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Abstract

In this paper we present and analyze a new mixed finite element method for the nonlinear problem
given by the stationary convective Brinkman–Forchheimer equations with varying porosity. Our
approach is based on the introduction of the pseudostress and the gradient of the porosity times the
velocity, as further unknowns. As a consequence, we obtain a mixed variational formulation within
a Banach spaces framework, with the velocity and the aforementioned tensors as the only unknowns.
The pressure, the velocity gradient, the vorticity, and the shear stress can be computed afterwards
via postprocessing formulae. A fixed-point strategy, along with monotone operators theory and the
classical Banach theorem, are employed to prove the well-posedness of the continuous and discrete
systems. Specific finite element subspaces satisfying the required discrete stability condition are
defined, and optimal a priori error estimates are derived. Finally, several numerical examples
illustrating the performance and flexibility of the method and confirming the theoretical rates of
convergence, are reported.
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1 Introduction

In this work we study mathematical and computational modeling of fast flow of fluid through highly
porous media using the stationary convective Brinkman–Forchheimer equations with varying porosity.
This type of flows has a broad range of applications, including processes arising in chemical, petroleum,
and environmental engineering. In particular, fast flows in the subsurface may occur in fractured
or vuggy aquifers or reservoirs, as well as near injection and production wells during groundwater
remediation or hydrocarbon production. Many of the investigations in porous media have mainly
focused on the use of Darcy’s law. However, as the Reynolds number increases, Darcy’s law becomes
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Casilla 297, Concepción, Chile, email: scaucao@ucsc.cl.
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less accurate, necessitating more comprehensive models. To overcome this deficiency, it is possible
to consider the convective Brinkman–Forchheimer equations (see, e.g. [14, 28, 26, 27, 25, 15]), where
terms are added to Darcy’s law in order to take into account high velocity flow and high porosity.

In this context, and up to the authors’ knowledge, [14] constitutes one of the first works in analyzing
the convective Brinkman–Forchheimer (CBF) equations. In that work, the authors prove continuous
dependence of solutions of the CBF equations written in velocity-pressure formulation on the Forch-
heimer coefficient in H1 norm. Later on, an approximation of solutions for the incompressible CBF
equations via the artificial compressibility method was proposed and analyzed in [28]. Meanwhile,
the two-dimensional stationary CBF equations were analyzed in [25]. The focus of this work is on
the well-posedness of the corresponding velocity-pressure variational formulation. More recently, an
augmented mixed pseudostress-velocity formulation was analyzed in [8]. In there, the well-posedness
of the problem is achieved by combining a fixed-point strategy, the Lax-Milgram theorem, and the
well-known Schauder and Banach fixed-point theorems. In turn, a non-augmented mixed formula-
tion based on Banach spaces was developed and analyzed for the CBF problem in [9]. The resulting
scheme is then written equivalently as a fixed-point equation, so that results recently established in
[18] for perturbed saddle-point problems in Banach spaces, together with the Banach-Nečas-Babuška
and Banach theorems, are applied to prove the well-posedness of the continuous and discrete systems.
Furthermore, new mixed finite element methods for the coupling of the CBF and double-diffusion
equations were derived and analyzed in [7]. Similar arguments to the ones employed in [9] and [18]
were employed to prove the existence and uniqueness of continuous and discrete problems.

Regarding the literature focused on the analysis of the CBF equations with varying porosity, we start
referring to [26], where the authors analyze the well-posedness of solution for a continuous velocity-
pressure variational formulation. In particular, the existence of solution is obtained without any data
assumption, while uniqueness is achieved for sufficiently small data. In turn, existence and uniqueness
of weak solutions for the CBF model was studied in [27] for bounded and unbounded domains. The
main novelty of this work is the use of a suitable extension of the Ladyzhenskaya functional method.
Meanwhile, a mixed formulation was introduced and analyzed in [15]. In there, the authors prove
existence of a unique solution under a small data condition. Then, the convergence of a Taylor-Hood
finite element approximation using a finite element interpolation of the porosity is proved under similar
smallness assumption. Moreover, optimal error estimates are derived.

The purpose of the present work is to develop and analyze a new three-field mixed formulation of the
CBF problem with varying porosity and study a suitable numerical discretization. To that end, unlike
previous works, and motivated by [16], [10], [13], and [1], we introduce the pseudostress tensor and
the gradient of the porosity times the velocity as additional unknowns, besides the fluid velocity, and
subsequently eliminate the pressure unknown using the incompressibility condition. Then, similarly
to [10] and [1], we combine a fixed-point argument, classical results on nonlinear monotone operators,
sufficiently small data assumptions, and the Banach fixed-point theorem, to establish existence and
uniqueness of solution of both the continuous and discrete formulations. In addition, applying an
ad-hoc Strang-type lemma in Banach spaces, we are able to derive the corresponding a priori error
estimates. Next, employing Raviart–Thomas spaces of order k ≥ 0 for approximating the pseudostress
tensor, and discontinuous piecewise polynomials of degree k for the velocity and the gradient of the
porosity times the velocity, we prove that the method is convergent with optimal rates.

This work is organized as follows. The remainder of this section describes standard notation and
functional spaces to be employed throughout the paper. In Section 2 we introduce the model prob-
lem and derive its three-field mixed variational formulation in a Banach spaces frameworks. Next, in
Section 3 we establish the well-posedness of this continuous scheme by means of classical results on
nonlinear monotone operators and the Banach fixed point theorem. The Galerkin finite element ap-
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proximation, its corresponding a priori analysis and the consequent rates of convergence are developed
in Section 4. Finally, the performance of the method is illustrated in Section 5 with some numerical
examples in 2D and 3D with and without manufactured solutions, which confirm the accuracy and
flexibility of our mixed finite element method.

Preliminary notations

Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded domain with polyhedral boundary Γ, and let n be the outward
unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev
spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar, vectorial,
or tensorial case, are denoted by ‖ · ‖0,p;Ω and ‖ · ‖s,p;Ω, respectively. In particular, given a non-
negative integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm and seminorm
are simplified to ‖ · ‖m,Ω and | · |m,Ω, respectively. By M and M we will denote the corresponding
vectorial and tensorial counterparts of the generic scalar functional space M, whereas M′ denotes its

dual space, whose norm is defined by ‖f‖M′ := sup
06=v∈M

|f(v)|
‖v‖M

, and ‖ · ‖, with no subscripts, will stand

for the natural norm in any product functional space. In turn, for any vector fields v = (vi)i=1,n and
w = (wi)i=1,n, we set the gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div(v) :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
i=1

τii, τ : ζ :=

n∑
i,j=1

τij ζij , and τ d := τ − 1

n
tr(τ ) I ,

where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will denote the
Euclidean norm in Rn or Rn×n. Additionally, given t ∈ (1,+∞), we introduce the Banach space

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
,

equipped with the usual norm

‖τ‖divt;Ω := ‖τ‖0,Ω + ‖div(τ )‖0,t;Ω ∀ τ ∈ H(divt; Ω) ,

and recall that, proceeding as in [20, eq. (1.43), Section 1.3.4] (see also [6, Section 4.1], [16, Section

3.1], and [22, eq. (2.11), Section 2.1]) one can prove that for each t ∈

{
(1,+∞) if n = 2 ,

[6/5,+∞) if n = 3 ,
there

holds the integration by parts formula

〈τν,v〉Γ :=

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω)×H1(Ω) . (1.1)

where 〈·, ·〉Γ stands here for the duality pairing between H−1/2(Γ) and H1/2(Γ).
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2 Formulation of the model problem

In this section we introduce the model of interest and derive its corresponding weak formulation.

2.1 The model problem

In what follows we consider the problem introduced in [26] (see also [27, 15]), which, given by the
convective Brinkman–Forchheimer equations with varying porosity ρ, is utilized to model fluid flow
through porous media with high porosity ρ. More precisely, we are interested in finding a velocity
field u and a pressure field p, such that

−div
{
ρ
(
µ∇u− (u⊗ u)

)}
+ ρ∇p+ D(ρ) u + F(ρ) |u|u = ρ f in Ω ,

div(ρu) = 0 in Ω ,

u = uD on Γ ,

(2.1)

where µ = Re−1, Re is the Reynolds number, D(ρ) and F(ρ) are the Darcy and Forchheimer coefficients,
respectively, both depending on the distribution porosity function ρ, which is assumed to belong to
W1,4(Ω) ∩ L∞(Ω), f is a given external force, and uD ∈ H1/2(Γ) is a Dirichlet datum. In addition,
there exists a positive constant ρ0, such that

0 < ρ0 ≤ ρ(x) ≤ 1 a.e. in Ω . (2.2)

In turn, we assume that both D(ρ) and F(ρ) are positive and bounded functions, that is, there exist
positive constants D0, D1, F0, and F1, such that

0 < D0 ≤ D(s) ≤ D1 and 0 < F0 ≤ F(s) ≤ F1 ∀ s ∈ [ρ0, 1) . (2.3)

Since there always holds D(1) = F(1) = 0, we observe that the standard Navier–Stokes equation is
recovered from (2.1) when ρ = 1. In addition, due to the first equation of (2.1), and in order to
guarantee uniqueness of the pressure p, this unknown will be sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Next, in order to derive a mixed formulation for (2.1), in which the Dirichlet boundary condition
for the velocity becomes a natural one, we first recall the following properties

div(%v) = % div(v) + v · ∇% , div(% τ ) = %div(τ ) + τ ∇% ,

and ∇(%v) = %∇v + v ⊗∇% ,
(2.4)

for sufficiently smooth scalar, vector and tensor functions %, v and τ , respectively. Then, using the
second equation of (2.1) and the first identity in (2.4), we obtain

0 = div(ρu) = ρdiv(u) + u · ∇ρ in Ω ,

from which

div(u) = −
(
u · ∇ρ

ρ

)
in Ω . (2.5)
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We observe here, owing to the Dirichlet boundary condition uD on Γ and (2.5), that there holds∫
Γ

uD · n = −
∫

Ω

(
u · ∇ρ

ρ

)
. (2.6)

Now, proceeding similarly as in [16] (see also [5], [10], and [1]), we introduce as further unknowns
the pseudostress and the gradient of the porosity times the velocity, that is

σ := µ∇u− (u⊗ u)− p I and t := ∇(ρu) in Ω . (2.7)

In this way, employing the third identity in (2.4), we get

t = ∇(ρu) = ρ∇u + u⊗∇ρ ,

which yields

∇u =
t

ρ
−
(
u⊗ ∇ρ

ρ

)
. (2.8)

We stress that, alternatively to the definition adopted for t in (2.7), and similarly to [1], we can

consider t := ∇u + 1
n

(
u · ∇ρρ

)
I, which also yields a three-field variational formulation with the same

structure of the ones to be developed in what follows. In addition, while some computations would
be simplified, the main assumptions and conclusions of the analysis remain unaltered.

Next, applying the matrix trace to σ in (2.7), observing that tr(∇u) = div(u), and replacing the
latter by (2.5), one arrives at

p = − 1

n

{
tr(σ) + tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
in Ω . (2.9)

Thus, replacing (2.8) and (2.9) into the first equation of (2.7), applying the deviatoric operator to σ,
noting that tr(t) = div(ρu) = 0, and dividing by ρ, it follows that

σd

ρ
=
µ

ρ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

)d
)
− (u⊗ u)d

ρ
.

On the other hand, using the second identity in (2.4) with % = ρ and τ = µ∇u− (u⊗u), we find that

−div
{
ρ
(
µ∇u− (u⊗ u)

)}
= − ρdiv

(
µ∇u− (u⊗ u)

)
−
(
µ∇u− (u⊗ u)

)
∇ρ ,

and hence, noting that ρ∇p = ρdiv(p I), and employing again (2.8), we deduce that

−div
{
ρ
(
µ∇u− (u⊗ u)

)}
+ ρ∇p = − ρdiv(σ) −

(
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
− (u⊗ u)

)
∇ρ .

Consequently, we can rewrite (2.1), equivalently, as follows: Find (u, t,σ) in suitable spaces to be
indicated below such that

t

ρ
−
(
u⊗ ∇ρ

ρ

)
= ∇u in Ω ,

µ

ρ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

)d
)
− (u⊗ u)d

ρ
=

σd

ρ
in Ω ,

D(ρ)

ρ
u +

F(ρ)

ρ
|u|u−

(
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
− (u⊗ u)

)
∇ρ
ρ
− div(σ) = f in Ω ,

u = uD on Γ ,∫
Ω

{
tr(σ) + tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
= 0 .

(2.10)
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At this point we stress that, as suggested by (2.9), p is eliminated from the present formulation
and computed afterwards in terms of σ,u, and ρ by using that identity. In this way, the last equation
in (2.10) simply aims to ensure that the resulting p does belong to L2

0(Ω). Notice also that further

variables of interest, such as the velocity gradient G̃ := ∇u, the vorticity ω := 1
2

(
∇u− (∇u)t

)
, and

the shear stress tensor σ̃ := µ
(
∇u + (∇u)t

)
− p I, can be computed, respectively, as follows:

G̃ =
t

ρ
−
(
u⊗ ∇ρ

ρ

)
, ω =

1

2µ

(
σ − σt

)
, and σ̃ = σt + µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
+ (u⊗ u) . (2.11)

2.2 The mixed variational formulation

In this section we derive the mixed variational formulation of (2.10). To this end, we start by seeking
originally u ∈ H1(Ω), which in turn, requires to assume that uD ∈ H1/2(Γ). Next, multiplying the

first equation of (2.10) by a tensor τ ∈ H(divt; Ω), with t ∈

{
(1,+∞) if n = 2 ,

[6/5,+∞) if n = 3 ,
, and then

employing (1.1), we obtain∫
Ω

t

ρ
: τ +

∫
Ω

u · div(τ )−
∫

Ω

(
u⊗ ∇ρ

ρ

)
: τ = 〈τν,uD〉Γ ∀ τ ∈ H(divt; Ω) . (2.12)

We notice here, thanks to Cauchy–Schwarz’s inequality and the facts that ρ is bounded (cf. (2.2))
and τ ∈ L2(Ω), that the first term of (2.12) makes sense for t ∈ L2(Ω). Thus, bearing in mind the
free trace property of t, we look for this unknown in the space

L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr(s) = 0 in Ω

}
.

Now, knowing that div(τ ) ∈ Lt(Ω), and employing again the boundedness of ρ (cf. (2.2)) along with
Hölder’s inequality, we deduce from the second term of (2.12) that it actually suffices to look for u
in Lt

′
(Ω), where t′ is the conjugate of t. Moreover, testing the second equation of (2.10) against

s ∈ L2
tr(Ω), we obtain

−
∫

Ω
σ :

s

ρ
+

∫
Ω
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
:

s

ρ
−
∫

Ω
(u⊗ u) :

s

ρ
= 0 ∀ s ∈ L2

tr(Ω) , (2.13)

from which, using the Cauchy–Schwarz and Hölder inequalities, and the fact that ∇ρ ∈ L4(Ω), we
deduce that the terms involving tensor products make sense for u ∈ L4(Ω), thus yielding t′ = 4 and
t = 4/3. Moreover, aiming to maintain the same space for the unknown σ and its test functions τ ,
we seek now σ ∈ H(div4/3; Ω). In this way, knowing now that div(σ) ∈ L4/3(Ω), we test the third
equation of (2.10) against v ∈ L4(Ω), and use that for each tensor field ζ, and for each pair of vector
fields (v,w), there holds (ζw) · v = ζ : (v ⊗w), to arrive at∫

Ω

D(ρ)

ρ
u · v +

∫
Ω

F(ρ)

ρ
|u|u · v −

∫
Ω
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
:
(
v ⊗ ∇ρ

ρ

)
+

∫
Ω

(u⊗ u) :
(
v ⊗ ∇ρ

ρ

)
−
∫

Ω
v · div(σ) =

∫
Ω

f · v ∀v ∈ L4(Ω) .

(2.14)

Then, based on the previous discussion and the already established spaces for t,u, and v, we note
that the third, fourth, and fifth terms of (2.14) are well-defined. Furthermore, considering that L4(Ω)
is certainly contained in both L2(Ω) and L3(Ω), and taking into account the bounds of D(ρ) and
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F(ρ) (cf. (2.3)), we can guarantee that the first and second terms in (2.14) make sense as well. In
addition, for the term on the right hand side of (2.14) we need the datum f to belong to L4/3(Ω),
which is assumed from now on. According to the previous analysis, the weak formulation of the
convective Brinkman–Forchheimer problem with varying porosity (2.10) reduces at first instance to:
Find (u, t,σ) ∈ L4(Ω)×L2

tr(Ω)×H(div4/3; Ω) such that (2.12), (2.13), and (2.14) hold for all (v, s, τ ) ∈
L4(Ω)× L2

tr(Ω)×H(div4/3; Ω).

However, similarly as in [5] (see also [16], [10], and [1]), we consider the decomposition

H(div4/3; Ω) = H0(div4/3; Ω)⊕ R I ,

where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr(τ ) = 0
}
,

thanks to which each τ ∈ H(div4/3; Ω) can be uniquely decomposed as

τ = τ 0 + d0 I with τ 0 ∈ H0(div4/3; Ω) and d0 :=
1

n |Ω|

∫
Ω

tr(τ ) ∈ R .

In particular, using from the last equation of (2.10) that∫
Ω

tr(σ) = −
∫

Ω

{
tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
,

we obtain, σ = σ0 + c0 I with

σ0 ∈ H0(div4/3; Ω) and c0 := − 1

n |Ω|

∫
Ω

{
tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
, (2.15)

which says that c0 is know explicitly in terms of u and ρ. Therefore, in order to fully determine σ,
it only remains to find its H0(div4/3; Ω)-component σ0, which is renamed from now on simply as
σ. In addition, it is easy to see, using the compatibility condition (2.6), that both sides of (2.12)
vanish when τ ∈ RI, and hence testing against τ ∈ H(div4/3; Ω) is equivalent to doing it against
τ ∈ H0(div4/3; Ω). Thus, denoting from now on

~u := (u, t) , ~v := (v, s) , ~w := (w, r) ∈ H := L4(Ω)× L2
tr(Ω) and Q := H0(div4/3; Ω) ,

with corresponding norms given by

‖~v‖H := ‖v‖0,4;Ω + ‖s‖0,Ω ∀ ~v ∈ H and ‖τ‖Q := ‖τ‖div4/3;Ω ∀ τ ∈ Q ,

and suitably grouping the equations (2.12), (2.13), and (2.14), the aforementioned three-field mixed
formulation in Banach spaces associated with the convective Brinkman–Forchheimer equations with
varying porosity (2.10) reads: Find (~u,σ) ∈ H×Q such that

[a(u)(~u), ~v] + [b(~v),σ] = [F, ~v] ∀ ~v ∈ H,

[b(~u), τ ] = [G(u), τ ] ∀ τ ∈ Q ,
(2.16)

where, given ϑ ∈ L4(Ω), the operator a(ϑ) : H→ H′ is defined by

[a(ϑ)(~w), ~v] := [A(~w), ~v] + [B(ϑ)(~w), ~v] , (2.17)
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with the operators A : H→ H′ and B(ϑ) : H→ H′, given, respectively, by

[A(~w), ~v] :=

∫
Ω

D(ρ)

ρ
w · v +

∫
Ω

F(ρ)

ρ
|w|w · v +

∫
Ω
µ

(
r

ρ
−
(
w ⊗ ∇ρ

ρ

))
:

(
s

ρ
−
(
v ⊗ ∇ρ

ρ

))
(2.18)

and

[B(ϑ)(~w), ~v] := −
∫

Ω
(ϑ⊗w) :

(
s

ρ
−
(
v ⊗ ∇ρ

ρ

))
, (2.19)

for all ~w, ~v ∈ H, whereas the operator b : H→ Q′ is defined by

[b(~v), τ ] := −
∫

Ω
τ :

s

ρ
−
∫

Ω
v · div(τ ), (2.20)

for all (~v, τ ) ∈ H×Q. In turn, given ϑ ∈ L4(Ω), the functionals F ∈ H′ and G(ϑ) ∈ Q′ are given by

[F, ~v] :=

∫
Ω

f · v ∀ ~v ∈ H and [G(ϑ), τ ] := −〈τn,uD〉Γ −
∫

Ω

(
ϑ⊗ ∇ρ

ρ

)
: τ , (2.21)

for all τ ∈ Q. In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding
operators.

We end this section by establishing the stability properties of the operators and functionals involved
in (2.16). First, we observe that the operators b,B and the functionals F and G(ϑ) are linear. In
turn, from the definition of b and B(ϑ) (cf. (2.20) and (2.19), respectively), and the Cauchy–Schwarz
and Hölder inequalities, we deduce that b and B(ϑ), satisfy the boundedness estimates∣∣[b(~v), τ ]

∣∣ ≤ ρ−1
0 ‖~v‖H ‖τ‖Q ∀ ~v ∈ H , ∀ τ ∈ Q , (2.22)

and ∣∣[B(ϑ)(~w), ~v]| ≤ CB ‖ϑ‖0,4;Ω ‖w‖0,4;Ω ‖~v‖H ≤ CB ‖ϑ‖0,4;Ω ‖~w‖H ‖~v‖H ∀ ~w, ~v ∈ H , (2.23)

with CB := ρ−1
0 max

{
1, ‖∇ρ‖0,4;Ω

}
. On the other hand, from the definition of A (cf. (2.18)), and the

triangle and Hölder inequalities, we obtain that there exists LA > 0, depending on |Ω|, D1, F1, µ, ρ0,
and ‖∇ρ‖0,4;Ω, such that

‖A(~w)−A(~z)‖H′ ≤ LA

{(
1 + ‖w‖0,4;Ω + ‖z‖0,4;Ω

)
‖w − z‖0,4;Ω + ‖r− q‖0,Ω

}
, (2.24)

for all ~w := (w, r), ~z = (z,q) ∈ H. In addition, employing again the Cauchy–Schwarz and Hölder
inequalities, it is not difficult to see that the functionals F and G(ϑ) (cf. (2.21)) are bounded, that is∣∣[F, ~v]

∣∣ ≤ ‖f‖0,4/3;Ω ‖~v‖H ∀ ~v ∈ H ,∣∣[G(ϑ), τ ]
∣∣ ≤ CG

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑ‖0,4;Ω

)
‖τ‖Q ∀ τ ∈ Q ,

(2.25)

with CG := max
{

1, ‖i4‖
}

, where ‖i4‖ is the norm of the continuous injection i4 of H1(Ω) into L4(Ω).

3 Analysis of the coupled problem

In this section we proceed similarly to [10] (see also [12, 17, 1]) and utilize a fixed point strategy,
combined with results on nonlinear monotone operators, to prove the well-posedness of (2.16).
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3.1 A fixed point strategy

We first define the operator T : L4(Ω)→ L4(Ω) as

T(ϑ) := w ∀ϑ ∈ L4(Ω) ,

where (~w, ζ) :=
(
(w, r), ζ

)
∈ H×Q is the unique solution (to be confirmed below) of the problem

[a(ϑ)(~w), ~v] + [b(~v), ζ] = [F, ~v] ∀ ~v := (v, s) ∈ H,

[b(~w), τ ] = [G(ϑ), τ ] ∀ τ ∈ Q .
(3.1)

It follows that (2.16) can be rewritten as the fixed-point equation: Find u ∈ L4(Ω) such that

T(u) = u , (3.2)

so that, letting (~w, ζ) be the solution of (3.1) with ϑ := u, it is clear that (~u,σ) := (~w, ζ) ∈ H ×Q
is solution of (2.16).

Next, we recall a key result (cf. [10, Theorem 3.1]) that will be used to establish the well-posedness
of (3.1), equivalently, the well-definedness of the operator T.

Theorem 3.1 Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 ×X2. Let A : X → X ′ be a nonlinear operator and B ∈ L(X,Y ′), and let V
be the kernel of B, that is,

V :=
{
~v = (v1, v2) ∈ X : B(~v) = 0

}
.

Assume that

(i) there exist constants L > 0 and p1, p2 ≥ 2, such that

‖A(~u)−A(~v)‖X′ ≤ L
2∑
j=1

{
‖uj − vj‖Xj +

(
‖uj‖Xj + ‖vj‖Xj

)pj−2‖uj − vj‖Xj

}
for all ~u = (u1, u2), ~v = (v1, v2) ∈ X,

(ii) the family of operators
{
A( ·+ ~z) : V → V ′ : ~z ∈ X

}
is uniformly strongly monotone, that is

there exists α > 0 such that

[A(~u+ ~z)−A(~v + ~z), ~u− ~v] ≥ α ‖~u− ~v‖2X ,

for all ~z ∈ X, and for all ~u,~v ∈ V , and

(iii) there exists β > 0 such that

sup
~v∈X
~v 6=0

[B(~v), τ ]

‖~v‖X
≥ β ‖τ‖Y ∀ τ ∈ Y .

Then, for each (F ,G) ∈ X ′ × Y ′ there exists a unique (~u, σ) ∈ X × Y such that

[A(~u), ~v] + [B(~v), σ] = [F , ~v] ∀~v ∈ X ,

[B(~u), τ ] = [G, τ ] ∀ τ ∈ Y .
(3.3)
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Moreover, there exist positive constants C1 and C2, depending only on L,α, and β, such that

‖~u‖X ≤ C1M(F ,G) (3.4)

and

‖σ‖Y ≤ C2

{
M(F ,G) +

2∑
j=1

M(F ,G)pj−1

}
, (3.5)

where

M(F ,G) := ‖F‖X′ + ‖G‖Y ′ +
2∑
j=1

‖G‖pj−1
Y ′ + ‖A(0)‖X′ . (3.6)

At this point we first observe that, given ϑ ∈ L4(Ω), the problem (3.1) has the same structure
as (3.3). Therefore, in order to apply Theorem 3.1, we notice that, thanks to the uniform convexity
and separability of Lp(Ω) for p ∈ (1,+∞), all the spaces involved in (3.1), that is, L4(Ω), L2

tr(Ω) and
H0(div4/3; Ω), share the same property, so that H and Q are uniformly convex and separable as well.

We continue our analysis by proving that the nonlinear operator a(ϑ) satisfies hypothesis (i) of
Theorem 3.1, with p1 = 3 and p2 = 2.

Lemma 3.2 There exists a constant LBF > 0, depending on CB and LA (cf. (2.23), (2.24)), such that

‖a(ϑ)(~w)− a(ϑ)(~z)‖H′

≤ LBF

{(
1 + ‖ϑ‖0,4;Ω + ‖w‖0,4;Ω + ‖z‖0,4;Ω

)
‖w − z‖0,4;Ω + ‖r− q‖0,Ω

}
,

(3.7)

for all ϑ ∈ L4(Ω), and for all ~w = (w, r),~z = (z,q) ∈ H.

Proof. The result follows straightforwardly from the definition of a(ϑ) (cf. (2.17)), the triangle
inequality, and the stability properties (2.23) and (2.24). Further details are omitted. �

Now, we let V be the kernel of the operator b (cf. (2.20)), that is

V :=
{
~v = (v, s) ∈ H : [b(~v), τ ] = 0 ∀ τ ∈ Q

}
,

which, proceeding similarly to [16, eq. (3.34)], reduces to

V :=

{
~v = (v, s) ∈ H : v ∈ H1

0(Ω) and ∇v =
s

ρ

}
. (3.8)

The following lemma establishes hypothesis (ii) of Theorem 3.1 for a(ϑ).

Lemma 3.3 There exists a constant αBF > 0, depending only on D0, µ, and ‖i4‖, such that, under the
assumption ∥∥∥∇ρ

ρ

∥∥∥
0,4;Ω

≤ ρ0 αBF
2µ

, (3.9)

and for each ϑ ∈ L4(Ω) verifying

‖ϑ‖0,4;Ω ≤ r0 :=
αBF

2CB
, (3.10)

the family of operators a(ϑ)( · + ~z) with ~z ∈ H, is uniformly strongly monotone on V with constant
αBF, that is

[a(ϑ)(~w + ~z)− a(ϑ)(~v + ~z), ~w − ~v] ≥ αBF ‖~w − ~v‖2H , (3.11)

for all ~z = (z,q) ∈ H, and for all ~w = (w, r), ~v = (v, s) ∈ V.
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Proof. Let ~z = (z,q) ∈ H and ~w = (w, r), ~v = (v, s) ∈ V. First, according to the definition of A (cf.
(2.18)), and using (2.3), we obtain

[A(~w + ~z)−A(~v + ~z), ~w − ~v] ≥
∫

Ω

F(ρ)

ρ

(
|w + z|(w + z)− |v + z|(v + z)

)
· (w − v)

+ D0 ‖w − v‖20,Ω +

∫
Ω
µ

(
r− s

ρ
−
(

(w − v)⊗ ∇ρ
ρ

))
:

(
r− s

ρ
−
(

(w − v)⊗ ∇ρ
ρ

)) (3.12)

In turn, according to [2, Lemma 2.1, eq. (2.1b)] with p = 3, there exists c1(Ω) > 0, depending only
on |Ω|, such that (

|w + z|(w + z)− |v + z|(v + z)
)
· (w − v) ≥ c1(Ω) |w − v|3 ,

which, together with the bounds of ρ and F(ρ) (cf. (2.2), (2.3)), yields∫
Ω

F(ρ)

ρ

(
|w + z|(w + z)− |v + z|(v + z)

)
· (w − v) ≥ c1 (Ω) F0‖w − v‖30,3;Ω ≥ 0 ,

and combining the latter with (3.12), the fact that
r− s

ρ
= ∇(w−v) (cf. (3.8)), and simple algebraic

computations, we find that

[A(~w + ~z)−A(~v + ~z), ~w − ~v] ≥ D0‖w − v‖20,Ω +
µ

2
‖∇(w − v)‖20,Ω +

µ

2
‖r− s‖20,Ω

+ µ
∥∥∥(w − v)⊗ ∇ρ

ρ

∥∥∥2

0,Ω
− 2µ

∫
Ω

r− s

ρ
:
(

(w − v)⊗ ∇ρ
ρ

)
.

(3.13)

Now, applying the Cauchy–Schwarz and Young inequalities, we get∣∣∣∣∣
∫

Ω

r− s

ρ
:
(

(w − v)⊗ ∇ρ
ρ

)∣∣∣∣∣ ≤ 1

2ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖~w − ~v‖2H . (3.14)

Then, bounding below the fourth term on the right hand side of (3.13) by 0, using the inequality
(3.14), and the continuous injection i4 of H1(Ω) into L4(Ω), we deduce that

[A(~w + ~z)−A(~v + ~z), ~w − ~v] ≥ min
{
D0,

µ

2

}
‖w − v‖21,Ω +

µ

2
‖r− s‖20,Ω −

µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖~w − ~v‖2H

≥ min
{
D0,

µ

2

}
‖i4‖−2‖w − v‖20,4;Ω +

µ

2
‖r− s‖20,Ω −

µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖~w − ~v‖2H .

In this way, defining

αBF :=
1

2
min

{
min

{
D0,

µ

2

}
‖i4‖−2,

µ

2

}
, (3.15)

we arrive at

[A(~w + ~z)−A(~v + ~z), ~w − ~v] ≥
{

2αBF −
µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
‖~w − ~v‖2H .

On the other hand, from the definition of the operator a(ϑ) (cf. (2.17)), the foregoing inequality,
and the continuity bound of B(ϑ) (cf. (2.23)), it readily follows that

[a(ϑ)(~w + ~z)− a(ϑ)(~v + ~z), ~w − ~v] = [A(~w + ~z)−A(~v + ~z), ~w − ~v]− [B(ϑ)(~w − ~v), ~w − ~v]

≥
{

2αBF −
(
µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+ CB ‖ϑ‖0,4;Ω

)}
‖~w − ~v‖2H ,
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which, thanks to (3.9) and (3.10), leads to (3.11), thus completing the proof. �

We complete the verification of the hypotheses of Theorem 3.1, with the corresponding inf-sup
condition for the operator b.

Lemma 3.4 There exists a constant β > 0, such that

sup
~v∈H
~v 6=0

[b(~v), τ ]

‖~v‖H
≥ β ‖τ‖Q ∀ τ ∈ Q . (3.16)

Proof. It proceeds similarly as in [16, Lemma 3.3] taking in account now that ρ is bounded (cf. (2.2)).
We omit further details. �

We now establish the unique solvability of the nonlinear problem (3.1).

Lemma 3.5 Let αBF be defined as in (3.15) and assume that (3.9) is satisfied. Then for each
ϑ ∈ L4(Ω) verifying (3.10), the problem (3.1) has a unique solution (~w, ζ) := ((w, r), ζ) ∈ H × Q.
Moreover, there exists a constant CT > 0, independent of ϑ, such that

‖T(ϑ)‖0,4;Ω ≤ ‖~w‖H ≤ CT

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑ‖0,4;Ω

)i}
. (3.17)

Proof. Given ϑ ∈ L4(Ω) as indicated, we proceed as in the proof of [10, Lemma 3.6]. In fact, we first
recall from (2.22) and (2.25) that b,F, and G(ϑ) are all bounded. Then, thanks to Lemmas 3.2, 3.3,
and 3.4, the proof follows from a straightforward application of Theorem 3.1, with p1 = 3 and p2 = 2,
to problem (3.1). In particular, noting from (2.17) that a(ϑ)(0) is the null functional, and employing
(3.6), we find that

M(F,G(ϑ)) = ‖F‖+ ‖G(ϑ)‖+ ‖G(ϑ)‖2 ,

and hence the a priori estimate (3.4) yields

‖~w‖H ≤ C1

{
‖F‖+ ‖G(ϑ)‖+ ‖G(ϑ)‖2

}
,

with C1 > 0 depending only on LBF, αBF, and β. In this way, the foregoing inequality along with (2.25)
yield (3.17) with CT depending only on ‖i4‖, LBF, αBF, and β. Moreover, applying (3.5), and using
again (2.25), the a priori estimate for the second component of the solution to the problem defining
T (cf. (3.1)) reduces to

‖ζ‖Q ≤ C

2∑
j=1

(
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑ‖0,4;Ω

)i)j
, (3.18)

with C depending only on ‖i4‖, LBF, αBF, and β. �

3.2 Solvability analysis of the fixed-point equation

Having proved the well-posedness of problem (3.1), which ensures that the operator T is well defined,
we now aim to establish the existence of a unique fixed-point of the operator T (cf. (3.2)). For this
purpose, in what follows we will verify the hypothesis of the Banach fixed-point theorem. We begin
by providing suitable conditions under which T maps a ball into itself.
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Lemma 3.6 Given r ∈ (0, r0], with r0 as in (3.10), we let W be the closed ball defined by

W :=
{
ϑ ∈ L4(Ω) : ‖ϑ‖0,4;Ω ≤ r

}
, (3.19)

and assume that the data satisfy

CT

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑ‖0,4;Ω

)i}
≤ r , (3.20)

with CT satisfying (3.17). Then there holds T(W) ⊆W.

Proof. It is straightforward consequence of Lemma 3.5 and the assumption (3.20). �

The Lipschitz continuity of the fixed-point operator T is proved next.

Lemma 3.7 Let r ∈ (0, r0], with r0 as in (3.10). Then, for all ϑ, ϑ0 ∈W (cf. (3.19)), there holds

‖T(ϑ)−T(ϑ0)‖0,4;Ω ≤ L(data, r) ‖ϑ− ϑ0‖0,4;Ω , (3.21)

where

L(data, r) := CL

{(
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ + r

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)(
1 +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)

+
(

2 + r + 2r
∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
,

with CL > 0, depending only on LBF, αBF, β, CT, and CB.

Proof. Given ϑ,ϑ0 ∈ W, we let (~w, ζ) :=
(
(w, r), ζ

)
and (~w0, ζ0) :=

(
(w0, r0), ζ0

)
∈ H × Q be

the corresponding solutions of (3.1), so that w := T(ϑ) and w0 := T(ϑ0). Then, subtracting the
corresponding problems from (3.1), and using the definition of the operator a(ϑ)(~w) (cf. (2.17)), we
obtain

[a(ϑ0)(~w)− a(ϑ0)(~w0), ~v] + [b(~v), ζ − ζ0] = [B(ϑ0 − ϑ)(~w), ~v] ,

[b(~w − ~w0), τ ] = [G(ϑ)−G(ϑ0), τ ] ,
(3.22)

for all (~v, τ ) ∈ H ×Q. Next, we proceed similarly to [10, eqs. (3.5)-(3.6) in Theorem 3.1] (see also
[11, Lemma 3.2]), and employ the continuous inf-sup condition (3.16), which says that the linear and
bounded operator induced by b is surjective, along with the converse implication of the equivalence
provided in [19, Lemma A.42], and second equation from (3.22), we deduce that there exists ~ϕ :=
(ϕ,p) ∈ H such that

b(~ϕ) = b(~w − ~w0) = G(ϑ)−G(ϑ0) and ‖~ϕ‖H ≤
1

β
‖G(ϑ)−G(ϑ0)‖Q′ . (3.23)

Now, applying the strong monotonicity of a(ϑ0) (cf. (3.11)), with ~w0 ∈ H and 0, ~z = ~w− ~w0−~ϕ ∈ V,
we get

αBF ‖~z‖2H ≤ [a(ϑ0)(~w − ~ϕ)− a(ϑ0)(~w0),~z] .

Then, adding and subtracting a(ϑ0)(~w) in the first component on the right hand side of the foregoing
inequality, using the first equation of (3.22), and the fact that [b(~z), ζ − ζ0] = 0, we find that

αBF ‖~z‖2H ≤ [a(ϑ0)(~w − ~ϕ)− a(ϑ0)(~w),~z] + [B(ϑ0 − ϑ)(~w),~z] ,
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from which, using the continuity of a(ϑ) and B(ϑ) (cf. (3.7) and (2.23), respectively), and then
performing simple algebraic computations, we obtain

αBF ‖~z‖2H ≤ LBF

{
(1 + ‖ϑ0‖0,4;Ω + 2 ‖w‖0,4;Ω) ‖~ϕ‖H + ‖~ϕ‖2H

}
‖~z‖H

+ CB ‖ϑ− ϑ0‖0,4;Ω ‖w‖0,4;Ω ‖~z‖H .
(3.24)

In turn, according to the definition of G(ϑ) (cf. (2.21)), we readily get∣∣[G(ϑ)−G(ϑ0), τ ]
∣∣ =

∣∣∣∣ ∫
Ω

(
(ϑ− ϑ0)⊗ ∇ρ

ρ

)
: τ

∣∣∣∣
≤
∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑ− ϑ0‖0,4;Ω ‖τ‖Q ,

(3.25)

which, along with the second identity from (3.23), yields

‖~ϕ‖H ≤
1

β

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑ− ϑ0‖0,4;Ω . (3.26)

In this way, replacing (3.26) back into (3.24), and using the triangle inequality, we have that

‖~z‖H ≤ c1

{(
1 + ‖ϑ0‖0,4;Ω + ‖w‖0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+
(
‖ϑ‖0,4;Ω + ‖ϑ0‖0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥2

0,4;Ω
+ ‖w‖0,4;Ω

}
‖ϑ− ϑ0‖0,4;Ω .

with c1 > 0 depending only on LBF, αBF, β, and CB. Thus, bounding ‖w‖0,4;Ω by (3.17), and considering
that both ‖ϑ‖0,4;Ω and ‖ϑ0‖0,4;Ω are bounded by r, we deduce that

‖~z‖H ≤ c2

{(
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ + r

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)(
1 +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)
+
(

2 + r + 2r
∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
‖ϑ− ϑ0‖0,4;Ω ,

with c2 > 0 depending only on LBF, αBF, β, CT, and CB. Finally, employing (3.26), the foregoing
inequality, and the fact that ‖~w− ~w0‖H ≤ ‖~ϕ‖H + ‖~z‖H, we obtain (3.21) and conclude the proof. �

We are now in position of establishing the main result of this section.

Theorem 3.8 Let W be the closed ball in L4(Ω) defined in (3.19) and r ∈ (0, r0], with r0 defined in
(3.10). Assume that the data satisfy (3.20) and

L(data, r) < 1 . (3.27)

Then, there exists a unique u ∈W fixed-point of operator T. Equivalently, the problem (2.16) has a
unique solution (~u,σ) := (~w, ζ) ∈ H ×Q with u ∈ W, where (~w, ζ) is the unique solution of (3.1)
with ϑ = u. Moreover, there exist positive constants C̃1 and C̃2, depending only on LBF, αBF, β, CT, CB,
and r, such that there hold the following a priori bounds

‖~u‖H ≤ C̃1

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
(3.28)

and

‖σ‖Q ≤ C̃2

2∑
j=1

(
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)j
. (3.29)
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Proof. It is clear from Lemma 3.6, (3.21), and hypothesis (3.27) that T is a contraction that maps
the ball W into itself, and thus a direct application of the Banach fixed-point theorem implies the
existence of a unique fixed point u ∈ W solution to (3.1), equivalently, the existence of a unique
solution (~u,σ) ∈ H×Q of the problem (2.16). Finally, the a priori estimates (3.28) and (3.29) are a
straightforward consequence of (3.17) and (3.18), respectively. �

4 The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of problem (2.16). The solvability of
this scheme is addressed following analogous tools to those employed throughout Section 3. Finally,
we derive the error estimates and obtain the corresponding rates of convergence.

4.1 Preliminaries

We first let
{
Th
}
h>0

be a regular family of triangulations of Ω by triangles K (respectively tetrahedra

K in R3), and set h := max
{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and a subset S of Rn,

we denote by Pl(S) the space of polynomials of total degree at most l defined on S. Hence, for each
integer k ≥ 0 and for each K ∈ Th, we define the local Raviart–Thomas space of order k as

RTk(K) := Pk(K) ⊕ P̃k(K) x ,

where x := (x1, . . . , xn)t is a generic vector of Rn, P̃k(K) is the space of polynomials of total degree
equal to k defined on K, and, according to the convention in Section 1, we set Pk(K) := [Pk(K)]n

and Pk(K) := [Pk(K)]n×n. In this way, introducing the finite element subspaces

Hu
h :=

{
vh ∈ L4(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

Ht
h :=

{
sh ∈ L2

tr(Ω) : sh|K ∈ Pk(K) ∀K ∈ Th
}
,

Qh :=
{
τ h ∈ H0(div4/3; Ω) : ctτ h|K ∈ RTk(K) ∀ c ∈ Rn, ∀K ∈ Th

}
,

(4.1)

and setting the notations

~uh := (uh, th), ~vh := (vh, sh) ∈ Hh := Hu
h ×Ht

h ,

the Galerkin scheme associated with (2.16) reads: Find (~uh,σh) ∈ Hh ×Qh, such that

[a(uh)(~uh), ~vh] + [b(~vh),σh] = [F, ~vh] ∀ ~vh ∈ Hh ,

[b(~uh), τ h] = [G(uh), τ h] ∀ τ h ∈ Qh .
(4.2)

4.2 Solvability Analysis

In this section we adopt the discrete version of the fixed-point strategy utilized in Section 3 to study
the solvability of (4.2). To this end, we introduce the operator Td : Hu

h → Hu
h defined by

Td(ϑh) := wh ∀ϑh ∈ Hu
h , (4.3)
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where (~wh, ζh) := ((wh, rh), ζh) ∈ Hh × Qh is the unique solution (to be confirmed below) of the
problem

[a(ϑh)(~wh), ~vh] + [b(~vh), ζh] = [F, ~vh] ∀ ~vh ∈ Hh ,

[b(~wh), τ h] = [G(ϑh), τ h] ∀ τ h ∈ Qh .
(4.4)

Therefore solving (4.2) is equivalent to seeking a fixed point of the operator Td, that is: Find uh ∈ Hu
h

such that
Td(uh) = uh ,

so that, letting (~wh, ζh) be the solution of (4.4) with ϑh := uh, it is clear that (~uh,σh) := (~wh, ζh) ∈
Hh ×Qh is solution of (4.2).

We begin by showing that (4.4) is well posed, or equivalently that Td is well defined. To this end,
we now let Vh be the discrete kernel of b, that is

Vh =

{
~vh = (vh, sh) ∈ Hh :

∫
Ω

sh
ρ

: τ h +

∫
Ω

vh · div(τ h) = 0 ∀ τ h ∈ Qh

}
.

Then, from a slight adaptation of [10, Lemma 4.1], which in turn follows by using similar arguments
to the ones developed in [16, Section 5], we now prove the discrete inf-sup condition for the operator
b (cf. (2.20)) and an intermediate result that will be used to show later on the strong monotonicity
of a(ϑh) on Vh.

Lemma 4.1 There exist positive constants βd and Cd such that

sup
~vh∈Hh
~vh 6=0

[b(~vh), τ h]

‖~vh‖H
≥ βd ‖τ h‖Q ∀ τ h ∈ Qh , (4.5)

and
‖sh‖0,Ω ≥ Cd ‖vh‖0,4;Ω ∀ ~vh = (vh, sh) ∈ Vh . (4.6)

Proof. We proceed as in [10, Lemma 4.1] (see also [3, Lemma 4.2]). In fact, we first introduce the
discrete space Z0,h defined by

Z0,h :=

{
τ h ∈ Qh : [b(vh,0), τ h] =

∫
Ω

vh · div(τ h) = 0 ∀vh ∈ Hu
h

}
,

which, using from (4.1) that div(Qh) ⊆ Hu
h , reduces to

Z0,h =
{
τ h ∈ Qh : div(τ h) = 0 in Ω

}
.

Next, by using the abstract equivalence result provided by [16, Lemma 5.1], we deduce that (4.5) and
(4.6) are jointly equivalent to the existence of positive constants β1 and β2, independent of h, such
that there hold

sup
τh∈Qh
τh 6=0

[b(vh,0), τ h]

‖τ h‖Q
= sup

τh∈Qh
τh 6=0

∫
Ω

vh · div(τ h)

‖τ h‖Q
≥ β1 ‖vh‖0,4;Ω ∀vh ∈ Hu

h , (4.7)

and

sup
sh∈Ht

h
sh 6=0

[b(0, sh), τ h]

‖sh‖0,Ω
= sup

sh∈Ht
h

sh 6=0

∫
Ω
ρ−1 sh : τ h

‖sh‖0,Ω
≥ β2 ‖τ h‖Q ∀ τ h ∈ Z0,h . (4.8)
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Concerning (4.7), we stress that this result was already established in [16, Lemma 5.5]. In turn, for
the proof of (4.8), we first recall that a slight modification of the proof of [20, Lemma 2.3] (see also
[4, Proposition IV.3.1]) allows to show the existence of a constant c1 > 0, depending only on Ω, such
that (cf. [5, Lemma 3.2])

c1 ‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,4/3;Ω ∀ τ ∈ Q , (4.9)

and recalling that Z0,h ⊆ Pk(Th) since Qh ⊆ RTk(Th) (see the proof of [20, Theorem 3.3] for details),
given τ h ∈ Z0,h, we have that τ d

h ∈ Ht
h, so that bounding the supremum in (4.8) with sh := τ d

h, and
using the fact that ρ is bounded (cf. (2.2)), it follows that

sup
sh∈Ht

h
sh 6=0

[b(0, sh), τ h]

‖sh‖0,Ω
≥ ‖τ d

h‖0,Ω ,

which, along with (4.9) implies (4.8) with β2 = c
1/2
1 , thus completing the proof. �

We now establish the discrete strong monotonicity and continuity properties of a(ϑh) (cf. (2.17)).

Lemma 4.2 There exists a constant αBF,d > 0, depending only on µ and Cd (cf. (4.6)), such that,
under the assumption ∥∥∥∇ρ

ρ

∥∥∥
0,4;Ω

≤ ρ0 αBF,d
2µ

, (4.10)

and for each ϑh ∈ Hu
h verifying

‖ϑh‖0,4;Ω ≤ r̃0 :=
αBF,d
2CB

, (4.11)

the family of operators a(ϑh)( · + ~zh) with ~zh ∈ Hh, is uniformly strongly monotone on Vh with
constant αBF,d, that is

[a(ϑh)(~wh + ~zh)− a(ϑh)(~vh + ~zh), ~wh − ~vh] ≥ αBF,d ‖~wh − ~vh‖2H , (4.12)

for all ~zh = (zh,qh) ∈ Hh, and for all ~wh = (wh, rh), ~vh = (vh, sh) ∈ Vh. In addition, the operator
a(ϑh) : Hh → H′h is continuous in the sense of (3.7), with the same constant LBF.

Proof. We proceed as in the proof of Lemma 3.3. In fact, let ~zh = (zh,qh) ∈ Hh and ~wh =
(wh, rh), ~vh = (vh, sh) ∈ Vh. Then, according to the definition of A (cf. (2.18)), and using (2.3) and
[2, Lemma 2.1, eq. (2.1b)] with p = 3, we obtain

[A(~wh + ~zh)−A(~vh + ~zh), ~wh − ~vh] ≥ D0 ‖wh − vh‖20,Ω + c1(Ω) F0 ‖wh − vh‖30,3;Ω

+ µ ‖rh − sh‖20,Ω + µ

∥∥∥∥(wh − vh)⊗ ∇ρ
ρ

∥∥∥∥2

0,Ω

− 2µ

∫
Ω

rh − sh
ρ

:
(

(wh − vh)⊗ ∇ρ
ρ

)
.

(4.13)

Next, bounding below the first, second, and fourth terms on the right hand side of (4.13) by 0,
employing the fact that ~wh − ~vh := (wh − vh, rh − sh) ∈ Vh in combination with the estimate (4.6),
and using the discrete version of the inequality (3.14), we get

[A(~wh + ~zh)−A(~vh + ~zh), ~wh − ~vh]

≥ µ

2
min

{
1, C2

d

}{
‖wh − vh ‖20,4;Ω + ‖rh − sh‖20,Ω

}
− µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖~wh − ~vh‖2H .
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Then, defining

αBF,d :=
µ

4
min

{
1, C2

d

}
, (4.14)

we deduce that

[A(~wh + ~zh)−A(~vh + ~zh), ~wh − ~vh] ≥
{

2αBF,d −
µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
‖~wh − ~vh‖2H .

Finally, from the definition of the operator a(ϑh) (cf. (2.17)), the continuity bound of B(ϑh) (cf.
(2.23)), and the foregoing inequality, we get

[a(ϑh)(~wh + ~zh)− a(ϑh)(~vh + ~zh), ~wh − ~vh]

≥
{

2αBF,d −
(
µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+ CB ‖ϑh‖0,4;Ω

)}
‖~wh − ~vh‖2H ,

which, together with (4.10) and (4.11), implies (4.12), completing the proof. In addition, we note that
for ~wh = (wh, rh), ~zh = (zh,qh) ∈ Hh there certainly holds

‖a(ϑh)(~wh)− a(ϑh)(~zh)‖H′h ≤ ‖a(ϑh)(~wh)− a(ϑh)(~zh)‖H′ ,

whence the required continuity property of a(ϑh) : Hh → H′h follows directly from (3.7). �

The following result establishes the well-definiteness of the operator Td.

Lemma 4.3 Let αBF,d be defined as in (4.14) and assume that (4.10) is satisfied. Then, for each ϑh ∈
Hu
h verifying (4.11), the problem (4.4) has a unique solution (~wh, ζh) :=

(
(wh, rh), ζh

)
∈ Hh ×Qh.

Moreover, there exists a constant CTd > 0, independent of ϑh, such that

‖Td(ϑh)‖0,4;Ω ≤ ‖~wh‖H ≤ CTd

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑh‖0,4;Ω

)i}
. (4.15)

Proof. It follows from Lemmas 4.1 and 4.2, along with a straightforward application of Theorem 3.1,
with p1 = 3 and p2 = 2, to the discrete setting represented by (4.4). In turn, the a priori bound (4.15)
is consequence of the abstract estimate (3.4) applied to (4.4), and the bounds for F and G(ϑh) given
in (2.25). Furthermore, proceeding similarly to the derivation of (3.18), we obtain

‖ζh‖Q ≤ C̃

2∑
j=1

(
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖ϑh‖0,4;Ω

)i)j
, (4.16)

with C̃ > 0, depending only on LBF, αBF,d, and βd. �

We now proceed to analyze the fixed-point equation (4.3). We begin with the discrete version of
Lemma 3.6, whose proof follows straightforwardly from Lemma 4.3.

Lemma 4.4 Given r̃ ∈ (0, r̃0], with r̃0 defined in (4.11), we let Wd be the closed ball defined by

Wd :=
{
ϑh ∈ Hu

h : ‖ϑh‖0,4;Ω ≤ r̃
}
, (4.17)

and assume that the data satisfy

CTd

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ + r̃

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
≤ r̃ , (4.18)

with CTd > 0 satisfying (4.15). Then there holds Td(Wd) ⊆Wd.
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Next, we address the discrete counterpart of Lemma 3.7, whose proof, being analogous to the
continuous one, but now using the discrete inf-sup condition for b (cf. (4.5)) instead of the continuous
one, is omitted.

Lemma 4.5 Let r̃ ∈ (0, r̃0], with r̃0 defined in (4.11). Then, for all ϑh, ϑ0,h ∈Wd (cf. (4.17)), there
holds

‖Td(ϑh)−Td(ϑ0,h)‖0,4;Ω ≤ Ld(data, r̃) ‖ϑh − ϑ0,h‖0,4;Ω , (4.19)

where

Ld(data, r̃) := CL,d

{(
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ + r̃

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)(
1 +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)

+

(
2 + r̃ + 2 r̃

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
,

with CL,d > 0, depending only on LBF, αBF,d, βd, CTd, and CB.

We are now in position of establishing the well posedness of (4.2).

Theorem 4.6 Let Wd be the closed ball in Hu
h(Ω) defined in (4.17) and r̃ ∈ (0, r̃0], with r̃0 defined

in (4.11). Assume that the data satisfy (4.18) and

Ld(data, r̃) < 1 . (4.20)

Then, there exists a unique uh ∈Wd fixed-point of operator Td. Equivalently, the problem (4.2) has a
unique solution (~uh,σh) := (~wh, ζh) ∈ Hh ×Qh with uh ∈Wd, where (~wh, ζh) is the unique solution
of (4.4) with ϑh = uh. Moreover, there exist positive constants C1,d and C2,d, depending only on
LBF, αBF,d, βd, CTd , CB, and r̃, such that there hold the following a priori bounds

‖~uh‖H ≤ C1,d

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
(4.21)

and

‖σh‖Q ≤ C2,d

2∑
j=1

(
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)j
. (4.22)

Proof. We first notice from Lemma 4.4 that Td maps the ball Wd into itself. Next, it is easy to see
from (4.19) (cf. Lemma 4.5) and the assumption (4.20) that Td is a contraction, and hence a direct
application of the Banach fixed-point theorem, imply the existence of a unique solution. In turn, the
a priori estimates (4.21) and (4.22) are consequences of (4.15) and (4.16), respectively. �

4.3 A priori error analysis

In this section we derive the Céa estimate for the Galerkin scheme (4.2) with the finite element
subspaces given by (4.1), and then use the approximation properties of the latter to establish the
corresponding rates of convergence. In fact, let (~u,σ) = ((u, t),σ) ∈ H × Q, with u ∈ W, be the
unique solution of the problem (2.16), and let (~uh,σh) = ((uh, th),σh) ∈ Hh ×Qh, with uh ∈ Wd,
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be the unique solution of the discrete problem (4.2). Then, we are interested in obtaining an a priori
estimate for the error

‖(~u,σ)− (~uh,σh)‖ := ‖~u− ~uh‖H + ‖σ − σh‖Q .
To this end, we establish next an ad-hoc Strang-type estimate. In what follows, given a subspace Xh

of a generic Banach space (X, ‖ · ‖X), we set as usual

dist (x,Xh) := inf
xh∈Xh

‖x− xh‖X for all x ∈ X .

Lemma 4.7 Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 × X2. Let A : X → X ′ be a nonlinear operator and B ∈ L(X,Y ′), such
that A and B satisfy the hypotheses of Theorem 3.1 with respective constants L, α, β, and exponents
p1, p2 ≥ 2. Furthermore, let {X1,h}h>0, {X2,h}h>0 and {Yh}h>0 be sequences of finite dimensional
subspaces of X1, X2, and Y , respectively, set Xh := X1,h × X2,h, and for each h > 0 consider a
nonlinear operator Ah : X → X ′, such that Ah|Xh

: Xh → X ′h and B|Xh
: Xh → Y ′h satisfy the

hypotheses of Theorem 3.1 as well, with constants Ld, αd, and βd, all of them independent of h. In
turn, given F ∈ X ′, G ∈ Y ′, and a sequence of functionals {Fh}h>0, {Gh}h>0, with Fh ∈ X ′h, Gh ∈ G′h
for each h > 0, we let (~u, σ) = ((u1, u2), σ) ∈ X × Y and (~uh, σh) = ((u1,h, u2,h), σh) ∈ Xh × Yh be the
unique solutions, respectively, to the problems

[A(~u), ~v] + [B(~v), σ] = [F , ~v] ∀~v ∈ X ,

[B(~u), τ ] = [G, τ ] ∀ τ ∈ Y ,
(4.23)

and
[Ah(~uh), ~vh] + [B(~vh), σh] = [Fh, ~vh] ∀~vh ∈ Xh ,

[B(~uh), τh] = [Gh, τh] ∀ τh ∈ Yh .
(4.24)

Then, there exists a positive constant CST , depending only on p1, p2, Ld, αd, βd, and ‖B‖, such that

‖~u− ~uh‖X + ‖σ − σh‖Y ≤ CST C1(~u, ~uh)
{
C2(~u) dist (~u,Xh) +

2∑
j=1

dist (~u,Xh)pj−1

+ dist (σ, Yh) + ‖F − Fh‖X′h + ‖G − Gh‖Y ′h + ‖A(~u)−Ah(~u)‖X′h
}
,

where

C1(~u, ~uh) := 1 +
2∑
j=1

(
‖uj‖Xj + ‖uj,h‖Xj

)pj−2
and C2(~u) := 1 +

2∑
j=1

‖uj‖
pj−2
Xj

.

Proof. It is basically a suitable modification of the proof of [16, Lemma 6.1] (see also [21, Theorem
B.2]), which in turn, is a modification of [20, Theorem 2.6]. We omit further details and just stress
that the continuity bound and inf-sup condition of the respective linear operator Ah from [16, Lemma
6.1] are now replaced by the corresponding continuity bound and strong monotonicity property of the
present nonlinear operator Ah (cf. hypotheses (i) and (ii) of Theorem 3.1), respectively. �

We now establish the main result of this section.

Theorem 4.8 There exists a positive constant CST (r, r̃), depending only on r, r̃, CB (cf. (2.23)),
and C̃1 (cf. (3.28)), and hence independent of h, such that under the assumption

CST (r, r̃)

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
≤ 1

2
, (4.25)
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there holds

‖(~u,σ)− (~uh,σh)‖ ≤ C
{

dist (~u,Hh) + dist (~u,Hh)2 + dist (σ,Qh)
}
, (4.26)

where C is a positive constant, independent of h, but depending on r, r̃, C̃1, LBF, αBF,d, βd, and CB.

Proof. First, observe that the continuous and discrete problems (2.16) and (4.2) have the structure of
(4.23) and (4.24), respectively. Thus, as a direct application of Lemma 4.7, with p1 = 3 and p2 = 2,
we deduce the existence of a constant CST , depending on LBF, αBF,d, βd, and ρ0, such that

‖(~u,σ)− (~uh,σh)‖ ≤ CST C1(~u, ~uh)
{
C2(~u) dist (~u,Hh) + dist (~u,Hh)2

+ dist (σ,Qh) + ‖G(u)−G(uh)‖Q′h + ‖a(u)(~u)− a(uh)(~u)‖H′h
}
.

(4.27)

Next, proceeding similarly as for the derivation of (3.25), we readily find that

‖G(u)−G(uh)‖Q′h ≤
∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω
‖u− uh‖0,4;Ω . (4.28)

In turn, according to the definition of a(ϑ) (cf. (2.17)), and from the continuity bound of B(ϑ) (cf.
(2.23)), it follows that

‖a(u)(~u)− a(uh)(~u)‖H′h = ‖B(u− uh)(~u)‖H′h ≤ CB ‖u‖0,4;Ω ‖u− uh‖0,4;Ω . (4.29)

Then, replacing (4.28) and (4.29) back into (4.27), and using the fact that u ∈W and uh ∈Wd, we
deduce that

‖(~u,σ)− (~uh,σh)‖ ≤ ĈST (r, r̃)

{
dist (~u,Hh) + dist (~u,Hh)2 + dist (σ,Qh)

+

(∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+ CB ‖u‖0,4;Ω

)
‖u− uh‖0,4;Ω

}
,

with ĈST (r, r̃) := CST (1 + r+ r̃)(1 + r). Finally, bounding ‖u‖0,4;Ω as in (3.28) instead of directly by
r, and performing simple algebraic manipulations, we get

‖(~u,σ)− (~uh,σh)‖ ≤ ĈST (r, r̃)
{

dist (~u,Hh) + dist (~u,Hh)2 + dist (σ,Qh)
}

+CST (r, r̃)

{
‖f‖0,4/3;Ω +

2∑
i=1

(
‖uD‖1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
‖u− uh‖0,4;Ω ,

(4.30)

where CST (r, r̃) := ĈST (r, r̃) max
{

1, CB C̃1

}
max

{
1 + r, r2

}
. Thus, (4.30) in conjunction with the

data assumption (4.25), yield (4.26) and end the proof. �

Now, in order to establish the rate of convergence of the Galerkin scheme (4.2), we recall next the
approximation properties of the finite element subspaces Hu

h ,Ht
h, and Qh (cf. (4.1)), whose derivations

can be found in [19], [20], [23], and [6, Section 3.1] (see also [16, Section 5]).

(AP)uh : there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for
each v ∈Wl,4(Ω), there holds

dist (v,Hu
h) := inf

vh∈Hu
h

‖v − vh‖0,4;Ω ≤ C hl ‖v‖l,4;Ω .
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(AP)th: there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for
each s ∈ Hl(Ω) ∩ L2

tr(Ω), there holds

dist (s,Ht
h) := inf

sh∈Ht
h

‖s− sh‖0,Ω ≤ C hl ‖s‖l,Ω .

(AP)σh : there exists a positive constant C, independent of h, such that for each l ∈ (0, k+ 1], and for
each τ ∈ Hl(Ω) ∩Q with div(τ ) ∈Wl,4/3(Ω), there holds

dist (τ ,Qh) := inf
τh∈Qh

‖τ − τ h‖Q ≤ C hl
{
‖τ‖l,Ω + ‖div(τ )‖l,4/3;Ω

}
.

Now we are in a position to provide the theoretical rate of convergence of the Galerkin scheme (4.2).

Theorem 4.9 In addition to the hypotheses of Theorems 3.8, 4.6, and 4.8, assume that there exists
l ∈ (0, k + 1] such that u ∈ Wl,4(Ω), t ∈ Hl(Ω) ∩ L2

tr(Ω), σ ∈ Hl(Ω) ∩Q, and div(σ) ∈ Wl,4/3(Ω).
Then, there exists a constant C > 0, independent of h, such that

‖(~u,σ)− (~uh,σh)‖ ≤ C hl
{
‖u‖l,4;Ω + ‖t‖l,Ω + ‖u‖2l,4;Ω + ‖t‖2l,Ω + ‖σ‖l,Ω + ‖div(σ)‖l,4/3;Ω

}
.

Proof. The result is a straightforward application of Theorem 4.8 and the approximation properties
(AP)uh , (AP)th, and (AP)σh . Further details are omitted. �

We end this section by introducing suitable approximations for the pressure p, the velocity gradient
G̃ := ∇u, the vorticity ω := 1

2

(
∇u− (∇u)t

)
, and the shear stress tensor σ̃ := µ

(
∇u + (∇u)t

)
− p I,

all them of physical interest. Indeed, the continuous expressions provided in (2.9) and (2.11), and the
decomposition of the original unknown σ given by (2.15), suggest the following discrete formulae in
terms of the solution (~uh,σh) ∈ Hh ×Qh of problem (4.2):

ph = − 1

n

{
tr(σh) + tr(uh ⊗ uh) + µ

(
uh ·
∇ρ
ρ

)}
− c0,h , G̃h =

th
ρ
−
(
uh ⊗

∇ρ
ρ

)
,

ωh =
1

2µ

(
σh − σt

h

)
, and σ̃h = σt

h + µ

(
th
ρ
−
(
uh ⊗

∇ρ
ρ

))
+ (uh ⊗ uh) + c0,h I ,

(4.31)

with

c0,h := − 1

n |Ω|

∫
Ω

{
tr(uh ⊗ uh) + µ

(
uh ·
∇ρ
ρ

)}
.

The following result establishes the rates of convergence for these additional variables.

Lemma 4.10 Assume that there exists l ∈ (0, k + 1] such that u ∈ Wl,4(Ω), t ∈ Hl(Ω) ∩ L2
tr(Ω),

σ ∈ Hl(Ω)∩Q, and div(σ) ∈Wl,4/3(Ω). Then, there exists a constant C > 0, independent of h, such
that

‖p− ph‖0,Ω + ‖G̃− G̃h‖0,Ω + ‖ω − ωh‖0,Ω + ‖σ̃ − σ̃h‖0,Ω

≤ C hl
{
‖u‖l,4;Ω + ‖t‖l,Ω + ‖u‖2l,4;Ω + ‖t‖2l,Ω + ‖σ‖l,Ω + ‖div(σ)‖l,4/3;Ω

}
.
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Proof. Recalling the formulae given in (2.9), (2.11), and (4.31), employing the triangle and Cauchy–
Schwarz inequalities whenever needed, it is not difficult to show that there exists a constant C > 0,
independent of h, such that

‖p− ph‖0,Ω + ‖G̃− G̃h‖0,Ω + ‖ω − ωh‖0,Ω + ‖σ̃ − σ̃h‖0,Ω

≤ C

{
‖(u⊗ u)− (uh ⊗ uh)‖0,Ω +

∥∥∥∥∇ρρ
∥∥∥∥

0,4;Ω

‖u− uh‖0,4;Ω + ‖t− th‖0,Ω + ‖σ − σh‖Q
}
,

(4.32)
where, adding and subtracting u⊗uh (also works with uh⊗u), applying the Cauchy–Schwarz inequality
and using the fact that u ∈W and uh ∈Wd, we find that

‖(u⊗ u)− (uh ⊗ uh)‖0,Ω ≤
(
‖u‖0,4;Ω + ‖uh‖0,4;Ω

)
‖u− uh‖0,4;Ω ≤ C ‖u− uh‖0,4;Ω . (4.33)

Then, replacing (4.33) back into (4.32), the result follows straightforwardly from Theorem 4.9. �

5 Numerical results

In this section we report three examples illustrating the performance of the mixed finite element
scheme (4.2) on a set of quasi-uniform triangulations of the respective domains, and considering
the finite element subspaces defined by (4.1) (cf. Section 4.1). In what follows, we refer to the
corresponding sets of finite element subspaces generated by k = 0 and k = 1, as simply P0−P0−RT0

and P1−P1−RT1, respectively. The implementation of the numerical method is based on a FreeFem++

code [24]. A Newton–Raphson algorithm with a fixed tolerance tol = 1E− 6 is used for the resolution
of the nonlinear problem (4.2). As usual, the iterative method is finished when the relative error
between two consecutive iterations of the complete coefficient vector, namely coeffm and coeffm+1,
is sufficiently small, that is,

‖coeffm+1 − coeffm‖DOF
‖coeffm+1‖DOF

≤ tol ,

where ‖ · ‖DOF stands for the usual Euclidean norm in RDOF with DOF denoting the total number of
degrees of freedom defining the finite element subspaces Hu

h ,Ht
h, and Qh (cf. (4.1)).

We now introduce some additional notation. The individual errors are denoted by:

e(u) := ‖u− uh‖0,4;Ω , e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σh‖div4/3;Ω ,

e(p) := ‖p− ph‖0,Ω , e(G̃) := ‖G̃− G̃h‖0,Ω , e(ω) := ‖ω − ωh‖0,Ω , e(σ̃) := ‖σ̃ − σ̃h‖0,Ω ,

and, as usual, for each ? ∈
{
u, t,σ, p, G̃,ω, σ̃

}
we let r(?) be the experimental rate of convergence

given by

r(?) :=
log
(
e(?)/ê(?)

)
log(h/ĥ)

,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

The examples to be considered in this section are described next. In all of them, for sake of simplicity,
we take µ = 1 and similarly to [15, eq. (44)], we choose the Darcy and Forchheimer coefficients as
follow

D(ρ) = 150

(
1− ρ
ρ

)2

and F(ρ) = 1.75

(
1− ρ
ρ

)
.

In addition, the null mean value of tr(σh) over Ω is fixed via a Lagrange multiplier strategy.
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Example 1: Two-dimensional smooth exact solution

In this test we corroborate the rates of convergence in a two-dimensional domain. The domain is the
square Ω = (−1, 1)2. We define the porosity function

ρ(x1, x2) = 0.45

(
1 +

1− 0.45

0.45
exp

(
− (1− x2)

))
, (5.1)

and adjust the datum f in (2.10) such that the exact solution is given by

u(x1, x2) = ρ(x1, x2)−1

(
sin(πx1) cos(πx2)
− cos(πx1) sin(πx2)

)
, p(x1, x2) = cos(πx1) exp(x2) .

The model problem is then complemented with the appropriate Dirichlet boundary condition. Tables
5.1 and 5.2 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations. Notice that we are able not only to approximate the original
unknowns but also the pressure field, the velocity gradient, the vorticity and the shear stress tensor
through the formulae (4.31). The results illustrate that the optimal rates of convergence O(hk+1)
established in Theorem 4.9 and Lemma 4.10 are attained for k = 0, 1. The Newton method exhibits
a behavior independent of the meshsize, converging in six iterations in almost all cases. In Figure 5.1
we display the porosity ρ (cf. (5.1)) as a function of x2 ∈ [−1, 1] and some solutions obtained with the
mixed P0−P0−RT0 approximation with meshsize h = 0.0284 and 39, 102 triangle elements (actually
representing 313, 328 DOF).

Example 2: Three-dimensional smooth exact solution

In the second example we consider the cube domain Ω = (0, 1)3 and the porosity

ρ(x1, x2, x3) = 0.45

(
1 +

1− 0.45

0.45
exp

(
− (2− x2 − x3)

))
.

Then, the manufactured solution is given by

u(x1, x2, x3) = ρ(x1, x2, x3)−1

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 ,

and
p(x1, x2, x3) = cos(πx1) exp(x2 + x3) .

Similarly to the first example, the data f and uD are computed from (2.10) using the above solution.
The distribution of ρ values as a function of (x2, x3) ∈ [0, 1]× [0, 1] and some numerical solutions are
shown in Figure 5.2, which were built using the mixed P0 − P0 − RT0 approximation with meshsize
h = 0.0643 and 63, 888 tetrahedral elements (actually representing 1, 094, 808 DOF). The convergence
history for a set of quasi-uniform mesh refinements using k = 0 is shown in Table 5.3. Again, the
mixed finite element method converges optimally with order O(h), as it was proved by Theorem 4.9
and Lemma 4.10.

Example 3: A channel flow problem in packed bed reactors

In the last example we study the behavior of the flow problem in a packed bed reactor, which is
represented by the plain domain Ω = (0, 2)× (0, 1) with boundary Γ, and whose input, upper, lower,
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and output parts are given by Γin = {0} × (0, 1), Γtop = (0, 2) × {1}, Γbottom = (0, 2) × {0}, and
Γout = {2} × (0, 1), respectively. The porosity function ρ is defined as in (5.1), the body force term is
f = 0, and the boundary conditions are

u = (−0.2x2(x2 − 1), 0) on Γin, u = 0 on Γtop ∪ Γbottom, σn = 0 on Γout ,

which corresponds to inflow driven through a parabolic fluid velocity on the left boundary and zero
stress outflow on the right of the boundary. Notice that our analysis can be extended to this new
boundary conditions after slight modifications. In Figure 5.3, we display the porosity values respect
to x2 ∈ [0, 1] and the computed magnitude of the velocity, magnitude of the gradient of the porosity
times the velocity, pressure field, magnitude of the velocity gradient, and magnitude of the vorticity,
which were built using the mixed P0 − P0 −RT0 approximation on a mesh with meshsize h = 0.0136
and 73, 666 triangle elements (actually representing 593, 162 DOF). As expected, we observe faster flow
through the middle of the reactor. In turn, the pressure is higher on the left of the boundary and goes
decaying to the right of the domain. Finally, we notice that both the gradient of the porosity times
the velocity, the velocity gradient, and the vorticity are higher at the top of the domain.

DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ)

304 0.7454 6 0.9471 – 3.5274 – 42.6598 –
1328 0.3667 7 0.4582 1.024 1.7374 0.998 16.6297 1.328
4928 0.1971 6 0.2367 1.064 0.9077 1.046 8.3534 1.109

19360 0.1036 6 0.1168 1.099 0.4620 1.051 4.0348 1.132
77520 0.0554 6 0.0593 1.082 0.2297 1.114 2.0082 1.112

313328 0.0284 6 0.0294 1.050 0.1135 1.057 0.9917 1.058

e(p) r(p) e(G̃) r(G̃) e(ω) r(ω) e(σ̃) r(σ̃)

3.7026 – 5.2614 – 2.2178 – 8.8986 –
1.1599 1.636 2.6550 0.964 1.1658 0.907 3.9226 1.155
0.5349 1.247 1.3919 1.040 0.6183 1.022 2.0170 1.071
0.2372 1.265 0.7055 1.057 0.3227 1.012 1.0054 1.083
0.1178 1.116 0.3521 1.108 0.1583 1.135 0.5033 1.103
0.0566 1.100 0.1741 1.056 0.0790 1.043 0.2475 1.064

Table 5.1: [Example 1] Number of degrees of freedom, meshsizes, Newton iteration count, errors,
and rates of convergence for the mixed P0− P0−RT0 approximation of the CBF model with varying
porosity.

References

[1] L. Angelo, J. Camaño, and S. Caucao, A five-field mixed formulation for stationary magne-
tohydrodynamic flows in porous media. Comput. Methods Appl. Mech. Engrg. 414 (2023), Paper
No. 116158, 30 pp.

[2] J.W. Barrett and W.B. Liu, Finite element approximation of the p-Laplacian. Math. Comp.
61 (1993), no. 204, 523–537.

[3] G.A. Benavides, S. Caucao, G.N. Gatica, and A.A. Hopper, A new non-augmented and
momentum-conserving fully-mixed finite element method for a coupled flow-transport problem.
Calcolo 59 (2022), Paper No. 6.

25



DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ)

932 0.7454 7 0.3009 – 1.0130 – 15.4230 –
4114 0.3667 7 0.0587 2.305 0.2099 2.219 2.4882 2.572

15328 0.1971 7 0.0157 2.127 0.0569 2.104 0.5987 2.295
60356 0.1036 7 0.0038 2.197 0.0143 2.152 0.1421 2.237

241962 0.0554 6 0.0010 2.188 0.0036 2.184 0.0357 2.202
978574 0.0284 6 0.0002 2.128 0.0009 2.104 0.0087 2.120

e(p) r(p) e(G̃) r(G̃) e(ω) r(ω) e(σ̃) r(σ̃)

1.0136 – 1.5401 – 0.5709 – 2.3496 –
0.1575 2.625 0.3226 2.204 0.1081 2.346 0.4693 2.271
0.0352 2.412 0.0878 2.096 0.0305 2.036 0.1255 2.125
0.0085 2.214 0.0218 2.166 0.0080 2.091 0.0309 2.179
0.0022 2.169 0.0056 2.176 0.0020 2.205 0.0080 2.166
0.0005 2.105 0.0014 2.103 0.0005 2.102 0.0020 2.104

Table 5.2: [Example 1] Number of degrees of freedom, meshsizes, Newton iteration count, errors,
and rates of convergence for the mixed P1− P1−RT1 approximation of the CBF model with varying
porosity.

Figure 5.1: [Example 1] Porosity function, magnitude of the velocity, magnitude of the gradient of the
porosity times the velocity, and pseudostress tensor component (top plots); pressure field, magnitude
of the velocity gradient, magnitude of the vorticity, and shear stress tensor component (bottom plots).
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porosity times the velocity, and pseudostress tensor component (top plots); pressure field, magnitude
of the velocity gradient, magnitude of the vorticity, and shear stress tensor component (bottom plots).
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Figure 5.3: [Example 3] Porosity function, magnitude of the velocity, and magnitude of the gradient
of the porosity times the velocity (top plots); pressure field, magnitude of the velocity gradient, and
magnitude of the vorticity (bottom plots).
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