{w}$. In fact, $f_{1}(z) \neq f_{1}\left(\alpha_{2}\right)$ whenever $z>\bar{x}$, in K. This implies tat $z \notin E_{w}$ again by the previous theorem. We now consider the case in
which $\bar{x}=\max M_{2}^{+}$Then $f_{2}(\bar{x})=\gamma_{+}$, and since $\bar{x} \in M_{1}^{+}$, we obtain $f_{1}(\bar{x})=f_{1}\left(\alpha_{2}\right)$, showing that $\bar{x} \in E_{w}$ again by the previous theorem. We now prove that, $z>\bar{x}, z \in K$ implies $z \notin E_{w}$. In fact, $f_{2}(z) \neq \gamma_{+}$whenever $z>\bar{x}, z \in K$. This automatically implies that $z \notin E_{w}$ by the previous theorem.
- $\max M_{1}^{+}<+\infty$ and $\sup M_{2}^{+}=+\infty$ (the case $\sup M_{1}^{+}=+\infty$ and $\max M_{2}^{+}<+\infty$ is treated similarly): set $\bar{x}=\max M_{1}^{+} \in M_{1}^{+}$. The quasiconvexity of f_{2} and the fact that $\sup M_{2}^{+}=+\infty$ along with $M_{1}^{+} \cap M_{2}^{+} \neq \emptyset$ imply $f_{2}(\bar{x})=f_{2}\left(\alpha_{0}^{+}\right)$. This shows that $\bar{x} \in E_{w}$. Obviously, if $z>\bar{x}, \in K$, then $z \notin E_{w}$ by the quasiconvexity of f_{1}.
- $\sup M_{1}^{+}=+\infty$ and $\sup M_{2}^{+}=+\infty$: in this case $\sup E_{w}=+\infty$, since for $\bar{x} \in M_{1}^{+} \cap M_{2}^{+}$, every $z>\bar{x}$ is in E_{w} by the previous theorem and the convexity of $M_{1}^{+} \cap M_{2}^{+}$. The remaining equalities in (a) and (b) are easily check.

Corollary 4.1.2 Assume the assumptions of Theorem 4.1.1 hold.
(a) If $M_{1}^{+}=\emptyset\left(\right.$ resp. $\left.M_{2}^{-}=\emptyset\right)$, then $\max E_{w}=\beta_{2}\left(\right.$ resp. $\left.\min E_{w}=\alpha_{1}\right)$.
(b) If $M_{1}^{+} \cap M_{2}^{+}=\emptyset$ and $M_{1}^{+} \neq \emptyset$, then

$$
\begin{equation*}
\sup E_{w}=\min \left\{\sup M_{1}^{+}, \sup \left\{x \in K: x \geq \beta_{2}, f_{2}(x) \leq \gamma^{+}\right\}\right\} \tag{4.1.4}
\end{equation*}
$$

(c) If $M_{1}^{-} \cap M_{2}^{-} \emptyset$ and $M_{1}^{-} \neq \emptyset$, then

$$
\inf E_{w}=\max \left\{\inf M_{2}^{-}, \inf \left\{x \in K: x \leq \alpha_{1}, f_{1}(x) \leq \gamma_{-}\right\}\right\}
$$

Proof. (a) Assume that $M_{1}^{+}=\emptyset$ if ($M_{2}^{-}=\emptyset$ a similar reasoning may be applied). Then $f_{1}\left(\alpha_{2}\right) \neq f_{1}(x)$ for all $x>\beta_{2}, x \in K$. Since $\beta_{1}<\alpha_{2} \leq \beta_{2}$ we obtain that $f_{1}\left(\alpha_{2}\right) \leq$ $f_{1}(x)$ for all $x>\beta_{2}$ by quasiconvexity, and therefore $f_{1}\left(\alpha_{2}\right)<f_{2}(x)$ for all $x>\beta_{2}$. Consequently $\max E_{w}=\beta_{2}$.
(b) We now consider $M_{1}^{+} \neq \emptyset$.

- $\sup M_{1}^{+}<+\infty$: in this case $\bar{x}=\sup M_{1}^{+} \in M_{1}^{+}$. By assumption $\bar{x} \notin M_{2}^{+}$, thus $f_{2}(\bar{x}) \neq$ γ_{+}. If $f_{2}(\bar{x})<\gamma_{+}$then $\bar{x} \in E_{w}$ by Theorem 4.1.1, and

$$
\bar{x} \leq \sup \left\{x \in K: x \geq \beta_{2}, f_{2}(x) \leq \gamma_{+}\right\}
$$

Obviously, every $z \in K, z>\bar{x}$ is not in E_{w}, proving that $\sup E_{w}=\bar{x}$, and hence (4.1.4) is proved. If $f_{2}(\bar{x})>\gamma_{+}$, we claim that

$$
\begin{equation*}
\bar{z}=\sup \left\{x \in K: x \geq \beta_{2}, f_{2}(x) \leq \gamma_{+}\right\}=\sup E_{w} \tag{4.1.5}
\end{equation*}
$$

First, since $f_{2}(\bar{x})>\gamma_{+}$, we obtain $\bar{z}<\bar{x}$ because of the quasiconvexity of f_{2}, and since $f_{1}(x)=f_{1}\left(\alpha_{2}\right)$ for all $\left.\left.x \in\right] \beta_{2}, \bar{x}\right]$, we also get $\bar{z} \in E_{w}$ by Theorem 4.1.1, and if $z \in K$ with $z>\bar{z}$, then $z \notin E_{w}$, as claimed.

- $\sup M_{1}^{+}=+\infty$: in this case (4.1.5) is also verified as easily seen.

We now present an algorithm which we approximated the value of γ_{+}. Let us remember that γ_{+}is fundamental in the characterization presented in the Theorem 4.1.1. In this algorithm we consider f_{2} be continuous and the tolerance like the length of the interval of search in every iterations. Let $\epsilon>0$ be tolerance.

Algorithm 1.

0. Set $x_{0}:=\beta_{1}, y_{0}:=\alpha_{2}$ and $k:=0$.

1a. $z_{k}:=\frac{x_{k}+y_{k}}{2}$.
1b. Evaluate $f_{1}\left(z_{k}\right)$. If $f_{1}\left(z_{k}\right)=f_{1}\left(\alpha_{2}\right)$ then $y_{k+1}:=z_{k}, x_{k+1}:=x_{k}, k:=k+1$ and GOTO 1d;
else
1c. $x_{k+1}:=z_{k}, y_{k+1}:=y_{k}, k:=k+1$ and GOTO 1a;
1d. Evaluate $f_{2}\left(x_{k}\right)$ and $f_{2}\left(y_{k}\right)$. If $f_{2}\left(x_{k}\right)-f_{2}\left(y_{k}\right) \leq \epsilon$ STOP,
$\alpha_{0}^{+}($approx $):=y_{k}$ and $\gamma_{+}($approx $):=f_{2}\left(y_{k}\right)$.
else

1e. GOTO 1a.

Let us notice that if f_{1} is lsc and semistrictly quasiconvex then $A_{+}=\left\{\alpha_{0}^{+}\right\}=\left\{\alpha_{2}\right\}$. Therefore if f_{2} be continuous then $\gamma_{+}=f_{2}\left(\alpha_{2}\right)$.

On the other hand, $x_{k-1} \leq x_{k}<\alpha_{0}^{+} \leq y_{k} \leq y_{k-1}$ and $f_{2}\left(y_{k-1}\right) \leq f_{2}\left(y_{k}\right) \leq f_{2}\left(\alpha_{0}^{+}\right) \leq$ $f_{2}\left(x_{k}\right) \leq f_{2}\left(x_{k-1}\right)$. Therefore $y_{k}-\alpha_{0}^{+} \leq y_{k}-x_{k}=\frac{1}{2^{k}}\left(\alpha_{2}-\beta_{1}\right), \alpha_{0}^{+}-x_{k} \leq y_{k}-x_{k}=$ $\frac{1}{2^{k}}\left(\alpha_{2}-\beta_{1}\right)$ and $f_{2}\left(\alpha_{0}^{+}\right)-f_{2}\left(y_{k}\right) \leq f_{2}\left(x_{k}\right)-f_{2}\left(y_{k}\right)$. Thus $f_{2}\left(x_{k}\right)-f_{2}\left(y_{k}\right) \rightarrow 0$ and $f_{2}\left(y_{k}\right) \rightarrow f_{2}\left(\alpha_{0}^{+}\right), k \rightarrow+\infty$.

We now state our second algorithm based on Theorem 4.1.1 which determines a point $\bar{x} \in E_{w}$, if any, strictly greater than β_{2}.

Algorithm 2.

0. Take $x_{0} \in K, x_{0}>\beta_{2}$. Set $k=0$.

1a. Evaluate $f_{2}\left(x_{k}\right)$. If $f_{2}\left(x_{k}\right) \leq \gamma_{+}$, GOTO 2a;
else
1b. Set $x_{k+1}:=\frac{x_{k}+\beta_{2}}{2}$, and GOTO 1a.
2a. Evaluate $f_{1}\left(x_{k}\right)$. If $f_{1}\left(x_{k}\right)=f_{1}\left(\alpha_{2}\right)$ STOP, $x_{k} \in E_{w}$;
else
2b. Set $x_{k+1}:=\frac{x_{k}+\beta_{2}}{2}, k:=k+1$ and GOTO 2a.
Let us notice that $x_{k}>x_{k+1}>\beta_{2}$, since $x_{k}-x_{k+1}=\frac{1}{2^{k}}\left(x_{0}-\beta_{2}\right)$ and $x_{k+1}=\frac{x_{k}+\beta_{2}}{2}$. Thus the finiteness of this procedure is guaranteed if we know, a priori, that $E_{w} \cap\{x \in$ $\left.K: x>\beta_{2}\right\} \neq \emptyset$. Otherwise, the infinite sequence generated by the algorithm will converge to β_{2} in which case $\max E_{w}=\beta_{2}$. This happens, for instance if $M_{1}^{+}=\emptyset$ as Corollary 4.1.2 shows.
Observe that once we arrive at step $2 b$, the inequality in step la continues to be valid
for the next iterate; and $f_{1}\left(x_{k}\right) \neq f_{1}\left(\alpha_{2}\right)$ amount to writing $f_{1}\left(x_{k}\right)>f_{1}\left(\alpha_{2}\right)$ since f_{1} (and also f_{2}) is non-decreasing in $\left[\beta_{2},+\infty[\cap K\right.$.

The following procedure may used to compute \bar{z} in case compact, precisely when $K=[a, b]$. In the same way as in the algorithm 1 we will consider the tolerance like the length of the interval of search in every iterations.

Algorithm 3.

0a. Evaluate $f_{2}(b)$ and $f_{1}(b)$. If $\left(f_{2}(b) \leq \gamma_{+}\right.$and $\left.f_{1}(b)=f_{1}\left(\alpha_{2}\right)\right)$, STOP $\sup E_{w}=b$.
else

0b. Set $x_{0}:=\beta_{2}, y_{0}:=b$. and $k:=0$.
1b. Set $z_{k}:=\frac{x_{k}+y_{k}}{2}$
1c. Evaluate $f_{1}\left(z_{k}\right)$. If $f_{1}\left(z_{k}\right)=f_{1}\left(\alpha_{2}\right)$ then
$x_{k+1}:=z_{k}, y_{k+1}:=y_{k}, k:=k+1$ and GOTO 1e
else

1d. $x_{k+1}:=x_{k}, y_{k+1}:=z_{k}, k:=k+1$ and GOTO $\mathbf{1 b}$;
1e. If $y_{k}-x_{k}>\epsilon$ then GOTO $\mathbf{1 b}$;
else GOTO 2a.

2a. Evaluate $f_{2}\left(x_{k}\right)$. If $f_{2}\left(x_{k}\right) \leq \gamma_{+}$then

STOP, $\sup E_{w}($ approx $)=x_{k}$
else

Set $x_{0}:=\beta_{2}, y_{0}:=x_{k}$ and $k:=0$.
2b. $z_{k}:=\frac{x_{k}+y_{k}}{2}$.
2c. Evaluate $f_{2}\left(z_{k}\right)$. If $f_{2}\left(z_{k}\right) \leq \gamma_{+}$then
$x_{k+1}:=z_{k}, y_{k+1}:=y_{k}, k:=k+1$ and GOTO 2e.
else

2d. $x_{k+1}:=x_{k}, y_{k+1}:=z_{k}, k:=k+1$ and GOTO $2 \mathbf{b}$;

2e. If $y_{k}-x_{k}>\epsilon$ then GOTO 2b;
else STOP, $\sup E_{w}($ approx $)=x_{k}$

A reasonning similar to the realized on in the algorithm 1, shows the convergence of this algorithm.

Based on the algorithms 1 and 3, let us show them proved obtained with implementation computational of these, applied to 2 examples.

Example 4.1.1 Let us consider the Example 2.4.3, take $y_{0}=10^{8}$. (see figure 1). We will determine the $\sup E_{w}($ see table 1).

$$
f_{1}(x)=\left\{\begin{array}{lll}
2 & \text { if } & x \notin[1,2], \\
1 & \text { if } & x \in[1,2],
\end{array} \quad f_{2}(x)=|x-5| .\right.
$$

Here $E_{w}=[1,8]$.

figure 1

TABLE 1

error	total cpu time	$\gamma_{+} /$iterations	$\sup E_{w} /$ iterations
10^{-3}	0.0150000000	$2.9992675781 / 12$	$7.9993314775 / 40$
10^{-4}	0.0160000000	$2.999908443 / 15$	$7.9999226491 / 42$
10^{-5}	0.0160000000	$2.9999942780 / 19$	$7.9999965455 / 45$
10^{-6}	0.0160000000	$2.9999992847 / 22$	$7.9999993877 / 49$

Example 4.1.2 In this Example (see figure 2), take $y_{0}=10^{8}$, here $E_{w}=[0,7]$. The approximations of the $\sup E_{w}$ can turn in the table 2

$$
f_{1}(x)=\left\{\begin{array}{ll}
2 & \text { if } x<1, \\
1 & \text { if } x \in[1,2], \\
2 & \text { if } x \in] 2,7[, \\
\sqrt{x-7}+2 & \text { if } x>7,
\end{array} \quad f_{2}(x)= \begin{cases}6-x \\
-e^{-(x-4)^{2}}+3 & \text { if } x \geq 4\end{cases}\right.
$$

figura 2

TABLE 2

error	total cpu time	$\gamma_{+} /$iterations	$\sup E_{w} /$ iterations
10^{-3}	0.014000	$3.9990234375 / 11$	$6.9999681538 / 40$
10^{-4}	0.015000	$3.9999389648 / 15$	$6.9999908912 / 42$
10^{-5}	0.015000	$3.9999923706 / 18$	$6.9999997729 / 48$
10^{-6}	0.016000	$3.9999990463 / 21$	$6.9999997729 / 48$

Theorem 4.1.2 Let $\emptyset \neq K \subseteq \mathbb{R}$ be convex and closed, $f_{i}: K \rightarrow \mathbb{R}$ be $l s c$ for $i=1,2$, with f_{1} being quasiconvex and f_{2} semistrictly quasiconvex. Assume that (4.1.1) holds. Then $\min E_{w}=\alpha_{1}$, and if $\bar{x} \in K$, the following assertion are equivalent:
(a) $\bar{x}>\beta_{2}, \bar{x} \in E_{w}$;
(b) $\bar{x}>\beta_{2}, f_{1}\left(\alpha_{2}\right)=f_{1}(\bar{x})$,

$$
S_{1}^{+}\left[f_{1}\left(\alpha_{2}\right)\right] \cap S_{2}^{+}\left[f_{2}(\bar{x})\right]=\emptyset
$$

(c) $\bar{x}>\beta_{2}$,

$$
\left.S_{2}^{+}\left[f_{2}(\bar{x})\right] \subseteq\right] \beta_{1}, \bar{x}\left[, \quad S_{2}^{+}\left[f_{2}(\bar{x})\right] \subseteq\left\{x \in K: f_{1}(x)=f_{1}(\bar{x})\right\}\right.
$$

Proof. The semistrict quasiconvexity of f_{2} implies $M_{2}^{-}=\emptyset$, the first part is a consequence of Corollary 4.1.2.
$(a) \Longrightarrow(b)$: From Theorem 4.1.1 it follows that $f_{1}\left(\alpha_{2}\right)=f_{1}(\bar{x})$. Let $x \in S_{1}^{+}\left[f_{1}\left(\alpha_{2}\right)\right]$: then $f_{1}(x)<f_{1}\left(\alpha_{2}\right)=f_{1}(\bar{x})$, and therefore $f_{2}(\bar{x}) \leq f_{2}(x)$ since $\bar{x} \in E_{w}$.
$(b) \Longrightarrow(c):$ Let $x \in S_{2}^{+}\left[f_{2}(\bar{x})\right]$ and suppose that $x>\bar{x}$. Since $f_{2}\left(\alpha_{2}\right)<f_{2}(x)$, the semistrict quasiconvexity of f_{2} implies that $f_{2}(\bar{x})<f_{2}(x)$, giving a contradiction, and $x<\bar{x}$. suppose now that $x \leq \beta_{1}$, then $f_{2}\left(\beta_{1}\right)<f_{2}(\bar{x})$ by the semistrict quasiconvexity of f_{2} and the choice of x. By assumption and a previous inequality it follows that $f_{1}\left(\beta_{1}\right) \leq f_{1}\left(\alpha_{2}\right)$, yielding a contradiction. Finally, we observe that $\beta_{1} \notin S_{2}^{+}\left[f_{2}(\bar{x})\right]$. This complete the proof of the first part in (c). We now prove de second inclusion. Take any $x \in S_{2}^{+}\left[f_{2}(\bar{x})\right]$. Then $f_{1}(x) \geq f_{1}\left(\alpha_{2}\right)=f_{1}(\bar{x})$. The quasiconvexity implies that $f_{1}(x)=f_{1}(\bar{x})$.
$(c) \Longrightarrow(a):$ We need to prove that $\bar{x} \in E_{w}$. Because of the second inclusion of (c), it suffices to check that $f_{2}(\bar{x}) \leq f_{2}(x)$ for all $x \notin S_{2}^{+}\left[f_{2}(\bar{x})\right]$, but it is straightforward.

Theorem 4.1.3 Let $\emptyset \neq K \subseteq \mathbb{R}$ be convex and closed, $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. Assume that (4.1.1) holds.
(a) If f_{2} is semistrictly quasiconvex and $M_{1}^{+} \cap M_{2}^{+} \neq \emptyset$, then $E_{w}=\left[\alpha_{1}, \bar{x}\right]$, where $\bar{x} \in K$ solves the system

$$
\bar{x}>\beta_{2} \quad f_{1}(\bar{x})=f_{1}\left(\alpha_{2}\right), \quad f_{2}(\bar{x})=\gamma_{+} .
$$

(b) If f_{1} is semistrictly quasiconvex and $M_{1}^{-} \cap M_{2}^{-} \neq \emptyset$, then $E_{w}=\left[\bar{x}, \beta_{2}\right]$, where $\bar{x} \in K$ solves the system

$$
\bar{x}<\alpha_{1} \quad f_{2}(\bar{x})=f_{2}\left(\beta_{1}\right), \quad f_{1}(\bar{x})=\gamma_{-}
$$

Proof. (a) By of Corollary 4.1.2, $\min E_{w}=\alpha_{1}$, and by virtue of Corollary 4.1.1, it sufficies to prove that $M_{1}^{+} \cap M_{2}^{+}=\{\bar{x}\}$, which easily follows from the semistrict quasiconvexity of f_{2}. Part (b) follows from Corollaries 4.1.2 (b) and 4.1.1.

4.2 The second case: $\operatorname{argmin}_{K} f_{1}$ compact and $\operatorname{argmin}_{K} f_{2}$ empty

In this case we will assume:

$$
\begin{equation*}
[\alpha, \beta]=\operatorname{argmin}_{K} f_{1}, \quad-\infty<\alpha \leq \beta<+\infty \tag{4.2.1}
\end{equation*}
$$

Set

$$
B_{+}=\left\{x \in K: x \leq \alpha, f_{2}(x)=f_{2}(\alpha)\right\}, \quad B_{-}=\left\{x \in K: x \geq \beta, f_{2}(x)=f_{2}(\beta)\right\}
$$

We recall from Lemma 2.4.1 that every lsc and quasiconvex function h on $K \subseteq \mathbb{R}$ such that $\operatorname{argmin}_{K} h=\emptyset$, is non-constant and monotone. This fact we will be used in the remaining of this chapter.

Theorem 4.2.1 Let $\emptyset \neq K \subseteq \mathbb{R}$ be convex and closed, $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. Assume that (4.2.1) holds along with $\operatorname{argmin}_{K} f_{2}=\emptyset$. Then, B_{+}, B_{-}are convex, nonempty. Moreover, the following assertions hold.
(a) If f_{2} is non-decreasing then $\left.]-\infty, \beta\right] \subseteq E_{w}$ and B_{+}is bounded: in case $\left.\left.B_{+}=\right] \alpha^{+}, \alpha\right]$ ($\alpha^{+}<\alpha$) we have

$$
\begin{equation*}
S_{1}\left[f_{1}\left(\alpha^{+}\right)\right] \cap\left\{x \in K: x>\beta, f_{2}(x)=f_{2}(\alpha)\right\}=E_{w} \cap\{x \in K: x>\beta\} \tag{4.2.2}
\end{equation*}
$$

in case $B_{+}=\left[\alpha^{+}, \alpha\right]\left(\alpha^{+} \leq \alpha\right)$ we have

$$
\begin{equation*}
S_{1}\left[\mu_{+}\right] \cap\left\{x \in K: x>\beta, f_{2}(x)=f_{2}(\alpha)\right\}=E_{w} \cap\{x \in K: x>\beta\} \tag{4.2.3}
\end{equation*}
$$

where $\mu_{+}=\lim _{t \downarrow 0} f_{1}\left(\alpha^{+}-t\right)=\inf _{y<\alpha^{+}} f_{1}(y)$.
(b) If f_{2} is non-increasing then $\left[\alpha,+\infty\left[\subseteq E_{w}\right.\right.$ and B_{-}is bounded : in case $B_{-}=\left[\beta, \beta^{-}[\right.$ ($\beta<\beta^{-}$) we have

$$
S_{1}\left[f_{1}\left(\beta^{-}\right)\right] \cap\left\{x \in K: x<\alpha, f_{2}(x)=f_{2}(\beta)\right\}=E_{w} \cap\{x \in K: x<\alpha\}
$$

in case $B_{-}=\left[\beta, \beta^{-}\right]\left(\beta \leq \beta^{-}\right)$we have

$$
S_{1}\left[\mu_{-}\right] \cap\left\{x \in K: x<\alpha, f_{2}(x)=f_{2}(\beta)\right\}=E_{w} \cap\{x \in K: x<\alpha\}
$$

where $\mu_{-}=\lim _{t \downarrow 0} f_{1}\left(\beta^{-}+t\right)$.
Proof. We only prove the convexity of B_{+}. Take $y_{i} \in B_{+}, i=1,2$, with $y_{1}<y_{2}$, and consider y such that $y_{1}<y<y_{2}$. By quasiconvexity, $f_{2}(y) \leq f_{2}(\alpha)$. If on the contrary $f_{2}(y)<f_{2}(\alpha)$ then f_{2} is non-decreasing by Lemma 2.4.1. Hence, $f_{2}(\alpha)=f_{2}\left(y_{1}\right) \leq f_{2}(y)$, a contradiction, proving that B_{+}is convex.
(a): By assumption there exists $z<\alpha$ such that $f_{2}(z)<f_{2}(\alpha)$. We now check $\bar{x}<z$, imply $\bar{x} \in E_{w}$. If $\bar{x}<x$ then $f_{2}(\bar{x}) \leq f_{2}(x)$ by monotonicity; if $x<\bar{x}$ then $f_{1}(\bar{x}) \leq$ $\max \left\{f_{1}(x), f_{1}(\alpha)\right\}=f_{1}(x)$. This prove that $\bar{x} \in E_{w}$, and since $\bar{x}<z$ was arbitrary we conclude that $]-\infty, \beta] \subseteq E_{w}$. The boundedness of B_{+}is a consequence of $\operatorname{argmin}_{K} f_{2}=$ \emptyset. Let us prove (4.2.2). Take \bar{x} in the set of the left hand-side of (4.2.2). We will check that $\bar{x} \in E_{w}$. If $x>\bar{x}$ then $f_{2}(\bar{x}) \leq f_{2}(x)$ for all $x \leq \bar{x}$ because of f_{2} is non-decreasing. By the choice of α^{+}and \bar{x}, we actually obtain that $f_{2}(\bar{x}) \leq f_{2}(x)$ for all $x>\alpha^{+}$. If $x \leq \alpha^{+}$, $x \in K$, then $f_{1}(\bar{x}) \leq f_{1}\left(\alpha^{+}\right) \leq f_{1}(x)$ by quasiconvexity and the choice of \bar{x}. This proves one inclusion in (4.2.2).

Let us prove the other inclusion. Take any $\bar{x} \in K, \bar{x}>\beta$. The monotonicity of f_{2} along with the choice of B_{+}imply $f_{2}\left(\alpha^{+}\right)<f_{2}(\alpha) \leq f_{2}(\bar{x})$. Therefore, if $\bar{x} \in E_{w}$ then $f_{1}(\bar{x}) \leq f_{1}\left(\alpha^{+}\right)$and so $\bar{x} \in S_{1}\left[f_{1}\left(\alpha^{+}\right)\right]$. We already know that $f_{2}(\alpha) \leq f_{2}(\bar{x})$. We also have $f_{1}(\alpha)<f_{1}(\bar{x})$. Both inequalities imply $f_{2}(\alpha)=f_{2}(\bar{x})$, which completes the proof of (4.2.2).
Let \bar{x} in the set of the left hand-side of (4.2.3). We now check that $\bar{x} \in E_{w}$. If $x>\bar{x}$ and $x \in K$, then, as in (a), we obtain $f_{2}(\bar{x}) \leq f_{2}(x)$ for all $x \geq \alpha^{+}$. If $x<\alpha^{+}$, and $x \in K$, then $f_{1}(\bar{x}) \leq \mu_{+} \leq f_{1}(y)$ for all $y<\alpha^{+}$because of the monotonicity of f_{1} in such an interval (see Lemma 2.4.1). This completes the proof that $\bar{x} \in E_{w}$ and thus one inclusion in (4.2.3) is proved.

For the other inclusion, take any $\bar{x} \in K, \bar{x}>\beta$.
If $\bar{x} \notin S_{1}\left[\mu_{+}\right], f_{1}(\bar{x})>\mu_{+}$. Thus there exists $t>0$ such that $f_{1}(\bar{x})>f_{1}\left(\alpha^{+}-t\right)$. Since f_{2} is non-decreasing, $f_{2}\left(\alpha^{+}-t\right) \leq f_{2}(\alpha)$. By the choice of $B_{+}, \quad f_{2}\left(\alpha^{+}-t\right)<f_{2}(\alpha)$, and since $f_{2}\left(\alpha^{+}-t\right)<f_{2}(\bar{x})$. Hence $\bar{x} \notin E_{w}$.
If $f_{2}(\bar{x}) \neq f_{2}(\alpha)$, then $f_{2}(\bar{x})>f_{2}(\alpha)$ by monotonicity. We also have $f_{1}(\alpha)<f_{1}(\bar{x})$ since $\bar{x}>\beta$. This shows $\bar{x} \notin E_{w}$.

We use the following notation:

$$
\tilde{\gamma}_{+}=\left\{\begin{array}{lll}
f_{1}\left(\alpha^{+}\right) & \text {if } & \left.\left.B_{+}=\right] \alpha^{+}, \alpha\right] \\
\mu_{+} & \text {if } & B_{+}=\left[\alpha^{+}, \alpha\right]
\end{array}, \quad \tilde{\gamma}_{-}=\left\{\begin{array}{lll}
f_{2}\left(\beta^{-}\right) & \text {if } & B_{-}=\left[\beta, \beta^{-}[\right. \\
\mu_{-} & \text {if } & B_{-}=\left[\beta, \beta^{-}\right]
\end{array}\right.\right.
$$

Let use consider the sets

$$
N_{1}^{+}=\left\{x \in K: x>\beta, \quad f_{1}(x)=\tilde{\gamma}_{+}\right\}, \quad N_{2}^{+}=\left\{x \in K: x>\beta, \quad f_{2}(x)=f_{2}(\alpha)\right\},
$$

and

$$
N_{1}^{-}=\left\{x \in K: x<\alpha_{1}, \quad f_{1}(x)=\tilde{\gamma}_{-}\right\}, \quad N_{2}^{-}=\left\{x \in K: x<\alpha, \quad f_{2}(x)=f_{2}(\beta)\right\} .
$$

It is not difficult to check that $N_{i}^{+}, N_{i}^{-}, i=1,2$, are convex, and if $\sup N_{i}^{+} \in \mathbb{R}$ then $\sup N_{i}^{+} \in N_{i}^{+}$. A similar result is obtained for N_{i}^{-}.

Corollary 4.2.1 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. Assume that (4.2.1) holds along with $\operatorname{argmin}_{K} f_{2}=\emptyset$, and f_{1} is semistrictly quasiconvex.
(a) If f_{2} is non-decreasing and $N_{1}^{+} \cap N_{2}^{+} \neq \emptyset$, then $\left.\left.E_{w}=\right]-\infty, \bar{x}\right]$, were $\bar{x} \in K$ solves the system

$$
\begin{equation*}
\bar{x}>\beta \quad f_{2}(\bar{x})=f_{2}(\alpha), \quad f_{1}(\bar{x})=\tilde{\gamma}_{+}, \tag{4.2.4}
\end{equation*}
$$

(b) If f_{2} is non-increasing and $N_{1}^{-} \cap N_{2}^{-} \neq \emptyset$, then $E_{w}=[\bar{x},+\infty[$, were $\bar{x} \in K$ solves the system

$$
\begin{equation*}
\bar{x}<\alpha \quad f_{2}(\bar{x})=f_{2}(\beta), \quad f_{1}(\bar{x})=\tilde{\gamma}_{-} . \tag{4.2.5}
\end{equation*}
$$

Proof. We only check (4.2.4). It is easy to see that $N_{1}^{+} \cap N_{2}^{+}$is a singleton due to semistric quasiconvexity of f_{1}. Also, every $\bar{x} \in K$ satisfying (4.2.4) is in E_{w}. We now prove that every $z>\bar{x}, z \in K$, it does not belong to E_{w}. Indeed, if such a $z \in E_{w}$, then $f_{1}(z) \leq \tilde{\gamma}_{+}$by Theorem 4.2.1. The case $f_{1}(z)=\tilde{\gamma}_{+}$, is excluded because of the semistrict quasiconvexity of f_{1}. Thus, we consider the case $f_{1}(z)<\tilde{\gamma_{+}}$, but it is impossible since $\tilde{\gamma}_{+}=f_{1}(\bar{x}) \leq f_{1}(z)$ by quasiconvexity. This contradiction proves (4.2.4). Obviously $N_{1}^{+} \cap N_{2}^{+}=\{\bar{x}\}$.

Corollary 4.2.2 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. Assume that (4.2.1) holds along with $\operatorname{argmin}_{K} f_{2}=\emptyset$. If f_{2} is semistrictly quasiconvex then either $\left.\left.E_{w}=\right]-\infty, \beta\right]$ (in case f_{2} is non-decreasing) or $E_{w}=\left[\alpha,+\infty\left[\right.\right.$ (in case f_{2} is non-increasing).

Proof. It is a consequence of Theorem 4.2.1.

4.3 The third case: $\operatorname{argmin}_{K} f_{1}$ unbounded and $\operatorname{argmin}_{K} f_{2}$ empty

Theorem 4.3.1 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex and $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. Assume that $\operatorname{argmin}_{K} f_{2}=\emptyset$ and $\alpha \in \mathbb{R}$. The following assertions
hold:
(a) If $\operatorname{argmin}_{K} f_{1}=\left[\alpha,+\infty\left[\right.\right.$ then either $E_{w}=\mathbb{R}$ (in case f_{2} is non-decreasing) or $E_{w}=$ [$\alpha,+\infty\left[\right.$ (in the case f_{2} is non-increasing);
(b) If $\left.\left.\operatorname{argmin}_{K} f_{1}=\right]-\infty, \alpha\right]$ then either $E_{w}=\mathbb{R}$ (in the case f_{2} is non-increasing) or $\left.\left.E_{w}=\right]-\infty, \alpha\right]$ (in case f_{2} is non-decreasing).

Proof. We only prove (a), being the other enterely similar. By assumption there exists $z \in K$ such that $f_{2}(z)<f_{2}(\alpha)$. (1) Assume first that $z<\alpha$. Then, Lemma 2.4.1 asserts that f_{2} is non-decreasing in K. We now check $\bar{x}<z, \bar{x} \in K$,imply $\bar{x} \in E_{w}$. If $\bar{x}<x$ then $f_{2}(\bar{x}) \leq f_{2}(x)$ by monotonicity; if $x<\bar{x}$ then $f_{1}(\bar{x}) \leq \max \left\{f_{1}(x), f_{1}(\alpha)\right\}=f_{1}(x)$. This prove that $\bar{x} \in E_{w}$, and $\bar{x}<z$ since was arbitrary, we conclude that $E_{w}=\mathbb{R}$ because of the convexity of E_{w}. (2) Assume now that $z>\alpha$. By Lemma 2.4.1, f_{2} is non-increasing in K. We will prove that $\bar{x}<\alpha, \bar{x} \in K$, imply $\bar{x} \notin E_{w}$. In fact, $f_{2}(z)<f_{2}(\alpha) \leq f_{2}(\bar{x})$, and the other hand, $f_{1}(z)<f_{1}(\bar{x})$ since $\bar{x}<\alpha$. This completes the proof that $\bar{x} \notin E_{w}$, and therefore $E_{w}=[\alpha,+\infty[$.

4.4 The fourth case: $\operatorname{argmin}_{K} f_{1}$ and $\operatorname{argmin}_{K} f_{2}$ empty

In this case we obtain the following single theorem.
Theorem 4.4.1 Let $\emptyset \neq K \subseteq \mathbb{R}$ be closed and convex and $f_{i}: K \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. (hence K is unbounded). The following assertions hold:
(a) if $K \neq \mathbb{R}$ then $E_{w}=\emptyset$;
(b) if $K=\mathbb{R}$ and f_{1}, f_{2} are both non-decreasing or non-increasing, then $E_{w}=\emptyset$;
(c) if $K=\mathbb{R}$ and f_{1} is non-decreasing (resp. non-increasing) and f_{2} is non-increasing (resp. non-decreasing), then $E_{w}=\mathbb{R}$.

Proof. We see that if $K=[a,+\infty[(\operatorname{resp} . K=]-\infty, a])(a>-\infty)$ then f_{1}, f_{2} are nonincreasing (resp. non-decreasing) and therefore $E_{w}=\emptyset$. This proves (a). Parts (b) and (c) result follows a similar reasoning.

The following case is present for the sake completennes.

4.5 The fifth case: $\operatorname{argmin}_{K} f_{1}$ and $\operatorname{argmin}_{K} f_{2}$ are unbounded

In this case $K=\mathbb{R}$. We will assume:

$$
\begin{equation*}
]-\infty, \alpha]=\operatorname{argmin}_{K} f_{1},\left[\beta,+\infty\left[=\operatorname{argmin}_{K} f_{2},-\infty<\alpha<\beta<+\infty .\right.\right. \tag{4.5.1}
\end{equation*}
$$

Theorem 4.5.1 Let $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ be lsc and quasiconvex for $i=1,2$. Assume that (4.5.1) holds. Then $E_{w}=\mathbb{R}$.

Proof. By assumption E_{w} is convex, therefore $E_{w}=\mathbb{R}$.

Bibliography

[1] Adán M. and Novo V., Optimality conditions for vector optimization problems with generalized convexity in real linear spaces, Optimization, 51, 73-91, 2002.
[2] Aghezzaf B. and Hachimi M., On a gap between multiobjective optimization and scalar optimization, J. of Optimization Theory and Applications, 109, 431-435, 2001.
[3] Ansari, Q.H, Vector equilibrium problems and vector variational inequalities, Vector Variational Inequalities and Vector Equilibria, Edited by F. Giannessi, Kluwer Academic Publishers, Dordrecht, Holland, pp. 1-16, 2000.
[4] Aubin, J.P., Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, 1979.
[5] Baiocchi, C., Buttazzo, G., Gastaldi, F., and Tomarelli, F., General existence theorem for unilateral problems in continuum mechanics, Archive for Rational Mechanics and Analysis, Vol. 100, pp. 149-189, 1988.
[6] Bianchi, M., Hadjisavvas, N., and Schaible, S., Vector equilibrium problems with generalized monotone bifunctions, J. of Optimization Theory and Applications, Vol. 92, pp. 527-542, 1997.
[7] Bigi, G., and Castellani, M., K-epiderivatives for set-valued functions and optimization, Mathematical Methods Operations Research, Vol. 55, pp. 401-412, 2002.
[8] Borwein J. and Goebel R., Notions of relative interior in Banach spaces, J. of Mathematical Sciences, 115, 2542-2553, 2003.
[9] Chen, G.Y., and Craven, B.D., Existence and continuity of solutions for vector optimization, J. Optimization Theory and Applications, Vol. 81, pp. 459-468, 1994.
[10] Cambini, R., Generalized concavity for bicriteria functions, Generalized Convexity, Generalized Monotonicity: Recent Results, Edited by J.-P. Crouzeix et al., Non-convex Optimization and Its Applications, Vol. 27 Kluwer Academic Publishers, Dordrecht, Holland pp. 439-451, 1998.
[11] Carrizosa E., Plastria F. , Dominators for multiple-objective quasiconvex maximization problems, J. Global Optim., 18 , 35-58, 2000.
[12] Castellani M. and Pappalardo M. , About a gap between multiobjective optimization and scalar optimization, J. of Optimization Theory and Applications, 109, 437439, 2001.
[13] Deng, S., Characterizations of the nonemptiness and compactness of solutions sets in convex vector optimization, J. of Optimization Theory and Applications, Vol. 96, pp. 123-131, 1998.
[14] Deng S., Coercivity properties and well posedness in vector optimization, RAIRO Operations Research, 37, 195-208, 2003.
[15] Ferro, F., Minimax type theorems for n-valued functions, Annali di Matematica Pura ed Applicata, Vol. 32, pp. 113-130, 1982.
[16] Fliege J., Gap-free computation of Pareto-points by quadratic scalarizations, Mathematical Methods of Operations Research, 59, 69-89, 2004.
[17] Fan K., A generalization of Tychonoff's fixed point theorem, Math. annalen, 142 , 305-310, 1961.
[18] Flores-Bazán, F., Optimality conditions in non-convex set-valued optimization,Mathematical Methods of Operations Research, Vol. 53, pp. 403-417, 2001.
[19] Flores-Bazán F., Ideal, weakly efficient solutions for vector optimization problems, Mathematical Programming, Ser. A., 93, 453-475, 2002.
[20] Flores-Bazán, F., Radial epiderivatives and asymptotic functions in non-convex vector optimization, SIAM, Journal on Optimization, Vol. 14, pp. 284-305, 2003.
[21] Flores-Bazán, F., Semistrictly quasiconvex mappings and nonconvex vector optimization, Mathematical Methods of Operations Research, Vol. 59, pp. 129-145, 2004.
[22] Flores-Bazán F. and Vera C., The vector Weierstrass theorem and generalized quasi-convex vector optimization, pre-print 2003-04, Depto. Ingeniería matemática Universidad de Concepción, 2003.
[23] Flores-Bazán F. and Vera C., Characterization of the nonemptiness and compactness of solution sets in convex/nonconvex vector optimization, J. of Optimization Theory and Applications, Vol. 130, No 2, 2006.
[24] Flores-Bazán F., Vera C. and Hadjisavvas N., An optimal alternative theorem and applications to mathematical programming, Journal of Global Optimization, to appear, 2006.
[25] Flores-Bazán, F., and Oettli,W., Simplified optimality conditions for minimizing a difference of vector-valued functions, J. of Optimization Theory and Applications, Vol. 108, 571-586, 2001.
[26] Giannessi, F., Mastroeni, G., and Pellegrini, L., On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation, Vector Variational Inequalities and Vector Equilibria, Edited by F. Giannessi, Kluwer Academic Publishers, Dordrecht, Holland, pp. 153-215, 2000.
[27] Graña Drummond L.M. and Iusem A. N., A projected gradient method for vector optimization problems, Comput Optim. appl., 28, 5-29, 2004.
[28] Graña Drummond L.M. and Svaiter B., A steepest descent method for vector optimization problems, J. Computational and Applied mathematics ., 175, 395-414, 2005.
[29] Holmes Richard B., Geometric Functional Analysis and its Applications SpringerVerlag, New York, 1975.
[30] Hu S. and Papageorgiou N.S., Handbook of Multivalued Analysis (Volume I), Kluwer Academic Publishers, 1997.
[31] Hadjisavvas N. and Schaible S., From scalar to vector equilibrium problems in the quasimonotone case, J. of Optimization Theory and Applications, Vol. 96, pp. 297-309, 1998.
[32] Huang X. X. and Yang X.Q., Characterizations of Nonemptiness and Compactness of the Set of Weakly Efficient Solutions for Convex Vector Optimization and Applications, Journal of Mathematical Analysis and Applications, Vol. 264, 270-287, 2001.
[33] Huang X. X., Yang X.Q. and Teo K.L., Characterizations of Nonemptiness and Compactness of the Solutions Set of a Convex Vector Optimization Problem with Cone constraints and Applications,J. of Optimization Theory and Applications, Vol. 123, No 2, pp. 391-407, 2004.
[34] Illés T, Kassay G., Theorems of the alternative and Optimality Conditions for Convexlike and general Convexlike Programming, J. of Optimization Theory and Applications, 107, 243-257, 1999.
[35] Jahn, J., and Sachs, E., Generalized quasiconvex mappings and vector optimization, SIAM, Journal on Control and Optimization, Vol. 24, pp. 306-322, 1986.
[36] Jeyakumar V., Oettli W. and Natividad M., A solvability theorem for a class of quasiconvex mappings with applications to optimization, J. of Mathematical Analysis and Applications, 179, 537-546, 1993.
[37] Karamardian S., Duality in Mathematical programming, J. Math. Anal. and Appli., 20, 344-358, 1967.
[38] N_{g} K.F. and Zheng X.Y., Existence of efficient points in vector optimization and generalized BNishop-Phelps theorem, J. of Optimization Theory and Applications,115 $\mathrm{N}_{0} 1,29-47,2002$.
[39] Knnov, I.V. and Yao J.C., Existence of solutions for generalized vector equilibrium problem, J. Math. Anal. and Appli., 233, 328-335, 1999.
[40] Luc, D.T., Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 319, Springer-Verlag, New York, Berlin, 1989.
[41] Luc, D.T., An existence theorem in vector optimization, Mathematics of Operations Research, Vol. 14, pp. 693-699, 1989.
[42] Luc, D.T., and Penot, J.P., Convergence of asymptotic directions, Transactions of the American Mathematical Society, Vol. 353, pp. 4095-4121, 2001.
[43] Penot, J.-P., and Thera, M., Polarité des applications convexes à valeurs vectorielles, C.R. Acad. Sci. Paris A, Vol. 288, pp. 419-422, 1979.
[44] Peressini A.L., Ordered Topological Vector Spaces, Harper and Row, New York and London, 1967.
[45] Ruíz-Canales P. and Rufían-Lizana A., A characterization of weakly efficient points, Mathematical Programming, Ser. A., 68 No 2 (1995), 205-212.
[46] Rockafellar R.T. and Wets R.J-B., Variational Analysis, Springer-Verlag, Berlin Hedelberg, 1998.
[47] Sach P.H., Nearly subconvexlike set-valued maps and vector optimization problems, J. of Optimization Theory and Applications, 119, 335-356, 2003.
[48] Song W., Lagrangian Duality for Minimization of Nonconvex Multifuctions, J. of Optimization Theory and Applications, 93, 167-182, 1997.
[49] Song W., Duality in Set-Valued Optimization, Dissertationes Mathematicae, 375, 167, 1998.
[50] Taa A., Optimality conditions for vector mathematical programming via a theorem of the alternative, J. of Mathematical Analysis and Applications, 233, 233-245, 1999.
[51] Tanaka T., General quasiconvexities, cones saddle points and minimax theorem for vector-valued functions, J. of Optimization Theory and Applications, 81, 355-377, 1994.
[52] Wang S.Y., A note on optimality conditions in multiobjective programming, Systems Science and Mathematical Sciences, 1, 184-190, 1988.
[53] Wang S.Y. and Yang F.M., A gap between multiobjective optimization and scalar optimization, J. of Optimization Theory and Applications, 68, 389-391, 1991.
[54] Yang X.M., Li D. and Wang S.Y., Nearly-subconvexlikeness in vector optimization with set-valued functions, J. of Optimization Theory and Applications, 110, 413-427, 2001.
[55] Yang X.M., Yang X.Q and Chen G.Y., Theorems of the alternative and optimization with set-valued maps, J. of Optimization Theory and Applications, 107, 627-640, 2000.
[56] Zeng R., A general Gordan alternative theorem with weakened convexity and its application, Optimization, 51, 709-717, 2002.

