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Abstract

This paper is concerned with new insights on the application of the boundary-field equation ap-
proach, which refers basically to the combined use of finite element and boundary integral equation
methods, to numerically solve nonlinear exterior transmission problems in 2D and 3D. As a model,
we consider a nonlinear second-order elliptic equation in divergence form holding in an annular
domain coupled with the Laplace equation in the corresponding unbounded exterior region, to-
gether with transmission conditions on the interface and a suitable radiation condition at infinity.
We first extend the classical Johnson & Nédélec coupling procedure, which makes use of only one
boundary integral equation, to our nonlinear model without assuming any restrictive smoothness
requirement on the boundary but only Lipschitz-continuity. Next, we extend the applicability of a
recently introduced modification of the Costabel & Han coupling method, which employs the two
boundary integral equations arising from the Green representation formula, to our nonlinear model
as well. This new boundary-field equation method is based on the introduction of both Cauchy data
on the boundary as independent unknowns. Primal and dual-mixed variational formulations are
analyzed for each extension described above, and suitable hypotheses on the nonlinear coefficient of
the elliptic equation allow to establish well-posedness of the corresponding continuous and discrete
schemes by using monotone operator and nonlinear Babuška-Brezzi theories. Finally, a priori error
estimates are established.

1 Introduction

The combination of finite element methods (FEM) and boundary element methods (BEM), which
is usually employed to solve transmission problems, has been frequently utilized for many years in
diverse applications. In this regard, the most popular procedures have been the Johnson & Nédélec
and Costabel & Han coupling methods (cf. [6], [10], [30], and [32]), which use the Green representation
of the solution in the corresponding region. Moreover, the former, which is based on a single boundary
integral equation and the compactness of the double-layer boundary integral operator, was initially
applied only to transmission problems involving the Laplace operator. Indeed, its applicability to
other elliptic equations, such as the Lamé or Stokes systems, was forbidden due to the lack of the
required compactness. This drawback soon motivated the approaches by Costabel and Han in [10]
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and [30], respectively, which, being both based on the incorporation of a second boundary integral
equation, differed only in the sign of a common integral identity, thus explaining that, in spite of this
minor difference, they were both named as the Costabel & Han method. Actually, and to be more
precise, Costabel’s approach yielded a symmetric and non-positive definite scheme, whereas the one
by Han gave rise to a non-symmetric but elliptic system.

Almost two decades later, the aforementioned limitation of the Johnson & Nédélec coupling method
was finally solved in [41] (see also [44], [26] and [42]), where it was proved that the Galerkin scheme
for this approach is always stable after all, thus confirming that, on the contrary to the common
belief since its creation, the procedure can be applied to other elliptic equations and to arbitrary
polygonal/polyhedral regions as well. The analysis from [41] was then generalized in [34] to the
coupling of mixed-FEM and BEM for the Poisson equation on Lipschitz-continuous domains, and soon
after that, the application to the three dimensional exterior Stokes problem was developed in [24] and
[25]. Further contributions along the last three decades dealing with the use of either the Johnson &
Nédélec or Costabel & Han coupling procedure to solve 2D and 3D problems, including coupling with
mixed-FEM, nonlinear models, fluid-solid interaction, and eddy current problems, among others, can
be found, e.g. in [1], [7],[8], [11], [14], [16], [18], [19], [20], [21], [22], [23], [35], [36], and [37].

On the other hand, the combined use of the virtual element method (VEM) - a rather recent
technique originally proposed in [2] and [4] - and BEM, has been introduced and analyzed for the
first time in [27] for solving a linear exterior transmission problem in 2D and 3D. More recently, the
approach in [27] was extended in [28] to the case of acoustic scattering problems. Regarding [27]
(similar comments apply to [28]), let us begin by stressing that the philosophy of VEM is based on
two main aspects. Firstly, the discrete spaces are defined on meshes formed by polygonal or polyhedral
elements, and the corresponding basis functions are not known explicitly (which justify the concept
virtual utilized), but only the degrees of freedom defining them uniquely on each element are required
to implement the method. Secondly, suitable projection operators and stabilizing terms are utilized
to define approximated bilinear forms, which provide still consistency and stability of the resulting
discrete scheme. The aforementioned degrees of freedom normally have to do with polynomial moments
within each element and with traces and normal traces, both polynomial as well, on the boundaries of
them. Having said the above, the approach in [27] reduces basically to the usual primal formulation
in the corresponding bounded region, coupled by means of the Costabel & Han procedure with the
boundary integral equation method in the exterior domain. In this way, and besides the original
unknown of the problem, its normal derivative in 2D, and both its normal derivative and its trace
in the 3D case, are introduced as auxiliary non-virtual unknowns. Actually, for the correct matching
between the degrees of freedom of VEM and the densities of the boundary integral operators, a new
variational formulation for the coupling, which is given by a suitable modification of the Costabel &
Han technique, and which incorporates precisely both Cauchy data on the boundary as independent
unknowns, needs to be introduced in the 3D case. In this regard, and in spite of the very intuitive
character of the resulting boundary-field equation method, it is surprising to realize that it had not
been employed before. This latter remark motivates our present application of this approach and its
dual-mixed version to nonlinear exterior transmission problems.

According to the previous bibliographic discussion, and motivated by the advances from [41], [34],
[26], [24], and [25], in the present paper we first extend the applicability of the Johnson & Nédélec
coupling method to analyze the weak solvability and Galerkin approximations of nonlinear transmis-
sion problems in Lipschitz-continuous domains, that is without requiring the double-layer boundary
integral operator to be compact. Next, and bearing in mind eventual forthcoming developments on
the coupling of VEM and BEM for nonlinear models, here we also address the same goal as above
but, instead of the Johnson & Nédélec technique, using now the primal and dual-mixed versions of
the modified Costabel & Han procedure introduced in [27]. The rest of our work is organized as
follows. In Section 2 we introduce our nonlinear transmission problem and recall the main definitions
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and results regarding the boundary integral equation method. Then, in Sections 3 and 4 we consider
the primal and dual-mixed approaches, respectively, of the Johnson & Nédélec coupling method as
applied to our model from Section 2. Under suitable assumptions on the nonlinearity of the problem,
the well-posedness of the continuous and discrete formulations are established and corresponding a
priori error estimates and rates of convergence are derived. In Section 5 we basically follow the same
structure of the previous two sections, but now employing the modified Costabel & Han coupling pro-
cedure from [27]. Finally, we include Appendixes A and B with some details on the optimal choice of
certain parameters needed along the analysis, and with the main results that form part of a nonlinear
Babuška-Brezzi theory, respectively.

We end this section by stressing that standard notations for spaces and norms will be employed
throughout the paper. In particular, given a real number r, a domain G ⊆ Rn, n ∈ {2, 3}, and a
part S of its boundary ∂G, Hr(G) and Hr(S) stand for the respective Sobolev spaces of order r, with
vector versions given by Hr(G) := [Hr(G)]n and Hr(S) := [Hr(S)]n, and whose norms and seminorms
are denoted by ‖ · ‖r,G and | · |r,G, and ‖ · ‖r,S and | · |r,S , respectively (cf. [33]). In addition, we
use the convention L2(G) := H0(G), L2(G) := H0(G), L2(S) := H0(S), L2(S) := H0(S), and recall
that for each r ∈ (0, 1], H−r(∂G) is the dual of Hr(∂G) with respect to the pivot space L2(∂G).
Furthermore, denoting by div the usual divergence operator, we also introduce the classical Hilbert
space for dual-mixed formulations

H(div; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ L2(Ω)

}
, (1.1)

which is endowed with the inner product and induced norm given by

〈ζ, τ 〉div;Ω :=

∫
Ω

{
ζ · τ + div(ζ) div(τ )

}
∀ ζ, τ ∈ H(div; Ω) ,

and
‖τ‖2div;Ω := ‖τ‖20,Ω + ‖div(τ )‖20,Ω ∀ τ ∈ H(div; Ω) .

respectively. Other definitions and notations are given along the paper when they are needed.

2 The model and the boundary integral equation method

In this section we introduce the model of interest and recall the main results concerning the boundary
integral equation method to be employed later on.

2.1 The nonlinear transmission problem

Let Ω0 be a bounded, simply connected domain in Rn, n ∈ {2, 3}, with Lipschitz boundary Γ0, and
let Ω be the annular region boundary by Γ0 and the boundary Γ of a Lipschitz-continuous region O
containing Ω̄0. We denote by Oe the complement of Ō, and let n be the unit outward normal to Γ
pointing towards Oe (see Figure 2.1 below). Then, given f ∈ L2(Ω), we consider the transmission
problem:

−div
(
a (·, ‖∇u‖)∇u

)
= f in Ω ,

u = 0 on Γ0 ,

u = ue and a (·, ‖∇u‖) ∂u
∂n

=
∂ue
∂n

on Γ ,

∆ue = 0 in Oe ,

ue(x) = O(‖x‖−1) as ‖x‖ → +∞ ,

(2.1)
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where a : Ω × R+ → R is a nonlinear scalar function satisfying certain regularity conditions to be
specified later on. We remark that in the case n = 2, the condition ue(x) = O(1) as ‖x‖ → +∞
would be sufficient. The boundary-field equation methods to be considered in this paper are obtained
by using different primal and dual-mixed approaches to transform (2.1) into an equivalent nonlocal
boundary problem holding in the bounded domain Ω. This goal is achieved in each case by employing
first the boundary integral equation method to solve the Laplace equation in the exterior region Ωe,
which is explained in the following section.

Ω0

Γ0

Γ = ∂O

Ω Oe

n

Figure 2.1: 2D geometry of the model problem.

2.2 The boundary integral equation method

We first let γ and γn be the usual trace and normal trace operators on Γ (acting either from Ω or
Oe). Then, proceeding in the usual way, we compute the harmonic solution in the exterior region Oe
by means of the Green representation formula

ue(x) =

∫
Γ

∂E(|x− y|)
∂ny

ψ(y) dsy −
∫

Γ
E(|x− y|)λ(y) dsy ∀x ∈ Oe , (2.2)

where

E(|x− y|) :=


1

4π

1

|x− y| if n = 3

− 1

2π
log |x− y| if n = 2

is the fundamental solution of the Laplacian, and

ψ := γ(u) = γ(ue) and λ := γn
(
a (·, ‖∇u‖)∇u

)
= γn(∇ue) , (2.3)

are the Cauchy data on this interface. We stress here that the first and second expression on the
right hand side of (2.2) constitute the double D and single layer S potentials, respectively, which are
defined as (

Dϕ
)
(x) :=

∫
Γ

∂E(|x− y|)
∂ny

ϕ(y) ∀x ∈ Rn\Γ , ∀ϕ ∈ H1/2(Γ) ,

and (
S µ
)
(x) :=

∫
Γ

E(|x− y|)µ(y) dsy ∀x ∈ Rn\Γ , ∀µ ∈ H−1/2(Γ) .
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In what follows, we denote the restrictions Di := D|Ω, De := D|Ωe , Si := S|Ω, and Se := S|Ωe . Then,
the jump conditions on Γ of these potentials establish that (cf. [31], [40])

γ
(
De(ϕ)

)
=
(1

2
I +K

)
ϕ , γ

(
Di(ϕ)

)
=
(
− 1

2
I +K

)
ϕ ,

γn
(
∇De(ϕ)

)
= γn

(
∇Di(ϕ)

)
= −Wϕ ∀ϕ ∈ H1/2(Γ) ,

(2.4)

and

γn
(
∇Se(µ)

)
=
(
− 1

2
I +Kt

)
µ , γn

(
∇Si(µ)

)
=
(1

2
I +Kt

)
µ ,

γ
(
Se(µ)

)
= γ

(
Si(µ)

)
= V µ ∀µ ∈ H−1/2(Γ) ,

(2.5)

where V , K, Kt, and W are the boundary integral operators of the single, double, adjoint of the
double, and hypersingular layer potentials (cf. [31]), respectively, whereas I is a generic identity
operator. Moreover, from the first two identities in (2.4) and (2.5) we obtain, respectively,

ϕ = γ
(
De(ϕ)

)
− γ

(
Di(ϕ)

)
∀ϕ ∈ H1/2(Γ) , (2.6)

and
µ = γn

(
∇Si(µ)

)
− γn

(
∇Se(µ)

)
∀µ ∈ H−1/2(Γ) . (2.7)

In turn, by applying (2.4) and (2.5) in (2.2), we deduce that

γ(ue) =
(1

2
I +K

)
ψ − V λ on Γ , (2.8)

and

γn(∇ue) = −Wψ +
(1

2
I−Kt

)
λ on Γ . (2.9)

We now denote by 〈·, ·〉 the duality pairing between H−1/2(Γ) and H1/2(Γ) with respect to the pivot
space L2(Γ), and introduce the spaces

H
1/2
0 (Γ) := {ϕ ∈ H1/2(Γ) : 〈1, ϕ〉 = 0}

and
H
−1/2
0 (Γ) := {µ ∈ H−1/2(Γ) : 〈µ, 1〉 = 0} ,

for which there hold the decompositions

H1/2(Γ) = H
1/2
0 (Γ)⊕ R and H−1/2(Γ) = H

−1/2
0 (Γ)⊕ R .

Then, the main mapping properties of V , K, Kt, and W are given as follows (cf. [31], [40]).

Lemma 2.1. The linear operators

V : H−1/2(Γ) −→ H1/2(Γ), K : H1/2(Γ) −→ H1/2(Γ) ,

Kt : H−1/2(Γ) −→ H−1/2(Γ), and W : H1/2(Γ) −→ H−1/2(Γ) ,

are bounded. In addition, there exist positive constants αV , αW such that

〈µ, V µ〉 ≥ αV ‖µ‖2−1/2,Γ

{
∀µ ∈ H

−1/2
0 (Γ), if n = 2 ,

∀µ ∈ H−1/2(Γ), if n = 3 ,
(2.10)

and
〈Wϕ,ϕ〉 = 〈Wϕ0, ϕ0〉 ≥ αW ‖ϕ0‖21/2,Γ (2.11)

for all ϕ := ϕ0 + c ∈ H1/2(Γ), with ϕ0 ∈ H
1/2
0 (Γ) and c ∈ R.

The different ways of handling the first two equations of (2.1) with the boundary integral equations
provided by (2.8) and (2.9) give rise to the boundary-field equation methods that we introduce and
analyze in the following sections. Throughout the rest of the paper, and given any generic normed
space X, [·, ·] stands for the duality pairing between X ′ and X.
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3 The Johnson & Nédélec coupling: primal approach

In this section we employ the classical Johnson & Nédélec coupling method, in its primal approach,
to analyze the respective continuous and discrete formulations of the model introduced in Section 2.

3.1 The continuous formulation

We begin by replacing γ(ue) and ψ in (2.8) by γ(u), which yields(1

2
I−K

)
γ(u) + V λ = 0 on Γ . (3.1)

Next, we introduce the space

H1
Γ0

(Ω) :=
{
v ∈ H1(Ω) : v = 0 on Γ0

}
, (3.2)

and let cp be the positive constant arising from the Poincaré inequality for H1
Γ0

(Ω), that is such that

|v|21,Ω ≥ cp ‖v‖21,Ω ∀ v ∈ H1
Γ0

(Ω) . (3.3)

Then, multiplying the first equation of (2.1) by a test function v ∈ H1
Γ0

(Ω), integrating by parts, and

using that λ = γn
(
a (·, ‖∇u‖)∇u

)
, we obtain∫

Ω
a (·, ‖∇u‖)∇u · ∇v − 〈λ, γ(v)〉 =

∫
Ω
f v ∀ v ∈ H1

Γ0
(Ω) . (3.4)

In turn, testing (3.1) with µ ∈ Ĥ−1/2(Γ) := H
−1/2
0 (Γ) when n = 2, or Ĥ−1/2(Γ) := H−1/2(Γ) when

n = 3, and adding the resulting expression to the foregoing identity, we arrive at our first boundary-
field equation formulation: Find (u, λ) ∈ H := H1

Γ0
(Ω)× Ĥ−1/2(Γ) such that

[A(u, λ), (v, µ)] = F(v, µ) ∀ (v, µ) ∈ H , (3.5)

where A : H −→ H′ is the nonlinear operator defined by

[A(w, ξ), (v, µ)] :=

∫
Ω
a (·, ‖∇w‖)∇w · ∇v − 〈ξ, γ(v)〉 + 〈µ,

(1

2
I−K

)
γ(w)〉 + 〈µ, V ξ〉 (3.6)

for all (w, ξ), (v, µ) ∈ H, and F ∈ H′ is the functional given by

F(v, µ) :=

∫
Ω
f v ∀ (v, µ) ∈ H . (3.7)

3.2 Solvability analysis of the continuous formulation

Here we address the solvability of (3.5). In fact, denoting by Ã the linear part of A, we first observe
from (3.6) that for each (v, µ) ∈ H there holds

[Ã(v, µ), (v, µ)] = −〈µ, γ(v)〉 + 〈
(1

2
I−Kt

)
µ, γ(v)〉 + 〈µ, V µ〉 ,

which, using the first identity in (2.5), and also the one given by (2.7), becomes

[Ã(v, µ), (v, µ)] = −〈γn
(
Si(µ)

)
− γn

(
Se(µ)

)
, γ(v)〉 − 〈γn

(
Se(µ)

)
, γ(v)〉 + 〈µ, V µ〉 ,
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that is
[Ã(v, µ), (v, µ)] = −〈γn

(
Si(µ)

)
, γ(v)〉 + 〈µ, V µ〉 .

Then, integrating by parts backwardly in Ω, bearing in mind that v = 0 on Γ0, ∆Si(µ) = 0 in Ω, and
〈µ, V µ〉 = ‖∇S(µ)‖20,Rn , and applying the Young inequality with parameter δ > 0, we find that

[Ã(v, µ), (v, µ)] = −
∫

Ω
∇Si(µ) · ∇v + 〈µ, V µ〉

≥ −‖∇Si(µ)‖0,Ω ‖∇v‖0,Ω + 〈µ, V µ〉

≥ − δ
2
‖∇S(µ)‖20,Rn −

1

2δ
‖∇v‖20,Ω + 〈µ, V µ〉

=
(

1− δ

2

)
〈µ, V µ〉 − 1

2δ
‖∇v‖20,Ω .

(3.8)

In order to combine the foregoing inequality with a suitable estimate for the remaining term defining
the operator A, that is its nonlinear part, throughout the rest of the paper we assume the following
hypotheses on the nonlinear coefficient a:

(H.1) [carathéodory and boundedness conditions]. The function a(·, t) is measurable in
Ω for all t ∈ R+, a(x, ·) is continuous in R+ for almost all x ∈ Ω, and there exists a constant
C > 0 such that

|a(x, t)| ≤ C ∀ t ∈ R+ , ∀x ∈ Ω a.e.

(H.2) [strong monotonicity]. There exists a constant αA > 0 such that∫
Ω

{
a(·, ‖r‖) r − a(·, ‖s‖) s

}
· (r− s) ≥ αA ‖r− s‖20,Ω

for all r, s ∈ L2(Ω).

(H.3) [lipschitz-continuity]. There exists a constant `A > 0 such that∣∣∣∣∫
Ω

{
a(·, ‖r‖) r − a(·, ‖s‖) s

}
· t
∣∣∣∣ ≤ `A ‖r− s‖0,Ω ‖t‖0,Ω

for all r, s, t ∈ L2(Ω).

For explicit examples of nonlinear coefficients a satisfying the above assumptions we refer to [20]
and [29] (see, also [13] and [17]). We remark here that (H.1) guarantees that the nonlinear part of
A is well-defined, whereas (H.2) and (H.3) allow to show that A becomes strongly monotone and
Lipschitz-continuous. More precisely, we have the following main result.

Theorem 3.1. Assume that the constant αA from (H.2) is such that αA > 1/4. Then, the variational
formulation (3.5) has a unique solution (u, λ) ∈ H, and there exists a positive constant CA, depending
only on αA, cp (cf. (3.3)), and αV (cf. (2.10)), such that

‖(u, λ)‖H :=
{
‖u‖21,Ω + ‖λ‖2−1/2,Γ

}1/2
≤ C−1

A ‖f‖0,Ω . (3.9)

Proof. Given (w, ξ), (v, µ) ∈ H, we begin by observing from the definition of A (cf. (3.6)) and the
linearity of Ã, that

[A(w, ξ)−A(v, µ), (w, ξ)− (v, µ)] =

∫
Ω

{
a(·, ‖∇w‖)∇w − a(·, ‖∇v‖)∇v

}
· ∇(w − v)

+ [Ã
(
(w, ξ)− (v, µ)

)
, (w, ξ)− (v, µ)] ,
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from which, employing the hypothesis (H.2) and the estimate (3.8), it follows that

[A(w, ξ)−A(v, µ), (w, ξ)− (v, µ)] ≥
(
αA −

1

2δ

)
‖∇(w − v)‖20,Ω +

(
1− δ

2

)
〈ξ − µ, V (ξ − µ)〉

for any δ > 0. In this way, in order to have positive constants multiplying the expressions on the right
hand side of the foregoing equation, we require to choose δ such that

αA >
1

2δ
and 1 >

δ

2
,

that is
1

2αA
< δ < 2, which is feasible under precisely our assumption that αA > 1/4. Thus,

choosing for instance δ as the midpoint of its range of variability, and applying (3.3) and (2.10), we

deduce the existence of a positive constant CA := min
{
cp

(
αA − 1

2δ

)
, αV

(
1− δ

2

)}
, such that

[A(w, ξ)−A(v, µ), (w, ξ)− (v, µ)] ≥ CA

{
‖w − v‖21,Ω + ‖ξ − µ‖2−1/2,Γ

}
, (3.10)

which proves that A is strongly monotone. In turn, it is straightforward to see from (H.3) and the
boundedness of Ã, that A is Lipschitz-continuous, that is there exists a constant LA > 0, depending
on `A, ‖γ‖, ‖K‖, and ‖V ‖ (cf. Lemma 2.1), such that

‖A(w, ξ)−A(v, µ)‖H′ ≤ LA ‖(w, ξ)− (v, µ)‖H ∀ (w, ξ), (v, µ) ∈ H . (3.11)

Therefore, applying the abstract result from [38, Theorem 3.3.23], we conclude the existence of a unique
(u, λ) ∈ H solution to (3.5). Moreover, employing (3.10) with (w, ξ) = (u, λ) and (v, µ) = (0, 0), using
that (u, λ) satisfies (3.5), and noting that A(0, 0) is the null functional, we arrive at (3.9) and conclude
the proof.

3.3 The discrete formulation

In this part we introduce the Galerkin formulation associated with (3.5) and analyze its solvability and
convergence properties under the same assumption of Theorem 3.1, that is that αA > 1/4. To this
end, we let {Hu

h}h>0 and {Hλ
h}h>0 be families of finite dimensional subspaces of H1

Γ0
(Ω) and Ĥ−1/2(Γ),

respectively, and introduce the Galerkin scheme: Find (uh, λh) ∈ Hh := Hu
h ×Hλ

h such that

[A(uh, λh), (vh, µh)] = F(vh, µh) ∀ (vh, µh) ∈ Hh . (3.12)

Then, it is straightforward to see from (3.10) that A|Hh
: Hh −→ H′h is strongly monotone as well.

In turn, for all (wh, ξh), (vh, µh) ∈ Hh there holds

‖A(wh, ξh)−A(vh, µh)‖H′h := sup
(zh,ηh)∈Hh
(zh,ηh)6=0

[A(wh, ξh)−A(vh, µh), (zh, ηh)]

‖(zh, ηh)‖

≤ sup
(z,η)∈H
(z,η)6=0

[A(wh, ξh)−A(vh, µh), (z, η)]

‖(z, η)‖ = ‖A(wh, ξh)−A(vh, µh)‖H′ ,

which, thanks to the estimate (3.11), implies the Lipschitz-continuity of A|Hh
: Hh −→ H′h. Hence,

an application of [38, Theorem 3.3.23] to this discrete setting yields the existence of a unique solution
(uh, λh) ∈ Hh to (3.12). In addition, proceeding exactly as in the proof of Theorem 3.1, we obtain

‖(uh, λh)‖H ≤ C−1
A ‖f‖0,Ω .
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On the other hand, concerning the corresponding a priori error estimate, we first observe from (3.5)
and (3.12) that there holds the Galerkin orthogonality type condition

[A(u, λ)−A(uh, λh), (vh, µh)] = 0 ∀ (vh, µh) ∈ Hh . (3.13)

Then, given an arbitrary (wh, ξh) ∈ Hh, we use the strong monotonicity of A|Hh
, the identity (3.13),

and the Lipschitz-continuity of A, to find that

CA ‖(uh, λh)− (wh, ξh)‖2H ≤ [A(uh, λh)−A(wh, ξh), (uh, λh)− (wh, ξh)]

= [A(u, λ)−A(wh, ξh), (uh, λh)− (wh, ξh)]

≤ LA ‖(u, λ)− (wh, ξh)‖H ‖(uh, λh)− (wh, ξh)‖H ,

which yields
‖(uh, λh)− (wh, ξh)‖H ≤ LAC

−1
A ‖(u, λ)− (wh, ξh)‖H .

Then, applying the triangle inequality and using the foregoing bound, we obtain

‖(u, λ)− (uh, λh)‖H ≤
{

1 + LAC
−1
A

}
‖(u, λ)− (wh, ξh)‖H ∀ (wh, ξh) ∈ Hh ,

which implies the Cea estimate

‖(u, λ)− (uh, λh)‖H ≤
{

1 + LAC
−1
A

}
dist

(
(u, λ),Hh

)
, (3.14)

where, as usual, and from now on, dist stands for the distance of a given vector to the specified
subspace.

We end this section by stressing that specific families of finite elements subspaces of H1
Γ0

(Ω) and

Ĥ−1/2(Γ), and their approximation properties, which together with (3.14) yield the rates of convergence
of the Galerkin scheme (3.12), are available in the literature (see, e.g. [12], [39], [40]).

4 The Johnson & Nédélec coupling: dual-mixed approach

Here we employ again the Johnson & Nédélec coupling method, but now in its dual-mixed approach,
to analyze the respective continuous and Galerkin schemes of the nonlinear problem introduced in
Section 2. In this case, and for sake of simplicity of the analysis, we slightly change the original model
(2.1) by considering a homogeneous Neumann boundary condition on Γ0.

4.1 The continuous formulation

In order to set the dual-mixed formulation, we introduce the auxiliary unknowns

t := ∇u and σ := a(·, ‖t‖) t in Ω , (4.1)

so that the transmission problem becomes

t = ∇u , σ = a(·, ‖t‖) t in Ω ,

div(σ) = −f in Ω ,

γn(σ) = 0 on Γ0 ,

γ(u) = γ(ue) and γn(σ) = γn(∇ue) on Γ ,

∆ue = 0 in Oe ,
ue(x) = O(‖x‖−1) as ‖x‖ → +∞ .

(4.2)
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Then, introducing the subspace of H(div; Ω) (cf. (1.1)) given by

H0(div; Ω) :=
{
τ ∈ H(div; Ω) : γn(τ ) = 0 on Γ0

}
, (4.3)

testing the first equation in the first row of (4.2) against τ ∈ H0(div; Ω), integrating by parts, and
recalling that ψ = γ(u) on Γ, we arrive at∫

Ω
τ · t +

∫
Ω
udiv(τ ) − 〈γn(τ ), ψ〉 = 0 ∀ τ ∈ H0(div; Ω) . (4.4)

It is worth mentioning here that, while the Neumann boundary condition on Γ0 becomes an essential
one within the present dual-mixed formulation, the fact that we are assuming it to be homogeneous,
which, by the way, motivated the introduction of H0(div; Ω) (cf. (4.3)), avoids the need of incorpo-
rating γ(u)|Γ0 as the Lagrange multiplier taking care of it. Indeed, it is already well-known that if
such condition were non-homogeneous, the latter procedure would be a suitable way to deal with it
by means of a conforming scheme. On the other hand, testing the second equation in the first row of
(4.2) against s ∈ L2(Ω), we get∫

Ω
a(·, ‖t‖) t · s −

∫
Ω
σ · s = 0 ∀ s ∈ L2(Ω) . (4.5)

Moreover, regarding the same equation, and for purposes that will be clarified along the analysis
below, we also add the consistent equation

κ

∫
Ω

{
σ − a(·, ‖t‖) t

}
· τ = 0 ∀ τ ∈ H0(div; Ω) , (4.6)

where κ > 0 is a stabilization parameter to be chosen conveniently. Next, replacing γn(∇ue) and λ in
(2.9) by γn(σ), we obtain

Wψ +
(1

2
I +Kt

)(
γn(σ)

)
= 0 on Γ ,

which, tested against ϕ ∈ H1/2(Γ), leads to

〈Wψ,ϕ〉 +
〈(1

2
I +Kt

)(
γn(σ)

)
, ϕ
〉

= 0 ∀ϕ ∈ H1/2(Γ) . (4.7)

Finally, from the equation in the second row of (4.2) we have∫
Ω
v div(σ) = −

∫
Ω
f v ∀ v ∈ L2(Ω) . (4.8)

In this way, adding the equations (4.4), (4.5), (4.6) and (4.7), keeping (4.8) as it is, performing some
algebraic rearrangements, denoting ~t := (t,σ, ψ), ~s := (s, τ , ϕ), H := L2(Ω)×H0(div; Ω)×H1/2(Γ),
and Q := L2(Ω), we arrive at the boundary-field equation formulation: Find (~t, u) ∈ H×Q such that

[A(~t),~s] + [B(~s), u] = F(~s) ∀~s ∈ H ,

[B(~t), v] = G(v) ∀ v ∈ Q ,
(4.9)

where the nonlinear operator A : H → H′ and B ∈ L
(
H,Q′

)
are defined for each ~r := (r, ζ, φ) ∈ H

as

[A(~r),~s] :=

∫
Ω
a(·, ‖r‖) r · s − κ

∫
Ω
a(·, ‖r‖) r · τ + [Ã(~r),~s] ∀~s ∈ H , (4.10)
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with Ã ∈ L
(
H,H′

)
given by

[Ã(~r),~s] := κ

∫
Ω
ζ · τ −

∫
Ω
ζ · s +

∫
Ω
τ · r − 〈γn(τ ), φ〉

+ 〈Wφ,ϕ〉 +
〈(1

2
I +Kt

)(
γn(ζ)

)
, ϕ
〉

∀~s ∈ H ,

(4.11)

and

[B(~r), v] :=

∫
Ω
v div(ζ) ∀ v ∈ Q , (4.12)

respectively, whereas F ∈ H′ and G ∈ Q′ are set as

F(~s) := 0 ∀~s ∈ H and G(v) := −
∫

Ω
f v ∀ v ∈ Q . (4.13)

4.2 Solvability analysis of the continuous formulation

We aim here to analyze the solvability of (4.9) by applying the abstract result given by Theorem B.1
(see Appendix B), for which we need to state first the main properties of the forms involved. We begin
with the inf-sup condition for B.

Lemma 4.1. There exists β > 0 such that there holds

sup
~s∈H
~s6=0

[B(~s), v]

‖~s‖H
≥ β ‖v‖Q ∀ v ∈ Q . (4.14)

Proof. Given v ∈ Q, and recalling that ~s := (s, τ , ϕ), we first observe that

sup
~s∈H
~s6=0

[B(~s), v]

‖~s‖H
= sup

τ∈H0(div;Ω)

τ 6=0

∫
Ω
v div(τ )

‖τ‖div;Ω
. (4.15)

Then, we proceed as in [15, Section 2.4.1] and let z ∈ H1
Γ(Ω) :=

{
z ∈ H1(Ω) : γ(z) = 0 on Γ

}
be

the unique weak solution, guaranteed by the Lax-Milgram Lemma, of the boundary value problem

∆z = v in Ω , γ(z) = 0 on Γ , γn(∇z) = 0 on Γ0 .

The corresponding continuous dependence result establishes that ‖z‖1,Ω ≤ c̃−1
p ‖v‖0,Ω, where, simi-

larly to (3.3), c̃p is the constant yielding the Poincaré inequality for H1
Γ(Ω). Thus, setting τ̃ := ∇z,

we notice that div(τ̃ ) = v and γn(τ̃ ) = 0 on Γ0, which confirms that τ̃ ∈ H0(div; Ω). Moreover,

‖τ̃‖div;Ω =
{
‖∇z‖20,Ω + ‖v‖20,Ω

}1/2 ≤
{

1 + c̃−2
p

}1/2 ‖v‖0,Ω, and hence, bounding below (4.15) with

τ = τ̃ , we get the required inequality (4.14) with β :=
{

1 + c̃−2
p

}−1/2
.

At this point we remark that for the actual purpose of the above lemma, it would have sufficed to
prove the surjectivity of B, which is basically achieved with the fact that div(τ̃ ) = v. The explicit
knowledge of the constant β for this continuous inf-sup condition is not as relevant as it is for the
respective discrete one. Next, denoting by V the null space of B, we easily find that

V :=
{
~r := (r, ζ, φ) ∈ H : div(ζ) = 0 in Ω

}
, (4.16)
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so that we now aim to look at the behaviour of the linear component Ã of A with respect to V. More
precisely, for each ~r := (r, ζ, φ) ∈ V we obtain from (4.11) and the second identity in the first row of
(2.4) that

[Ã(~r),~r] = κ ‖ζ‖20,Ω − 〈γn(ζ), φ〉 + 〈Wφ,φ〉 +
〈(1

2
I +Kt

)(
γn(ζ)

)
, φ
〉

= κ ‖ζ‖20,Ω + 〈Wφ,φ〉 +
〈(
− 1

2
I +Kt

)(
γn(ζ)

)
, φ
〉

= κ ‖ζ‖20,Ω + 〈Wφ,φ〉 +
〈
γn(ζ),

(
− 1

2
I +K

)
φ
〉

= κ ‖ζ‖20,Ω + 〈Wφ,φ〉 +
〈
γn(ζ), γ

(
Di(φ)

)〉
.

Then, integrating by parts backwardly the last term in the foregoing equation, and bearing in mind
that div(ζ) = 0 in Ω and γn(ζ) = 0 on Γ0, we arrive at

[Ã(~r),~r] = κ ‖ζ‖20,Ω + 〈Wφ,φ〉 +

∫
Ω
∇Di(φ) · ζ ,

from which, applying Cauchy-Schwarz’s and Young’s inequalities, the latter with parameter δ > 0,
and employing that ‖∇Di(φ)‖20,Ω ≤ ‖∇D(φ)‖20,Rn = 〈Wφ,φ〉, we find that

[Ã(~r),~r] ≥
(
κ− 1

2δ

)
‖ζ‖20,Ω +

(
1− δ

2

)
〈Wφ,φ〉 ∀~r := (r, ζ, φ) ∈ V . (4.17)

Note here that the constants multiplying ‖ζ‖20,Ω and 〈Wφ,φ〉 become positive if 1
2κ < δ < 2, which

constitutes a feasible range for δ if κ is chosen such that κ > 1
4 . Having established the above,

we now look at the whole nonlinear operator A in order to derive conditions under which it becomes
strongly monotone on V. In fact, using the assumptions (H.2) and (H.3), and applying again Young’s
inequality, but now with a parameter ε > 0, we deduce from (4.10) that for each ~q ∈ H, and for all
~r := (r, ζ, φ), ~s := (s, τ , ϕ) ∈ V there holds

[A(~r + ~q)−A(~s + ~q),~r−~s] = [A(~r + ~q)−A(~s + ~q), (~r + ~q)− (~s + ~q)]

≥ αA ‖r− s‖20,Ω − κ `A ‖r− s‖0,Ω ‖ζ − τ‖0,Ω + [Ã(~r−~s),~r−~s]

≥
(
αA −

κ `A
2ε

)
‖r− s‖20,Ω −

κ `A ε

2
‖ζ − τ‖20,Ω + [Ã(~r−~s),~r−~s] .

(4.18)

Thus, bounding [Ã(~r−~s),~r−~s] according to (4.17), replacing the resulting estimate back into (4.18),
and noting that ‖ζ‖0,Ω = ‖ζ‖div;Ω for all ~r := (r, ζ, φ) ∈ V, we obtain

[A(~r + ~q)−A(~s + ~q),~r−~s] ≥ C1 ‖r− s‖20,Ω + C2 ‖ζ − τ‖2div;Ω + C3 〈W (φ− ϕ), φ− ϕ〉 , (4.19)

for each ~q ∈ H, and for all ~r := (r, ζ, φ), ~s := (s, τ , ϕ) ∈ V, where

C1 :=

(
αA −

κ `A
2ε

)
, C2 :=

((
κ− 1

2δ

)
− κ `A ε

2

)
, and C3 :=

(
1− δ

2

)
. (4.20)

Hence, in order for the above constants to be positive, we need, in addition to the already stated

conditions 1
2κ < δ < 2 and κ > 1

4 , that αA > κ `A
2ε and

(
κ − 1

2δ

)
> κ `A ε

2 , which turns into the

constraint κ `A
2αA

< ε < 2
`A

(
1− 1

2κδ

)
. Certainly, the latter is a feasible range for ε if the difference

between the upper and lower ends of the interval is positive, which is equivalent to requiring that

αA >
`2A
4 g(κ, δ), where

g(κ, δ) :=
κ(

1− 1
2κδ

) ∀κ ∈
(

1
4 ,+∞

)
, ∀ δ ∈

(
1

2κ , 2
)
. (4.21)
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In Appendix A below we show that the infimum of g within the above specified region for κ and δ
is given by 1, which is attained for κ = 1

2 and δ = 1
κ = 2. In this way, we conclude that a sufficient

condition for the constants in (4.20) to be positive is that αA >
`2A
4 . Indeed, this inequality is

equivalent to stating 2αA
`2A

> 1
2 , so that choosing κ ∈

(
1
2 ,

2αA
`2A

)
and δ = 1

κ , we satisfy the conditions

required for these parameters. In addition, it follows in this case that
`2A
4 g(κ, δ) =

`2A κ
2 < αA, which

confirms the feasibility of the range for ε, that is ε ∈
(
κ `A
2αA

, 1
`A

)
. Hence, choosing κ, δ, and ε as

indicated, the constants from (4.20) become

C1 :=
αA
ε

(
ε− κ `A

2αA

)
, C2 :=

κ`A
2

( 1

`A
− ε
)
, and C3 :=

1

κ

(
κ− 1

2

)
,

which are clearly all positive. Certainly, the values of these constants are maximized if κ and ε are
chosen as the midpoints of their respective ranges. In any case, from the previous analysis and (4.19)

we conclude that there exists a positive constant CA := min
{
C1, C2, C3

}
, depending on `A and αA,

in particular on the difference 4αA − `2A, such that

[A(~r + ~q)−A(~s + ~q),~r−~s] ≥ CA

{
‖r− s‖20,Ω + ‖ζ − τ‖2div;Ω + 〈W (φ− ϕ), φ− ϕ〉

}
, (4.22)

for each ~q ∈ H, and for all ~r := (r, ζ, φ), ~s := (s, τ , ϕ) ∈ V.

Unfortunately, this estimate does not guarantee the strong monotonicity of A on V since the

ellipticity property of W given by (2.11) (cf. Lemma 2.1) holds for H
1/2
0 (Γ) but not for H1/2(Γ), and

therefore the last term in (4.22) does not yield the required norm for φ−ϕ. However, in what follows
we circumvent this difficulty by observing that there is actually a lack of uniqueness for the nonlinear
problem (4.9). To confirm this, we now consider the homogeneous linear problem arising from (4.9)
after replacing A by Ã, and F and G by the respective null functionals, that is:

[Ã(~t),~s] + [B(~s), u] = 0 ∀~s ∈ H ,

[B(~t), v] = 0 ∀ v ∈ Q .
(4.23)

Then, it is easy to see that if (~t, u) ∈ H × Q is a solution of (4.23) with ~t = (0,σ, ψ), necessarily
there holds σ = 0, ψ = c, and u = c, with c ∈ R. In fact, it readily follows from the second equation
of (4.23) that div(σ) = 0, so that taking ~s = ~t in the first equation, and using (4.17) and (2.11), we
deduce for σ and ψ. In turn, knowing this, the first equation becomes

0 = −〈γn(τ ), c〉+

∫
Ω
udiv(τ ) =

∫
Ω

(u− c) div(τ ) ∀ τ ∈ H0(div; Ω) ,

which, thanks to the inf-sup condition (4.14), yields u = c. Conversely, it is straightforward to check
that for each c ∈ R, the pair (~t, u) :=

(
(0,0, c), c

)
∈ H×Q solves (4.23).

According to the above discussion, we conclude that given any solution (~t, u) ∈ H ×Q of (4.9),
(~t, u) +

(
(0,0, c), c

)
also becomes a solution for any c ∈ R. Therefore, in order to avoid this non-

uniqueness, we could look either for u ∈ L2
0(Ω) :=

{
v ∈ L2(Ω) :

∫
Ω v = 0

}
instead of u ∈ L2(Ω),

or for ϕ ∈ H
1/2
0 (Γ) instead of ϕ ∈ H1/2(Γ). For simplicity of the analysis, and particularly due to

the H
1/2
0 (Γ)-ellipticity of W (cf. (2.11)), we prefer the second option. Thus, instead of H, we now

introduce the space H0 := L2(Ω)×H0(div; Ω)×H
1/2
0 (Γ), and observe that testing the first equation

of (4.9) against ~s ∈ H is equivalent to doing it against ~s ∈ H0, which follows from the fact that
W (1) = 0, identity that is implicit in (2.11), and K(1) = −1

2 (cf. [31], [40]). In this way, from now on
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we consider, in replacement of (4.9), the formulation: Find (~t, u) ∈ H0 ×Q such that

[A(~t),~s] + [B(~s), u] = F(~s) ∀~s ∈ H0 ,

[B(~t), v] = G(v) ∀ v ∈ Q .
(4.24)

Then, instead of V (cf. (4.16)), the null space of B now becomes

V0 :=
{
~r := (r, ζ, φ) ∈ H0 : div(ζ) = 0 in Ω

}
, (4.25)

and hence, thanks to (4.22) and (2.11), and defining α̃ := CA min
{

1, αW
}

, we deduce that

[A(~r + ~q)−A(~s + ~q),~r−~s] ≥ α̃
{
‖r− s‖20,Ω + ‖ζ − τ‖2div;Ω + ‖φ− ϕ‖21/2,Γ

}
, (4.26)

for each ~q ∈ H, and for all ~r := (r, ζ, φ), ~s := (s, τ , ϕ) ∈ V0, which proves the strong monotonicity of
A on V0. In turn, starting from the definition of the nonlinear operator A (cf. (4.10)), and employing
hypothesis (H.3), Cauchy-Schwarz’s inequality, the boundedness of the normal trace γn (cf. [15,
Theorem 1.7]), and the corresponding properties of the boundary integral operators W and Kt (cf.
Lemma 2.1), we deduce the existence of a positive constant L̃A, depending on `A, κ, and the norms
of W , Kt, and γn, such that

‖A(~r)−A(~s)‖H′ ≤ L̃A ‖~r−~s‖H ∀~r, ~s ∈ H , (4.27)

which shows the Lipschitz-continuity of A.

We are now in position to establish the main result concerning (4.24).

Theorem 4.1. In addition to the hypotheses (H.1), (H.2), and (H.3), assume that αA >
`2A
4

. Then,

problem (4.24) has a unique solution (~t, u) ∈ H0 ×Q. Moreover, there hold

‖~t‖H ≤
1

β

(
1 +

L̃A
α̃

)
‖f‖0,Ω and ‖u‖Q ≤

L̃A
β2

(
1 +

L̃A
α̃

)
‖f‖0,Ω . (4.28)

Proof. In virtue of Lemma 4.1 (which is easily seen to be valid for H0 as well, instead of H), (4.26),
and (4.27), the proof reduces to a straightforward application of Theorem B.1. In particular, the
a priori estimates in (4.28) follow from (B.5) and (B.6) after observing that in this case F = 0,
‖G‖Q′ = ‖f‖0,Ω, and A(0) = 0.

4.3 The discrete formulation

In what follows we introduce a discrete formulation associated with (4.24) and discuss its solva-

bility and convergence properties. For this purpose, we now let
{

Ht
h

}
h>0

,
{

Hσh
}
h>0

,
{

Hψ
h

}
h>0

, and{
Hu
h

}
h>0

, be families of finite dimensional subspaces of L2(Ω), H0(div; Ω), H
1/2
0 (Γ), and L2(Ω),

respectively, set H0,h := Ht
h × Hσh × Hψ

h , Qh := Hu
h, and consider the Galerkin scheme: Find

(~th, uh) :=
(
(th,σh, ψh), uh

)
∈ H0,h ×Qh such that

[A(~th),~sh] + [B(~sh), uh] = F(~sh) ∀~sh := (sh, τh, ϕh) ∈ H0,h ,

[B(~th), vh] = G(vh) ∀ vh ∈ Qh .
(4.29)
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In this case, and aiming to apply later on Theorem B.2, the solvability analysis of (4.29) requires to
identify first the null space of the discrete restriction B|H0,h

: H0,h → Q′h, which is defined as

V0,h :=
{
~rh := (rh, ζh, φh) ∈ H0,h : [B(~rh), vh] = 0 ∀ vh ∈ Qh

}
,

that is

V0,h :=
{
~rh := (rh, ζh, φh) ∈ H0,h :

∫
Ω
vh div(ζh) = 0 ∀ vh ∈ Qh

}
. (4.30)

Having this in mind, we assume the following hypothesis on Hσh and Qh = Hu
h:

(H.4) div
(
Hσh
)
⊆ Hu

h,

thanks to which (4.30) becomes

V0,h =
{
~rh := (rh, ζh, φh) ∈ H0,h : div(ζh) = 0 in Ω

}
,

and hence V0,h is clearly contained in V0 (cf. (4.25)). In this way, it follows straightforwardly from
(4.26) that the discrete restriction A|H0,h

: H0,h → H′0,h is strongly monotone on V0,h with the same
constant α̃ from (4.26). Thus, in order to complete the hypotheses of Theorem B.2, we need to satisfy
the corresponding discrete inf-sup condition (B.12), for which we incorporate the following additional
assumption:

(H.5) There exists a positive constant βd, independent of h, such that

sup
τh∈Hσ

h
τh 6=0

∫
Ω
vh div(τh)

‖τh‖div;Ω
≥ βd ‖vh‖0,Ω ∀ vh ∈ Qh .

Then, proceeding analogously to the first part of the proof of Lemma 4.1, and employing now (H.5),
we find that for each vh ∈ Qh there holds

sup
~sh∈H0,h

~sh 6=0

[B(~sh), vh]

‖~s‖H
= sup

τh∈Hσ
h

τh 6=0

∫
Ω
vh div(τh)

‖τh‖div;Ω
≥ βd ‖vh‖0,Ω ,

which provides the missing hypothesis. For specific examples of finite element subspaces Hσh and Hu
h

verifying (H.4) and (H.5), we refer to [3], [5], and [15], among several other suitable references.

Consequently, we are now able to establish the following result providing the well posedness of
(4.29) and the associated Cea estimate.

Theorem 4.2. In addition to the hypotheses of Theorem 4.1, assume that (H.4) and (H.5) are
satisfied. Then, problem (4.29) has a unique solution (~th, uh) ∈ H0,h ×Qh, and there hold

‖~th‖H ≤
1

βd

(
1 +

L̃A
α̃

)
‖f‖0,Ω and ‖uh‖Q ≤

L̃A
β2
d

(
1 +

L̃A
α̃

)
‖f‖0,Ω .

Moreover, recalling that (~t, u) ∈ H0 ×Q stands for the unique solution of (4.24), the corresponding a
priori error estimates reduce to

‖~t−~th‖H ≤
(

1 +
L̃A
α̃

)(
1 +

1

βd

)
dist

(
~t,H0,h

)
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and

‖u− uh‖0,Ω ≤
(

1 +
1

βd

)
dist(u,Qh) +

L̃A
βd

(
1 +

L̃A
α̃

)(
1 +

1

βd

)
dist

(
~t,H0,h

)
.

Proof. According to the previous discussion, the proof follows from a direct application of Theorem
B.2 and the simplified Cea estimates (B.22) and (B.23), observing again that F = 0, ‖G‖Q′ = ‖f‖0,Ω,
and A(0) = 0, noting from (4.12) that ‖B‖ ≤ 1, and using the fact that V0,h ⊆ V0.

In addition to the already stated remark on Hσh and Hu
h, and similarly as we did at the end of

Section 3, we emphasize here that specific families of the required finite element subspaces, and their
approximation properties, can be found at several places in the literature.

5 The modified Costabel & Han coupling

In this section we apply the primal and dual-mixed approaches of the new coupling procedure intro-
duced in [27] in the context of VEM and BEM (see also [28]), to analyze, via FEM or mixed-FEM
instead of VEM, the respective continuous and discrete formulations of the model introduced in Section
2. The main difference of the procedures to be employed here with respect to the original Costabel
& Han coupling method (see [10], [30]), lies on the simultaneous use of both Cauchy data on the
boundary as independent unknowns, namely

ψ := γ(u) = γ(ue) ∈ H
1/2
0 (Γ) and λ := γn

(
a (·, ‖∇u‖)∇u

)
= γn(∇ue) ∈ Ĥ−1/2(Γ) , (5.1)

with Ĥ−1/2(Γ) defined in Section 3.1.

5.1 The primal approach

In this case, we proceed similarly to the derivation of (3.4), but now adding and subtracting the

expression 〈λ, ϕ〉 with arbitrary ϕ ∈ H
1/2
0 (Γ), and imposing weakly the relation ψ = γ(u) with a test

function µ ∈ Ĥ−1/2(Γ). As a consequence of it, we obtain∫
Ω
a (·, ‖∇u‖)∇u · ∇v − 〈λ, γ(v)− ϕ〉 − 〈λ, ϕ〉 + 〈µ, γ(u)− ψ〉 =

∫
Ω
f v (5.2)

for all (v, ϕ, µ) ∈ X := H1
Γ0

(Ω) × H
1/2
0 (Γ) × Ĥ−1/2(Γ). On the other hand, we rewrite the identities

(2.8) and (2.9) as (1

2
I−K

)
ψ + V λ = 0 on Γ , (5.3)

and

λ = −Wψ +
(1

2
I−Kt

)
λ on Γ . (5.4)

Thus, replacing λ in the third term on the left hand side of (5.2) by the expression provided by
(5.4), and incorporating (5.3) into the fourth one, we arrive at the variational formulation: Find
~u := (u, ψ, λ) ∈ X such that

[A(~u), ~v] = F(~v) ∀~v := (v, ϕ, µ) ∈ X , (5.5)

where the nonlinear operator A : X→ X′ is defined for each ~w := (w, φ, ξ) ∈ X as

[A(~w), ~v] :=

∫
Ω
a (·, ‖∇w‖)∇w · ∇v + [Ã(~w), ~v] ∀~v := (v, ϕ, µ) ∈ X , (5.6)
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with Ã ∈ L(X,X′) given by

[Ã(~w), ~v] := 〈Wφ,ϕ〉 + 〈µ, V ξ〉 − 〈ξ, γ(v)− ϕ〉 + 〈µ, γ(w)− φ〉

− 〈ξ,
(1

2
I−K

)
ϕ〉 + 〈µ,

(1

2
I−K

)
φ〉 ∀~v := (v, ϕ, µ) ∈ X ,

(5.7)

and F ∈ X′ is set as

F(~v) :=

∫
Ω
f v ∀~v := (v, ϕ, µ) ∈ X . (5.8)

We stress here that the transmission conditions (5.1) (see also (2.3)), which are employed in the
derivation of the present continuous formulation, are recovered precisely from (5.5) and the Green
representation formula (2.2), similarly as done in [27]. We omit details and refer to the last paragraph
of [27, Section 4.2].

Next, concerning the solvability analysis of (5.5), we begin by observing, in virtue of the definition
of Ã (cf. (5.7)) and the ellipticity properties of V and W (cf. (2.10) and (2.11) in Lemma 2.1), that
for each ~v := (v, ϕ, µ) ∈ X we obtain

[Ã(~v), ~v] = 〈Wϕ,ϕ〉 + 〈µ, V µ〉 ≥ min
{
αW , αV

}{
‖ϕ‖21/2,Γ + ‖µ‖2−1/2,Γ

}
. (5.9)

Hence, proceeding similarly as in the proof of Theorem 3.1 (cf. Section 3.2), we have from (5.6) that
for each ~w := (w, φ, ξ) , ~v := (v, ϕ, µ) ∈ X there holds

[A(~w)−A(~v), ~w − ~v] =

∫
Ω

{
a(·, ‖∇w‖)∇w − a(·, ‖∇v‖)∇v

}
· ∇(w − v) + [Ã(~w − ~v), ~w − ~v] ,

from which, invoking the hypothesis (H.2), and employing (3.3) and (5.9), we find that

[A(~w)−A(~v), ~w − ~v] ≥ CA

{
‖w − v‖21,Ω + ‖φ− ϕ‖21/2,Γ + ‖ξ − µ‖2−1/2,Γ

}
= CA ‖~w − ~v‖2X ,

with CA := min
{
cp αA, αW , αV

}
, which proves the strong monotonicity of A. In addition, appealing

now to (H.3) and the boundedness of Ã, whose norm depends on ‖W‖, ‖V ‖, ‖γ‖, and ‖K‖, we
deduce that A is Lipschitz-continuous with a constant LA depending on `A and ‖Ã‖. In this way,
applying again the abstract result from [38, Theorem 3.3.23], and noting that ‖F‖X′ ≤ ‖f‖0,Ω, we
can establish the following main result.

Theorem 5.1. The variational formulation (5.5) has a unique solution ~u := (u, ψ, λ) ∈ X, and there
holds

‖~u‖X ≤ C−1
A ‖f‖0,Ω . (5.10)

On the other hand, in order to set the discrete formulation of the present coupling method, we first

let {Hu
h}h>0, {Hψ

h}h>0, and {Hλ
h}h>0 be families of finite dimensional subspaces of H1

Γ0
(Ω), H

1/2
0 (Γ),

and Ĥ−1/2(Γ), respectively. Then, the Galerkin scheme associated with (5.5) reads: Find ~uh :=

(uh, ψh, λh) ∈ Xh := Hu
h ×Hψ

h ×Hλ
h such that

[A(~uh), ~vh] = F(~vh) ∀~vh := (vh, ϕh, µh) ∈ Xh . (5.11)

Since the strong monotonicity and Lipschitz-continuity properties of A are certainly transferred to
A|Xh

, analogously as explained in Section 3.3 for the primal approach of the Johnson & Nédélec
coupling procedure, we conclude the well-posedness of (5.11) by applying again [38, Theorem 3.3.23],
but now to the present discrete setting. In particular, the corresponding a priori estimate becomes
the analogue of (5.10), that is

‖~uh‖X ≤ C−1
A ‖f‖0,Ω . (5.12)
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Moreover, following the same arguments from the second half of Section 3.3, we are able to establish
the respective Cea estimate, which has the same structure of (3.14), namely

‖~u− ~uh‖X ≤
{

1 + LAC
−1
A

}
dist(~u,Xh) . (5.13)

We conclude this section by observing that an analogue remark to the one stated at the end

of Section 3, referring now to specific families of finite element subspaces of H1
Γ0

(Ω), H
1/2
0 (Γ), and

Ĥ−1/2(Γ), is valid here. Additionally, we highlight that, as compared with the method from Section 3,
the present primal version of the modified Costabel & Han method has the advantages, on one hand,
of not requiring any restriction on the strong monotonicity constant αA, and on the other hand, of
yielding direct approximations, without any further computation or differentiation, of both Cauchy
data. Nevertheless, assuming that the restriction on αA is satisfied, the former method, involving only
one boundary integral equation and two boundary integral operators, is certainly of less complexity
and hence computationally cheaper.

5.2 The dual-mixed approach

We now address the dual-mixed version of the modified Costabel & Han coupling method as applied
to the nonlinear model introduced in Section 2. Similarly as we did for the same approach of the
Johnson & Nédélec coupling in Section 4, and for sake of simplicity of the discussion to be presented
below, we consider again a homogeneous Neumann boundary condition on Γ0. Then, after introducing
t := ∇u and σ := a(·, ‖t‖) t as auxiliary unknowns (cf. (4.1), Section 4.1), we proceed similarly to the
derivation of (4.4), but now adding and subtracting the expression 〈ξ, ψ〉 with arbitrary ξ ∈ Ĥ−1/2(Γ),

and imposing weakly the relation γn(σ) = λ with a test function ϕ ∈ H
1/2
0 (Γ). The resulting equation

of the above arrangements reads∫
Ω
τ · t +

∫
Ω
udiv(τ ) − 〈γn(τ )− ξ, ψ〉 − 〈ξ, ψ〉 + 〈γn(σ)− λ, ϕ〉 = 0 (5.14)

for all (τ , ϕ, ξ) ∈ H0(div; Ω)×H
1/2
0 (Γ)× Ĥ−1/2(Γ). In turn, the identities (2.8) and (2.9) (or, equiva-

lently, (5.3) and (5.4)), are now rewritten as

ψ =
(1

2
I +K

)
ψ − V λ = 0 on Γ , (5.15)

and

Wψ +
(1

2
I +Kt

)
λ = 0 on Γ . (5.16)

Therefore, replacing ψ in the fourth term on the left hand side of (5.14) by the expression provided
by (5.15), and incorporating (5.16) into the fifth one, we obtain∫

Ω
τ · t +

∫
Ω
udiv(τ ) − 〈γn(τ )− ξ, ψ〉 + 〈γn(σ)− λ, ϕ〉

+ 〈ξ, V λ〉 − 〈ξ,
(1

2
I +K

)
ψ〉 + 〈Wψ,ϕ〉 + 〈λ,

(1

2
I +K

)
ϕ〉 = 0

(5.17)

for all (τ , ϕ, ξ) ∈ H0(div; Ω) × H
1/2
0 (Γ) × Ĥ−1/2(Γ). Moreover, adding (4.5) and (4.6) to (5.17),

keeping (4.8) as it is, performing some algebraic rearrangements, and denoting ~t := (t,σ, ψ, λ),

~s := (s, τ , ϕ, ξ), H := L2(Ω) ×H0(div; Ω) × H
1/2
0 (Γ) × Ĥ−1/2(Γ), and Q := L2(Ω), we arrive now at

the variational formulation: Find (~t, u) ∈ H×Q such that

[A(~t),~s] + [B(~s), u] = F(~s) ∀~s ∈ H ,

[B(~t), v] = G(v) ∀ v ∈ Q ,
(5.18)
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where the nonlinear operator A : H→ H′ and B ∈ L
(
H,Q′

)
are defined for each ~r := (r, ζ, φ,η) ∈ H

as

[A(~r),~s] :=

∫
Ω
a(·, ‖r‖) r · s − κ

∫
Ω
a(·, ‖r‖) r · τ + [Ã(~r),~s] ∀~s ∈ H , (5.19)

with Ã ∈ L
(
H,H′

)
given by

[Ã(~r),~s] := κ

∫
Ω
ζ · τ −

∫
Ω
ζ · s +

∫
Ω
τ · r − 〈γn(τ )− ξ, φ〉 + 〈γn(ζ)− η, ϕ〉

+ 〈Wφ,ϕ〉 + 〈ξ, V η〉 − 〈ξ,
(1

2
I +K

)
φ〉 + 〈η,

(1

2
I +K

)
ϕ〉 ∀~s ∈ H ,

(5.20)

and

[B(~r), v] :=

∫
Ω
v div(ζ) ∀ v ∈ Q , (5.21)

respectively, whereas F ∈ H′ and G ∈ Q′ are set as

F(~s) := 0 ∀~s ∈ H and G(v) := −
∫

Ω
f v ∀ v ∈ Q . (5.22)

We now discuss the solvability of (5.18) by applying, analogously to the analysis in Section 4, the
abstract result given by Theorem B.1. For this purpose, we first observe that, irrespective of the fact
that the product space H now includes additionally Ĥ−1/2(Γ) as a fourth component, the continuous
inf-sup condition for the present operator B (cf. (5.21)) is proved exactly as we did in Section 4.2 (cf.
Lemma 4.1) since the only spaces involved in it are the second component of H and Q. In this way,
with the same constant β from that lemma, there holds

sup
~s∈H
~s6=0

[B(~s), v]

‖~s‖H
≥ β ‖v‖Q ∀ v ∈ Q . (5.23)

Moreover, the null space V of B remains basically unchanged with respect to (4.16), namely

V :=
{
~r := (r, ζ, φ,η) ∈ H : div(ζ) = 0 in Ω

}
.

It follows from (5.20) and the ellipticity properties of W and V (cf. Lemma 2.1) that for each
~r := (r, ζ, φ,η) ∈ V there holds

[Ã(~r),~r] ≥ κ‖ζ‖20,Ω + αW ‖φ‖21/2,Γ + αV ‖η‖2−1/2,Γ . (5.24)

Therefore, employing once again the hypotheses (H.2) and (H.3), and applying Young’s inequality
with a parameter δ > 0, we deduce from (5.19) and (5.24) that for each ~q ∈ H, and for all ~r :=
(r, ζ, φ,η), ~s := (s, τ , ϕ, ξ) ∈ V there holds

[A(~r + ~q)−A(~s + ~q),~r−~s] = [A(~r + ~q)−A(~s + ~q), (~r + ~q)− (~s + ~q)]

≥
(
αA −

κ `A
2δ

)
‖r− s‖20,Ω + κ

(
1 − `A δ

2

)
‖ζ − τ‖2div;Ω

+ αW ‖φ− ϕ‖21/2,Γ + αV ‖η − ξ‖2−1/2,Γ ,

from which we conclude the strong monotonicity of A on V if δ and κ are chosen such that δ ∈
(
0, 2

`A

)
and κ ∈

(
0, 2 δ αA

`A

)
. In particular, taking the midpoints of each range, that is δ = 1

`A
and κ = δ αA

`A
,

which maximize the respective constants, we arrive finally at

[A(~r + ~q)−A(~s + ~q),~r−~s] ≥ α̃
{
‖r− s‖20,Ω + ‖ζ − τ‖2div;Ω + ‖φ− ϕ‖21/2,Γ + ‖η − ξ‖2−1/2,Γ

}
, (5.25)
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with α̃ := min
{
αA
2 ,

αA
2 `2A

, αW , αV
}

. We stress here that, differently from the analysis in Section 4.2

(cf. (4.17), (4.19), (4.20)), and thanks to the restriction-free positiveness condition (5.24) satisfied
by Ã, the inequality (5.25) has been derived without assuming any relation between αA and `A. On
the other hand, the Lipschitz-continuity of A is established analogously as done in that same section,
using (H.3), Cauchy-Schwarz’s inequality, and the boundedness of the linear operators involved, so
that with a positive constant L̃A, depending on `A and the norms of W , V , K, and γn, there holds

‖A(~r)−A(~s)‖H′ ≤ L̃A ‖~r−~s‖H ∀~r, ~s ∈ H .

Consequently, bearing in mind (5.23) and the previous discussion on the properties of A, we can
state the following main theorem concerning the solvability of (5.18), whose proof, similarly to the
one of Theorem 4.1, follows from a direct application of Theorem B.1.

Theorem 5.2. Assume the hypotheses (H.1), (H.2), and (H.3). Then, problem (5.18) has a unique
solution (~t, u) ∈ H×Q. Moreover, there hold

‖~t‖H ≤
1

β

(
1 +

L̃A
α̃

)
‖f‖0,Ω and ‖u‖Q ≤

L̃A
β2

(
1 +

L̃A
α̃

)
‖f‖0,Ω .

Furthermore, regarding the Galerkin scheme associated with (5.18), we now let let
{

Ht
h

}
h>0

,{
Hσh
}
h>0

,
{

Hψ
h

}
h>0

,
{

Hλ
h

}
h>0

, and
{

Hu
h

}
h>0

, be families of finite dimensional subspaces of L2(Ω),

H0(div; Ω), H
1/2
0 (Γ), Ĥ−1/2(Γ), and L2(Ω), respectively, set Hh := Ht

h × Hσh × Hψ
h × Hλ

h, Qh := Hu
h,

and consider the discrete formulation: Find (~th, uh) :=
(
(th,σh, ψh, λh), uh

)
∈ Hh ×Qh such that

[A(~th),~sh] + [B(~sh), uh] = F(~sh) ∀~sh := (sh, τh, ϕh, ξh) ∈ Hh ,

[B(~th), vh] = G(vh) ∀ vh ∈ Qh .
(5.26)

The rest of the discussion proceeds as we did in Section 4.3 for the dual mixed approach of the
Johnson & Nédélec coupling procedure, by assuming additionally the hypotheses (H.4) and (H.5).
We omit further details and just summarize the main results in the following theorem, which is the
analogue of Theorem 4.2.

Theorem 5.3. In addition to the hypotheses of Theorem 4.1, assume that (H.4) and (H.5) are
satisfied. Then, problem (5.26) has a unique solution (~th, uh) ∈ Hh ×Qh, and there hold

‖~th‖H ≤
1

βd

(
1 +

L̃A
α̃

)
‖f‖0,Ω and ‖uh‖Q ≤

L̃A
β2
d

(
1 +

L̃A
α̃

)
‖f‖0,Ω .

Moreover, the corresponding a priori error estimates reduce to

‖~t−~th‖H ≤
(

1 +
L̃A
α̃

)(
1 +

1

βd

)
dist

(
~t,Hh

)
and

‖u− uh‖0,Ω ≤
(

1 +
1

βd

)
dist(u,Qh) +

L̃A
βd

(
1 +

L̃A
α̃

)(
1 +

1

βd

)
dist

(
~t,Hh

)
.

We conclude this section by highlighting that the very same remark stated at the end of Section
5.1 applies here when comparing the advantages and complexity of the present dual-mixed approach
of the modified Costabel & Han coupling procedure with those of the method from Section 4.
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A Optimal choices of parameters κ and δ

In this brief appendix we confirm the optimal choices of κ and δ given in Section 4.2. In fact, let
us consider minimizing the function g (cf. (4.21)) in its range of definition, that is in the region

R :=
{

(κ, δ) ∈ R2 : κ ∈
(

1
4 ,+∞

)
, δ ∈

(
1

2κ , 2
)}

. Then, we observe that

∂g

∂κ
=

1− 1
κδ(

1− 1
2κδ

)2

> 0 if κ >

1

δ
,

= 0 if κ =
1

δ
,

< 0 if κ <
1

δ
,

∂g

∂δ
=

− 1
2δ2(

1− 1
2κδ

)2 < 0 ∀ (κ, δ) ∈ R .

It follows that for given δ , the function g(·, δ) is decreasing in the interval (1
4 ,

1
δ ) and increasing in

(1
δ ,+∞), which means that it attains its minimum at κ = 1

δ , whereas given κ, the function g(κ, ·) is
always decreasing (see Figure 2 below for a graphic illustration of the region R).

R 

k

1

2

1 2 3 4k

(1
2
, 2)

δ = 1
k

δ = 1
k

k = 1
δ

δ = 1
2k

δ

δ

1

Figure A.1: R, the feasible region for the choice of parameters κ and δ.

Therefore, g(κ, δ) attains its infimum at κ = 1
2 and δ = 1

κ = 2, whose value is 1. In this way, we
confirm the already announced sufficient condition for a well-posedness of the dual-mixed formulation

(4.24) (cf. Section 4.2), namely αA >
`2A
4 .

B A nonlinear Babuška-Brezzi theory

In this appendix we address a nonlinear version of the classical Babuška-Brezzi theory for saddle point
problems in a Hilbertian framework. While the results to be presented in what follows can be obtained
as particular cases of more general abstract theories (see, e.g. [43, Proposition 2.3], [9, Theorem 3.1]),
particular proofs for them as such are, up to our knowledge, not available in the literature. This
is the reason why, for sake of clearness of the discussion in some sections of this work, we provide
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them below. Our problem of interest is precisely the one for which the following theorem establishes
sufficient conditions under which it is uniquely solvable.

Theorem B.1. Let H and Q be real Hilbert spaces, and let A : H→ H′ be a nonlinear operator, and
B ∈ L

(
H,Q′

)
. In addition, let V be the null space of B, and assume that

a) the family of operators A(· + τ̃) : V → V′, with τ̃ ∈ H, is uniformly strongly monotone, that is
there exists α > 0 such that

[A(τ + τ̃)−A(ζ + τ̃), τ − ζ] ≥ α ‖τ − ζ‖2H ∀ τ̃ ∈ H, ∀ τ, ζ ∈ V , (B.1)

b) A : H→ H′ is Lipschitz-continuous, that is, there exists LA > 0 such that

‖A(τ)−A(ζ)‖H′ ≤ LA ‖τ − ζ‖H ∀ τ, ζ ∈ H , (B.2)

c) there exists β > 0 such that

sup
τ∈H
τ 6=0

[B(τ), v]

‖τ‖H
≥ β ‖v‖Q ∀ v ∈ Q . (B.3)

Then, for each pair (F,G) ∈ H′ ×Q′ there exists a unique (σ, u) ∈ H×Q such that

[A(σ), τ ] + [B(τ), u] = F(τ) ∀ τ ∈ H ,

[B(σ), v] = G(v) ∀ v ∈ Q ,
(B.4)

and there hold

‖σ‖H ≤
1

α
‖F‖H′ +

1

β

(
1 +

LA
α

)
‖G‖Q′ +

1

α
‖A(0)‖H′ , (B.5)

and

‖u‖Q ≤
1

β

(
1 +

LA
α

)
‖F‖H′ +

LA
β2

(
1 +

LA
α

)
‖G‖Q′ +

1

β

(
1 +

LA
α

)
‖A(0)‖H′ . (B.6)

Proof. Let us first introduce the operator B ∈ L
(
Q,H′

)
defined for each v ∈ Q by [B(v), τ ] := [B(τ), v]

for all τ ∈ H, so that (B.4) can be rewritten as the operator equation system:

A(σ) + B(u) = F ,

B(σ) = G .
(B.7)

Furthermore, denoting by RH : H′ → H and RQ : Q′ → Q the respective Riesz operators, and defining

B̃ := RQ B : H→ Q, it readily follows that its Hilbert-adjoint is given by B̃∗ = RH B : Q→ H. In turn,
it is easy to see that the inf-sup condition (B.3) can be rewritten as ‖B(v)‖H′ ≥ β ‖v‖Q for all v ∈ Q,

which, according to the above identity, is the same that ‖B̃∗(v)‖H ≥ β ‖v‖Q for all v ∈ Q. Moreover,

noting that the null space of B and B̃ coincide, the foregoing inequality also says that B̃∗ : Q → V⊥

is an isomorphism, which, thanks to a classical result on linear operators (see, e.g. [15, Lemma 2.1]),
is equivalent to saying that B̃ : V⊥ → Q is an isomorphism as well, and that ‖B̃(τ)‖Q ≥ β ‖τ‖H for
all τ ∈ V⊥. Thus, going back to B and B, we conclude from the above discussion that B : V⊥ → Q′

and B : Q→ R−1
H (V⊥) are isomorphisms and that there hold

‖B(τ)‖Q′ ≥ β ‖τ‖H ∀ τ ∈ V⊥ and ‖B(v)‖H′ ≥ β ‖v‖Q ∀ v ∈ Q . (B.8)
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Now, given (F,G) ∈ H′ × Q′, we proceed to construct (σ, u) ∈ H × Q solving (B.7). In fact, we

first let σg be the unique element in V⊥ satisfying B(σg) = G and ‖σg‖H ≤
1

β
‖G‖Q′ (cf. first

inequality in (B.8)). Next, thanks to the assumptions (B.1) and (B.2), a straightforward application
of [38, Theorem 3.3.23] implies that A(· + σg) : V → V′ is bijective, and hence there exists a unique
σ0 ∈ V such that A(σ0 + σg) = F|V ∈ V′, that is [F − A(σ0 + σg), τ ] = 0 for all τ ∈ V. This
means that F − A(σ0 + σg) ∈ R−1

H (V⊥), and therefore there exists a unique u ∈ Q such that

B(u) = F − A(σ0 + σg) and ‖u‖Q ≤
1

β
‖F − A(σ0 + σg)‖H′ (cf. second inequality in (B.8)). In this

way, defining σ := σ0 + σg ∈ H, we have A(σ) + B(u) = F and B(σ) = B(σg) = G, which proves
that (σ, u) solves (B.7). Concerning the boundedness of (σ, u), we begin by applying (B.1) to τ̃ = σg,
τ = σ0, and ζ = 0, which yields

α ‖σ0‖2H ≤ [A(σ0 + σg)−A(σg), σ0] = [F−A(σg), σ0] .

Then, adding and subtracting A(0) in the foregoing inequality, and applying (B.2), we deduce that

‖σ0‖H ≤
1

α

{
‖F‖H′ + ‖A(0)‖H′ + LA ‖σg‖H

}
. (B.9)

On the other hand, proceeding similarly with the bound for ‖u‖Q, we find that

‖u‖Q ≤
1

β

{
‖F‖H′ + ‖A(0)‖H′ + LA ‖σ0‖H + LA ‖σg‖H

}
. (B.10)

Consequently, recalling that σ = σ0 +σg, the required estimates (B.5) and (B.6) are obtained directly
from (B.9), (B.10), and the already stated bound for ‖σg‖H. It remains to show that (σ, u) is the
unique solution of (B.4) (equivalently (B.7)). For this purpose, we now let (σ̃, ũ) ∈ H×Q be another
solution of (B.7). It follows that σ − σ̃ ∈ V and A(σ)−A(σ̃) = B(ũ− u), so that from the latter we
see that [A(σ) − A(σ̃), τ ] = 0 for all τ ∈ V. Then, applying (B.1) to τ̃ = σ̃, τ = σ − σ̃, and ζ = 0,
we get

α ‖σ − σ̃‖2H ≤ [A(σ)−A(σ̃), σ − σ̃] = 0 ,

from which it is clear that σ = σ̃, and thus B(ũ−u) = 0. Finally, the bijectivity of B : Q→ R−1
H (V⊥)

gives u = ũ, which completes the uniqueness and ends the proof.

The discrete version of Theorem B.1, including the associated Cea estimates, is stated as follows.

Theorem B.2. In addition to the hypotheses of Theorem B.1, let
{

Hh

}
h>0

and
{

Qh

}
h>0

be families of
finite dimensional subspaces of H and Q, respectively, and let Vh be the null space of B|Hh : Hh → Q′h,
that is

Vh :=
{
τh ∈ Hh : [B(τh), vh] = 0 ∀ vh ∈ Qh

}
.

Assume that

a) the family of operators A(·+ τ̃h) : Vh → V′h, with τ̃h ∈ Hh, is uniformly strongly monotone, that
is there exists αd > 0, independent of h, such that

[A(τh + τ̃h)−A(ζh + τ̃h), τh − ζh] ≥ αd ‖τh − ζh‖2H ∀ τ̃h ∈ Hh, ∀ τh, ζh ∈ Vh , (B.11)

b) there exists βd > 0 such that

sup
τh∈Hh
τh 6=0

[B(τh), vh]

‖τh‖H
≥ βd ‖vh‖Q ∀ vh ∈ Qh . (B.12)
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Then, for each pair (F,G) ∈ H′ ×Q′ there exists a unique (σh, uh) ∈ Hh ×Qh such that

[A(σh), τh] + [B(τh), uh] = F(τh) ∀ τh ∈ Hh ,

[B(σh), vh] = G(vh) ∀ vh ∈ Qh ,
(B.13)

and there hold

‖σh‖H ≤
1

αd
‖F‖H′ +

1

βd

(
1 +

LA
αd

)
‖G‖Q′ +

1

αd
‖A(0)‖H′ , (B.14)

and

‖uh‖Q ≤
1

βd

(
1 +

LA
αd

)
‖F‖H′ +

LA
β2
d

(
1 +

LA
αd

)
‖G‖Q′ +

1

βd

(
1 +

LA
αd

)
‖A(0)‖H′ . (B.15)

Moreover, bearing in mind that (σ, u) ∈ H × Q is the unique solution of (B.4), the respective Cea
estimates become

‖σ − σh‖H ≤
‖B‖
αd

dist(u,Qh) +

(
1 +

LA
αd

)(
1 +
‖B‖
βd

)
dist

(
σ,Hh

)
(B.16)

and

‖u− uh‖0,Ω ≤
(

1 +
‖B‖
βd

+
LA ‖B‖
αd βd

)
dist(u,Qh) +

LA
βd

(
1 +

LA
αd

)(
1 +
‖B‖
βd

)
dist

(
σ,Hh

)
. (B.17)

Proof. We first observe that the Lipschitz-continuity of A, which is guaranteed by (B.2) (hypothesis
b) from Theorem B.1), implies the same property for A|Hh : Hh → H′h and with the same constant
LA. Thus, in virtue of this fact and the present hypotheses a) and b), we deduce that the existence of
a unique (σh, uh) ∈ Hh × Qh solution of (B.13), and the a priori estimates (B.14) and (B.15), follow
from a straightforward application of Theorem B.1 to the present discrete context. Hence, it only
remains to show the Cea estimates (B.16) and (B.17), for which we proceed very similarly to the proof
of the general linear case of the Babuška-Brezzi theory (see, e.g. [15, Theorem 2.6]), even using some
of the estimates provided there. In fact, we first define a kind of translation of Vh given by

Vg
h :=

{
τh ∈ Hh : [B(τh), vh] = G(vh) ∀ vh ∈ Qh

}
,

and notice that σh belongs to Vg
h, whence it readily follows that σh − τ gh ∈ Vh for all τ gh ∈ Vg

h. Then,
applying the strong monotonicity assumption (B.11) to τ̃h = τ gh ∈ Hh, τh = σh − τ gh ∈ Vh, and
ζh = 0 ∈ Vh, we find that

αd ‖σh − τ gh‖2H ≤ [A(σh)−A(τ gh), σh − τ gh ] ,

from which, adding and subtracting [A(σ), σh−τ gh ] on the right hand side, and using the first equations
of (B.4) and (B.13), as well as the fact that [B(σh − τ gh), vh] = 0 for all vh ∈ Qh, we arrive at

αd ‖σh − τ gh‖2H ≤ [B(σh − τ gh), u− vh] + [A(σ)−A(τ gh), σh − τ gh ] ∀ vh ∈ Qh . (B.18)

This is a key point of the argumentation in the sense that, if we had Vh contained in V, then the first
term on the right hand side of (B.18) would also vanish, and, on the contrary to what we show next,
the a priori estimate for ‖σ − σh‖H would not depend on dist(u,Qh) but only on dist(σ,Hh). After
finishing the present proof, we go back to this issue. Now, without assuming a priori any relation
between Vh and V, we simply apply the boundedness of B and the Lipschitz-continuity of A (cf.
(B.2)), to derive from (B.18) that

‖σh − τ gh‖H ≤
‖B‖
αd
‖u− vh‖Q +

LA
αd
‖σ − τ gh‖H ∀ vh ∈ Qh , ∀ τ gh ∈ Vg

h , (B.19)
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so that, employing additionally the triangle inequality to bound ‖σ − σh‖H, we conclude that

‖σ − σh‖H ≤
‖B‖
αd

dist
(
u,Qh

)
+

(
1 +

LA
αd

)
dist

(
σ,Vg

h

)
. (B.20)

Next, we recall from the proof of [15, Theorem 2.6] that there holds

dist
(
σ,Vg

h

)
≤
(

1 +
‖B‖
βd

)
dist

(
σ,Hh

)
,

which, replaced back into (B.20), yields (B.16). In turn, the preliminary estimate for ‖u − uh‖Q is
obtained almost exactly as done in the proof of [15, Theorem 2.6], except that besides applying the
triangle inequality and the discrete inf-sup condition (B.12), the Lipschitz-continuity of A needs to be
employed as well. In this way, we easily get

‖u− uh‖Q ≤
(

1 +
‖B‖
βd

)
dist

(
u,Qh

)
+
LA
βd
‖σ − σh‖H , (B.21)

which, together with (B.16), imply (B.17) and complete the proof.

We end this appendix by stressing, as commented in the proof of the foregoing theorem, that in
the case that Vh is contained in V, the a priori estimate for ‖σ−σh‖H does not depend on dist(u,Qh),
and hence the Cea estimates (B.16) and (B.17) simplify to

‖σ − σh‖H ≤
(

1 +
LA
αd

)(
1 +
‖B‖
βd

)
dist

(
σ,Hh

)
(B.22)

and

‖u− uh‖0,Ω ≤
(

1 +
‖B‖
βd

)
dist(u,Qh) +

LA
βd

(
1 +

LA
αd

)(
1 +
‖B‖
βd

)
dist

(
σ,Hh

)
. (B.23)
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