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Abstract

In this paper we propose and analyze a fully-mixed finite element method for the steady-state
model of fluidized beds. This numerical technique, which arises from the use of a dual-mixed
approach in each phase, is motivated by a methodology previously applied to the stationary
Navier-Stokes equations and related models. More precisely, we modify the stress tensors
of the fluid and solid phases by incorporating the diffusive and convective terms into them,
thus yielding pseudostress tensors. Next, we eliminate the pressures from the equations and
derive constitutive relations depending only on the aforementioned pseudostresses and the
velocities of the fluid and the particles. In this way, these variables, together with the skew-
symmetric parts of the velocity gradients, also named vorticities, become the only unknowns
of our variational formulation. As usual, the latter is obtained by testing against suitable
functions, and then integrating and integrating by parts, respectively, the equilibrium and
the constitutive equations. The particle pressure, a known function of the concentration, is
given as a datum, and the fluid pressure is computed afterwards via a postprocessing formula.
The continuous setting, lying in a Banach spaces framework rather than in a Hilbertian one,
is rewritten as an equivalent fixed-point equation, and hence the well-posedness analysis is
carried out by combining the Babuška-Brezzi theory, the Banach-Nečas-Babuška Theorem,
and the classical Banach fixed-point Theorem. Thus, existence of a unique solution in a
closed ball is guaranteed for sufficiently small data. In turn, the associated Galerkin scheme
is introduced and analyzed analogously, so that, under suitable assumptions on generic finite
element subspaces, and for sufficiently small data as well, the Brouwer and Banach fixed-
point Theorems allow to conclude existence and uniqueness of solution, respectively. Specific
finite element subspaces satisfying the required hypotheses are described, and optimal a priori
error estimates are derived. Finally, several numerical examples illustrating the performance
of the method and confirming the theoretical rates of convergence, are reported.
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1 Introduction

We begin this section by explaining the physical origin of the fluidized bed concept, for which we
consider a set of solid particles in a reservoir through which there is an upward flow of a fluid.
When the flow rate is small, the fluid flows through the set of particles as if it was a porous
medium. When the flow rate increases and reaches a level at which the fluid drag experienced by
the particles is such that it balances their net weight, a few particles become mobile and a small
expansion of the region occupied by the particles is observed. Any further increase on the flow
rate causes the particles to become fully mobile and to occupy a larger region of the reservoir.
At this stage, the particles are said to be fluidized, and the system is usually referred to as a
fluidized bed. The name fluidized bed is due to the fact that the particles in this condition can
be stirred and poured as a fluid [32].

Fluidized beds are extensively used as chemical reactors in industrial scale due to the high
levels of interaction between the fluid and the particles that can be achieved in these flows [34].
Higher efficiencies in heat and mass transfer are obtained in fluidized systems, when compared
to fixed bed systems. In addition, the fact that particles behave as a fluid allows for a continuous
operation of the reactor, with old (used) particles being removed and new particles being fed
in as necessary, without the need to interrupt the operation of the system. Therefore, there
is a strong industrial drive to understand the dynamics of these flows, and mathematical and
numerical modelling play a crucial role in this task.

The pioneering work in the mathematical modelling of fluidized beds was developed by
Anderson & Jackson in [4]. In this model, a volume averaging procedure is used to treat
the fluidized particles as a continuum phase interpenetrating the fluid, for which the balance
equations of continuum mechanics for mass, momentum, and eventually energy, could be written
in terms of field quantities such as velocity and particle concentration, rather than in terms of
the properties of the individual particles. This model is often referred to as the two-fluid model
of fluidized beds [32]. Despite the advantage of not having to track individual particles, the
drawback of this continuum approach is that unknown terms appear in the averaged equations
of conservation. Constitutive laws must be proposed to account for these terms, namely the
fluid-particle interaction force and the particle phase stress tensor. There are several constitutive
models discussed in the literature and there seems to be a general agreement that the particle
stress tensor can be modelled very similarly to that of a Newtonian fluid stress tensor, but with
a particle pressure and a particle viscosity that depend on the local particle concentration of
particles [4, 5, 26], and potentially also on the particle velocity fluctuations, for which another
conservation equation has to be written [30,35].

There are several examples on the literature that have presented results of numerical simula-
tions of flows in fluidized beds, based on different constitutive models and solved with different
numerical schemes. For example, the evolution of small amplitude disturbances in both liquid-
and gas-solid fluidized beds to finite amplitude structures was investigated with a two-fluid stan-
dard model in [5, 39]. An industrial circulating fluidized bed was investigated in detail with a
two-fluid that used kinetic theory equations to account for particle stresses in [41]. In [29], a
steady-state model based on a two-fluid model was used to study the effect of turbulence on
axisymmetrical fluidised beds. More recently, the problem involving the determination of the
particle stress tensor was avoided by coupling the fluid phase equations derived in [4] with the
Discrete Element Method to solve the motion of individual particles [31, 33, 40, 42], which is
responsible to feed the concentration and the velocities of the particles to the continuum fluid
phase equation. Although several types of discretizations were used in these works, in neither
of them a rigorous study of the numerical scheme, nor an a priori error analysis, were carried
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out and, to the best knowledge of the authors, contributions in this direction do not seem to
be available in the literature. In particular, the use of the finite element methodology, and even
more interestingly, the derivation of mixed finite element methods taking advantages of the main
features of the corresponding constitutive and momentum equations, has not been considered
at all so far.

Due to the aforementioned lack of utilization of finite element techniques, and motivated
by the increasing development during the last decade of new mixed finite element methods for
solving diverse nonlinear models in continuum mechanics, we aim here to extend the applicability
of this approach to fluidized beds. More precisely, since the nonlinearities involved in this model
are similar to those from the Navier-Stokes and related equations, and rather than using a
classical Hilbertian framework, we plan to adapt to our present model of interest the Banach
spaces-based approach that has been employed in several recent works (see, e.g. [8, 9, 13, 14, 20,
22, 25]), and which has shown to be very suitable to solve fluid-flow problems via dual-mixed
formulations and the resulting mixed finite element schemes. Indeed, one of its main advantages
is the fact that it does not need to make use of any augmentation procedure (as done, e.g.,
in [1,15,17,18,24]), thus leaving the variational formulations as simple as possible and employing
the natural spaces arising from the equations for their respective settings. Furthermore, it
allows, on one hand, to derive momentum conservative numerical schemes, and on the other
hand, to obtain direct approximations of further variables of interest, some of them through
their incorporation as unknowns of the formulation, and others through postprocessing formulae
defined in terms of the discrete solution.

In order to provide further details on the above discussion, we begin by referring to the
numerical method introduced in [13] for the stationary Navier-Stokes problem. There, the system
is rewritten in terms of the velocity and a suitable pseudostress tensor relating the gradient of the
velocity, the pressure and the convective term, leading to a dual-mixed momentum conservative
scheme where both unknowns, velocity and psuedostress, are set in Banach spaces. The latter
allows to prove existence and uniqueness of solution by means of a fixed-point argument and the
well-known Banach-Nečas-Babuška Theorem. In addition, the pressure, as well as the velocity
gradient and the vorticity, can be obtained through a simple postprocessing of the solution
without applying any numerical differentiation, thus avoiding further sources of error. This
technique has also been successfully applied to the Boussinesq system (see [20,22,25]), magneto-
hydrodynamics (see [14]) and flow-transport problems (see [8, 9]), among others. For instance,
the approach employed in [25] to deal with the fluid part of the model is extended in [22]
to the associated heat equation. In this way, a modified mixed formulation is utilized in the
latter, which is based on the introduction of the gradient of temperature and a vector version of
the Bernouilli tensor as auxiliary unknowns. As a consequence, the same Banach saddle-point
structure arises for both the fluid and energy equations. The analysis from [22] was later on
adapted to the Oberbeck-Boussinesq system in [23], where analogue results were obtained.

Consequently, in this work we introduce and analyze a fully-mixed finite element method for
numerically solving the steady-state model of fluidized beds. The rest of the paper is organized
as follows. In Section 2 we introduce the problem of interest. More precisely, after collecting
some preliminary notations and defining the evolutive fluidized bed model, its steady-state ver-
sion is described there in terms of a dual-mixed approach in each phase. As a consequence, the
pseudostress and vorticity tensors in the fluid and solid parts, together with the correspond-
ing velocity vector fields, become the respective unknowns. Then, coherently with the above,
the associated fully-mixed variational formulation is derived and analyzed in Section 3 within
a Banach framework. Indeed, besides providing the boundedness properties of all the forms
involved, the equivalence of the continuous formulation with a fixed-point equation is estab-
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lished, and the well-definedness of the corresponding operator is proved. Finally, the Banach
fixed-point Theorem is applied to conclude the existence of a unique solution. In Section 4 we
apply the same procedure from Section 3 to introduce and analyze a generic Galerkin scheme.
In this way, under suitable assumptions on the finite element subspaces, and employing again
fixed-point arguments, we are able to prove existence and then uniqueness of the discrete solu-
tion by applying the Brouwer and Banach Theorems, respectively. In addition, it is shown that
basically any stable triplet for the Hilbertian framework of mixed linear elasticity is also stable
for our present Banach framework of the fluidized bed model. Next, in Section 5 we develop the
a priori error analysis of the Galerkin scheme and provide the associated rates of convergence.
Finally, several illustrative numerical results are presented in Section 6.

2 The model problem

2.1 Preliminaries

Let us denote by Ω ⊆ Rn, n ∈ {2, 3} a given bounded domain with polyhedral boundary Γ,
and denote by n the outward unit normal vector on Γ. Standard notations will be adopted
for Lebesgue spaces Lp(Ω), with p ∈ [1,∞] and Sobolev spaces W r,p(Ω) with r ≥ 0, endowed
with the norms ‖ · ‖0,p;Ω and ‖ · ‖r,p;Ω, respectively, whose vectorial and tensorial versions are
denoted in the same way. Note that W 0,p(Ω) = Lp(Ω) and if p = 2, we write Hr(Ω) in place of
W r,2(Ω), with the corresponding Lebesgue and Sobolev norms denoted by ‖ · ‖0,Ω and ‖ · ‖r,Ω,
respectively. We also write |·|r,Ω for the Hr-seminorm. In addition, H1/2(Γ) is the spaces of traces
of functions of H1(Ω) and H−1/2(Γ) denotes its dual. With 〈·, ·〉 we denote the corresponding
product of duality between H1/2(Γ) and H−1/2(Γ). By S and S we will denote the corresponding
vectorial and tensorial counterparts, respectively, of the generic scalar functional space S. In
turn, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n we set the gradient, symmetric part
of the gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, e(v) :=
1

2

{
(∇v) + (∇v)t

}
,

div v :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

In addition, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the
divergence operator div acting along the rows of τ , and define the transpose, the trace, the
tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τ ji)i,j=1,n, tr(τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij , and τ d := τ − 1

n
tr(τ )I,

where I is the identity tensor in Rn×n. For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω
vw, (v,w)Ω :=

∫
Ω

v ·w, (v,w)Γ :=

∫
Γ

u · v and (τ , ζ)Ω :=

∫
Ω
τ : ζ.

Furthermore, we recall that the Hilbert space

H(div; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L2(Ω)

}
, (2.1)
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equipped with the usual norm ‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω is standard in the realm of

mixed problems. In turn, given p ≥ 2n

n+ 2
, in what follows we will also employ the Banach

space H(divp; Ω) defined by

H(divp; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lp(Ω)

}
, (2.2)

endowed with the norm ‖τ‖divp;Ω :=
(
‖τ‖20,Ω + ‖div(τ )‖20,p;Ω

)1/2
.

2.2 The fluidized bed model

We assume that the domain Ω is the region in which a large number of solid particles is suspended
by an upwards fluid flow of either a liquid or a gas. In the following, we shall focus our attention
on the models used in [5] and, more recently, in [39]. Therefore, letting g be the (constant)
acceleration of gravity and denoting the fluid viscosity by µf , the fluid density by ρf , the
density of the particles by ρs, and a final time by T, we are interested in the model problem
described by the following set of equations:

ρf ε
(∂uf
∂t

+
(
∇uf

)
uf

)
= div Tf − F (uf ,us) + ερf g in Ω× (0,T] ,

Tf = −pf I + 2µf e(uf )d in Ω× (0,T] ,
∂ε

∂t
+ div(εuf ) = 0 in Ω× (0,T] ,

(2.3)

ρs φ
(∂us
∂t

+
(
∇us

)
us

)
= div (Ts − Tf ) + F (uf ,us) + φρs g in Ω× (0,T] ,

Ts = −ps(φ) I + 2µs(φ) e(us)
d in Ω× (0,T] ,

∂φ

∂t
+ div(φus) = 0 in Ω× (0,T] ,

(2.4)

where the unknowns uf , us, pf , φ and ε represent, respectively, the velocity of the fluid, the
velocity of the particles, the pressure on the fluid phase, the concentration of particles and the
void fraction. Note that the concentration of particles φ and the void fraction ε satisfy the
identity

φ + ε = 1 in Ω . (2.5)

The stress tensor of the fluid phase is denoted by Tf and that of the solid phase by Ts. The
particle pressure ps : R→ R is a function of the particle concentration φ given by [5, 39]:

ps(φ) := Pφ3exp

(
rφ

φp − φ

)
, (2.6)

where P, r are constants that allow for changes in the intensity and the slope of the particle
pressure, and φp is the maximum close random packing of the spheres, usually taken as φp = 0.64.
The particle viscosity µs : R→ R is given by [5]:

µs(φ) :=
Mφ

1−
(
φ

φp

)1/3
, (2.7)

where the constant M is also used to set the range of values of the particle viscosity. Finally, the
fluid-particle interaction force F : Rn × Rn → Rn is a function of φ, uf and us, which usually
takes the form of a viscous drag given by [5]:

F (uf ,us) := δ(φ) (uf − us) , (2.8)
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with δ : R→ R denoting the drag coefficient based on the Richardson & Zaki correlation [38]:

δ(φ) :=
(ρs − ρf )g

vt

φ

(1− φ)m−1
. (2.9)

The experimental coefficient m is normally taken on the range 3 ≤ m ≤ 5 [38].

2.3 The steady-state model

In what follows we consider the uncoupling between (φ, ε) and (uf ,us, pf ) resulting from the
steady-state counterpart of (2.3) - (2.5), that is, given φ and ε such that φ + ε = 1 in Ω, we
seek uf , us, and pf in suitable spaces such that

ρf ε
(
∇uf

)
uf = div Tf − F (uf ,us) + ερf g in Ω ,

Tf = −pf I + 2µf e(uf )d in Ω , div(εuf ) = 0 in Ω ,

ρs φ
(
∇us

)
us = div (Ts − Tf ) + F (uf ,us) + φρs g in Ω ,

Ts = −ps(φ) I + 2µs(φ) e(us)
d in Ω , and div(φus) = 0 in Ω .

(2.10)

We first observe, thanks to the free divergence property for εuf and φus (cf. second and fourth
rows of (2.10)), that there hold

div
(
(εuf )⊗ uf

)
= ε

(
∇uf

)
uf and div

(
(φus)⊗ us

)
= φ

(
∇us

)
us in Ω .

Then, bearing in mind the expressions of Tf and Ts, we now introduce the pseudostress tensors

σf := 2µf e(uf )d − ρf (εuf )⊗ uf − pf I in Ω, and

σs := 2µs(φ) e(us)
d − ρs(φus)⊗ us − ρf (εuf )⊗ uf − ps(φ)I in Ω ,

(2.11)

whence the first and third rows of (2.10) can be rewritten, respectively, as follows

div(σf ) − F (uf ,us) = −ερfg in Ω , and

div(σs) + F (uf ,us) = div(σf ) − φρsg in Ω .
(2.12)

Equivalently, replacing div(σf ) from the first equation of (2.12) into the second one, and keeping
the former as it is, we arrive at

div(σf ) − F (uf ,us) = −ερfg in Ω , and

div(σs) = −(ερf + φρs)g in Ω .
(2.13)

In addition, it also follows from (2.11) that

tr(σf ) = −ρf tr
(
(εuf )⊗ uf

)
− npf in Ω , and

tr(σs) = −tr
(
ρs(φus)⊗ us + ρf (εuf )⊗ uf

)
− nps(φ) in Ω ,

from which we deduce that

pf = − 1

n
tr
(
σf + ρf (εuf )⊗ uf

)
in Ω , and

ps(φ) = − 1

n
tr
(
σs + ρs(φus)⊗ us + ρf (εuf )⊗ uf

)
in Ω .

(2.14)
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In this way, replacing the foregoing expressions for pf and ps(φ) back into (2.11), and recalling

that e(uf )d = e(uf ) − 1

n
tr
(
e(uf )

)
I = e(uf ) − 1

n
div(uf ) I, and similarly for e(us)

d, we find

that

σd
f = 2µfe(uf )− ρf

(
(εuf )⊗ uf

)d − 2µf
n

div(uf ) I in Ω, and

σd
s = 2µs(φ)e(us)− ρs

(
(φus)⊗ us

)d − ρf((εuf )⊗ uf
)d − 2µs(φ)

n
div(us) I in Ω.

(2.15)

At this point we notice that, similarly to [19], and employing again the incompressibility condi-
tions from (2.10), one easily finds that the divergence terms of the foregoing equations can be
replaced as follows

div(uf ) = −∇ε
ε
· uf and div(us) = −∇φ

φ
· us in Ω . (2.16)

Furthermore, for sake of uniqueness of the pressure solution pf , we impose the condition∫
Ω
pf = 0 ,

which, according to the first equation in (2.14), is equivalent to establishing∫
Ω

tr(σf ) = −
∫

Ω
tr
(
ρf (εuf )⊗ uf

)
. (2.17)

In turn, since ps(φ) is explicitly known in terms of φ (cf. (2.6)), we derive from the second
equation in (2.14) that∫

Ω
tr(σs) = −

∫
Ω

{
nps(φ) + tr

(
ρs(φus)⊗ us + ρf (εuf )⊗ uf

)}
. (2.18)

We remark that the identities (2.17) and (2.18) are crucial to solve later on for σf and σs. The
description of our model continues with the introduction of the skew-symmetric tensors

γf :=
1

2

{
∇uf − (∇uf )t

}
and γs :=

1

2

{
∇us − (∇us)

t
}
,

so that the strain tensors e(uf ) and e(us) can be decomposed as

e(uf ) = ∇uf − γf and e(us) = ∇us − γs . (2.19)

Finally, given uD,f , uD,s ∈ H1/2(Γ), we consider the Dirichlet boundary conditions for uf and
us given by

uf = uD,f and us = uD,s on Γ . (2.20)

We stress here that (2.20) makes sense under the assumption that us and uf are sought originally
in H1(Ω), which, in turn, implies that γs and γf belong to L2

skew(Ω), where

L2
skew(Ω) :=

{
η ∈ L2(Ω) : ηt = −η

}
.

Summarizing, the steady-state model (2.10) is now reformulated in terms of the equations (2.13),
(2.15), (2.17), (2.18), (2.19), and (2.20). The unknowns of the global system are the tensors σf
and σs, the vorticity tensors γs and γf , and the velocity vector fields uf and us, whereas the
pressure scalar field pf is easily computed by using the postprocessing formula given by the first
equation of (2.14).
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3 The variational formulation

In this section we derive the variational setting of the aforementioned reformulation of the
steady-state model (2.10), and then we analyze its solvability.

3.1 A fully-mixed approach

We begin by observing, thanks to the Cauchy-Schwarz inequality and the uniform boundedness
of ε and φ by 1, that the tensors σd

f , σd
s,
(
(εuf )⊗ uf

)d
, and

(
(φus)⊗ us

)d
appearing in (2.15),

are integrable against τ ∈ L2(Ω), if the pairs (σf ,σs) and (uf ,us) are assumed to live in
L2(Ω) × L2(Ω) and L4(Ω) × L4(Ω), respectively. Similarly, we deduce, using now the Hölder
inequality, that the terms in (2.13) involving the divergence operator div are integrable against
corresponding test functions in L4(Ω) if both div(σf ) and div(σs) belong to L4/3(Ω). The
above suggests to look for the unknowns σf and σs in H(div4/3; Ω), where, according to (2.2),
we set

H(div4/3; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L4/3(Ω)

}
.

Then, we notice that there holds

H(div4/3; Ω) := H0(div4/3; Ω) ⊕ R I , (3.1)

where

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) :

∫
Ω

tr(τ ) = 0
}
, (3.2)

which means that for each tensor τ ∈ H(div4/3; Ω) there exist unique τ 0 ∈ H0(div4/3; Ω) and

d0 :=
1

n|Ω|

∫
Ω

tr(τ ) ∈ R, such that τ = τ 0 + d0I. In particular, we have the decompositions

σf = σf,0 + df,0 I and σs = σs,0 + ds,0 I ,

where σf,0, σs,0 ∈ H0(div4/3; Ω), and the constants df,0 and ds,0 are computed according to the
foregoing definition of the generic constant d0, and employing (2.17) and (2.18), respectively,
which gives

df,0 := − 1

n|Ω|

∫
Ω

tr
(
ρf (εuf )⊗ uf

)
and

ds,0 := − 1

n|Ω|

∫
Ω

{
nps(φ) + tr

(
ρs(φus)⊗ us + ρf (εuf )⊗ uf

)}
.

As a consequence, and regarding the unknowns σf and σs, it only remains to find their
H0(div4/3; Ω)-components σf,0 and σs,0, which, because of the constant tensorial components
given by df,0 I and ds,0 I, are easily shown to satisfy exactly the same equations (2.13) and (2.15)
satisfied by σf and σs. In this way, from now on we denote σf,0 and σs,0 by simply σf and σs,
and look for them in H0(div4/3; Ω), and satisfying the aforementioned equations. In this regard,
we now notice that there is no need to explicitly impose the testing of (2.15) with multiples of I,
since, in doing so, both sides of the equations are nullified, which means that (2.15) is implicitly
satisfied.

According to the above discussion, and bearing in mind (3.1), we now proceed to test the
equations of (2.15) with functions in H0(div4/3; Ω). Indeed, multiplying the first equation
of (2.15) by τ f ∈ H0(div4/3; Ω), dividing by 2µf , replacing e(uf ) by its decomposition from
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(2.19), integrating by parts, and utilizing the first identity of (2.16) and the Dirichlet boundary
condition for uf , we obtain

af (σf , τ f ) + b
(
τ f , (uf ,γf )

)
+ cf (uf , τ f ) + df (uf ; uf , τ f ) = Ff (τ f ) , (3.3)

for all τ f ∈ H0(div4/3; Ω), where the bilinear forms af , b, and cf , the trilinear form df , and
the linear functional Ff are defined by

af (ζf , τ f ) :=
1

2µf

∫
Ω
ζdf : τ df ,

b
(
τ f , (vf ,ηf )

)
:=

∫
Ω

vf · div(τ f ) +

∫
Ω
ηf : τ f ,

cf (vf , τ f ) := − 1

n

∫
Ω

(∇ε
ε
· vf

)
tr(τ f ) ,

df (wf ; vf , τ f ) :=
ρf

2µf

∫
Ω

(
(εwf )⊗ vf

)d
: τ f ,

(3.4)

and
Ff (τ f ) := 〈τ fn,uD,f 〉 , (3.5)

for all ζf , τ f ∈ H0(div4/3; Ω), for all vf , wf ∈ L4(Ω), and for all ηf ∈ L2
skew(Ω). Similarly,

multiplying now the second equation of (2.15) by τ s ∈ H0(div4/3; Ω), dividing by 2µs(φ),
replacing e(us) by its decomposition from (2.19), integrating by parts, utilizing the second
identity of (2.16) and the Dirichlet boundary condition for us, and denoting from now on
u := (uf ,us), we obtain

as(σs, τ s) + b
(
τ s, (us,γs)

)
+ cs(us, τ s) + ds(us; us, τ s) = Fu

s (τ s) , (3.6)

for all τ s ∈ H0(div4/3; Ω), where the bilinear forms as and cs, the trilinear form ds, and the
linear functional Fu

s are defined by

as(ζs, τ s) :=

∫
Ω

1

2µs(φ)
ζds : τ ds ,

cs(vs, τ s) := − 1

n

∫
Ω

(∇φ
φ
· vs
)

tr(τ s) ,

ds(ws; vs, τ s) :=

∫
Ω

ρs
2µs(φ)

(
(φws)⊗ vs

)d
: τ s ,

(3.7)

and

Fu
s (τ s) := 〈τ sn,uD,s〉 −

∫
Ω

ρf
2µs(φ)

(
(εuf )⊗ uf

)d
: τ s , (3.8)

for all ζs, τ s ∈ H0(div4/3; Ω), and for all vs, ws ∈ L4(Ω). Note that Fu
s is denoted in this way

irrespective of the fact that it only depends on the first component uf of u. Next, testing the
equations of (2.13) against vf ∈ L4(Ω) and vs ∈ L4(Ω), respectively, we obtain∫

Ω
vf · div(σf ) −

∫
Ω
F (u) · vf = −

∫
Ω
ερfg · vf ∀vf ∈ L4(Ω) , (3.9)

and ∫
Ω

vs · div(σs) = −
∫

Ω
(ερf + φρs)g · vs ∀vs ∈ L4(Ω) . (3.10)
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Finally, the symmetries of σf and σs are imposed weakly as∫
Ω
σf : ηf = 0 ∀ηf ∈ L2

skew(Ω) (3.11)

and ∫
Ω
σs : ηs = 0 ∀ηs ∈ L2

skew(Ω) , (3.12)

so that after adding (3.11) and (3.12) to (3.9) and (3.10), respectively, we end up with

b
(
σf , (vf ,ηf )

)
= Gu

f (vf ,ηf ) ∀ (vf ,ηf ) ∈ L4(Ω)× L2
skew(Ω) (3.13)

and
b
(
σs, (vs,ηs)

)
= Gs(vs,ηs) ∀ (vs,ηs) ∈ L4(Ω)× L2

skew(Ω) , (3.14)

where

Gu
f (vf ,ηf ) :=

∫
Ω
F (u) · vf −

∫
Ω
ερfg · vf , (3.15)

and

Gs(vs,ηs) := −
∫

Ω
(ερf + φρs)g · vs . (3.16)

In this way, the fully-mixed variational formulation of (2.10) reduces basically to the equations
(3.3), (3.6), (3.13), and (3.14). More precisely, introducing the spaces

H := H0(div4/3; Ω) and Q := L4(Ω)× L2
skew(Ω) , (3.17)

with norms ‖τ‖H := ‖τ‖div4/3;Ω for all τ ∈ H, and ‖(v,η)‖Q :=
{
‖v‖20,4;Ω + ‖η‖0,Ω

}1/2
for all

(v,η) ∈ Q, we seek
(
σf , (uf ,γf )

)
∈ H×Q and

(
σs, (us,γs)

)
∈ H×Q such that

af (σf , τ f ) + b
(
τ f , (uf ,γf )

)
+ cf (uf , τ f ) + df (uf ; uf , τ f ) = Ff (τ f ) ,

b
(
σf , (vf ,ηf )

)
= Gu

f (vf ,ηf ) ,

as(σs, τ s) + b
(
τ s, (us,γs)

)
+ cs(us, τ s) + ds(us; us, τ s) = Fu

s (τ s) ,

b
(
σs, (vs,ηs)

)
= Gs(vs,ηs) ,

(3.18)

for all
(
τ f , (vf ,ηf )

)
∈ H×Q and for all

(
τ s, (vs,ηs)

)
∈ H×Q.

We end this section by establishing the boundedness properties of all the forms involved in
(3.18). Firstly, regarding af , b, cf , df , Ff , and Gu

f , we notice from (3.4), (3.5), and (3.15),
that direct applications of the Cauchy-Schwarz and Hölder inequalities, combined with the
boundedness of the normal trace operator in H(div4/3; Ω), and the expression for F (u) given
by (2.8), yield

|af (ζf , τ f )| ≤ ‖af‖ ‖ζf‖0,Ω ‖τ f‖0,Ω , (3.19)

|b
(
τ f , (vf ,ηf )

)
| ≤ ‖b‖ ‖τ f‖H ‖(vf ,ηf )‖Q , (3.20)

|cf (vf , τ f )| ≤ ‖cf‖ ‖vf‖0,4;Ω ‖τ f‖0,Ω , (3.21)

|df (wf ; vf , τ f )| ≤ ‖df‖ ‖wf‖0,4;Ω ‖vf‖0,4;Ω ‖τ f‖0,Ω , (3.22)

|Ff (τ f )| ≤ ‖Ff‖ ‖τ f‖H , and (3.23)
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|Gu
f (vf ,ηf )| ≤ ‖Gu

f ‖ ‖vf‖0,4;Ω , (3.24)

where

‖af‖ =
1

2µf
, ‖b‖ = 1 , ‖cf‖ =

1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

,

‖df‖ =
ρf

2µf
‖ε‖0,∞;Ω , ‖Ff‖ = ‖uD,f‖1/2,Γ , and

‖Gu
f ‖ = ‖δ(φ)‖0,Ω ‖uf − us‖0,4;Ω + |Ω|3/4 ρf g ‖ε‖0,∞;Ω .

(3.25)

In turn, in order to derive the respective bounds for as, cs, ds, Fu
s , and Gu

s , we assume from
now on that µs(φ) is bounded above and below, which means that there exist positive constants
µ1 and µ2, independent of the given φ, such that

0 < µ1 ≤ µs(φ) ≤ µ2 . (3.26)

Equivalently, and according to (2.7), the above means that φ is assumed to remain bounded
away from its lower and upper bounds given by 0 and φp, respectively. Needless to say, this is
precisely the case of fluidized beds. Then, proceeding as for (3.19) - (3.24), we find that

|as(ζs, τ s)| ≤ ‖as‖ ‖ζs‖0,Ω ‖τ s‖0,Ω , (3.27)

|cs(vs, τ s)| ≤ ‖cs‖ ‖vs‖0,4;Ω ‖τ s‖0,Ω , (3.28)

|ds(ws; vs, τ s)| ≤ ‖ds‖ ‖ws‖0,4;Ω ‖vs‖0,4;Ω ‖τ s‖0,Ω , (3.29)

|Fu
s (τ s)| ≤ ‖Fu

s ‖ ‖τ s‖H , and (3.30)

|Gs(vs,ηs)| ≤ ‖Gs‖ ‖vs‖0,4;Ω , (3.31)

where

‖as‖ =
1

2µ1
, ‖cs‖ =

1√
n

∥∥∥∥∇φφ
∥∥∥∥

0,4;Ω

, ‖ds‖ =
ρs

2µ1
‖φ‖0,∞;Ω ,

‖Fu
s ‖ = ‖uD,s‖1/2,Γ +

ρf
2µ1
‖ε‖0,∞;Ω ‖uf‖20,4;Ω , and

‖Gs‖ = |Ω|3/4 g ‖ερf + φρs‖0,∞;Ω .

(3.32)

3.2 A fixed-point approach

In what follows we proceed as in related works (see, e.g. [1], [3], [8], [15], [17], [18], [22], and [24])
and introduce fixed-point strategies to analyze the solvability of (3.18). To this end, we first
define the operator Θf : L4(Ω)× L4(Ω)→ L4(Ω) as

Θf (w) := ûf ∀w := (wf ,ws) ∈ L4(Ω)× L4(Ω) , (3.33)

where
(
σ̂f , (ûf , γ̂f )

)
∈ H × Q is the unique solution (to be confirmed below) of the first two

equations of (3.18) when the first component uf of df and the superscript u of Gu
f are replaced

by wf and w, respectively, that is

af (σ̂f , τ f ) + b
(
τ f , (ûf , γ̂f )

)
+ cf (ûf , τ f ) + df (wf ; ûf , τ f ) = Ff (τ f ) ,

b
(
σ̂f , (vf ,ηf )

)
= Gw

f (vf ,ηf ) ,
(3.34)

for all
(
τ f , (vf ,ηf )

)
∈ H × Q. In turn, we let Θs : L4(Ω) × L4(Ω) → L4(Ω) be the operator

given by
Θs(w) := ûs ∀w := (wf ,ws) ∈ L4(Ω)× L4(Ω) , (3.35)

11



where
(
σ̂s, (ûs, γ̂s)

)
∈ H × Q is the unique solution (to be confirmed below) of the last two

equations of (3.18) when the first component us of ds and the superscript u of Fu
s are replaced

by ws and w, respectively, that is

as(σ̂s, τ s) + b
(
τ s, (ûs, γ̂s)

)
+ cs(ûs, τ s) + ds(ws; ûs, τ s) = Fw

s (τ s) ,

b
(
σ̂s, (vs,ηs)

)
= Gs(vs,ηs) ,

(3.36)

for all
(
τ s, (vs,ηs)

)
∈ H×Q. Then, we set the operator S : L4(Ω)×L4(Ω)→ L4(Ω)×L4(Ω) as

S(w) :=
(
Θf (w),Θs(w)

)
∀w := (wf ,ws) ∈ L4(Ω)× L4(Ω) , (3.37)

and readily see that solving (3.18) is equivalent to seeking a fixed-point of S, that is: find
w ∈ L4(Ω)× L4(Ω) such that

S(w) = w . (3.38)

Alternatively, one could define an operator T : L4(Ω)× L4(Ω)→ L4(Ω)× L4(Ω), either as

T (w) :=
(
Θf (w),Θs(Θf (w),ws)

)
∀w := (wf ,ws) ∈ L4(Ω)× L4(Ω) ,

or
T (w) :=

(
Θf (wf ,Θs(w)),Θs(w)

)
∀w := (wf ,ws) ∈ L4(Ω)× L4(Ω) ,

so that, in both cases, solving (3.18) is equivalent to seeking a fixed-point of T as well, that is:
find w ∈ L4(Ω)× L4(Ω) such that

T (w) = w .

Nevertheless, for sake of clarity of the exposition, in what follows we concentrate only on the
operator S. Indeed, while the algebraic manipulations of T are a bit more cumbersome, all the
analyses and results that we provide below for S can be extended to T by performing minor
modifications.

3.3 Well-definedness of the operators Θf and Θs

In this section we apply the Banach-Nečas-Babuška Theorem (also know as the generalized Lax-
Milgram Lemma), and the classical Babuška-Brezzi theory, both in Banach spaces, to show that
the problems (3.34) and (3.36) are well-posed, which means, equivalently, that the operators Θf

and Θs are well-defined. We begin by recalling the aforementioned results (cf. [27, Theorems
2.6 and 2.34]).

Theorem 3.1 Let H and Q be Banach spaces such that Q is reflexive, and let a : H×Q −→ R
be a bounded bilinear form. Assume that

i) there exists α > 0 such that

sup
v∈Q

v 6=0

a(w, v)

‖v‖Q
≥ α ‖w‖H ∀w ∈ H , (3.39)

ii) there holds
sup
w∈H

a(w, v) > 0 ∀ v ∈ Q, v 6= 0 . (3.40)
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Then, for each F ∈ Q′ there exists a unique u ∈ H such that

a(u, v) = F (v) ∀ v ∈ Q , (3.41)

and the following a priori estimate holds

‖u‖H ≤
1

α
‖F‖Q′ . (3.42)

Moreover, i) and ii) are also necessary conditions for the well-posedness of (3.41).

Theorem 3.2 Let H and Q be reflexive Banach spaces, and let a : H×H −→ R and b : H×Q −→
R be bounded bilinear forms with induced operators A ∈ L(H,H′) and B ∈ L(H,Q′), respectively.
In addition, let V be the null space of B, and assume that

i) there exists α > 0 such that

sup
τ∈V
τ 6=0

a(ζ, τ)

‖τ‖H
≥ α ‖ζ‖H ∀ ζ ∈ V , (3.43)

ii) there holds
sup
τ∈V

a(τ, ζ) > 0 ∀ ζ ∈ V, ζ 6= 0 , (3.44)

iii) there exists β such that

sup
τ∈H
τ 6=0

b(τ, v)

‖τ‖H
≥ β ‖v‖Q ∀ v ∈ Q . (3.45)

Then, for each pair (F,G) ∈ H′ ×Q′ there exists a unique (σ, u) ∈ H×Q such that

a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H ,

b(σ, v) = G(v) ∀ v ∈ Q ,
(3.46)

and the following a priori estimates hold:

‖σ‖ ≤ 1

α
‖F‖H′ +

1

β

(
1 +
‖A‖
α

)
‖G‖Q′ ,

‖u‖ ≤ 1

β

(
1 +
‖A‖
α

)
‖F‖H′ +

‖A‖
β2

(
1 +
‖A‖
α

)
‖G‖Q′ .

(3.47)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (3.46).

We find it important to stress here that (3.47) is equivalent to a global inf-sup condition for
(3.46), which means that there exists a constant α̃ > 0, depending only on α, β, and ‖A‖ (as it
follows from the right hand side of (3.47)), such that

sup
(τ,v)∈H×Q

(τ,v)6=0

a(ζ, τ) + b(τ, w) + b(ζ, v)

‖(τ, v)‖H×Q
≥ α̃ ‖(ζ, w)‖H×Q ∀ (ζ, w) ∈ H ×Q . (3.48)
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In order to apply Theorem 3.2 to suitable perturbations of (3.34) and (3.36), which is ex-
plained later on, we now let V be the kernel of the operator induced by b, that is

V :=
{
τ ∈ H : b

(
τ , (v,η)

)
= 0 ∀ (v,η) ∈ Q

}
,

which, according to the definitions of b (cf. (3.4)) and the spaces H and Q (cf. (3.17)), yields

V :=
{
τ ∈ H0(div4/3; Ω) : div(τ ) = 0 and τ = τ t in Ω

}
.

On the other hand, we recall that a simple modification of the proof of [28, Lemma 2.3] (or [12,
Proposition 3.1, Chapter IV]) allows to show (see also [13, Lemma 3.2]) that there exists c1 > 0,
depending only on Ω, such that

c1 ‖τ‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,4/3;Ω ∀ τ ∈ H0(div4/3; Ω) . (3.49)

Then, we have the following result establishing the V-ellipticity of af .

Lemma 3.3 There exists a positive constant αf , depending on c1 (cf. (3.49)) and µf , such that

af (τ , τ ) ≥ αf ‖τ‖2div4/3;Ω ∀ τ ∈ V . (3.50)

Proof. According to the definition of af (cf. (3.4)), and employing the inequality (3.49), we find
that for each τ ∈ V there holds

af (τ , τ ) =
1

2µf
‖τ d‖20,Ω ≥

c1

2µf
‖τ‖20,Ω =

c1

2µf
‖τ‖2div4/3;Ω ,

which shows (3.50) with αf = c1
2µf

. �
In turn, the V-ellipticity of the bilinear form as is established as follows.

Lemma 3.4 There exists a positive constant αs, depending on c1 (cf. (3.49)) and µ2 (cf. (3.26)),
such that

as(τ , τ ) ≥ αs ‖τ‖2div4/3;Ω ∀ τ ∈ V . (3.51)

Proof. Using now the definition of as (cf. (3.7)), the upper bound of the assumption (3.26), and
the inequality (3.49), we find that for each τ ∈ V there holds

as(τ , τ ) =

∫
Ω

1

2µs(φ)
‖τ d‖2 ≥ 1

2µ2
‖τ d‖20,Ω ≥

c1

2µ2
‖τ‖20,Ω =

c1

2µ2
‖τ‖2div4/3;Ω ,

which confirms (3.51) with αs = c1
2µ2

. �

As a consequence of Lemmas 3.3 and 3.4, we stress here that both af and as satisfy the
assumptions i) and ii) of Theorem 3.2. Indeed, it is easily seen that

sup
τ∈V
τ 6=0

af (ζ, τ )

‖τ‖div4/3;Ω
≥

af (ζ, ζ)

‖ζ‖div4/3;Ω
≥ αf ‖ζ‖div4/3;Ω ∀ ζ ∈ V ,

and
sup
τ∈V

af (τ , ζ) ≥ af (ζ, ζ) ≥ αf ‖ζ‖2div4/3;Ω > 0 ∀ ζ ∈ V, ζ 6= 0 ,

and analogously for as.
Furthermore, the following lemma states that b satisfies the hypothesis iii) of Theorem 3.2.
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Lemma 3.5 There exists β > 0, depending only on Ω, such that

sup
τ∈H
τ 6=0

b
(
τ , (v,η)

)
‖τ‖H

≥ β ‖(v,η)‖Q ∀ (v,η) ∈ Q . (3.52)

Proof. Given (v,η) ∈ Q := L4(Ω) × L2
skew(Ω), we first let v4/3 := |v|2v and observe that

‖v4/3‖
4/3
0,4/3;Ω = ‖v‖40,4;Ω, which proves that v4/3 ∈ L4/3(Ω) and yields∫

Ω
v · v4/3 = ‖v‖40,4;Ω = ‖v‖0,4;Ω ‖v4/3‖0,4/3;Ω . (3.53)

Then, we consider the boundary value problem

div
(
e(w)

)
= v4/3 in D′(Ω) , and w = 0 on Γ , (3.54)

whose weak formulation is: find w ∈ H1
0(Ω) such that∫

Ω
e(w) : e(z) = −

∫
Ω

v4/3 · z ∀ z ∈ H1
0(Ω) . (3.55)

Note that the right hand side of (3.55) makes sense thanks to the Hölder inequality and the
continuous injection i4 : H1(Ω) → L4(Ω) (which is valid in both 2D and 3D). Then, bearing
in mind the Poincaré and the first Korn (cf. [37, Theorem 10.1] or [10, Corollaries 9.2.22 and
9.2.25]) inequalities, which establish that

‖v‖21,Ω ≤ cP |v|21,Ω and |v|21,Ω ≤ 2 ‖e(v)‖20,Ω ∀v ∈ H1
0(Ω) ,

respectively, with a positive constant cP depending only on Ω, and then applying the well-known
Lax-Milgram Lemma, we easily deduce that (3.55) has a unique solution w ∈ H1

0(Ω), for which
there holds

‖w‖1,Ω ≤ 2cP‖i4‖ ‖v‖0,4/3;Ω .

At this point we notice from (3.54) and the previous remarks on v4/3 that div
(
e(w)

)
∈ L4/3(Ω),

which, together with the fact that e(w) ∈ L2(Ω), imply that e(w) belongs to H(div4/3; Ω).
Hence, we let τ̃ be the H0(div4/3; Ω)-component of e(w) (cf. (3.1)), and observe that there hold
div(τ̃ ) = v4/3 and

‖τ̃‖2div4/3;Ω = ‖τ̃‖20,Ω + ‖div(τ̃ )‖20,4/3;Ω ≤ ‖e(w)‖20,Ω + ‖v4/3‖20,4/3;Ω

≤ ‖w‖21,Ω + ‖v4/3‖20,4/3;Ω ≤
{

1 + 4c2
P‖i4‖2

}
‖v4/3‖20,4/3;Ω .

(3.56)

In this way, noting that τ̃ is symmetric (because e(w) and the identity matrix I are), and using
(3.53) and (3.56), we find that

sup
τ∈H
τ 6=0

b
(
τ , (v,η)

)
‖τ‖H

≥
b
(
τ̃ , (v,η)

)
‖τ̃‖H

=

∫
Ω

v · div(τ̃ )

‖τ̃‖div4/3;Ω
=

∫
Ω

v · v4/3

‖τ̃‖div4/3;Ω
≥ β1 ‖v‖0,4;Ω , (3.57)

with β1 =
{

1 + 4c2
P‖i4‖2

}−1/2
. On the other hand, for the same (v,η) ∈ Q given at the

beginning of the proof, we now consider the boundary value problem

div
(
e(w)

)
= −div(η) in D′(Ω) , and w = 0 on Γ , (3.58)
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whose weak formulation is: find w ∈ H1
0(Ω) such that∫

Ω
e(w) : e(z) = −

∫
Ω
η : e(z) ∀ z ∈ H1

0(Ω) . (3.59)

Similarly as for (3.55), and employing again the Poincaré and first Korn inequalities, a straight-
forward application of the Lax-Milgram Lemma guarantees the existence of a unique solution
w to (3.59), which satisfies

‖e(w)‖0,Ω ≤ ‖η‖0,Ω . (3.60)

In addition, it is clear from (3.58) that div
(
e(w)+η

)
= 0, so that e(w)+η lies in H(div4/3; Ω).

Thus, defining τ̂ as the H0(div4/3; Ω)-component of e(w)+η, we realize that τ̂ is divergence-free
as well, and that τ̂ : η = η : η, whence, noting that there holds ‖τ̂‖0,Ω ≤ ‖e(w)‖0,Ω + ‖η‖0,Ω,
and using (3.60), we deduce that

sup
τ∈H
τ 6=0

b
(
τ , (v,η)

)
‖τ‖H

≥
b
(
τ̂ , (v,η)

)
‖τ̂‖H

=

∫
Ω
η : η

‖τ̂‖div4/3;Ω
=
‖η‖20,Ω
‖τ̂‖0,Ω

≥ β2 ‖η‖0,Ω , (3.61)

with β2 = 1/2. Finally, the required inequality (3.52) follows directly from (3.57) and (3.61)
with β depending only on β1 and β2 �

We now consider the perturbed formulation arising from (3.34) after eliminating there the
terms involving cf and df . Then, adding the left hand sides of the resulting equations, we
obtain the bounded and symmetric bilinear form Af : (H×Q)× (H×Q)→ R given by

Af

((
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

))
:= af (ζf , τ f ) + b

(
τ f , (zf , ξf )

)
+ b

(
ζf , (vf ,ηf )

)
(3.62)

for all
(
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

)
∈ H×Q. Note that the boundedness of Af follows directly

from (3.19), (3.20), and (3.25). Hence, denoting by Af ∈ L
(
(H × Q), (H × Q)′

)
the operator

induced by Af , and bearing in mind the V-ellipticity of af (cf. Lemma 3.3) and the inf-sup
condition for b (cf. Lemma 3.5), we conclude from a straightforward application of Theorem
3.2 that Af is bijective. In addition, it is clear from (3.48) that Af satisfies a global inf-sup
condition, which means that there exists a constant ᾱf > 0, depending only on αf , β, and ‖af‖
(cf. (3.25)) , such that

sup
(τf ,(vf ,ηf ))∈H×Q

(τ f (vf ,ηf )) 6=0

Af

((
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

))
‖
(
τ f , (vf ,ηf )

)
‖H×Q

≥ ᾱf ‖
(
ζf , (zf , ξf )

)
‖H×Q (3.63)

for all
(
ζf , (zf , ξf )

)
∈ H×Q. Next, in order to apply Theorem 3.1 to (3.34), we introduce the

bounded bilinear form Af,wf : (H×Q)×(H×Q)→ R that results after adding the full equations
defining that formulation, that is

Af,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

))
:= Af

((
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

))
+ cf (zf , τ f ) + df (wf ; zf , τ f )

(3.64)

for all
(
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

)
∈ H×Q. Knowing that Af is bounded, the boundedness of

Af,wf is completed thanks to (3.21), (3.22), and (3.25). In this way, it is clear that (3.34) can

be restated as: find
(
σ̂f , (ûf , γ̂f )

)
∈ H×Q such that

Af,wf

((
σ̂f , (ûf , γ̂f )

)
,
(
τ f , (vf ,ηf )

))
= Ff (τ f ) + Gw

f (vf ,ηf ) (3.65)
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for all
(
τ f , (vf ,ηf )

)
∈ H×Q. Then, it follows straightforwardly from (3.63) and the bounded-

ness estimates for cf and df (cf. (3.21), (3.22), (3.25)) that

sup
(τf ,(vf ,ηf ))∈H×Q

(τ f (vf ,ηf )) 6=0

Af,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

))
‖
(
τ f , (vf ,ηf )

)
‖H×Q

≥ ᾱf ‖
(
ζf , (zf , ξf )

)
‖H×Q

− 1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

‖zf‖0,4;Ω −
ρf

2µf
‖ε‖0,∞;Ω ‖wf‖0,4;Ω ‖zf‖0,4;Ω

≥

{
ᾱf −

1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

−
ρf

2µf
‖wf‖0,4;Ω

}
‖
(
ζf , (zf , ξf )

)
‖H×Q ,

where the last inequality uses that ‖ε‖0,∞;Ω ≤ 1. In this way, assuming for instance that

1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

≤
ᾱf
4

and ‖wf‖0,4;Ω ≤ rf :=
ᾱfµf
2ρf

, (3.66)

we arrive at

sup
(τf ,(vf ,ηf ))∈H×Q

(τ f (vf ,ηf )) 6=0

Af,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

))
‖
(
τ f , (vf ,ηf )

)
‖H×Q

≥
ᾱf
2
‖
(
ζf , (zf , ξf )

)
‖H×Q (3.67)

for all
(
ζf , (zf , ξf )

)
∈ H × Q. Similarly, using the fact that Af is symmetric, employing the

same boundedness estimates for cf and df , and assuming again (3.66), we are able to prove the
companion inf-sup condition to (3.67), in which the supremum is taken with respect to the first
component of Af,wf , that is

sup
(ζf ,(zf ,ξf ))∈H×Q

(ζf ,(zf ,ξf )) 6=0

Af,wf

((
ζf , (zf , ξf )

)
,
(
τ f , (vf ,ηf )

))
‖
(
ζf , (zf , ξf )

)
‖H×Q

≥
ᾱf
2
‖
(
τ f , (vf ,ηf )

)
‖H×Q (3.68)

for all
(
τ f , (vf ,ηf )

)
∈ H×Q.

As a consequence of the previous analysis, we are in position to establish the following result,
which confirms that the operator Θf (cf. (3.33)) is well-defined.

Theorem 3.6 Assume that
1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

≤
ᾱf
4

. Then, for each w := (wf ,ws) ∈ L4(Ω) ×

L4(Ω) such that ‖wf‖0,4;Ω ≤ rf , there exists a unique
(
σ̂f , (ûf , γ̂f )

)
∈ H×Q solution to (3.65)

(equivalently (3.34)). Moreover, there holds

‖Θf (w)‖0,4;Ω = ‖ûf‖0,4;Ω ≤ ‖
(
σ̂f , (ûf , γ̂f )

)
‖H×Q

≤ 2

ᾱf

{
‖uD,f‖1/2,Γ + ‖δ(φ)‖0,Ω ‖wf −ws‖0,4;Ω + |Ω|3/4 ρf g ‖ε‖0,∞;Ω

}
.

(3.69)

Proof. It suffices to notice, thanks to (3.67) and (3.68), that Af,wf satisfies the hypotheses i) and
ii) of Theorem 3.1. Therefore, observing that the right hand side of (3.65) defines a functional
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in (H×Q)′, a direct application of the aforementioned abstract result implies the existence of a
unique solution

(
σ̂f , (ûf , γ̂f )

)
∈ H×Q to (3.65), for which there holds

‖
(
σ̂f , (ûf , γ̂f )

)
‖H×Q ≤

2

ᾱf

{
‖Ff‖ + ‖Gw

f ‖
}
.

Finally, the foregoing inequality and the upper bounds for ‖Ff‖ and ‖Gw
f ‖ provided in (3.25)

yield (3.69) and complete the proof. �

On the other hand, it is not difficult to realize that proving that Θs (cf. (3.35)) is well-
defined, equivalently that (3.36) is well-posed, proceeds analogously as we already did for Θf .
Therefore, in what follows we simplify the corresponding presentation and collect only the main
aspects of the respective analysis. In fact, we begin by letting As : (H×Q)× (H×Q)→ R be
the symmetric bilinear form given by

As

((
ζs, (zs, ξs)

)
,
(
τ s, (vs,ηs)

))
:= as(ζs, τ s) + b

(
τ s, (zs, ξs)

)
+ b

(
ζs, (vs,ηs)

)
(3.70)

for all
(
ζs, (zs, ξs)

)
,
(
τ s, (vs,ηs)

)
∈ H × Q, which, thanks now to (3.27), (3.20), and (3.32),

is clearly bounded. Then, in virtue of the V-ellipticity of as (cf. Lemma 3.4) and the inf-sup
condition for b (cf. Lemma 3.5), direct applications of Theorem 3.1 and the consequent estimate
(3.48) imply that there exists a constant ᾱs > 0, depending only on αs, β, and ‖as‖ (cf. (3.32)),
such that

sup
(τs,(vs,ηs))∈H×Q

(τ s(vs,ηs)) 6=0

As

((
ζs, (zs, ξs)

)
,
(
τ s, (vs,ηs)

))
‖
(
τ s, (vs,ηs)

)
‖H×Q

≥ ᾱs ‖
(
ζs, (zs, ξs)

)
‖H×Q (3.71)

for all
(
ζs, (zs, ξs)

)
∈ H×Q. Then, defining the bilinear form

As,ws

((
ζs, (zs, ξs)

)
,
(
τ s, (vs,ηs)

))
:= As

((
ζs, (zs, ξs)

)
,
(
τ s, (vs,ηs)

))
+ cs(zs, τ s) + ds(ws; zs, τ s)

(3.72)

for all
(
ζs, (zs, ξs)

)
,
(
τ s, (vs,ηs)

)
∈ H × Q, whose boundedness follows now from that of As

and the estimates (3.28), (3.29), and (3.32), we realize that (3.36) can be restated as: find(
σ̂s, (ûs, γ̂s)

)
∈ H×Q such that

As,ws

((
σ̂s, (ûs, γ̂s)

)
,
(
τ s, (vs,ηs)

))
= Fw

s (τ s) + Gs(vs,ηs) (3.73)

for all
(
τ s, (vs,ηs)

)
∈ H×Q. Then, assuming that

1√
n

∥∥∥∥∇φφ
∥∥∥∥

0,4;Ω

≤ ᾱs
4

and ‖ws‖0,4;Ω ≤ rs :=
ᾱsµ1

2ρs
, (3.74)

we are able to prove the analogues of the inf-sup conditions (3.67) and (3.68), with As,ws and
ᾱs instead of Af,wf and ᾱf , respectively. In this way, the following theorem confirms that the
operator Θs (cf. (3.35)) is well-posed
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Theorem 3.7 Assume that
1√
n

∥∥∥∥∇φφ
∥∥∥∥

0,4;Ω

≤ ᾱs
4

. Then, for each w := (wf ,ws) ∈ L4(Ω) ×

L4(Ω) such that ‖ws‖0,4;Ω ≤ rs, there exists a unique
(
σ̂s, (ûs, γ̂s)

)
∈ H×Q solution to (3.73)

(equivalently (3.36)). Moreover, there holds

‖Θs(w)‖0,4;Ω = ‖ûs‖0,4;Ω ≤ ‖
(
σ̂s, (ûs, γ̂s)

)
‖H×Q

≤ 2

ᾱs

{
‖uD,s‖1/2,Γ +

ρf
2µ1
‖ε‖0,∞;Ω ‖wf‖20,4;Ω + |Ω|3/4 g ‖ερf + φρs‖0,∞;Ω

}
.

(3.75)

Proof. As for the proof of Theorem 3.6, it follows from a straightforward application of Theorem
3.1. We omit further details and just mention that the a priori estimate (3.75) makes use of the
upper bounds for ‖Fw

s ‖ and ‖Gs‖ provided in (3.32). �

3.4 Solvability analysis of the fixed-point equation

Knowing from the previous section that the operators Θf and Θs (cf. (3.33), (3.35)), and
consequently S (cf. (3.37)), are well defined, we now focus on the solvability of the corresponding
fixed-point equation (3.38). For this purpose, and aiming to apply later on the Banach fixed-
point Theorem, we begin by establishing sufficient conditions on the data under which S maps
a closed ball into itself. Throughout the rest of the section we assume that ε and φ satisfy the
hypotheses specified in (3.66) and (3.74), respectively. Hence, denoting from now on

r := min
{
rf , rs

}
, (3.76)

where rf and rs are defined in the aforementioned equations, we have the following result.

Lemma 3.8 Let W :=
{

w = (wf ,ws) ∈ L4(Ω) × L4(Ω) : ‖w‖0,4;Ω ≤ r
}

, and assume that

the data satisfy

‖uD,f‖1/2,Γ + r ‖δ(φ)‖0,Ω + |Ω|3/4 ρf g ‖ε‖0,∞;Ω ≤
ᾱf
4
r , (3.77)

and

‖uD,s‖1/2,Γ +
ρf
2µ1

r2 ‖ε‖0,∞;Ω + |Ω|3/4 g ‖ερf + φρs‖0,∞;Ω ≤
ᾱs
4
r . (3.78)

Then S(W ) ⊆ W .

Proof. Given w = (wf ,ws) ∈ W , we first recall from (3.37) that S(w) =
(
Θf (w),Θs(w)

)
.

Then, using that ‖wf −ws‖0,4;Ω and ‖wf‖0,4;Ω are both bounded by ‖w‖0,4;Ω, and hence by r,
we easily see that the upper bounds of ‖Θf (w)‖0,4;Ω and ‖Θs(w)‖0,4;Ω provided by (3.69) and

(3.75) become the left hand sides of (3.77) and (3.78) multiplied by
2

ᾱf
and

2

ᾱs
, respectively.

In this way, the above assumptions allow to conclude that ‖Θf (w)‖0,4;Ω and ‖Θs(w)‖0,4;Ω are
bounded each by r/2, which implies that ‖S(w)‖0,4;Ω ≤ r, and hence S(w) ∈W . �

We continue the analysis with the Lipschitz-continuity properties of Θf and Θs.

Lemma 3.9 There exists a positive constant Lf , depending on ᾱf , ρf , and µf , such that

‖Θf (w) − Θf (t)‖0,4;Ω

≤ Lf

{
‖δ(φ)‖0,Ω + ‖ε‖0,∞;Ω ‖Θf (t)‖0,4;Ω

}
‖w − t‖0,4;Ω

(3.79)

for all w := (wf ,ws), t := (tf , ts) ∈ L4(Ω)× L4(Ω) such that ‖wf‖0,4;Ω , ‖tf‖0,4;Ω ≤ rf .
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Proof. Given w := (wf ,ws) and t := (tf , ts) as indicated, we set Θf (w) := ûf and Θf (t) := ẑf ,

where ~σf :=
(
σ̂f , (ûf , γ̂f )

)
∈ H×Q and ~ζf :=

(
ζ̂f , (ẑf , ξ̂f )

)
∈ H×Q are the unique solutions,

guaranteed by Theorem 3.6, of the formulations (cf. (3.34) or (3.65))

Af,wf
(
~σf , ~τ f

)
= Ff (τ f ) + Gw

f (vf ,ηf ) (3.80)

and
Af,tf

(
~ζf , ~τ f

)
= Ff (τ f ) + Gt

f (vf ,ηf ) , (3.81)

respectively, both for all ~τ f :=
(
τ f , (vf ,ηf )

)
∈ H × Q. Then, applying the inf-sup condition

(3.67) to ~σf −~ζf , adding and subtracting Af,tf
(
~ζf , ~τ f

)
, and using (3.80) and (3.81), we obtain

ᾱf
2
‖~σf − ~ζf‖H×Q ≤ sup

~τf∈H×Q

~τ f 6=0

Af,wf
(
~σf − ~ζf , ~τ f

)
‖~τ f‖H×Q

= sup
~τf∈H×Q

~τ f 6=0

(
Gw
f −Gt

f

)
(vf ,ηf ) +

(
Af,tf −Af,wf

)(
~ζf , ~τ f

)
‖~τ f‖H×Q

.

(3.82)

Now, according to the definitions of Gw
f , Gt

f , F (w), and F (t) (cf. (3.15), (2.8)), we readily get
(see also the estimate for ‖Gu

f ‖ in (3.25))

∣∣(Gw
f −Gt

f

)
(vf ,ηf )

∣∣ =
∣∣∣ ∫

Ω

(
F (w)− F (t)

)
· vf

∣∣∣
≤ ‖δ(φ)‖0,Ω ‖w − t‖0,4;Ω ‖vf‖0,4;Ω .

(3.83)

In turn, employing (3.64) and the boundedness of df (cf. (3.22), (3.25)), we find that∣∣(Af,tf −Af,wf )(~ζf , ~τ f)∣∣ =
∣∣df (tf −wf ; ẑf , τ f )

∣∣
≤

ρf
2µf
‖ε‖0,∞;Ω ‖wf − tf‖0,4;Ω ‖ẑf‖0,4;Ω ‖τ f‖0,Ω

≤
ρf

2µf
‖ε‖0,∞;Ω ‖w − t‖0,4;Ω ‖Θf (t)‖0,4;Ω ‖τ f‖0,Ω .

(3.84)

In this way, replacing (3.83) and (3.84) back into (3.82), we deduce that

ᾱf
2
‖~σf − ~ζf‖H×Q ≤

{
‖δ(φ)‖0,Ω +

ρf
2µf
‖ε‖0,∞;Ω ‖Θf (t)‖0,4;Ω

}
‖w − t‖0,4;Ω ,

which, together with the fact that ‖Θf (w) − Θf (t)‖0,4;Ω ≤ ‖~σf − ~ζf‖H×Q, yields (3.79) with

Lf :=
2

ᾱf
max

{
1,

ρf
2µf

}
, thus completing the proof. �

Lemma 3.10 There exists a positive constant Ls, depending on ᾱs, ρf , ρs, and µ1, such that

‖Θs(w) − Θs(t)‖0,4;Ω

≤ Ls

{
‖ε‖0,∞;Ω ‖tf + wf‖0,4;Ω + ‖φ‖0,∞;Ω ‖Θs(t)‖0,4;Ω

}
‖w − t‖0,4;Ω

(3.85)

for all w := (wf ,ws), t := (tf , ts) ∈ L4(Ω)× L4(Ω) such that ‖ws‖0,4;Ω , ‖ts‖0,4;Ω ≤ rs.
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Proof. We proceed similarly to the proof of Lemma 3.9. In this way, given w := (wf ,ws) and
t := (tf , ts) as indicated, we set Θs(w) := ûs and Θs(t) := ẑs, where ~σs :=

(
σ̂s, (ûs, γ̂s)

)
∈

H × Q and ~ζs :=
(
ζ̂s, (ẑs, ξ̂s)

)
∈ H × Q are the unique solutions, guaranteed now by Theorem

3.7, of the formulations (cf. (3.36) or (3.73))

As,ws
(
~σs, ~τ s

)
= Fw

s (τ s) + Gs(vs,ηs)

and
As,ts

(
~ζs, ~τ s

)
= Ft

s(τ s) + Gs(vs,ηs) ,

respectively, both for all ~τ s :=
(
τ s, (vs,ηs)

)
∈ H×Q. Then, starting from the inf-sup condition

for As,ws with constant ᾱs/2 (analogue of (3.67)), and employing basically the same kind of
arguments that yielded (3.82), we are able to show that

ᾱs
2
‖~σs − ~ζs‖H×Q

≤ sup
~τs∈H×Q

~τ s 6=0

(
Fw
s − Ft

s

)
(τ s) + ds(ts −ws; ẑs, τ s)

‖~τ s‖H×Q
,

(3.86)

where the last term uses, according to (3.72), that
(
As,ts −As,ws

)(
~ζs, ~τ s

)
= ds(ts−ws; ẑs, τ s).

Next, it follows from the definitions of Fw
s and Ft

s (cf. (3.8)), and the lower bound of µs (cf.
(3.26)), that

∣∣(Fw
s − Ft

s

)
(τ s)

∣∣ =

∣∣∣∣∫
Ω

ρf
2µs(φ)

{(
(εtf )⊗ tf

)
−
(
(εwf )⊗wf

)}d
: τ s

∣∣∣∣
≤

ρf
2µ1
‖ε‖0,∞;Ω ‖

(
tf ⊗ tf

)
−
(
wf ⊗wf

)
‖0,Ω ‖τ s‖0,Ω

≤
ρf
2µ1
‖ε‖0,∞;Ω ‖tf + wf‖0,4;Ω ‖tf −wf‖0,4;Ω ‖τ s‖0,Ω .

(3.87)

In turn, using the boundedness properties of ds (cf. (3.29), (3.32)), we find that∣∣ds(ts −ws; ẑs, τ s)
∣∣ ≤ ρs

2µ1
‖φ‖0,∞;Ω ‖Θs(t)‖0,4;Ω‖ts −ws‖0,4;Ω ‖τ s‖0,Ω . (3.88)

Therefore, replacing the estimates (3.87) and (3.88) back into (3.86), using that ‖tf −wf‖0,4;Ω

and ‖ts − ws‖0,4;Ω are bounded by ‖w − t‖0,4;Ω, and recalling that ‖Θs(w) − Θs(t)‖0,4;Ω ≤

‖~σs − ~ζs‖H×Q, we are lead to (3.85) with Ls :=
2

ᾱs
max

{ ρf
2µ1

,
ρs

2µ1

}
. �

As a straightforward consequence of Lemmas 3.9 and 3.10, we are able to establish now the
Lipschitz-continuity of the fixed-point operator S (cf. (3.37)).

Lemma 3.11 Let W be as in Lemma 3.8 with r given by (3.76), and let Lf and Ls be the
constants provided by Lemmas 3.9 and 3.10. Then, there holds

‖S(w)− S(t)‖0,4;Ω ≤
{
Lf

(
‖δ(φ)‖0,Ω + ‖ε‖0,∞;Ω ‖Θf (t)‖0,4;Ω

)
+Ls

(
‖ε‖0,∞;Ω ‖tf + wf‖0,4;Ω + ‖φ‖0,∞;Ω ‖Θs(t)‖0,4;Ω

)}
‖w − t‖0,4;Ω

(3.89)

for all w := (wf ,ws), t := (tf , ts) ∈ W .
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Proof. Given w, t ∈ W , it suffices to observe that

‖S(w)− S(t)‖0,4;Ω = ‖Θf (w) − Θf (t)‖0,4;Ω + ‖Θs(w) − Θs(t)‖0,4;Ω ,

and then apply the estimates (3.79) and (3.85). �

Now, incorporating the upper bounds of ‖Θf (t)‖0,4;Ω and ‖Θs(t)‖0,4;Ω provided by (3.69)
and (3.75), respectively, into the right hand side of (3.89), and bounding ‖tf − ts‖0,4;Ω and
‖tf‖20,4;Ω by r and r2, respectively, we arrive at

‖S(w)− S(t)‖0,4;Ω ≤ L
(
data

)
‖w − t‖0,4;Ω , (3.90)

for all w := (wf ,ws), t := (tf , ts) ∈ W , where

L
(
data

)
:= C1 ‖δ(φ)‖0,Ω + C2 ‖ε‖0,∞;Ω + C3 ‖ε‖0,∞;Ω ‖uD,f‖1/2,Γ

+C4 ‖φ‖0,∞;Ω ‖uD,s‖1/2,Γ + C5 ‖ε‖0,∞;Ω ‖δ(φ)‖0,Ω + C6 ‖ε‖20,∞;Ω

+C7 ‖φ‖0,∞;Ω ‖ε‖0,∞;Ω + C8 ‖φ‖0,∞;Ω ‖ερf + φρs‖0,∞;Ω ,

(3.91)

and Cj , j ∈ {1, ..., 8} are positive constants depending on Lf , Ls, ᾱf , ᾱs, r, ρf , µ1, |Ω|, and g,
as indicated as follows

C1 = Lf , C2 = 2rLs , C3 =
2Lf
ᾱf

, C4 =
2Ls
ᾱs

, C5 =
2rLf
ᾱf

,

C6 =
2Lf |Ω|3/4ρfg

ᾱf
, C7 =

r2Lsρf
ᾱsµ1

, and C8 =
2Ls|Ω|3/4g

ᾱs
.

(3.92)

We can establish now the main result concerning the solvability of (3.18).

Theorem 3.12 Let W be as in Lemma 3.8 with r given by (3.76), and assume that the data
are sufficiently small so that they satisfy (3.77), (3.78), and

L
(
data

)
< 1 . (3.93)

Then, problem (3.18) has a unique solution
(
σf , (uf ,γf )

)
∈ H×Q and

(
σs, (us,γs)

)
∈ H×Q

with u := (uf ,us) ∈W . Moreover, there hold

‖
(
σf , (uf ,γf )

)
‖H×Q ≤

2

ᾱf

{
‖uD,f‖1/2,Γ + r ‖δ(φ)‖0,Ω + |Ω|3/4 ρf g ‖ε‖0,∞;Ω

}
, (3.94)

and

‖
(
σs, (us,γs)

)
‖H×Q ≤

2

ᾱs

{
‖uD,s‖1/2,Γ + r2 ρf

2µ1
‖ε‖0,∞;Ω + |Ω|3/4 g ‖ερf +φρs‖0,∞;Ω

}
. (3.95)

Proof. According to the equivalence between (3.18) and (3.38), and thanks to Lemma 3.8,
the Lipschitz-continuity of S (cf. (3.90), and the assumption (3.93), the existence of a unique
solution of (3.18) with u := (uf ,us) ∈ W follows from a straightforward application of the
classical Banach fixed-point Theorem. Then, the a priori estimates (3.69) and (3.75), together
with the fact that ‖uf‖0,4;Ω and ‖uf −us‖0,4;Ω are bounded by r, yield (3.94) and (3.95), which
completes the proof. �
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4 The Galerkin scheme

In this section we introduce and analyze a Galerkin scheme for approximating the solution of
(3.18). In particular, for the respective solvability analysis we employ basically the same tools
and techniques utilized for the continuous case in Section 3, except that now we apply Brouwer
and Banach fixed-point Theorems to prove existence and uniqueness of solution, respectively.

4.1 The discrete fixed-point approach

We begin by considering a regular family
{
Th
}
h>0

of triangulations of Ω̄ , which are made of
triangles K (when n = 2) or tetrahedra K (when n = 3) of diameters hK , and define the meshsize
h := max

{
hK : K ∈ Th

}
, which also serves as the index of Th. Then, for each h > 0 we let

Hσ
h , Qu

h , and Qγ
h be arbitrary finite element subspaces of H(div4/3; Ω), L4(Ω), and L2

skew(Ω),
respectively, and set

Hh := Hσ
h ∩H0(div4/3; Ω) and Qh := Qu

h ×Qγ
h . (4.1)

Thus, the Galerkin scheme associated with (3.18) reads: find
(
σfh, (ufh,γfh)

)
∈ Hh ×Qh and(

σsh, (ush,γsh)
)
∈ Hh ×Qh such that, denoting uh := (ufh,ush) ∈ Qu

h ×Qu
h ,

af (σfh, τ fh) + b
(
τ fh, (ufh,γfh)

)
+ cf (ufh, τ fh) + df (ufh; ufh, τ fh) = Ff (τ fh) ,

b
(
σfh, (vfh,ηfh)

)
= Guh

f (vfh,ηfh) ,

as(σsh, τ sh) + b
(
τ sh, (ush,γsh)

)
+ cs(ush, τ sh) + ds(ush; ush, τ sh) = Fuh

s (τ sh) ,

b
(
σsh, (vsh,ηsh)

)
= Gs(vsh,ηsh) ,

(4.2)
for all

(
τ fh, (vfh,ηfh)

)
∈ Hh×Qh and for all

(
τ sh, (vsh,ηsh)

)
∈ Hh×Qh. Next, we consider the

discrete analogue of the fixed-point approach employed in Section 3.2. Indeed, we first introduce
the operator Θfh : Qu

h ×Qu
h → Qu

h as

Θfh(wh) := ûfh ∀wh := (wfh,wsh) ∈ Qu
h ×Qu

h , (4.3)

where
(
σ̂fh, (ûfh, γ̂fh)

)
∈ Hh × Qh is the unique solution (to be confirmed below) of the first

two equations of (4.2) when the first component ufh of df and the superscript uh of Guh
f are

replaced by wfh and wh, respectively, that is

af (σ̂fh, τ fh) + b
(
τ fh, (ûfh, γ̂fh)

)
+ cf (ûfh, τ fh) + df (wfh; ûfh, τ fh) = Ff (τ fh) ,

b
(
σ̂fh, (vfh,ηfh)

)
= Gwh

f (vfh,ηfh) ,

(4.4)
for all

(
τ fh, (vfh,ηfh)

)
∈ Hh × Qh. In addition, we let Θsh : Qu

h × Qu
h → Qu

h be the operator
given by

Θsh(wh) := ûsh ∀wh := (wfh,wsh) ∈ Qu
h ×Qu

h , (4.5)

where
(
σ̂sh, (ûsh, γ̂sh)

)
∈ Hh × Qh is the unique solution (to be confirmed below) of the last

two equations of (4.2) when the first component ush of ds and the superscript uh of Fuh
s are

replaced by wsh and wh, respectively, that is

as(σ̂sh, τ sh) + b
(
τ sh, (ûsh, γ̂sh)

)
+ cs(ûsh, τ sh) + ds(wsh; ûsh, τ sh) = Fwh

s (τ sh) ,

b
(
σ̂sh, (vsh,ηsh)

)
= Gs(vsh,ηsh) ,

(4.6)
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for all
(
τ sh, (vsh,ηsh)

)
∈ Hh ×Qh. Finally, we define the operator Sh : Qu

h ×Qu
h → Qu

h ×Qu
h as

Sh(wh) :=
(
Θfh(wh),Θsh(wh)

)
∀wh := (wfh,wsh) ∈ Qu

h ×Qu
h , (4.7)

and notice that solving (4.2) is equivalent to seeking a fixed-point of Sh, that is: find wh ∈
Qu
h ×Qu

h such that
Sh(wh) = wh . (4.8)

4.2 Well-definedness of the operators Θfh and Θsh

In this section we apply the discrete versions of Theorems 3.1 and 3.2 to prove that problems (4.4)
and (4.6) are well-posed, thus confirming that the operators Θfh and Θsh are well-defined. Re-
garding the aforementioned versions of those theorems, which certainly involve finite dimensional
subspaces, we stress that in this case each assumption i) (cf. (3.39) and (3.43)) is equivalent to
its corresponding assumption ii) (cf. (3.40) and (3.44)), so that in what follows we choose to
stay with the i) ones. Moreover, for the stability of the associated discrete schemes, we require
the respective constants α to be independent of the meshsize h.

In order to proceed as announced, we need to incorporate some hypotheses on the arbitrary
discrete spaces Hσ

h , Qu
h , and Qγ

h . Specific finite element subspaces verifying these conditions
will be introduced later on. More precisely, from now on we assume the following:

(H.1) Hσ
h contains the multiples of the identity tensor I.

(H.2) div
(
Hσ
h

)
⊆ Qu

h .

(H.3) There exists a positive constant βd, independent of h, such that

sup
τh∈Hh
τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖H

≥ βd ‖(vh,ηh)‖Q ∀ (vh,ηh) ∈ Qh . (4.9)

Hence, thanks to (H.1) and the decomposition (3.1), the subspace Hh (cf. (4.1)) can be
redefined, at least from a theoretical point of view, as:

Hh :=

{
τ h −

(
1

n|Ω|

∫
Ω

tr(τ h)

)
I : τ h ∈ Hσ

h

}
.

However, for the computational implementation of the Galerkin scheme (4.2), which is addressed
below in Section 6, the null mean value condition for the traces of the unknown tensors living
in Hh will be imposed via real Lagrange multipliers.

On the other hand, the kernel of the operator induced by the bilinear form b restricted to
Hh ×Qh, is given by

Vh :=
{
τ h ∈ Hh : b

(
τ h, (vh,ηh)

)
= 0 ∀ (vh,ηh) ∈ Qh

}
,

from which, bearing in mind the definitions of b (cf. (3.4)) and Qh, and the assumption (H.2),
we find that

Vh :=
{
τ h ∈ Hh : div(τ h) = 0 in Ω and

∫
Ω
ηh : τ h = 0 ∀ηh ∈ Qγ

h

}
. (4.10)

In this way, noticing from Lemmas 3.3 and 3.4 that the V-ellipticity of the bilinear forms af and
as only makes use of the divergence-free property of the tensors of V, we conclude from (4.10)
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that af and as are Vh-elliptic as well, with the same positive constants αf and αs provided by
those lemmas, that is there hold

af (τ h, τ h) ≥ αf ‖τ h‖2div4/3;Ω ∀ τ h ∈ Vh , (4.11)

and
as(τ h, τ h) ≥ αs ‖τ h‖2div4/3;Ω ∀ τ h ∈ Vh . (4.12)

Therefore, in virtue of (H.3), (4.11), and (4.12), straightforward applications of the discrete
version of Theorem 3.2, and particularly of the corresponding estimate (3.48), imply that Af
(cf. (3.62)) and As (cf. (3.70)) satisfy global discrete inf-sup conditions on Hh ×Qh, that is the
discrete analogues of (3.63) and (3.71), with constants ᾱf,d > 0, depending only on αf , βd, and
‖af‖ (cf. (3.25)), and ᾱs,d > 0, depending only on αs, βd, and ‖as‖ (cf. (3.32)), respectively.
Moreover, given wh := (wfh,wsh) ∈ Qu

h ×Qu
h , and proceeding analogously as we did in Section

3.3, we are able to show that, under the following pairs of conditions

1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

≤
ᾱf,d

4
and ‖wfh‖0,4;Ω ≤ rf,d :=

ᾱf,d µf
2ρf

, (4.13)

and
1√
n

∥∥∥∥∇φφ
∥∥∥∥

0,4;Ω

≤ ᾱs,d
4

and ‖wsh‖0,4;Ω ≤ rs,d :=
ᾱs,d µ1

2ρs
, (4.14)

the bilinear forms Af,wfh (cf. (3.64)) and As,wsh (cf. (3.72)) satisfy global discrete inf-sup
conditions on Hh × Qh with constants ᾱf,d/2 and ᾱs,d/2, respectively. Consequently, rewriting
(4.4) and (4.6) as the discrete analogues of (3.65) and (3.73), respectively, and applying now
the discrete version of Theorem 3.1, we obtain the following results confirming that the discrete
operators Θfh (cf. (4.3)) and Θsh (cf. (4.5)) are well-defined. The respective proofs, being
almost verbatim to those of Theorems 3.6 and 3.7, are omitted.

Theorem 4.1 Assume that
1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

≤
ᾱf,d

4
. Then, for each wh := (wfh,wsh) ∈ Qu

h ×

Qu
h such that ‖wfh‖0,4;Ω ≤ rf,d, there exists a unique

(
σ̂fh, (ûfh, γ̂fh)

)
∈ Hh × Qh solution to

(4.4). Moreover, there holds

‖Θfh(wh)‖0,4;Ω = ‖ûfh‖0,4;Ω ≤ ‖
(
σ̂fh, (ûfh, γ̂fh)

)
‖H×Q

≤ 2

ᾱf,d

{
‖uD,f‖1/2,Γ + ‖δ(φ)‖0,Ω ‖wfh −wsh‖0,4;Ω + |Ω|3/4 ρf g ‖ε‖0,∞;Ω

}
.

(4.15)

Theorem 4.2 Assume that
1√
n

∥∥∥∥∇φφ
∥∥∥∥

0,4;Ω

≤ ᾱs,d
4

. Then, for each wh := (wfh,wsh) ∈ Qu
h ×

Qu
h such that ‖wsh‖0,4;Ω ≤ rs,d, there exists a unique

(
σ̂sh, (ûsh, γ̂sh)

)
∈ Hh × Qh solution to

(4.6). Moreover, there holds

‖Θsh(wh)‖0,4;Ω = ‖ûsh‖0,4;Ω ≤ ‖
(
σ̂sh, (ûsh, γ̂sh)

)
‖H×Q

≤ 2

ᾱs,d

{
‖uD,s‖1/2,Γ +

ρf
2µ1
‖ε‖0,∞;Ω ‖wfh‖20,4;Ω + |Ω|3/4 g ‖ερf + φρs‖0,∞;Ω

}
.

(4.16)
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4.3 Solvability of the discrete fixed-point equation

We now address the solvability of the fixed-point equation (4.8), which is equivalent to analyzing
the existence and uniqueness of solution of the Galerkin scheme (4.2). To this end, we proceed
very similarly to the continuous case and establish first the discrete versions of the preliminary
lemmas from Section 3.4. Bearing this in mind, we assume in what follows that ε and φ satisfy
the conditions indicated in (4.13) and (4.14), respectively, and we set

rd := min
{
rf,d, rs,d

}
. (4.17)

Then, we begin with the result that provides sufficient conditions on the data for Sh mapping a
closed ball into itself.

Lemma 4.3 Let Wh :=
{

wh = (wfh,wsh) ∈ Qu
h × Qu

h : ‖wh‖0,4;Ω ≤ rd

}
, and assume that

the data satisfy

‖uD,f‖1/2,Γ + rd ‖δ(φ)‖0,Ω + |Ω|3/4 ρf g ‖ε‖0,∞;Ω ≤
ᾱf,d

4
rd , (4.18)

and

‖uD,s‖1/2,Γ +
ρf
2µ1

r2
d ‖ε‖0,∞;Ω + |Ω|3/4 g ‖ερf + φρs‖0,∞;Ω ≤

ᾱs,d
4

rd . (4.19)

Then Sh(Wh) ⊆ Wh.

Proof. It proceeds analogously to the proof of Lemma 3.8, but now using the well-posedness
and associated a priori estimates of Θfh and Θsh provided by Lemmas 4.1 and 4.2. We omit
further details. �

Next, we establish the Lipschitz-continuity properties of Θfh and Θsh.

Lemma 4.4 There exists a positive constant Lf,d, depending on ᾱf,d, ρf , and µf , such that

‖Θfh(wh) − Θfh(th)‖0,4;Ω

≤ Lf,d

{
‖δ(φ)‖0,Ω + ‖ε‖0,∞;Ω ‖Θfh(th)‖0,4;Ω

}
‖wh − th‖0,4;Ω

for all wh := (wfh,wsh), th := (tfh, tsh) ∈ Qu
h ×Qu

h such that ‖wfh‖0,4;Ω , ‖tfh‖0,4;Ω ≤ rf,d.

Proof. Given wh := (wfh,wsh) and th := (tfh, tsh) as indicated, we set Θfh(wh) := ûfh and

Θfh(th) := ẑfh, where ~σfh :=
(
σ̂fh, (ûfh, γ̂fh)

)
∈ Hh × Qh and ~ζfh :=

(
ζ̂fh, (ẑfh, ξ̂fh)

)
∈

Hh ×Qh are the unique solutions, guaranteed by Theorem 4.1, of the formulations

Af,wfh
(
~σfh, ~τ fh

)
= Ff (τ fh) + Gwh

f (vfh,ηfh)

and
Af,tfh

(
~ζfh, ~τ fh

)
= Ff (τ fh) + Gth

f (vfh,ηfh) ,

respectively, both for all ~τ fh :=
(
τ fh, (vfh,ηfh)

)
∈ Hh × Qh. We refer to (3.64) for the

definitions of Af,wfh and Af,tfh . The rest of the proof follows similarly to the one of Lemma 3.9,
using now the discrete inf-sup condition satisfied by Af,wfh with constant ᾱf,d/2, adding and
subtracting suitable expressions, and employing the boundedness properties of the linear forms
involved. Further details are omitted. �
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Lemma 4.5 There exists a positive constant Ls,d, depending on ᾱs,d, ρf , ρs, and µ1, such that

‖Θsh(wh) − Θsh(th)‖0,4;Ω

≤ Ls,d

{
‖ε‖0,∞;Ω ‖tfh + wfh‖0,4;Ω + ‖φ‖0,∞;Ω ‖Θsh(th)‖0,4;Ω

}
‖wh − th‖0,4;Ω

for all wh := (wfh,wsh), th := (tfh, tsh) ∈ Qu
h ×Qu

h such that ‖wsh‖0,4;Ω , ‖tsh‖0,4;Ω ≤ rs,d.

Proof. It begins analogously to the proof of Lemma 4.4, and then it continues similarly to the
one of Lemma 3.10, employing now the discrete inf-sup condition satisfied by As,wsh (cf. (3.72))
with constant ᾱs,d/2. �

We are now in position to state the Lipschitz-continuity of the discrete fixed-point operator
Sh. More precisely, as a direct consequence of Lemmas 4.4 and 4.5, we have the following result,
which constitutes the discrete analogue of Lemma 3.11.

Lemma 4.6 Let Wh be as in Lemma 4.3 with rd given by (4.17), and let Lf,d and Ls,d be the
constants provided by Lemmas 4.4 and 4.5. Then, there holds

‖Sh(wh)− Sh(th)‖0,4;Ω ≤
{
Lf,d

(
‖δ(φ)‖0,Ω + ‖ε‖0,∞;Ω ‖Θfh(th)‖0,4;Ω

)
+Ls,d

(
‖ε‖0,∞;Ω ‖tfh + wfh‖0,4;Ω + ‖φ‖0,∞;Ω ‖Θsh(th)‖0,4;Ω

)}
‖wh − th‖0,4;Ω

(4.20)

for all wh := (wfh,wsh), th := (tfh, tsh) ∈ Wh.

Next, we proceed as in the last part of Section 3.4 to continue bounding the right hand side
of (4.20). Indeed, employing the upper bounds of ‖Θfh(th)‖0,4;Ω and ‖Θsh(th)‖0,4;Ω provided
by (4.15) and (4.16), respectively, and bounding ‖tfh − tsh‖0,4;Ω and ‖tfh‖20,4;Ω by rd and r2

d,
respectively, we arrive at

‖Sh(wh)− Sh(th)‖0,4;Ω ≤ Ld
(
data

)
‖wh − th‖0,4;Ω , (4.21)

for all wh := (wfh,wsh), th := (tfh, tsh) ∈ Wh, where Ld
(
data

)
is defined exactly as in (3.91),

except that the constants from (3.92) are computed now employing Lf,d, Ls,d, ᾱf,d, ᾱs,d, and
rd, instead of Lf , Ls, ᾱf , ᾱs, and r, respectively.

Consequently, the main result concerning the solvability of (4.8) (equivalently (4.2)) is stated
as follows thanks to the Brouwer and Banach fixed-point Theorems.

Theorem 4.7 Let Wh be as in Lemma 4.3 with rd given by (4.17), and assume that the data
are sufficiently small so that they satisfy (4.18) and (4.19). Then, problem (4.2) has at least one
solution

(
σfh, (ufh,γfh)

)
∈ Hh × Qh and

(
σsh, (ush,γsh)

)
∈ Hh × Qh with uh := (ufh,ush) ∈

Wh. Moreover, under the further assumption

Ld
(
data

)
< 1 , (4.22)

this solution is unique. In addition, in both cases there hold

‖
(
σfh, (ufh,γfh)

)
‖H×Q ≤

2

ᾱf,d

{
‖uD,f‖1/2,Γ + rd ‖δ(φ)‖0,Ω + |Ω|3/4 ρf g ‖ε‖0,∞;Ω

}
, (4.23)

and

‖
(
σsh, (ush,γsh)

)
‖H×Q

≤ 2

ᾱs,d

{
‖uD,s‖1/2,Γ + r2

d

ρf
2µ1
‖ε‖0,∞;Ω + |Ω|3/4 g ‖ερf + φρs‖0,∞;Ω

}
.

(4.24)
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Proof. The fact that Wh is certainly a compact and convex subset of Qu
h × Qu

h , together with
Lemma 4.3 and the continuity of Sh (cf. (4.20) or (4.21)), allow to apply the Brouwer Theorem
(cf. [21, Theorem 9.9-2]) to conclude the existence of at least a solution to (4.8), and hence to
(4.2). Next, the assumption (4.22) and the Banach Theorem imply the uniqueness. Finally,
(4.23) and (4.24) follow from the a priori estimates (4.15) and (4.16), taking also into account
that ‖ufh‖0,4;Ω and ‖ufh − ush‖0,4;Ω are bounded by rd. �

4.4 Specific finite element subspaces

In this section we describe a way of choosing finite element subspaces Hσ
h , Qu

h , and Qγ
h of

H(div4/3; Ω), L4(Ω), and L2
skew(Ω), respectively, that satisfy the hypotheses (H.1), (H.2), and

(H.3) stated in Section 4.2, and then we provide two specific examples of them. More precisely,
given a stable triplet of finite element subspaces for the usual Hilbertian framework of mixed
linear elasticity, such that it verifies (H.1) and (H.2) (which is actually a common feature to
most of such triplets), we add a couple of additional feasible assumptions that allow to conclude
that (H.3) is also satisfied. Before dealing with the respective analysis in Section 4.4.2, we
collect in what follows some definitions and results that are needed later on.

4.4.1 Preliminaries

Hereafter, we make use of the notations from Section 4.1. In particular, given an integer ` ≥ 0
and K ∈ Th, we let P`(K) be the space of polynomials of degree ≤ ` defined on K with vector
and tensorial versions denoted by P`(K) := [P`(K)]n and P`(K) := [P`(K)]n×n, respectively.
In addition, we let RT`(K) := P`(K) ⊕ P`(K) x be the local Raviart-Thomas space of order
` defined on K, where x stands for a generic vector in Rn. Furthermore, denoting by bK the
bubble function on K, which is given by the product of its n+ 1 barycentric coordinates, we set
the local bubble space of order ` as

B`(K) := curl
(
bK P`(K)

)
if n = 2 , and B`(K) := curl

(
bK P`(K)

)
if n = 3 ,

where curl(v) :=
(
∂v
∂x2

,− ∂v
∂x1

)
if n = 2 and v : K → R, and curl(v) := ∇ × v if n = 3 and

v : K → R3. Then, having defined the above local spaces, we now introduce corresponding
global subspaces of L2(Ω), L2(Ω), and H(div; Ω) (cf. (2.1)), as follows

P`(Ω) :=
{

vh ∈ L2(Ω) : vh|K ∈ P`(K) ∀K ∈ Th
}
,

P`(Ω) :=
{
ηh ∈ L2(Ω) : ηh|K ∈ P`(K) ∀K ∈ Th

}
,

RT`(Ω) :=
{
τ h ∈ H(div; Ω) : τ h,i|K ∈ RT`(K) ∀ i ∈ {1, . . . , n} , ∀K ∈ Th

}
,

and

B`(Ω) :=
{
τ h ∈ H(div; Ω) : τ h,i|K ∈ B`(K) ∀ i ∈ {1, . . . , n} , ∀K ∈ Th

}
,

where τ h,i denotes the ith-row of τ h. We remark here that P`(Ω) and P`(Ω) are also subspaces
of L4(Ω) and L4(Ω), respectively. In addition, the fact that L2(Ω) is clearly contained in L4/3(Ω)
with bounded injection, implies that H(div; Ω) is in turn continuously embedded in H(div4/3; Ω)
and there holds

‖τ‖div4/3;Ω ≤ c(Ω) ‖τ‖div;Ω ∀ τ ∈ H(div; Ω) , (4.25)
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where c(Ω) is a positive constant depending only on |Ω|. It follows then that RT`(Ω) and B`(Ω)
are subspaces of H(div4/3; Ω) as well. Moreover, denoting RT`,0(Ω) := RT`(Ω)∩H0(div4/3; Ω)
(cf. (3.2)), we recall from [22, Lemma 5.5] that, for each integer ` ≥ 0, there exists a positive
constant β0, independent of h, such that

sup
τh∈RT`,0(Ω)

τh 6=0

∫
Ω

vh · div(τ h)

‖τ h‖div4/3;Ω
≥ β0 ‖vh‖0,4;Ω ∀vh ∈ P`(Ω) . (4.26)

4.4.2 Stable triplets for mixed linear elasticity and (H.3)

We now let Hσ
h , Qu

h , and Qγ
h be finite element subspaces of H(div; Ω), L2(Ω), and L2

skew(Ω),
respectively, which satisfy (H.1) and (H.2), and conform a stable triplet for mixed linear elas-
ticity. In particular, denoting Hh := Hσ

h ∩ H0(div4/3; Ω), the above means that there exists a
positive constant β1, independent of h, such that

sup
τh∈Hh
τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖div;Ω

≥ β1

{
‖vh‖0,Ω + ‖ηh‖0,Ω

}
∀ (vh,ηh) ∈ Qu

h ×Qγ
h . (4.27)

Then, employing (4.25) and (4.27), we deduce that

sup
τh∈Hh
τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖div4/3;Ω

≥ 1

c(Ω)
sup

τh∈Hh
τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖div;Ω

≥ β1

c(Ω)

{
‖vh‖0,Ω + ‖ηh‖0,Ω

}
,

and hence

sup
τh∈Hh
τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖div4/3;Ω

≥ β1

c(Ω)
‖ηh‖0,Ω ∀ (vh,ηh) ∈ Qu

h ×Qγ
h . (4.28)

In turn, assuming that there exists an integer ` ≥ 0 such that RT`(Ω) ⊆ Hσ
h , which certainly

yields RT`,0(Ω) ⊆ Hh, we find that

sup
τh∈Hh
τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖div4/3;Ω

≥ sup
τh∈RT`,0(Ω)

τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖div4/3;Ω

≥ sup
τh∈RT`,0(Ω)

τh 6=0

∫
Ω

vh · div(τ h)

‖τ h‖div4/3;Ω
− ‖ηh‖0,Ω ,

from which, assuming additionally that Qu
h ⊆ P`(Ω), and using (4.26), we conclude that

sup
τh∈Hh
τh 6=0

b
(
τ h, (vh,ηh)

)
‖τ h‖div4/3;Ω

≥ β0 ‖vh‖0,4;Ω − ‖ηh‖0,Ω ∀ (vh,ηh) ∈ Qu
h ×Qγ

h . (4.29)

In this way, a suitable linear combination of (4.28) and (4.29) imply that Hh and Qh := Qu
h×Qγ

h

satisfy (H.3) (cf. (4.9)) with a positive constant βd depending only on β0, β1, and c(Ω).

We have thus proved the following result.
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Lemma 4.8 Let Hσ
h , Qu

h , and Qγ
h be finite element subspaces of H(div; Ω), L2(Ω), and

L2
skew(Ω), respectively, such that they conform a stable triplet for linear elasticity. In addi-

tion, assume that there exists an integer ` ≥ 0 such that RT`(Ω) ⊆ Hσ
h and Qu

h ⊆ P`(Ω).
Then, Hh := Hσ

h ∩H0(div4/3; Ω) and Qh := Qu
h ×Qγ

h verify (H.3) with a positive constant βd
independent of h.

4.4.3 Two specific examples

In order to define specific finite element subspaces yielding the well-posedness of the Galerkin
scheme introduced and analyzed in Section 4, we now identify stable triplets for linear elasticity
that satisfy (H.1), (H.2), and the hypotheses of Lemma 4.8.

Our first example is PEERS`, the plane elasticity element with reduced symmetry of order
` ≥ 0, whose stability was originally proved in [6] for ` = 0 and n = 2, and later on established for
` ≥ 0 and n ∈ {2, 3} (see. e.g. [36]). Letting C(Ω̄) := [C(Ω̄)]n×n, the corresponding subspaces
are given as follows:

Hσ
h := RT`(Ω) ⊕ B`(Ω) , Qu

h := P`(Ω) , and Qγ
h := C(Ω̄) ∩ L2

skew(Ω) ∩ P`+1(Ω) , (4.30)

which are easily seen to satisfy the aforementioned requirements. In particular, (H.2) follows
from the divergence-free property of B`(Ω) and the inclusion div

(
RT`(Ω)

)
⊆ P`(Ω), whereas

the hypotheses of Lemma 4.8 are trivially met.

Our second example is AFW`, the Arnold-Falk-Winther element of order ` ≥ 0, which,
introduced and proved to be stable in [7], is defined as:

Hσ
h := P`+1(Ω) ∩H(div; Ω) , Qu

h := P`(Ω) , and Qγ
h := L2

skew(Ω) ∩ P`(Ω) . (4.31)

Again, (H.1) and (H.2) are straightforward, whereas the fact that RT`(K) ⊆ P`+1(K) for each
K ∈ Th, completes the hypotheses of Lemma 4.8.

The approximation properties of the finite element subspaces defining PEERS` (cf. (4.30))
and AFW` (cf. (4.31), which basically follow from the analogue properties of the Raviart-Thomas
and AFW interpolation operators, and of the orthogonal projectors P`

h : Lp(Ω) → P`(Ω) and
PP`h : Lp(Ω)→ P`(Ω) (cf. [27, Proposition 1.135]), and which make use of the commuting diagram
properties and of the interpolation estimates of Sobolev spaces as well, are given as follows (see
also [11], [12], [16], [22, eqs. (5.37) and (5.40)], [28])

(APσ
h ): there exists C > 0, independent of h, such that for each r ∈ [0, ` + 1], and for each

τ ∈ Hr(Ω) ∩ H0(div4/3; Ω) with div(τ ) ∈Wr,4/3(Ω), there holds

dist(τ ,Hh) := inf
τh∈Hh

‖τ − τ h‖div4/3;Ω ≤ C hr
{
‖τ‖r,Ω + ‖div(τ )‖r,4/3;Ω

}
. (4.32)

(APu
h): there exists C > 0, independent of h, such that for each r ∈ [0, ` + 1], and for each

v ∈Wr,4(Ω) there holds

dist(v,Qu
h) := inf

vh∈Qu
h

‖v − vh‖0,4;Ω ≤ C hr ‖v‖r,4;Ω . (4.33)

(APγ
h): there exists C > 0, independent of h, such that for each r ∈ [0, ` + 1], and for each

η ∈ Hr(Ω) ∩ L2
skew(Ω) there holds

dist(η,Qγ
h) := inf

ηh∈Qγ
h

‖η − ηh‖0,Ω ≤ C hr ‖η‖r,Ω . (4.34)
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The associated rates of convergence of our Galerkin scheme (4.2), implemented in each case
with Hh := Hσ

h ∩ H(div4/3; Ω) and Qh := Qu
h × Qγ

h , are provided below in Section 5 after
performing the respective a priori error analysis.

5 A priori error analysis

In this section we derive the a priori error analysis for the Galerkin scheme (4.2) considering
arbitrary finite element subspaces satisfying hypotheses (H.1), (H.2) and (H.3) (cf. Section
4.2). We begin by introducing the following Strang-type estimate for saddle point problems. Its
proof follows after slight modifications of that of [28, Theorem 2.6].

Lemma 5.1 Let H and Q be reflexive Banach spaces, and let a : H×H→ R and b : H×Q→ R
be bounded bilinear forms with bounding constants ‖a‖ and ‖b‖, respectively. Furthermore, let
{Hh}h>0 and {Qh}h>0 be sequences of finite dimensional subspaces of H and Q, respectively,
and assume that a and b satisfy the hypotheses of Theorem 3.2 on H×Q and Hh×Qh. In turn,
given F ∈ H′, G ∈ Q′, and the sequences of functionals {Fh}h>0 with Fh ∈ H′h for each h > 0
and {Gh}h>0 with Gh ∈ Q′h for each h > 0, we let (σ, u) ∈ H×Q and (σh, uh) ∈ Hh×Qh be the
unique solutions, respectively, to the problems

a(σ, τ) + b(τ, u) = F (τ) ∀ τ ∈ H ,

b(σ, v) = G(v) ∀ v ∈ Q ,
(5.1)

and
a(σh, τh) + b(τh, uh) = Fh(τh) ∀ τh ∈ Hh ,

b(σh, vh) = Gh(vh) ∀ vh ∈ Qh .
(5.2)

Then, there holds

‖σ − σh‖H + ‖u− uh‖Q ≤ CS,1 dist(σ,Hh) + CS,2 dist(u,Qh)

+ CS,3 ‖F − Fh‖H′h + CS,4 ‖G−Gh‖Q′h ,
(5.3)

with

CS,1 :=

(
1 +
‖a‖
α̃

)(
1 +
‖a‖
β̃

)(
1 +
‖b‖
β̃

)
,

CS,2 := 1 +
‖b‖
α̃

+
‖b‖
β̃

+
‖a‖‖b‖
α̃β̃

,

CS,3 :=
1

α̃
+

1

β̃

(
1 +
‖a‖
α̃

)
,

CS,4 :=
1

β̃

(
1 +
‖a‖
α̃

)(
1 +
‖a‖
β̃

)
,

(5.4)

where α̃ and β̃ are the positive constants satisfying (3.43) and (3.45), respectively, on Hh ×Qh.

Now, for the subsequent analysis we let
(
σf , (uf ,γf )

)
∈ H×Q,

(
σs, (us,γs)

)
∈ H×Q and(

σfh, (ufh,γfh)
)
∈ Hh × Qh,

(
σsh, (ush,γsh)

)
∈ Hh × Qh be the solutions of (3.18) and (4.2),
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respectively, and for the sake of convenience, we rewrite both problems as follows

af (σf , τ f ) + b
(
τ f , (uf ,γf )

)
= F̂u

f (τ f ) , ∀ τ f ∈ H ,

b
(
σf , (vf ,ηf )

)
= Gu

f (vf ,ηf ) , ∀ (vf ,ηf ) ∈ Q ,

as(σs, τ s) + b
(
τ s, (us,γs)

)
= F̂u

s (τ s) , ∀ τ s ∈ H,

b
(
σs, (vs,ηs)

)
= Gs(vs,ηs) , ∀ (vs,ηs) ∈ Q ,

(5.5)

and

af (σfh, τ fh) + b
(
τ fh, (ufh,γfh)

)
= F̂uh

f (τ fh) , ∀ τ fh ∈ Hh

b
(
σfh, (vfh,ηfh)

)
= Guh

f (vfh,ηfh) , ∀ (vfh,ηfh) ∈ Qh

as(σsh, τ sh) + b
(
τ sh, (ush,γsh)

)
= F̂uh

s (τ sh) , ∀ τ sh ∈ Hh

b
(
σsh, (vsh,ηsh)

)
= Gs(vsh,ηsh) , ∀ (vsh,ηsh) ∈ Qh,

(5.6)

with

F̂u
f (τ f ) := Ff (τ f ) − cf (uf , τ f ) − df (uf ; uf , τ f ), ∀ τ f ∈ H ,

F̂u
s (τ s) := Fu

s (τ s) − cs(us, τ s)− ds(us; us, τ s), ∀ τ s ∈ H ,

F̂uh
f (τ fh) := Ff (τ fh) − cf (ufh, τ fh)− df (ufh; ufh, τ fh), ∀ τ fh ∈ Hh ,

F̂uh
s (τ sh) := Fuh

s (τ sh) − cs(ush, τ sh)− ds(ush; ush, τ sh), ∀ τ sh ∈ Hh .

(5.7)

Then, since (5.5) and (5.6) have the same structure of the abstract problems (5.1) and (5.2),
respectively, in what follows we proceed similarly to [22] and apply Lemma 5.1 to derive the a
priori error estimate for the Galerkin scheme (4.2). Let us first establish the following upper
bounds for the differences between the functionals introduced above.

Lemma 5.2 There holds,

∥∥∥F̂u
f − F̂uh

f

∥∥∥
H′h

≤

(
1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

+
ρf

2µf
‖ε‖0,∞;Ω (‖uf‖0,4;Ω + ‖ufh‖0,4;Ω)

)
‖uf − ufh‖0,4;Ω,

(5.8)∥∥∥F̂u
s − F̂uh

s

∥∥∥
H′h

≤

(
1√
n

∥∥∥∥∇φφ
∥∥∥∥

0,4;Ω

+
ρs

2µ1
‖φ‖0,∞;Ω(‖us‖0,4;Ω + ‖ush‖0,4;Ω)

)
‖us − ush‖0,4;Ω

+
ρf
2µ1
‖ε‖0,∞;Ω(‖uf‖0,4;Ω + ‖ufh‖0,4;Ω)‖uf − ufh‖0,4;Ω.

(5.9)

Proof. Recalling that cf and df (cf. (3.4)) are bilinear and trilinear forms, respectively, and
summing and subtracting ufh in the second component of df , we deduce from (5.7) that for
each τ fh ∈ Hh there holds(

F̂u
f − F̂uh

f

)
(τ fh) = −cf (uf − ufh, τ fh)−

(
df (uf ; uf − ufh, τ fh)− df (uf − ufh; ufh, τ fh)

)
,
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which together with (3.21) and (3.22), yields∣∣∣(F̂u
f − F̂uh

f

)
(τ fh)

∣∣∣ ≤ (‖cf‖+ ‖df‖(‖uf‖0,4;Ω + ‖ufh‖0,4;Ω)
)
‖uf − ufh‖0,4;Ω‖τ fh‖0,Ω.

Then, using the definitions of ‖cf‖ and ‖df‖ (cf. (3.25)), the foregoing inequality implies (5.8).

Analogously, according to the definitions of F̂u
s and F̂uh

s (cf. (5.7)), it is easy to see that for
each τ sh ∈ Hh there holds(

F̂u
s − F̂uh

s

)
(τ sh) = Fu

s (τ sh)− Fuh
s (τ sh)− cs(us − ush, τ sh)

−
(
ds(us; us − ush, τ sh)− ds(us − ush; ush, τ sh)

)
,

and then, from (3.28), (3.29), (3.87), and the definitions of ‖cs‖ and ‖ds‖ (cf. (3.32)), we
conclude (5.9), which ends the proof. �

Now we proceed to establish preliminary estimates for (σf −σfh, (uf −ufh,γf −γfh)) and
(σs − σsh, (us − ush,γs − γsh)).

Lemma 5.3 There exist positive constants Cf,i, i ∈ {1, 2, 3, 4}, depending on µf and other
constants independent of the discretization and physical parameters, such that

‖σf − σfh‖H + ‖uf − ufh‖0,4;Ω + ‖γf − γfh‖0,Ω ≤ Cf,1 dist(σf ,Hh)

+ Cf,2 dist((uf ,γf ),Qh) + Jf (data) ‖uf − ufh‖0,4;Ω +Kf (data) ‖us − ush‖0,4;Ω,
(5.10)

with Jf (data) and Kf (data) given by

Jf (data) := Cf,3
1√
n

∥∥∥∥∇εε
∥∥∥∥

0,4;Ω

+ Cf,3
ρf
µf

min{ᾱf , ᾱf,d}‖ε‖0,∞;Ω

(
2‖uD,f‖1/2,Γ

+ (r + rd)‖δ(φ)‖0,Ω + 2|Ω|3/4ρfg‖ε‖0,∞;Ω

)
+ Cf,4‖δ(φ)‖0,Ω,

Kf (data) := Cf,4‖δ(φ)‖0,Ω .

(5.11)

Proof. By applying Lemma 5.1 to the first and second equations of (5.5) and (5.6), we find that

‖σf − σfh‖H + ‖uf − ufh‖0,4;Ω + ‖γf − γfh‖0,Ω ≤ Cf,1 dist(σf ,Hh)

+ Cf,2 dist((uf ,γf ),Qh) + Cf,3

∥∥∥F̂u
f − F̂uh

f

∥∥∥
H′h

+ Cf,4 ‖Gu
f −Guh

f ‖Q′h ,
(5.12)

where the constants Cf,i, i ∈ {1, . . . , 4}, are given by (5.4) with ‖a‖ = ‖af‖ = 1
2µf

, ‖b‖ = ‖b‖ =

1, α̃ = αf = c1
2µf

and β̃ = βd > 0 (cf. (3.25), (3.50), (4.9)). In turn, from (3.83) we observe that∣∣(Gu
f −Guh

f

)
(vfh,ηfh)

∣∣ ≤ ‖δ(φ)‖0,Ω
{
‖uf − ufh‖0,4;Ω + ‖us − ush‖0,4;Ω

}
‖vfh‖0,4;Ω ,

for all (vfh,ηfh) ∈ Qh, which implies∥∥∥Gu
f −Guh

f

∥∥∥
Q′h

≤ ‖δ(φ)‖0,Ω
{
‖uf − ufh‖0,4;Ω + ‖us − ush‖0,4;Ω

}
. (5.13)

In this way, from estimates (5.8) (5.12) and (5.13), and the fact that (see (3.94) and (4.23))

‖uf‖0,4;Ω + ‖ufh‖0,4;Ω

≤ 2 min{ᾱf , ᾱf,d}
{

2‖uD,f‖1/2,Γ + (r + rd)‖δ(φ)‖0,Ω + 2|Ω|3/4ρfg‖ε‖0,∞;Ω

}
,

we readily obtain (5.10). �
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Lemma 5.4 There exist positive constants Cs,i, i ∈ {1, 2, 3}, depending on µ1, µ2, and other
constants independent of the discretization and physical parameters, such that

‖σs − σsh‖H + ‖us − ush‖0,4;Ω + ‖γs − γsh‖0,Ω ≤ Cs,1 dist(σs,Hh)

+ Cs,2 dist((us,γs),Qh) + Js(data) ‖uf − ufh‖0,4;Ω +Ks(data) ‖us − ush‖0,4;Ω ,
(5.14)

with Js(data) and Ks(data) given by

Js(data) := Cs,3
ρf
µ1

min{ᾱf , ᾱf,d}‖ε‖0,∞;Ω

(
2‖uD,f‖1/2,Γ + (r + rd)‖δ(φ)‖0,Ω

+ 2|Ω|3/4ρfg‖ε‖0,∞;Ω

)
,

Ks(data) := Cs,3
1√
n

∥∥∥∥∇φφ
∥∥∥∥

0,4;Ω

+ Cs,3
ρs
µ1

min{ᾱs, ᾱs,d}‖φ‖0,∞;Ω

(
2‖uD,s‖1/2,Γ

+ (r2 + r2
d)
ρf
2µ1
‖ε‖0,∞;Ω + 2|Ω|3/4g‖ερf + φρs‖0,∞;Ω

)
.

(5.15)

Proof. Analogously to the proof of Lemma 5.3, we apply Lemma 5.1 to the third and forth
equations of (5.5) and (5.6), to obtain

‖σs − σsh‖H + ‖us − ush‖0,4;Ω + ‖γs − γsh‖0,Ω

≤ Cs,1 dist(σs,Hh) + Cs,2 dist((us,γs),Qh) + Cs,3

∥∥∥F̂u
s − F̂uh

s

∥∥∥
H′h

,
(5.16)

where the constants Cs,i, i ∈ {1, . . . , 3}, are given by (5.4) with ‖a‖ = ‖as‖ = 1
2µ1

, ‖b‖ = ‖b‖ =

1, α̃ = αs = c1
2µ2

and β̃ = βd > 0 (cf. (3.32), (3.51), (4.9)). Then, the result follows from (5.9),
(5.16), (3.94), (3.95), (4.23) and (4.24). �

The a priori error estimate for the Galerkin scheme (4.2) is provided next.

Theorem 5.5 Assume that the hypotheses of Theorems 3.12 and 4.7 hold, and let
(
σf , (uf ,γf )

)
∈ H×Q,

(
σs, (us,γs)

)
∈ H×Q and

(
σfh, (ufh,γfh)

)
∈ Hh ×Qh,

(
σsh, (ush,γsh)

)
∈ Hh ×Qh

be the unique solutions of (3.18) and (4.2), respectively. Assume further that

Jf (data) + Js(data) ≤ 1

2
and Kf (data) + Ks(data) ≤ 1

2
, (5.17)

with Jf , Kf and Js, Ks given by (5.11) and (5.15), respectively. Then, there holds∑
j∈{f,s}

{
‖σj − σjh‖H + ‖uj − ujh‖0,4;Ω + ‖γj − γjh‖0,Ω

}
≤

∑
j∈{f,s}

{
Cj,1 dist(σj ,Hh) + Cj,2 dist((ui,γj),Qh)

}
,

(5.18)

with Cf,i and Cs,i, i = 1, 2, specified in Lemmas 5.3 and 5.4, respectively.

Proof. Employing assumption (5.17), the result is a direct consequence of Lemmas 5.3 and 5.4.
We omit further details. �

We end this section with the theoretical rate of convergence for the Galerkin scheme (4.2)
discretized by the finite element spaces introduced in Section 4.4.3.
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Theorem 5.6 Assume that (3.93) holds and let
(
σf , (uf ,γf )

)
∈ H×Q,

(
σs, (us,γs)

)
∈ H×Q

be the unique solution of (3.18). In addition, given ` ≥ 0, we let Hh×Qh be the pair defined by the
PEERS` or AFW` elements introduced in (4.30) and (4.31), respectively, and under assumption
(4.22), we let

(
σfh, (ufh,γfh)

)
∈ Hh×Qh,

(
σsh, (ush,γsh)

)
∈ Hh×Qh be the unique solution of

(4.2). Assume further that (5.17) holds and that, given r ∈ [0, `+1], σj ∈ Hr(Ω) ∩H0(div4/3; Ω)

with div(σj) ∈Wr,4/3(Ω), uj ∈Wr,4(Ω) and γj ∈ Hr(Ω)∩L2
skew(Ω) for j ∈ {f, s}. Then there

exists C > 0, independent of h, such that∑
j∈{f,s}

{
‖σj − σjh‖H + ‖uj − ujh‖0,4;Ω + ‖γj − γjh‖0,Ω

}
≤ C hr

∑
j∈{f,s}

{
‖σj‖r,Ω + ‖div(σj)‖r,4/3;Ω + ‖uj‖r,4;Ω + ‖γj‖r,Ω

}
.

Proof. The result follows straightforwardly from Theorem 5.5 and the approximation properties
(4.32), (4.33) and(4.34). �

6 Numerical results

The realization of the numerical methods described in Section 5 has been carried out using the
open-source finite element library FEniCS [2]. A Newton-Raphson algorithm with null initial
guesses and exact Jacobian is used to solve the nonlinear set of equations. The condition of
zero-averaged fluid pressure (translated in terms of tensor traces) is imposed through a real
Lagrange multiplier, which amounts to augmenting the algebraic systems by one row and one
column; and the solution of all linear systems appearing at each Newton-Raphson iteration is
conducted with the multifrontal massively parallel sparse direct solver MUMPS.

6.1 Test 1: accuracy verification using smooth manufactured solutions

We assess the convergence of the mixed finite element discretizations by manufacturing an exact
solution of the coupled system (2.10) defined over the domain Ω := (0, 1)2

φ(x) =
1

2
− 1

4
sin(x1) cos(x2) ,

us(x) =

 4 cos(x1) sin(x2)
1
4(sin2(x1)− cos2(x1)) cos(2x2)− 2 sin(x1) cos(x2)

φ(x)

 ,

ε(x) = 1− φ(x), uf (x) =
φ(x)

ε(x)
us(x), p(x) = x4

1 − x4
2 .

The exact velocities and the smooth particle distribution are such they satisfy the mass con-
servation equations. Using these closed-form solutions we require additional right-hand side
load terms in (2.13), and the boundary Dirichlet velocities are also adjusted in terms of these
manufactured solutions. The model constants for the convergence test assume the values

ρf = 1, ρs = 2.2, µf = 0.1, ds = 0.1, φp = 0.65, g = (0,−1)t,

P = 1.266, r = 0.3, M = 0.571, m = 3.65, φ0 = 0.61, vt = 14.3.

Errors between exact and approximate solutions are denoted as

e(σf ) := ‖σf − σfh‖div4/3;Ω , e(uf ) := ‖uf − uh‖0,4;Ω , e(γf ) := ‖γf − γfh‖0,Ω,
e(σs) := ‖σs − σsh‖div4/3;Ω , e(us) := ‖us − ush‖0,4;Ω , e(γs) := ‖γs − γsh‖0,Ω ,
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DoF e(σf ) r(σf ) e(uf ) r(uf ) e(γf ) r(γf ) e(σs) r(σs) e(us) r(us) e(γs) r(γs)

AFW`-based formulation with ` = 0
54 2.19e+0 – 6.42e-1 – 1.08e+0 – 1.07e+1 – 1.07e+0 – 1.04e+0 –
178 1.23e+0 0.832 3.27e-1 0.973 5.80e-1 0.900 5.32e+00 1.009 5.53e-1 0.955 4.86e-1 1.104
642 6.20e-1 0.987 1.66e-1 0.983 3.93e-1 0.559 2.59e+00 1.040 2.79e-1 0.990 2.51e-1 0.951
2434 3.11e-1 0.998 8.29e-2 0.997 2.07e-1 0.930 1.28e+00 1.018 1.40e-1 0.998 1.27e-1 0.980
9474 1.55e-1 1.000 4.15e-2 1.000 1.04e-1 0.984 6.36e-1 1.007 6.98e-2 0.999 6.39e-2 0.995
37378 7.76e-2 1.000 2.07e-2 1.000 5.24e-2 0.996 3.17e-1 1.002 3.49e-2 1.000 3.20e-2 0.999

AFW`-based formulation with ` = 1
122 7.45e-1 – 1.30e-1 – 2.19e-1 – 2.96e+0 – 2.20e-1 – 2.46e-1 –
434 1.89e-1 1.975 3.84e-2 1.765 1.67e-1 0.389 6.39e-1 2.214 5.60e-2 1.973 8.61e-2 1.513
1634 4.70e-2 2.012 9.37e-3 2.034 4.70e-2 1.832 1.60e-1 1.994 1.41e-2 1.994 2.47e-2 1.799
6338 1.17e-2 2.005 2.32e-3 2.015 1.22e-2 1.949 4.03e-2 1.991 3.52e-3 1.999 6.45e-3 1.939
24962 2.92e-3 2.002 5.78e-4 2.004 3.10e-3 1.974 1.01e-2 2.000 8.79e-4 2.000 1.64e-3 1.979
99074 7.29e-4 2.001 1.44e-4 2.001 7.83e-4 1.986 2.52e-3 2.002 2.20e-4 2.000 4.12e-4 1.992

PEERS`-based formulation with ` = 0
46 2.49e+0 – 8.65e-1 – 4.47e+0 – 1.07e+1 – 1.08e+0 – 1.57e+0 –
148 1.59e+0 0.647 6.45e-1 0.423 3.75e+0 0.252 5.73e+0 0.898 5.58e-1 0.955 5.56e-1 1.500
532 7.26e-1 1.131 1.91e-1 1.756 9.99e-1 1.909 2.92e+0 0.972 2.79e-1 0.999 1.97e-1 1.500
2020 3.60e-1 1.011 8.78e-2 1.120 4.26e-1 1.230 1.47e+0 0.993 1.40e-1 0.999 8.81e-2 1.159
7876 1.76e-1 1.034 4.22e-2 1.057 1.71e-1 1.312 7.30e-1 1.009 6.98e-2 1.000 3.88e-2 1.184
31108 8.70e-2 1.016 2.08e-2 1.020 6.38e-2 1.428 3.64e-1 1.005 3.49e-2 1.000 1.55e-2 1.327

PEERS`-based formulation with ` = 1
124 7.63e-1 – 1.36e-1 – 4.34e-1 – 2.71e+0 – 2.24e-1 – 5.33e-1 –
436 2.10e-1 1.863 4.02e-2 1.761 1.77e-1 1.490 7.01e-1 1.950 5.63e-2 1.992 1.50e-1 1.830
1636 5.39e-2 1.962 1.00e-2 2.006 7.22e-2 1.596 1.90e-1 1.882 1.41e-2 1.996 4.46e-2 1.848
6340 1.36e-2 1.983 2.39e-3 2.063 2.44e-2 1.668 4.95e-2 1.943 3.52e-3 2.001 1.31e-2 1.868
24964 3.43e-3 1.988 5.85e-4 2.034 7.07e-3 1.785 1.26e-2 1.977 8.80e-4 2.001 3.58e-3 1.873
99076 8.62e-4 1.994 1.45e-4 2.012 1.90e-3 1.895 3.17e-3 1.990 2.20e-4 2.001 9.30e-4 1.945

Table 6.1: Example 1. Convergence history for the mixed finite element approximations of
the coupled nonlinear problem in 2D, for different variants of the scheme. DoF stands for the
number of degrees of freedom associated with each method on each mesh refinement.

and by r(?) we denote their corresponding rates of convergence, that is

r(?) :=
log(e(?)/e′(?))

log(h/h′)
∀ ? ∈

{
σf ,uf ,γf ,σs,us,γs

}
,

where h and h′ denote two consecutive mesh sizes with errors e(?) and e′(?), respectively. Errors
and corresponding convergence rates are summarized in Table 6.1, focusing on approximations
using AFW` and PEERS` elements for the two lowest-order polynomial degrees ` = 0, 1. In
all cases we see the optimal convergence rates predicted by Theorem 5.6 for all individual
unknowns. Also, we mention that in every run the number of Newton-Raphson iterations needed
to reach a residual-based convergence criterion with tolerance of 1e-6 was less than 4. Samples
of approximate solutions are shown in Figure 6.1.

6.2 Test 2: velocity fields generated by synthetic particle distributions

For our second test we consider a two-dimensional fluidized bed of size 15× 30 cm2, where the
problem configuration follows a simplification of the applicative cases discussed in [5, 40]. The
inlet boundary Γin is defined as a nozzle of 1cm width which is located at the center of the lower

36



Figure 6.1: Example 1. Approximate solutions computed with PEERS` method with ` = 1.
Magnitude of fluid pseudostress, fluid velocity magnitude, component (1,2) of the vorticity fluid
tensor, magnitude of particle pseudostress, solid velocity magnitude, and component (1,2) of the
vorticity solid tensor.

horizontal boundary, and through which fluid is injected with a uniform profile. In addition, we
generate a synthetic particle distribution

φ(x) =
φ0

2
− φ0

4
sin

(
1

5
x1

)
cos

(
1

5
x2

)
, (6.1)

where φ0 is the mean concentration of the particles in the fluidized bed occupying Ω. Note
that, because of (2.16) the formulation requires φ to be smooth and non-zero. The boundary
conditions are now slightly different than in Example 1. The fluid velocity is still prescribed on
the whole boundary, but it is split as follows

uf,D(x) =


(0, U)t on Γin,(

0,
6U

153
x1(15− x1)

)t

on Γout,

0 on Γwall = Γ \ {Γin ∪ Γout},

whereas the particle velocities are allowed to slip on all boundaries

us · n = 0 on Γ, (6.2)

which implies that, at the discrete level, the first pairing appearing in the definition of Fuh
s (τ sh)

(see the specification for the continuous variational form in (3.8)) is replaced by〈
t̃ · τ shn,ush · t̃

〉
, (6.3)

in 2D, where t̃ is the tangent vector on the boundary. Such a boundary setup expresses, respec-
tively, that we apply exactly the fluidization uniform velocity at the entrance of the fluidized
bed and that this is the same profile with which the fluid leaves the bed, that there is no-slip
boundary conditions for the fluid at rigid walls, and that there is slip of solid particles at rigid
walls but no particles should leave the fluidized bed. The remaining parameters characterizing
(2.6), (2.7) and (2.9), (6.1), are

ρf = 1.205, ρs = 2.7, µf = 1.8 · 10−2, ds = 4 · 10−1, φp = 0.65,

P = 10.78, r = 0.3, M = 0.571, m = 4.25, U ∈ {1, 2.2}, φ0 = 0.61,

taken as in [5,40] using CGS units, and representing the interaction between a liquid and solids
in a fluidized bed. We employ a uniform mesh and run the simulation of the interaction between
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Figure 6.2: Example 2. Approximate solutions obtained with a lowest-order AFW` method.
Velocity components and postprocessed pressure (top), magnitude of fluid and particle pseu-
dostress (bottom left), synthetic particle distribution with particle velocity line integral contours
and sample of distribution of ε and fluid velocity (bottom center panels), and entry (1,2) of the
fluid and particle vorticity fields.

the mass and momentum conservations in the steady case. The outcome is shown in Figure 6.2,
where we see how the particle distribution generates velocity patterns going from the nozzle to
the outlet boundary, and how the particles slip on the boundaries. We also compare two cases
for different inlet velocities. The plots in Figure 6.3 show distinct velocity patterns generated
using the same particle distribution, but where the intensity of the nozzle varies from U = 1 to
U = 2.2.

6.3 Test 3: 3D version of Test 2

As a proof of concept of the need of multidimensional models for fluidized beds we present a
simple extension of the previous test to the 3D case. We consider a cylinder of height 30cm and
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Figure 6.3: Example 2. From left to right: Magnitudes of the particle and fluid velocities for
two different magnitudes of the inlet fluid velocity.

radius 10cm. Again we start from a given smooth particle distribution that we choose as

φ(x) =
φ0

2
− φ0

900
sin

(
1

5
x1

)
cos

(
1

5
x2

)
(x3 − 15)2.

The boundary conditions are set similarly as above, on the bottom disc of the cylinder we define
as Γin a smaller region of radius 1cm on which we impose a uniform fluid velocity (0, 0, 1)t, on
x3 = 30 we define another disk region Γout centred at (0, 0, 30) and with radius 3cm, where we
set the parabolic outlet fluid velocity profile (0, 0, 1

12x1(15−x1)x2(15−x2))t; and the remainder
of the boundary conforms Γwall. Again, we impose slip-velocity conditions for the solid par-
ticles according to (6.2), and instead of (6.3) we now set 〈τ shn× n,ush × n〉. The remaining
parameters assume the same values as in the 2D case. The computations were performed with a
coarse unstructured tetrahedral mesh for which the lowest-order PEERS` elements use around
110K DoFs. The outcomes are collected in Figure 6.4. The larger plots on the center and right
panels show the streamlines of fluid and particle velocities, where we also show also contours of
φ that go over the threshold 0.35. The fluid velocity streamlines indicate the direction of the
flow and the generation of non-axisymmetric recirculation patterns. The remaining panels show
the magnitude of pseudostress and vorticity.
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[16] J. Camaño, C. Muñoz and R. Oyarzúa, Numerical analysis of a dual-mixed problem
in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48 (2018), 114–130.
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