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Abstract

We have recently proposed a new finite element method for a more general Boussinesq model in 2D
given by the case in which the viscosity of the fluid depends on its temperature. Our approach is
based on a pseudostress-velocity-vorticity mixed formulation for the momentum equations, which
is suitably augmented with Galerkin-type terms, coupled with the usual primal formulation for
the energy equation, along with the introduction of the normal heat flux on the boundary as
a Lagrange multiplier taking care of the fact that the prescribed temperature there becomes an
essential condition. Then, fixed-point arguments using Banach and Brouwer theorems, in addition
to other classical tools from functional and numerical analysis, provide sufficient conditions ensuring
well-posedness of the resulting continuous and discrete sytems, together with the corresponding
error estimates and associated rates of convergence. In the present work we complement these
results with the derivation of a reliable and efficient residual-based a posteriori error estimator for
the aforementioned augmented mixed-primal finite element method. Duality techniques, Helmholtz
decompositions, and the approximation properties of the Raviart-Thomas and Clément interpolants
are applied to obtain a reliable global error indicator. In turn, standard tools including the usual
localization technique of bubble functions and inverse inequalities, and a regularity assumption
originally utilized in the previous well-posedness and a priori error analyses, are employed to prove
its efficiency. Finally, a reliable fully local and computable a posteriori error estimator induced by
the aforementioned one is deduced, and several numerical results illustrating its performance and
validating the expected behaviour of the associated adaptive algorithm are reported.

Key words: Boussinesq model, augmented mixed–primal formulation, a posteriori error analysis,
reliability, efficiency, adaptive algorithm.
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1 Introduction

A wide variety of natural convection flows can be modelled using the equations of conservation of
mass, momentum and energy, coupled by means of the Boussinesq approximation, in what we refer to
as the Boussinesq problem. In recent work [1], we have analyzed the problem considering a fluid with
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a temperature-dependent viscosity and a tensorial thermal conductivity, which leaded us to construct
an augmented mixed-primal finite element method that approximates the pseudostress tensor using
Raviart-Thomas elements of order k + 1, the velocity and temperature with Lagrange elements of
order k, and the vorticity tensor and normal heat flux on the boundary with discontinuous piecewise
polynomials of degree ≤ k, thus obtaining optimal a priori bounds under smooth enough solutions.
However, it is expected from the literature (see, e.g., [20, 21]) that, in the presence of singularities or
high gradients, these rates of convergence will not be optimal, mainly because of the high degree of
mesh refinement needed to capture those zones. Therefore, it is highly advisable the utilization of an
a posteriori error estimator that measures the error in these particular areas, to then use an adaptive
algorithm that decreases the computational cost of computing the solution on a highly refined mesh.

In this regard, several error estimators have been proposed in the context of the Boussinesq problems
with constant viscosity and coupled problems in fluid mechanics with varying viscosity (see, e.g.,
[2, 6, 9, 12, 22]). On the one hand, the authors in [2] propose an a posteriori error estimator for a
coupled-flow transport problem based on a Stokes-type equation, in which the viscosity depends on
the gradient of the concentration, and a convection-diffusion equation with varying parameters. This
was later on extended in [3] to a sedimentation-consolidation system, in which the aforementioned
dependence for the viscosity of the fluid reduces just to the concentration itself instead of its gradient.
On the other hand, the authors in [9] and [10] construct a posteriori error estimators for mixed-primal
and fully-mixed formulations, respectively, of the Boussinesq problem with constant viscosity. All
these works utilize duality arguments and Helmholtz decompositions to prove the reliability of the
residual-based estimator, and inverse inequalities and localization arguments to obtain the efficiency
estimates.

According to the above, it is the purpose of this paper to develop a reliable and efficient residual-
based a posteriori error estimator (together with a fully-local version that can be used in an adaptive
procedure) for the Boussinesq problem with temperature-dependent viscosity in the pseudostress-
vorticity–based formulation from [1]. As a framework to begin the analysis, we consider the steps
given by the authors in [2] and [9], previously mentioned in the foregoing paragraph. More precisely,
inf-sup conditions coming from the well-posedness of the momentum and energy equations will give
us a first sight of the estimator, then, the reliability of the estimator is proved using properties of
the Raviart-Thomas and Clément interpolation operators, together with a Helmholtz decomposition
of the space the pseudostress belongs to. Then, some inverse inequalities from [16], a localization
technique based on bubble functions used in [9], and further-regularity assumptions on the solution to
the momentum equation that were already used in the analysis of [1] will serve to prove the efficiency
of the estimator. In addition, a fully local version is developed based on interpolation arguments and
several numerical tests are realized where it can be seen that this new estimator is not only reliable
(as proved theoretically) but also efficient, and it is capable to capture zones with high gradients and
nearby singularities. We remark in advance that the uncoupling of the equations of momentum and
energy allows us to reuse the results derived in [9] for the last one, which we will only cite, unless
substantial differences appear.

1.1 Outline

The remainder of this paper is organized as follows. We end this section with some notation used
throughout this work. Then, in Section 2, we recall the model problem from [1] and basic assumptions
on the provided data, along with well-posedness results of the continuous and discrete formulations.
Next, in Section 3, we introduce a residual-based a posteriori error estimator that is proved to be
reliable and efficient, though the presence of a non-local term makes it inadvisable for adaptivity
purposes. To remediate this, a fully-local version of the estimator is derived, to then, in Section 4,
present a series of numerical examples that show its good performance and its behaviour upon an
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adaptive refinement technique.

1.2 Notation

Let us denote by Ω ⊂ R2 a given bounded domain with polyhedral boundary Γ, and denote by ν the
outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and
Sobolev spaces Ws,2(Ω) =: Hs(Ω) with norm ‖ · ‖s,Ω and seminorm | · |s,Ω. In particular, H1/2(Γ) is

the space of traces of functions in H1(Ω) and H−1/2(Γ) denotes its dual. By M and M we will denote
the corresponding vectorial and tensorial counterparts of the generic scalar functional space M, and
‖ · ‖, with no subscripts, will stand for the natural norm of either an element or an operator in any
product functional space. In turn, for any vector fields v = (vi)i=1,2 and w = (wi)i=1,2, we set the
gradient, divergence and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,2

, div v :=

2∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,2.

In addition, for any tensor fields τ = (τij)i,j=1,2 and ζ = (ζij)i,j=1,2, we let div τ be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,2, tr(τ ) :=

2∑
i=1

τii, τ : ζ :=

2∑
i,j=1

τijζij , and τ d := τ − 1

2
tr(τ )I,

where I stands for the identity tensor in R := R2×2. Furthermore, we recall that

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the usual norm

‖ τ ‖2div;Ω := ‖ τ ‖20,Ω + ‖div τ ‖20,Ω,

is a standard Hilbert space in the realm of mixed problems. Finally, in what follows, | · | denotes
the Euclidean norm in R := R2. Also, we employ 0 to denote a generic null vector and use C, with
or without subscripts, bars, tildes or hats, to mean generic positive constants independent of the
discretization parameters, which may take different values at different places.

2 The Boussinesq problem

We now recall the Boussinesq problem in the pseudostress-vorticity–based formulation considered in
[1], to then cite some key results about the augmented mixed-primal finite element method developed
in it.

2.1 The mathematical model

Let u, p and ϕ be the velocity, pressure and temperature, respectively, of a non-isothermal, in-
compressible, Newtonian fluid whose transversal section occupies the two-dimensional region Ω with
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polygonal boundary Γ. Then, neglecting the presence of source terms in the equilibrium equations,
the Boussinesq problem can be written as

−div (µ(ϕ)e(u)) + (∇u)u +∇p− ϕg = 0 in Ω , (2.1a)

div u = 0 in Ω , (2.1b)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω , (2.1c)

u = uD on Γ , (2.1d)

ϕ = ϕD on Γ , (2.1e)

where e(u) is the symmetric part of the velocity gradient tensor ∇u, µ denotes the viscosity of the
fluid (that may depend on its temperature ϕ), K is the thermal conductivity tensor and −g is a body
force per unit mass. The reader may refer to [7] for further details concerning the theoretical aspects
of this fluid mechanics topic, as well as the derivation of the equations.

In what follows, we assume µ : R → R+ to be a bounded, Lipschitz continuous, and continuously
differentiable function, that is, µ ∈ C1(R) and there exist positive constants µ1, µ2, Lµ such that

µ1 ≤ µ(t) ≤ µ2 and |µ(s)− µ(t)| ≤ Lµ|s− t| ∀ s, t ∈ R. (2.2)

In addition, we suppose that K ∈ L∞(Ω), g ∈ L∞(Ω), uD ∈ H1/2(Γ), ϕD ∈ H1/2(Γ) and that uD
verifies the compatibility condition ∫

Γ
uD · ν = 0. (2.3)

2.2 A pseudostress-vorticity–based formulation

Let σ and γ be the pseudostress and vorticity tensors, respectively defined as

σ := µ(ϕ)e(u)− u⊗ u− pI and γ := ω(u), (2.4)

where ω(u) is the skew-symmetric part of the velocity gradient tensor ∇u, that is, for any velocity v,

ω(v) :=
1

2

{
∇v − (∇v)t

}
.

Then, we denote by L2
skew(Ω) the space of skew-symmetric tensors with components in L2(Ω), that is,

L2
skew(Ω) :=

{
η ∈ L2(Ω) : η + ηt = 0

}
.

Hence, (2.1) can be rewritten as: Find (σ,u,γ, ϕ) such that

∇u− γ − 1

µ(ϕ)
(u⊗ u)d =

1

µ(ϕ)
σd in Ω, (2.5a)

−divσ − ϕg = 0 in Ω, (2.5b)

−div (K∇ϕ) + u · ∇ϕ = 0 in Ω, (2.5c)

u = uD on Γ, (2.5d)

ϕ = ϕD on Γ, (2.5e)∫
Ω

tr(σ + u⊗ u) = 0 , (2.5f)

where the pressure p is postprocessed by means of the formula

p = −1

2
tr
(
σ + u⊗ u

)
,

and its uniqueness is ensured with (2.5f), for it implies that p has zero mean-value in Ω.
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2.3 The augmented mixed-primal formulation

The construction of a weak formulation for (2.5) relies on the orthogonal decomposition

H(div; Ω) = H0(div; Ω)⊕ RI,

where

H0(div; Ω) :=

{
ζ ∈ H(div; Ω) :

∫
Ω

tr(ζ) = 0

}
,

since it can be proved that the uniqueness condition (2.5f) allows us to only search for the H0(div; Ω)-
component of the pseudostress (cf. [1, Lemma 3.1]). In addition, the mixed formulation for the
momentum equation is augmented with Galerkin-type terms, thus allowing a proper analysis of the
weak problem, and ensuring also conformity in the scheme, since at a first glance the velocity lives
in H1(Ω), whereas its test function lives in L2(Ω). On the other hand, a primal formulation for the
energy equations leads us to define the Lagrange multiplier on Γ (known as the normal heat flux)

λ := −K∇ϕ · ν ∈ H−1/2(Γ),

and to weakly impose the prescribed temperature on the boundary. Therefore, denoting ~σ, ~τ ∈
H0(div; Ω)×H1(Ω)× L2

skew(Ω) by

~σ := (σ,u,γ), ~τ := (τ ,v,η),

the augmented mixed-primal formulation reads: Find (~σ, (ϕ, λ)) ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω)×

H1(Ω)×H−1/2(Γ) such that

Aϕ(~σ, ~τ ) + Bu,ϕ(~σ, ~τ ) = Fϕ(~τ ) + FD(~τ ), (2.6a)

a(ϕ,ψ) + b(ψ, λ) = Fu,ϕ(ψ), (2.6b)

b(ϕ, ξ) = G(ξ), (2.6c)

for all (~τ , (ψ, ξ)) ∈ H0(div; Ω)×H1(Ω)×L2
skew(Ω)×H1(Ω)×H−1/2(Γ), where given positive stabilization

parameters κi, i ∈ {1, 2, 3, 4} and a pair (w, φ) ∈ H1(Ω) × H1(Ω), the bounded bilinear forms Aφ,
Bw,φ, a and b; and the functionals FD, Fφ, Fw,φ and G are defined as

Aφ(~σ, ~τ ) :=

∫
Ω

1

µ(φ)
σd :

{
τ d − κ1e(v)

}
+

∫
Ω

{
u + κ2divσ

}
· div τ + κ1

∫
Ω

e(u) : e(v)

+

∫
Ω
γ : τ −

∫
Ω

v · divσ −
∫

Ω
σ : η + κ3

∫
Ω

{
γ − ω(u)

}
: η + κ4

∫
Γ

u · v, (2.7)

Bw,φ(~σ, ~τ ) :=

∫
Ω

1

µ(φ)
(u⊗w)d :

{
τ d − κ1e(v)

}
, (2.8)

for all ~σ, ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω);

a(ϕ,ψ) :=

∫
Ω
K∇ϕ · ∇ψ, (2.9)

for all ϕ,ψ ∈ H1(Ω);
b(ψ, ξ) := 〈 ξ, ψ 〉Γ, (2.10)

for all (ψ, ξ) ∈ H1(Ω)×H−1/2(Γ);

FD(~τ ) := 〈 τν,uD 〉Γ + κ4

∫
Γ

uD · v, (2.11)
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Fφ(~τ ) :=

∫
Ω
φg ·

{
v − κ2div τ

}
, (2.12)

for all ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω);

Fw,φ(ψ) = −
∫

Ω
ψu · ∇φ, (2.13)

for all ψ ∈ H1(Ω); and
G(ξ) = 〈 ξ, ϕD 〉Γ, (2.14)

for all ξ ∈ H−1/2(Γ).

This problem is analysed throughout [1, Section 3], and the well-posedness comes as a result of
the application of a decoupling technique and a fixed-point strategy. Hence, assuming that the mixed
formulation of the momentum equation has a slightly more regular solution, and the data is sufficiently
small, it is possible to prove that for certain positive values of κi, i ∈ {1, 2, 3, 4}, and for a suitable
choosen constant r0 > 0, there exists a unique solution (~σ, (ϕ, λ)) ∈ H0(div; Ω)×H1(Ω)×L2

skew(Ω)×
H1(Ω)× H−1/2(Γ), with (u, ϕ) ∈ W :=

{
(w, φ) ∈ H1(Ω)× H1(Ω) : ‖ (w, φ) ‖ ≤ r

}
, r ∈ (0, r0) (cf. [1,

Theorem 3.11]) such that there hold

‖ ~σ ‖ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
(2.15)

and
‖ (ϕ, λ) ‖ ≤ C

S̃

{
r‖u ‖1,Ω + ‖ϕD ‖1/2,Γ

}
, (2.16)

where CS and C
S̃

are positive constants.

2.4 The augmented mixed-primal finite element method

Let {Th}h>0 be a family of regular triangulations of Ω, each of them made of triangles T of diameter
hT and define the global mesh size h := maxT∈Th hT . Given also k ≥ 0, for each T ∈ Th we let
Pk(T ) be the space of polynomial functions on T of degree ≤ k and denote by RTk(T ) the tensor
version of the local Raviart-Thomas space of order k. In turn, we introduce the corresponding global
Raviart-Thomas space

RTk(Th) :
{
τ ∈ H(div; Ω) : τ |T ∈ RTk(T ) ∀ T ∈ Th

}
.

Thus, we consider the following finite element spaces to approximate respectively the pseudostress,
velocity and vorticity variables:

Hσ
h := H0(div; Ω) ∩ RTk(Th) , (2.17)

Hu
h :=

{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ Pk+1(T ), ∀ T ∈ Th

}
, (2.18)

Hγ
h :=

{
ηh ∈ L2

skew(Ω) : ηh
∣∣
T
∈ Pk(T ), ∀ T ∈ Th

}
, (2.19)

this is, finite element spaces of Raviart-Thomas of order k for σ, Lagrange of order k + 1 for u, and
piecewise skew-symmetric polynomial tensors of degree ≤ k for γ. On the other hand, the temperature
ϕ is approximated using a Lagrange finite element space of order k + 1,

Hϕ
h :=

{
ψh ∈ C(Ω̄) : ψh

∣∣
T
∈ Pk+1(T ), ∀ T ∈ Th

}
, (2.20)

and for the normal heat flux λ, we let {Γ̃1, Γ̃2, . . . , Γ̃m} be an independent triangulation of Γ (made
of straight segments), and define h̃ := maxj∈{1,...,m} |Γ̃j |. Then, with the same integer k ≥ 0 used in
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definitions (2.17), (2.18), (2.19), we approximate λ by piecewise polynomials of degree ≤ k over this
new mesh, that is

Hλ
h̃

:=
{
ξ
h̃
∈ L2(Γ) : ξ

h̃

∣∣
Γ̃j
∈ Pk(Γ̃j) ∀ j ∈ {1, . . . ,m}

}
. (2.21)

In this way, the augmented mixed-primal finite element method reads: Find (~σh, (ϕh, λh̃)) ∈ Hσ
h ×

Hu
h ×Hγ

h ×Hϕ
h ×Hλ

h̃
such that

Aϕh
(~σh, ~τh) + Buh,ϕh

(~σh, ~τh) = Fϕh
(~τh) + FD(~τh), (2.22a)

a(ϕh, ψh) + b(ψh, λh̃) = Fuh,ϕh
(ψh), (2.22b)

b(ϕh, ξh̃) = G(ξ
h̃
), (2.22c)

for all (~τh, (ψh, ξh̃)) ∈ Hσ
h ×Hu

h × Hγ
h × Hϕ

h × Hλ
h̃
, where the forms Aϕh

, Buh,ϕh
, a, and b; and the

functionals Fϕh
, FD, Fuh,ϕh

and G are defined by (2.7)-(2.14). A similar analysis to the one realized for
the proof of well-posedness of (2.6) leads to the existence of (~σh, (ϕh, λh̃)) ∈ Hσ

h ×Hu
h ×Hγ

h ×Hϕ
h ×Hλ

h̃
solution to (2.22), with (uh, ϕh) ∈ Wh := {(wh, φh) ∈ Hu

h × Hϕ
h : ‖ (w, φ) ‖ ≤ r} and r ∈ (0, r0) (cf.

[1, Theorem 4.8]). Moreover, there hold

‖ ~σh ‖ ≤ CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
(2.23)

and ∥∥ (ϕh, λh̃)
∥∥ ≤ C̃

S̃

{
r‖uh ‖1,Ω + ‖ϕD ‖1/2,Γ

}
. (2.24)

with CS, C̃
S̃

being positive constants independent of h and h̃. We also mention that when using these
finite element spaces, optimal rates of convergence are achieved for all the discrete variables, including
the postprocessed pressure (cf. [1, Theorem 5.6] and the numerical examples therein).

3 A posteriori error analysis

This section constitutes the main contribution of the present work. Here, we develop a reliable and
efficient residual-based a posteriori error estimator for (2.6) and (2.22).

3.1 Preliminaries

We introduce next some notations that will be used throughout this section to describe local informa-
tion on elements and edges. First, let Eh be the set of edges e ∈ Th, whose corresponding diameters
are denoted by he, and define

Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(Γ) := {e ∈ Eh : e ⊆ Γ},

and
Eh(T ) := {e ∈ Eh : e ⊆ ∂T} ∀ T ∈ Th.

Thus, the usual jump operator J·K across an internal edge e ∈ Eh(Ω) is defined for piecewise continuous
matrix, vector, or scalar-valued functions ζ as

JζK = ζ
∣∣
T+
− ζ
∣∣
T−
,
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where T− and T+ are the triangles of Th sharing the edge e. In addition, if ψ = (ψ1, ψ2) and
ζ = (ζij)1≤i,j≤2 are vector-valued and matrix-valued functions, respectively, we set the differential
operators

curl (ψ) :=


∂ψ1

∂x2
−∂ψ1

∂x1

∂ψ2

∂x2
−∂ψ2

∂x1

 , curl (ζ) :=


∂ζ12

∂x1
− ∂ζ11

∂x2

∂ψ22

∂x1
− ∂ζ21

∂x2

 .

We also define the unit tangential vector s on each edge e ∈ Eh by s := (−ν2, ν1)t where ν = (ν1, ν2)t

is the usual unit normal vector. That being said, let us introduce the global a posteriori error estimator

θ :=

∑
T∈Th

θ2
T + ‖ϕD − ϕh ‖21/2,Γ


1/2

, (3.1)

where θT is the local indicator defined for each T ∈ Th by

θ2
T :=

∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,T
+
∥∥σh − σt

h

∥∥2

0,T
+ ‖γh − ω(uh) ‖20,T

+ ‖divσh + ϕhg ‖20,T + h2
T

∥∥∥ curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥∥2

0,T

+h2
T ‖ div (K∇ϕh)− uh · ∇ϕh ‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

{∥∥ J{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}sK
∥∥2

0,e
+ ‖ JK∇ϕh · νK ‖20,e

}
+

∑
e∈Eh(T )∩Eh(Γ)

{
he

∥∥∥∥ {γh + µ(ϕh)−1(uh ⊗ uh + σh)d}s− duD
ds

∥∥∥∥2

0,e

+he
∥∥λ

h̃
+ K∇ϕh · ν

∥∥2

0,e
+ ‖uD − uh ‖20,e

}
.

(3.2)

The residual character of each term defining θT becomes clear by having a look at the strong problem
(2.5) and to the regularity of the continuous weak solution. We remark in advance that further
regularity will be assumed for uD, so that the previous estimator is well-defined. In addition, since θ
is not fully local due to the last term in (3.1), we will show (see Section 3.4) that this estimator induces
another one that is is indeed fully computable, which will allow us to construct an adaptive refinement
algorithm. We also mention that, for the upcoming analysis, the further regularity assumption made
for the mixed formulation of the momentum equation will be considered here as well. Indeed, we
assume that for some ε ∈ (0, 1), uD ∈ H1/2+ε(Γ), and that for each (w, φ) ∈ H1(Ω) × H1(Ω) with
‖w ‖1,Ω ≤ r, r > 0 given, the unique solution to the mixed formulation of the momentum equation,

that is: Find ~ζ := (ζ, z,χ) ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω) such that

Aφ(~ζ, ~τ ) + Bw,φ(~ζ, ~τ ) = FD(~τ ) + Fφ(~τ ) ∀ ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω),

also satisfies ~ζ ∈ H0(div; Ω) ∩Hε(Ω)×H1+ε(Ω)× L2
skew(Ω) ∩Hε(Ω) and

‖ ζ ‖ε,Ω + ‖ z ‖1+ε,Ω + ‖χ ‖ε,Ω ≤ C̃S(r)
{
‖g ‖∞,Ω‖φ ‖1,Ω + ‖uD ‖1/2+ε,Γ + ‖uD ‖0,Γ

}
, (3.3)

with C̃S(r) being a positive constant independent of w but depending on the upper bound r of its
H1-norm.

3.2 Reliability

The main result of this section reads as follows.
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Theorem 3.1. Let (~σ, (ϕ, λ)) and (~σh, (ϕh, λh̃)) be solutions to (2.6) and (2.22), respectively. Then θ
is a reliable estimator, i.e., there exists a positive constant Crel, depending on physical and stabilization
parameters, but independent of h and h̃, such that∥∥ (~σ, (ϕ, λ))− (~σh, (ϕh, λh̃))

∥∥ ≤ Crel θ,

provided uD ∈ H1(Γ) and the data are small enough (cf. Lemma 3.4).

The proof of the foregoing theorem is separated into the following two subsections.

3.2.1 A first error estimate

Lemma 3.2. There exists C̄1 > 0, independent of h, such that

‖ ~σ − ~σh ‖ ≤ C̄1

{∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥

0,Ω
+ ‖divσh + ϕhg ‖0,Ω

+ ‖uD − uh ‖0,Γ +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖γh − ω(uh) ‖0,Ω +
µ2

µ2
1

‖σ − σh ‖div;Ω

+ ‖uh ‖1,Ω‖u− uh ‖1,Ω +

(
‖g ‖∞,Ω + ‖σ ‖ε,Ω + ‖uh ‖21,Ω

)
‖ϕ− ϕh ‖1,Ω + ‖Rm ‖

}
,

(3.4)

where Rm : H0(div; Ω)→ R is the linear and bounded functional defined as

Rm(τ ) := Fϕh
(τ ,0,0) + FD(τ ,0,0)−Aϕh

(~σh, (τ ,0,0))−Buh,ϕh
(~σh, (τ ,0,0)), (3.5)

that is,

Rm(τ ) = −κ2

∫
Ω
ϕhg · div τ + 〈 τν,uD 〉Γ −

∫
Ω

1

µ(ϕh)
σd
h : τ −

∫
Ω

uh · div τ

− κ2

∫
Ω

divσh · τ −
∫

Ω
γh : τ −

∫
Ω

1

µ(ϕh)
(uh ⊗ uh)d : τ , (3.6)

for all τ ∈ H0(div; Ω).

Proof. Since (u, ϕ) ∈ W , [1, Eq. (3.37)] shows that the bilinear form Aϕ + Bu,ϕ is uniformly elliptic
in H0(div; Ω)×H1(Ω)×L2

skew(Ω) with a constant α̂(Ω) > 0 depending on Ω, and hence the following
inf-sup condition holds

sup
~τ∈H0(div;Ω)×H1(Ω)×L2

skew(Ω)

~τ 6=~0

(Aϕ + Bu,ϕ)(~ζ, ~τ )

‖ ~τ ‖
≥ α̂(Ω)

∥∥∥ ~ζ ∥∥∥ (3.7)

for all ~ζ ∈ H0(div; Ω)×H1(Ω)×L2
skew(Ω). In particular, taking ~ζ = ~σ− ~σh, from (2.6a) we can write

for any ~τ ∈ H0(div; Ω)×H1(Ω)× L2
skew(Ω)

(Aϕ + Bu,ϕ)(~σ − ~σh, ~τ ) = Fϕ−ϕh
(~τ ) + (Aϕh

−Aϕ)(~σh, ~τ ) + (Buh,ϕh
−Buh,ϕ)(~σh, ~τ )

+ (Buh,ϕ −Bu,ϕ)(~σh, ~τ ) + FD(~τ ) + Fϕh
(~τ )−Aϕh

(~σh, ~τ )−Buh,ϕh
(~σh, ~τ ),

which back into (3.7) results in

α̂(Ω) ‖ ~σ − ~σh ‖ ≤ sup
~τ∈H0(div;Ω)×H1(Ω)×L2

skew(Ω)

~τ 6=~0

S(~τ ) + P(v) +Q(η) +Rm(τ )

‖ ~τ ‖
, (3.8)
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where the functionals S ∈ [H0(div; Ω)×H1(Ω)× L2
skew(Ω)]′, P ∈ H1(Ω)′, Q ∈ L2

skew(Ω)′ are given by

S(~τ ) := Fϕ−ϕh
(~τ ) + (Aϕh

−Aϕ)(~σh, ~τ ) + (Buh,ϕh
−Buh,ϕ)(~σh, ~τ ) + (Buh,ϕ −Bu,ϕ)(~σh, ~τ )

P(v) := Fϕh
(0,v,0) + FD(0,v,0)−Aϕh

(~σh, (0,v,0))−Buh,ϕh
(~σh, (0,v,0)),

Q(η) := Fϕh
(0,0,η) + FD(0,0,η)−Aϕh

(~σh, (0,0,η))−Buh,ϕh
(~σh, (0,0,η)) ,

that is,

S(~τ ) =

∫
Ω

(ϕ− ϕh)g ·
{

v − κ2div τ
}

+

∫
Ω

µ(ϕh)− µ(ϕ)

µ(ϕ)µ(ϕh)
σd
h :
{
τ d − κ1e(v)

}
+

∫
Ω

1

µ(ϕ)
[uh ⊗ (uh − u)]d :

{
τ d − κ1e(v)

}
+

∫
Ω

µ(ϕ)− µ(ϕh)

µ(ϕ)µ(ϕh)
(uh ⊗ uh)d :

{
τ d − κ1e(v)

}
, (3.9)

P(v) =

∫
Ω
ϕhg · v + κ4

∫
Γ

uD · v + κ1

∫
Ω

1

µ(ϕh)
σd
h : e(v)− κ1

∫
Ω

e(uh) : e(v)

+

∫
Ω

v · divσh − κ4

∫
Γ

uh · v + κ1

∫
Ω

1

µ(ϕh)
(uh ⊗ uh)d : e(v), (3.10)

Q(η) =

∫
Ω
σh : η − κ3

∫
Ω

{
γh − ω(uh)

}
: η, (3.11)

andRm is defined as in (3.6). We show next that S, P and Q are indeed bounded (their linear character
is clear). For P, a simple application of the Cauchy-Schwarz inequality and the trace theorem with
constant c0(Ω) leads us to

|P(v)| ≤ max{κ1, 1, κ4c0(Ω)}
{∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥
0,Ω

+ ‖divσh + ϕhg ‖0,Ω + ‖uD − uh ‖0,Γ
}
‖v ‖1,Ω ∀ v ∈ H1(Ω), (3.12)

whereas for Q, we follow the ideas in [14] and decompose the discrete pseudostress tensor into its
symmetric and skew-symmetric part to construct a residual expression for this functional. Thus,

Q(η) =
1

2

∫
Ω

{
σh − σt

h

}
: η − κ3

∫
Ω

[γh − ω(uh)] : η ∀ η ∈ L2
skew(Ω),

which yields

|Q(η)| ≤ max

{
1

2
, κ3

}{∥∥σh − σt
h

∥∥
0,Ω

+ ‖γh − ω(uh) ‖0,Ω
}
‖η ‖0,Ω ∀ η ∈ L2

skew(Ω). (3.13)

Finally, for S, we add and subtract σd in the second term of the right-hand side of (3.9), and then we
use the Hölder inequality and several continuous injections as in [1, Lemma 3.8] to obtain

|S(~τ )| ≤
{

(2 + κ2
2)1/2‖g ‖∞,Ω‖ϕ− ϕh ‖1,Ω +

2µ2(2 + κ2
1)1/2

µ2
1

‖σ − σh ‖0,Ω

+
Lµ(2 + κ2

1)1/2CεC̃ε
µ2

1

‖ϕ− ϕh ‖1,Ω‖σ ‖ε,Ω +
c1(Ω)(2 + κ2

1)1/2

µ1
‖uh ‖1,Ω‖u− uh ‖1,Ω

+
c1(Ω)(2 + κ2

1)1/2Ci
µ1

‖ϕ− ϕh ‖1,Ω‖uh ‖21,Ω
}
‖ ~τ ‖,

(3.14)
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where c1(Ω) > 0 is a constant arising from the inequality [1, Eq. 3.6] and the boundedness constant Cε
corresponds to Hε(Ω) ↪→ L2/(1−ε)(Ω), C̃ε to H1(Ω) ↪→ L2/ε(Ω), and Ci to the injections H1(Ω) ↪→ L4(Ω)
and H1(Ω) ↪→ L8(Ω). Hence, there exists c1, c2, c3 > 0 such that

|S(~τ )| ≤
{
c1

(
‖g ‖∞,Ω + ‖σ ‖ε,Ω + ‖uh ‖21,Ω

)
‖ϕ− ϕh ‖1,Ω

+ c2
µ2

µ2
1

‖σ − σh ‖div;Ω + c3‖uh ‖1,Ω‖u− uh ‖1,Ω
}
‖ ~τ ‖, (3.15)

for all ~τ ∈ H0(div; Ω)×H1(Ω)×L2
skew(Ω). Therefore, putting (3.15), together with (3.12) and (3.13),

back into (3.8), we get (3.4), concluding this way the proof.

Regarding a preliminary bound for
∥∥ (ϕ, λ)− (ϕh, λh̃)

∥∥, we cite the following result from [9], which
uses a similar technique to the foregoing Lemma, but now beginning from a global inf-sup condition
that comes as a consequence of the well-posedness of the primal formulation of the energy equation.

Lemma 3.3. There exists a positive constant C̄2 > 0 independent of h and h̃ such that∥∥ (ϕ, λ)− (ϕh, λh̃)
∥∥

≤ C̄2

{
‖ϕ ‖1,Ω‖u− uh ‖1,Ω + ‖uh ‖1,Ω‖ϕ− ϕh ‖1,Ω + ‖ϕD − ϕh ‖1/2,Γ + ‖Re ‖

}
, (3.16)

where Re : H1(Ω)→ R is the linear and bounded functional defined as

Re(ψ) := Fuh,ϕh
(ψ)− a(ϕh, ψ)− b(ψ, λ

h̃
),

that is,

Re(ψ) = −
∫

Ω
ψuh · ∇ϕh −

∫
Ω
K∇ϕh · ∇ψ −

〈
λ
h̃
, ψ
〉

Γ
, (3.17)

for all ψ ∈ H1(Ω).

Proof. See [9, Lemma 3.3].

With the results from the previous two lemmas, we can now construct a first estimate for the total
error. Indeed, from (3.4) and (3.16) we have∥∥ (~σ, (ϕ, λ))− (~σh, (ϕh, λh̃))

∥∥ ≤ C̄1

∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥

0,Ω

+ C̄1‖divσh + ϕhg ‖0,Ω + C̄1‖uD − uh ‖0,Γ + C̄1

∥∥σh − σt
h

∥∥
0,Ω

+ C̄1‖γh − ω(uh) ‖0,Ω +

{
C̄1
µ2

µ2
1

+ C̄1‖g ‖∞,Ω + C̄1‖σ ‖ε,Ω

+ (C̄1 + C̄2)‖uh ‖1,Ω + C̄1‖uh ‖21,Ω + C̄2‖ϕ ‖1,Ω
}∥∥ (~σ, (ϕ, λ))− (~σh, (ϕh, λh̃))

∥∥
+ C̄1‖Rm ‖+ C̄2‖Re ‖+ C̄2‖ϕD − ϕh ‖1/2,Γ.

Then, we use the continuous dependence results (2.15), (2.16) and (2.23) to bound the terms ‖ϕ ‖1,Ω
and ‖uh ‖1,Ω, and the further regularity assumed for σ in (3.3) to bound ‖σ ‖ε,Ω by data. In this way,
defining

C0(g,uD) := CS

{
r‖g ‖∞,Ω + ‖uD ‖1/2,Γ + ‖uD ‖0,Γ

}
,

C0,ε(g,uD) := C̃S(r)
{
r‖g ‖∞,Ω + ‖uD ‖1/2+ε,Γ + ‖uD ‖0,Γ

}
,
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and

C̄(g,uD, ϕD) := C̄1‖g ‖∞,Ω + C̄1C0,ε(g,uD) + C̄1C0(g,uD)2

+ (C̄1 + C̄2 + C̄2CS̃
r)C0(g,uD) + C̄2CS̃

‖ϕD ‖1/2,Γ,

we get the following result.

Lemma 3.4. Assume that

C̄1
µ2

µ2
1

<
1

2
and C̄(g,uD, ϕD) <

1

2
.

Then, there exists a constant C̄ > 0 such that the total error satisfies

∥∥ (~σ, (ϕ, λ))− (~σh, (ϕh, λh̃))
∥∥ ≤ C̄{∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥
0,Ω

+ ‖divσh + ϕhg ‖0,Ω + ‖uD − uh ‖0,Γ +
∥∥σh − σt

h

∥∥
0,Ω

+ ‖γh − ω(uh) ‖0,Ω + ‖Rm ‖+ ‖Re ‖+ ‖ϕD − ϕh ‖1/2,Γ
}
.

Therefore, to complete the derivation of our residual-based estimator, we need to bound the norm of
the residual functionals related to the momentum and energy equations, i.e., Rm and Re, respectively.
Notice from the Galerkin scheme (2.22) that

Rm(τh) = 0 ∀ τh ∈ Hσ
h , and Re(ψh) = 0 ∀ ψh ∈ Hϕ

h ,

whence the norms of Rm and Re can be calculated as

‖Rm ‖ := sup
τ∈H0(div;Ω)

τ 6=0

Rm(τ − τh)

‖ τ ‖div;Ω

, and ‖Re ‖ := sup
ψ∈H1(Ω)
ψ 6=0

Re(ψ − ψh)

‖ψ ‖1,Ω
, (3.18)

with τh and ψh appropriately chosen in order to obtain local information on the error.

3.2.2 Estimating the norm of the residual functionals

We start by recalling some results associated to the main tools used throughout this section: the
approximation properties of the interpolation operators of Raviart-Thomas and Clément (see, e.g.,
[11, 13] for their definitions) and a Helmholtz decomposition of H0(div; Ω).

Lemma 3.5. Given an integer k ≥ 0, let Πk
h : H1(Ω) → RTk(Th) be the usual Raviart-Thomas

interpolation operator. Then,

i) there exists C > 0 such that for each ζ ∈ Hm(Ω), with 1 ≤ m ≤ k + 1, there holds∥∥∥ ζ −Πk
h(ζ)

∥∥∥
0,T
≤ ChmT | ζ |m,T ∀ T ∈ Th , (3.19)

ii) there exists C > 0 such that for each ζ ∈ H1(Ω) with divζ ∈ Hm(Ω), 0 ≤ m ≤ k + 1, there holds∥∥∥div(ζ −Πk
h(ζ)

∥∥∥
0,T
≤ ChmT |divζ |m,T ∀ T ∈ Th , (3.20)
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iii) there exists C > 0 such that for each ζ ∈ H1(Ω) there holds∥∥∥ ζν −Πk
h(ζ)ν

∥∥∥
0,e
≤ Ch1/2

e ‖ζ‖1,Te ∀ e ∈ Eh(Γ) , (3.21)

where Te is the element of Th having e as an edge.

Proof. See [5, Section III.3.3], [13, Section 3.4.4].

Lemma 3.6. Let Xh =
{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) ∀ T ∈ Th

}
, and let Ih : H1(Ω) → Xh be the

usual Clément interpolation operator. Then, there exists C > 0 such that,

‖ v − Ihv ‖0,T ≤ ChT | v |1,∆(T ) ∀ T ∈ Th, (3.22)

and
‖ v − Ihv ‖0,e ≤ Ch

1/2
e ‖ v ‖1,∆(e) ∀ e ∈ Eh, (3.23)

where ∆(T ) and ∆(e) are the unions of all elements intersecting T and e, respectively.

Proof. See [8].

Lemma 3.7 (Helmholtz Decomposition). For each τ ∈ H0(div; Ω), there exists z ∈ H2(Ω) and
φ ∈ H1(Ω) such that

τ = ∇z + curlφ in Ω, and ‖ z ‖2,Ω + ‖φ ‖1,Ω ≤ C‖ τ ‖div;Ω. (3.24)

Proof. See [17, Lemma 3.7].

Therefore, owing to the previous decomposition, Rm can be rewritten as follows.

Lemma 3.8. Given τ ∈ H0(div; Ω), let (z,φ) ∈ H2(Ω)×H1(Ω) be the components of its associated
Helmholtz decomposition. Then, there holds

Rm(τ ) = Rm
1(∇z) +Rm

2(curlφ), (3.25)

where

Rm
1(∇z) =

∫
Ω

{
e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d

}
: ∇z−

∫
Ω

{
γh − ω(uh)

}
: ∇z

+ 〈 (∇z)ν,uD − uh 〉Γ − κ2

∫
Ω

{
divσh + ϕhg

}
· div (∇z), (3.26)

and

Rm
2(curlφ) = −

∫
Ω

{
γh + µ(ϕh)−1(uh ⊗ uh + σh)

}
: curlφ+ 〈 (curlφ)ν,uD 〉Γ. (3.27)

Proof. Let τ ∈ H0(div; Ω). According to the definition ofRm (cf. (3.6)) and considering the Helmholtz
decomposition of τ we get

Rm(τ ) = −κ2

∫
Ω
ϕhg · div (∇z) + 〈 (∇z)ν,uD 〉Γ + 〈 (curlφ)ν,uD 〉Γ −

∫
Ω
µ(ϕh)−1σd

h : ∇z

−
∫

Ω
µ(ϕh)−1σd

h : curlφ−
∫

Ω
uh · div (∇z)− κ2

∫
Ω

divσh · div (∇z)

−
∫

Ω
γh : ∇z−

∫
Ω
γh : curlφ−

∫
Ω
µ(ϕh)−1(uh ⊗ uh)d : ∇z

−
∫

Ω
µ(ϕh)−1(uh ⊗ uh)d : curlφ,

(3.28)
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Then, as recommended by [9], we use the identity

−
∫

Ω
uh · div (∇z) + 〈 (∇z)ν,uh 〉Γ =

∫
Ω
∇uh : ∇z =

∫
Ω

e(uh) : ∇z +

∫
Ω
ω(uh) : ∇z,

in the sixth term of the right-hand side of (3.28) to obtain

Rm(τ ) =

∫
Ω

{
e(uh)− µ(ϕh)−1(uh ⊗ uh + σ)d

}
: ∇z−

∫
Ω

{
γh − ω(uh)

}
: ∇z

+ 〈 (∇z)ν,uD − uh 〉 − κ2

∫
Ω

{
divσh + ϕhg

}
· div (∇z)

−
∫

Ω

{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}
: curlφ+ 〈 (curlφ)ν,uD 〉Γ,

which corresponds to (3.25), thus concluding this way the proof.

Hence, we can now bound ‖Rm ‖ by bounding the norms of the just introduced functionals Rm
1 and

Rm
2, and using the stability result for the Helmholtz decomposition. Additionally for the estimation

of ‖Rm ‖, according to (3.18), we can pick τh as

τRh := Πk
h(∇z) + curl (Ihφ) + cI, with c ∈ R such that

∫
Ω

tr
(
τRh
)

= 0 , (3.29)

where Ih denotes the Clément interpolation operator Ih acting component-wise. Notice that, from the
definition of Rm and the compatibility condition (2.3), there holds Rm(cI) = 0, whence

Rm(τ − τRh ) = Rm
1(∇z−Πk

h(∇z)) +Rm
2(curl (φ− Ihφ)), (3.30)

and so the reason why the Helmholtz decomposition in Lemma 3.7 is introduced. For the first term
in (3.30), we have the following.

Lemma 3.9. There exists a positive constant C̄3, independent of h, such that

|Rm
1(∇z−Πk

h(∇z))| ≤ C̄3

{ ∑
T∈Th

h2
T

∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,T

+
∑
T∈Th

h2
T ‖γh − ω(uh) ‖20,T +

∑
T∈Th

‖ divσh + ϕhg ‖20,T

+
∑

e∈Eh(Γ)

he‖uD − uh ‖20,e
}1/2

‖ τ ‖div;Ω .

(3.31)

Proof. Let us consider each term in the definition of Rm
1 (cf. (3.26)) separately. Applying the Cauchy-

Schwarz inequality and the approximation property (3.19), we get∣∣∣∣ ∫
Ω

{
e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d

}
:
{
∇z−Πk

h(∇z)
}∣∣∣∣

≤
∑
T∈Th

ChT
∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥
0,T
| ∇z |1,T .

Similarly, ∣∣∣∣ ∫
Ω

{
γh − ω(uh)

}
:
{
∇z−Πk

h(∇z)
}∣∣∣∣ ≤ ∑

T∈Th

ChT ‖γh − ω(uh) ‖0,T | ∇z |1,T .
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For the next term, we now consider the approximation property (3.20) to obtain∣∣∣∣− κ2

∫
Ω

{
divσh + ϕhg

}
· div (∇z−Πk

h(∇z))

∣∣∣∣ ≤ ∑
T∈Th

C‖divσh + ϕhg ‖0,T ‖div (∇z) ‖0,T ,

and the bound for the remaining term can be obtained thanks to the approximation property (3.21),∣∣∣∣〈 (∇z)ν −Πk
h(∇z)ν,uD − uh

〉
Γ

∣∣∣∣ ≤ ∑
e∈Eh(Γ)

Ch1/2
e ‖uD − uh ‖0,e| ∇z |1,Te .

Hence, by summing the last four inequalities, the result (3.31) comes as a consequence of the stability
of the Helmholtz decomposition (cf. (3.24)) and the fact that div (∇z) = div τ .

On the other hand, the estimation for the second term in (3.30) requires an additional regularity
of the boundary data uD.

Lemma 3.10. Assume that uD ∈ H1(Γ). Then, there exists a constant C̄4 > 0 independent of h such
that

|Rm
2(curl (φ− Ihφ))| ≤ C̄4

∑
T∈Th

h2
T

∥∥ curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥2

0,T

+
∑

e∈Eh(Ω)

he
∥∥ J{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}sK

∥∥2

0,e

+
∑

e∈Eh(Γ)

he

∥∥∥∥ {γh + µ(ϕh)−1(uh ⊗ uh + σh)d}s− duD
ds

∥∥∥∥2

0,e


1/2

‖ τ ‖div;Ω.

(3.32)

Proof. We recall from [17, Lemma 3.8] the following integration-by-parts formula on the boundary,

〈 (curlψ)ν,χ 〉Γ = −
〈

dχ

ds
,ψ

〉
Γ

∀ ψ,χ ∈ H1(Ω).

Then, applying this to ψ = φ− Ihφ and to a trace lifting χ of uD, plus a local integration by parts,
we have from (3.27) that

Rm
2(curl (φ− Ihφ)) = −

∑
T∈Th

{∫
T

curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}
· (φ− Ihφ)

+
∑
e⊆∂T

∫
e
{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}s · (φ− Ihφ)

}
−
〈

duD
ds

,φ− Ihφ

〉
Γ

.

Moreover, we make the differentiation between the integration over the edges in the interior and in

the boundary of the domain. Since we are assuming that
duD
ds
∈ L2(Γ), the following can be written,

Rm
2(curl (φ− Ihφ)) = −

∑
T∈Th

∫
T

curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}
· (φ− Ihφ)

+
∑

e∈Eh(Ω)

∫
e
J{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}sK · (φ− Ihφ)

+
∑

e∈Eh(Γ)

∫
e

{
{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}s− duD

ds

}
· (φ− Ihφ).
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Hence, applying the Cauchy-Schwarz inequality to this expression, and the approximation properties
of the Clément interpolant (cf. (3.22) - (3.23)), we get

|Rm
2(curl (φ− Ihφ))| ≤

∑
T∈TH

ChT
∥∥ curl

{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥
0,T
‖φ ‖1,∆(T )

+
∑

e∈Eh(Ω)

Ch1/2
e

∥∥ J{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}sK
∥∥

0,e
‖φ ‖1,∆(e)

+
∑

e∈Eh(Γ)

Ch1/2
e

∥∥∥∥ {γh + µ(ϕh)−1(uh ⊗ uh + σh)d}s− duD
ds

∥∥∥∥
0,e

‖φ ‖1,∆(e),

thus obtaining the result (3.32) by considering the shape-regularity of the mesh and the stability of
the Helmholtz decomposition.

Following the last two lemmas, the estimate for ‖Rm ‖ becomes straightforward.

Lemma 3.11. Assume that uD ∈ H1(Γ). Then, there exists C̄ > 0 independent of h such that

‖Rm ‖ ≤ C̄

∑
T∈Th

(
h2
T

∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,T
+ h2

T ‖γh − ω(uh) ‖20,T

+‖ divσh − ϕhg ‖20,T + h2
T

∥∥ curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥2

0,T

)
+

∑
e∈Eh(Ω)

he
∥∥ J{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}sK

∥∥2

0,e

+
∑

e∈Eh(Γ)

he

(∥∥∥∥ {γh + µ(ϕh)−1(uh ⊗ uh + σh)d}s− duD
ds

∥∥∥∥2

0,e

+ ‖uD − uh ‖20,e

)
1/2

.

Proof. We go back to our definition of ‖Rm ‖ in (3.18), and considering the choice of τh made in
(3.29), the result comes from (3.30) by adding the estimates in the previous two lemmas, i.e., (3.31)
and (3.32), and an application of the classical Cauchy-Schwarz inequality.

The estimation of ‖Re ‖ proceeds in a similar way. In fact, using the definition of this norm in
(3.18) and choosing ψh as ψRh = Ihψ, the approximation properties of Ih (cf. Lemma 3.6) allow to
prove the result we cite next.

Lemma 3.12. There exists a positive constant C̄ > 0 independent of h and h̃ such that

‖Re ‖ ≤ C̄

∑
T∈Th

h2
T ‖ div (K∇ϕh)− uh · ∇ϕh ‖20,T

+
∑

e∈Eh(Ω)

he‖ JK∇ϕh · νK ‖20,e +
∑

e∈Eh(Γ)

he
∥∥λ

h̃
+ K∇ϕh · ν

∥∥2

0,e


1/2

Proof. [9, Lemma 3.12].
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Therefore, it can be seen that the reliability of the estimator θ introduced in (3.1) is a consequence
of Lemmas 3.4, 3.11 and 3.12. Notice that we have discarded the terms

h2
T

∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,T
, h2

T ‖γh − ω(uh) ‖20,T ,

‖divσh − ϕhg ‖20,T and he‖uD − uh ‖20,e,

since they are dominated by linear versions of them already present in Lemma 3.4.

3.3 Efficiency

This section will be focused in the proof of the following result.

Theorem 3.13. Let (~σ, (ϕ, λ)) and (~σh, (ϕh, λh̃)) be solutions to (2.6) and (2.22), respectively, and
suppose for simplicity that uD and K are piecewise polynomials. In addition, assume that there exists
ε ∈ (0, 1) such that uD ∈ H1/2+ε(Γ), σ ∈ Hε(Ω), and the regularity hypothesis (3.3) holds. Fur-
thermore, suppose that the partition on Γ inherited from Th is quasi-uniform, and that each edge of
Eh(Γ) is contained in one of the elements of the independent partition of Γ defining Hλ

h̃
. Then θ is an

efficient estimator, i.e., there exists a positive constant Ceff , depending on physical and stabilization
parameters, but independent of h and h̃, such that

Ceff θ ≤
∥∥ (~σ, (ϕ, λ))− (~σh, (ϕh, λh̃))

∥∥. (3.33)

We begin with an estimate that will be useful in the upcoming analysis.

Lemma 3.14. Assume the same hypotheses of Theorem 3.13. Then there exists C̃ > 0 depending on
the given data, but independent of h, such that∥∥µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥2

0,Ω
≤ C̃‖ (σ,u, ϕ)− (σh,uh, ϕh) ‖2. (3.34)

Proof. Adding and substracting the term µ(ϕh)−1(u ⊗ u + σ)d in the left-hand side of the previous
inequality, we have ∥∥µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥2

0,Ω

≤ 2

∥∥∥∥ µ(ϕh)− µ(ϕ)

µ(ϕ)µ(ϕh)
(u⊗ u + σ)d

∥∥∥∥2

0,Ω

+ 2
∥∥µ(ϕh)−1

[
(σ − σh)d + (u⊗ u− uh ⊗ uh)

] ∥∥2

0,Ω
.

(3.35)

For the first term in the right-hand side of (3.35), we follow the same steps realized while bounding
the norm of the operator S in (3.14) and use the Lipschitz continuity and boundedness of µ, the
continuous injections of H1(Ω) into L2/ε(Ω), L4(Ω) and L8(Ω), of Hε(Ω) into L2/(1−ε), and the further
regularity assumption in (3.3) to show that∥∥∥∥ µ(ϕh)− µ(ϕ)

µ(ϕ)µ(ϕh)
(u⊗ u + σ)d

∥∥∥∥2

0,Ω

≤
2L2

µ

µ4
1

{
‖ (ϕh − ϕ)(u⊗ u) ‖20,Ω + ‖ (ϕh − ϕ)σ ‖20,Ω

}
≤

2L2
µ

µ4
1

{
C2
i ‖ϕ− ϕh ‖

2
1,Ω‖u ‖41,Ω + C2

ε C̃
2
ε‖ϕ− ϕh ‖

2
1,Ω‖σ ‖

2
ε,Ω

}
=

2L2
µ

µ4
1

{
C2
i ‖u ‖41,Ω + C2

ε C̃
2
ε‖σ ‖

2
ε,Ω

}
‖ϕ− ϕh ‖21,Ω .
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Then, for the second one∥∥µ(ϕh)−1
[
(σ − σh)d + (u⊗ u− uh ⊗ uh)

] ∥∥2

0,Ω

≤ 2

µ2
1

‖σ − σh ‖20,Ω +
2

µ2
1

‖ (u + uh)⊗ (u− uh) ‖20,Ω

≤ 2

µ2
1

‖σ − σh ‖2div;Ω +
2C̃2

i

µ2
1

‖u + uh ‖21,Ω‖u− uh ‖21,Ω

≤

{
2

µ2
1

+
2C̃i
µ2

1

‖u + uh ‖21,Ω

}
‖ (σ,u)− (σh,uh) ‖2 .

Hence, since ‖u ‖1,Ω, ‖uh ‖1,Ω and ‖σ ‖ε,Ω can be bounded by data using the estimates (2.15), (2.23)
and (3.3), respectively, the sum of the last two inequalities gives the proof of (3.34).

Bounds like the one presented in the foregoing Lemma will appear frequently, and it also shows
us one of the issues that arise when proving the local efficiency of the estimator θ: any continuous
injection will have a boundedness constant that depends on the corresponding domain, in this case,
each element of the triangulation, hence, a partial solution would be to consider the error terms in
non-natural Lp norms (i.e, different to the original norms that one should consider according to the
variational formulations). For this reason, we only focus in proving global efficiency estimates, as
indeed needed for Theorem 3.13. We first address those terms in the definition of θ (cf. (3.1)) that
are not multiplied by a triangle-dependent term.

Lemma 3.15. There exists C̃1, C̃2 > 0, both independent of h and h̃, such that

‖ϕD − ϕh ‖21/2,Γ + ‖uD − uh ‖21/2,Γ ≤ C̃1‖ (u, ϕ)− (uh, ϕh) ‖2, (3.36)

and ∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,Ω
+ ‖divσh + ϕhg ‖20,Ω

+ ‖γh − ω(uh) ‖20,Ω +
∥∥σh − σt

h

∥∥2

0,Ω
≤ C̃2‖ (~σ, ϕ)− (~σh, ϕh) ‖2. (3.37)

Proof. The first inequality is a mere consequence of the trace theorem, as ϕD = ϕ
∣∣
Γ

and uD = u
∣∣
Γ
.

On the other hand, for the first term in (3.37), using that e(u)−µ(ϕ)−1(u⊗u +σ)d = 0 in Ω, we see
that∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥2

0,Ω

=
∥∥ e(uh − u) + µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥2

0,Ω

≤ 2‖ e(uh − u) ‖20,Ω + 2
∥∥µ(ϕh)−1(uh ⊗ uh + σh)d − µ(ϕ)−1(u⊗ u + σ)d

∥∥2

0,Ω

≤ 2‖u− uh ‖21,Ω + 2C̃‖ (σ,u, ϕ)− (σh,uh, ϕh) ‖2,

≤ C‖ (σ,u, ϕ)− (σh,uh, ϕh) ‖2 ,

(3.38)

where the second inequality comes from an application of Lemma 3.14. Analogously, using that
divσ + ϕg = 0 in Ω, we have

‖divσh + ϕhg ‖20,Ω = ‖div (σ − σh) + (ϕ− ϕh)g ‖20,Ω

≤ 2 ‖σ − σh ‖2div;Ω + 2‖g ‖2∞,Ω‖ϕ− ϕh ‖
2
1,Ω

≤ C ‖ (σ, ϕ)− (σh, ϕh) ‖2 .

(3.39)
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For the third term, we use that γ = ω(u) in Ω to obtain

‖γh − ω(uh) ‖20,Ω = ‖ (γ − γh)− ω(u− uh) ‖20,Ω

≤ 2 ‖γ − γh ‖20,Ω + 2 ‖u− uh ‖21,Ω ≤ C ‖ (u,γ)− (uh,γh) ‖2 ,
(3.40)

and for the last term in (3.37), since σ is, by definition, a symmetric tensor (cf. (2.4)) (and so is its
H0(div; Ω)-component), we have∥∥σh − σt

h

∥∥2

0,Ω
=
∥∥ (σ − σh)− (σ − σh)t

∥∥2

0,Ω
≤ C‖σ − σh ‖2div;Ω . (3.41)

Therefore, (3.37) follows after summing (3.38) - (3.41).

Before moving on to the next terms, we recall from [16] the following result.

Lemma 3.16. Let ζh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition,
let ζ ∈ L2(Ω) be such that curl ζ = 0 on each T ∈ Th. Then, there exists C > 0, independent of h,
such that

‖ curl ζh ‖0,T ≤ Ch
−1
T ‖ ζ − ζh ‖0,T ∀T ∈ Th . (3.42)

Moreover, if curl ζ = 0 in Ω, then there exists C > 0, independent of h, such that

‖ JζsK ‖0,e ≤ Ch
−1/2
e ‖ ζ − ζh ‖0,ωe

∀ e ∈ Eh(Ω) , (3.43)

where ωe is the union of the two elements of Th sharing the edge e.

Proof. See [16, Lemmas 4.9, 4.10].

Having in mind these inequalities, the following can be proved.

Lemma 3.17. There exists C̃3, independent of h and h̃, such that∑
T∈Th

h2
T

∥∥ curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥2

0,T

+
∑

e∈Eh(Ω)

he
∥∥ J
(
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

)
sK
∥∥2

0,e
≤ C̃3‖ (~σ, ϕ)− (~σh, ϕh) ‖2. (3.44)

Additionally, if uD is piecewise polynomial, there exists C̃4 > 0 such that

∑
e∈Eh(Γ)

he

∥∥∥∥ (γh + µ(ϕh)−1(uh ⊗ uh + σh)d
)
s− duD

ds

∥∥∥∥2

0,e

≤ C̃4‖ (~σ, ϕ)− (~σh, ϕh) ‖2. (3.45)

Proof. Applying Lemma 3.16 with ζh = γh+µ(ϕh)−1(uh⊗uh+σh)d and ζ = γ+µ(ϕ)−1(u⊗u+σ)d =
∇u (whose curl vanishes both locally and globally), we obtain∥∥ curl

{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥2

0,T

≤ Ch−2
T

∥∥ (γ − γh) + µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,T

≤ Ch−2
T

{
2‖γ − γh ‖20,T + 2

∥∥µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,T

}
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and ∥∥ J{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}sK
∥∥2

0,e

≤ Ch−1
e

{
2‖γ − γh ‖20,ωe

+ 2
∥∥µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥2

0,ωe

}
.

Thus, summing over all triangles and interior edges the last two inequalities, and then applying Lemma
3.14, we get (3.44). On the other hand, the proof of (3.45) begins with the same arguments as in [16,
Lemma 4.15]. Indeed, the following local result can be obtained replacing the discrete tensor 1

2µσ
d
h by

γh + µ(ϕh)−1(uh ⊗ uh + σh)d in the cited lemma,

he

∥∥∥∥ (γh + µ(ϕh)−1(uh ⊗ uh + σh)d
)
s− duD

ds

∥∥∥∥2

0,e

≤ Ĉ
{∥∥ (γ − γh) + µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥2

0,Te

+ h2
e

∥∥ curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥2

0,Te

}
,

where Te is the triangle to which the boundary edge e belongs. Then, summing over all boundary
edges, using that he ≤ hTe , applying Lemma 3.14, and using (3.44), we arrive at

∑
e∈Eh(Γ)

he

∥∥∥∥ (γh + µ(ϕh)−1(uh ⊗ uh + σh)d
)
s− duD

ds

∥∥∥∥2

0,e

≤ Ĉ
{∥∥ (γ − γh) + µ(ϕ)−1(u⊗ u + σ)d − µ(ϕh)−1(uh ⊗ uh + σh)d

∥∥2

0,Ω

+
∑
T∈Th

h2
T

∥∥ curl
{
γh + µ(ϕh)−1(uh ⊗ uh + σh)d

}∥∥2

0,T

}
≤ C̃4‖ (~σ, ϕ)− (~σh, ϕh) ‖2.

We recall that, should uD not be piecewise polynomial, but smooth enough, we can approximate
this data by a Taylor polynomial approximation and the argument just applied would still be valid,
with the only difference that higher order terms would appear in the right-hand side of (3.33).

The efficiency bounds for the rest of the terms defining θ was already considered in [9], where a
localization technique based on bubble functions and inverse inequalities is applied, whence we only
cite these results next.

Lemma 3.18. Assume that K is piecewise polynomial. Then, there exist C̃5, C̃6 > 0, independent of
h and h̃, such that ∑

T∈Th

h2
T ‖div (K∇ϕh)− uh · ∇ϕh ‖20,T ≤ C̃5 ‖ (u, ϕ)− (uh, ϕh) ‖2 (3.46)

and ∑
e∈Eh(Ω)

he‖ JK∇ϕh · νK ‖20,e ≤ C̃6 ‖ (u, ϕ)− (uh, ϕh) ‖2 . (3.47)

Proof. See [9, Lemma 3.18, Lemma 3.19].
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Lemma 3.19. Assume that K is piecewise polynomial, that the partition on Γ inherited from Th is
quasi-uniform, and that each edge of Eh(Γ) is contained in one of the elements of the independent
partition of Γ defining Hλ

h̃
. Then, there exists C̃7 > 0, independent of h and h̃, such that∑

e∈Eh(Γ)

he
∥∥λ

h̃
+ K∇ϕh · ν

∥∥2

0,e
≤ C̃7

∥∥ (u, ϕ, λ)− (uh, ϕh, λh̃)
∥∥2
. (3.48)

Proof. See [9, Lemma 3.20].

Therefore, the efficiency of the residual-based a posteriori error estimator θ (cf. Theorem 3.13) is
now a consequence of Lemmas 3.15, 3.17, 3.18 and 3.19.

3.4 A fully local estimator

Although being θ a reliable and efficient estimator, the non-local character of the term ‖ϕD − ϕh ‖21/2,Γ
in its definition makes it inadvisable for computational purposes. Instead, we propose the following
fully-local a posteriori error estimator:

θ̃ :=

∑
T∈Th

θ̃2
T


1/2

, (3.49)

where

θ̃2
T :=

∥∥ e(uh)− µ(ϕh)−1(uh ⊗ uh + σh)d
∥∥2

0,T
+
∥∥σh − σt

h

∥∥2

0,T
+ ‖γh − ω(uh) ‖20,T

+ ‖divσh + ϕhg ‖20,T + h2
T

∥∥ curl {γh + µ(ϕh)−1(uh ⊗ uh + σh)d}
∥∥2

0,T

+h2
T ‖ div (K∇ϕh)− uh · ∇ϕh ‖20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

{∥∥ J{γh + µ(ϕh)−1(uh ⊗ uh + σh)d}sK
∥∥2

0,e
+ ‖ JK∇ϕh · νK ‖20,e

}
+

∑
e∈Eh(T )∩Eh(Γ)

{
he

∥∥∥∥ {γh + µ(ϕh)−1(uh ⊗ uh + σh)d}s− duD
ds

∥∥∥∥2

0,e

+he
∥∥λ

h̃
+ K∇ϕh · ν

∥∥2

0,e
+ ‖uD − uh ‖20,e + ‖ϕD − ϕh ‖21,e

}
.

(3.50)

Notice that the difference with respect to θ in (3.1) relies in the last term of (3.50). As in [2,
Theorem 4.3] (also in [9, Section 4]), we use interpolation arguments to prove that this estimator is
induced by the original one. Indeed, by assuming that ϕD ∈ H1(Γ) and considering that H1/2(Γ) is
the interpolation space between L2(Γ) and H1(Γ) with index 1/2, then there exists c(Γ) > 0 such that

‖ϕD − ϕh ‖21/2,Γ ≤ c(Γ)‖ϕD − ϕh ‖0,Γ‖ϕD − ϕh ‖1,Γ

≤ c(Γ)‖ϕD − ϕh ‖21,Γ = c(Γ)
∑

e∈Eh(Γ)

‖ϕD − ϕh ‖21,e .
(3.51)

Hence, the foregoing argument can be added to what has been developed in Section 3.2 to prove
the reliability of this fully-local a posteriori error estimator θ̃.
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4 Numerical Results

We now present several tests to verify the reliability and efficiency of the fully-local a posteriori error
estimator θ, but considering instead the estimator θ̃ for the reasons discussed in the previous section.
Our implementation is based on a FreeFem++ code (cf. [18]), the augmented mixed-primal finite
element method [1], the Multifrontal Massively Parallel Solver MUMPS (cf. [4]) and the following
adaptive algorithm from [20]:

1. Start with a coarse mesh Th,

2. Solve the discrete problem (2.22) for the current mesh Th,

3. Compute θ̃T for each triangle T ∈ Th,

4. Check the stopping criteria and decide whether to finish or continue to the next step,

5. Generate an adapted mesh through a variable metric/Delaunay automatic meshing algorithm
(see [19, Section 9.1.9]),

6. Define the resulting mesh as Th and go to step 2.

We also mention that, should non-zero source terms appear in the right-hand sides of (2.5b) and
(2.5c) (let us say, fm and fe), some terms in the a posteriori error estimator must be modified. More
precisely, the quantities

‖divσh + ϕhg ‖20,T and ‖ div (K∇ϕh)− uh · ∇ϕh ‖20,T

must be replaced by

‖divσh + ϕhg + fm ‖20,T and ‖div (K∇ϕh)− uh · ∇ϕh + fe ‖20,T .

As usual, we denote the total number of degrees of freedom by DOF, the number of fixed-point
iterations by IT, and the error per variable as follows:

e(σ) := ‖σ − σh ‖div;Ω,

e(γ) := ‖γ − γh ‖0,Ω,
e(u) := ‖u− uh ‖1,Ω,
e(ϕ) := ‖ϕ− ϕh ‖1,Ω,

e(p) := ‖ p− ph ‖0,Ω,
e(λ) :=

∥∥λ− λ
h̃

∥∥
0,Γ
.

Then, denoting the total error as

e(~t) := e(σ) + e(u) + e(γ) + e(ϕ) + e(λ),

we define the experimental rate of convergence of the numerical method and the effectivity index
associated to the global estimator θ̃ respectively as

r(~t) := −2
log(e(~t)/e′(~t))

log(DOF/DOF′)
and eff(θ̃) :=

e(~t)

θ̃
,

where e and e′ denote errors computed on two consecutive meshes of degrees of freedom DOF and
DOF′.
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Figure 4.1: Computed solution (uh, ph, ϕh) for the data given in Test 1. Results calculated with
746,064 DOF and a second-order approximation (RT1 −P2 − P1 − P2 − P1).

4.1 Test 1: Accuracy assessment with a smooth solution

For this test, we consider Ω := [−1, 1]2, viscosity, thermal conductivity and body force as

µ(ϕ) = exp(−0.25ϕ), K = I, g = (0,−1)t,

and boundary conditions and source terms such that the exact solution is given by

u(x, y) =

(
− cos(πx) sin(πy)
sin(πx) cos(πy),

)
, p(x, y) = x2 − y2, ϕ(x, y) = −0.6944y4 + 1.6944y2.

In addition, the Korn-like constant and the stabilization parameters are taken as

κ0 = 1, κ1 =
µ2

1

µ2
, κ2 =

1

µ2
, κ3 =

κ0µ
2
1

2µ2
, κ4 =

µ2
1

2µ2
, (4.1)

the viscosity bounds are estimated in µ1 = 0.5, µ2 = 1.25, the initial solution for the fixed-point
algorithm is taken as (u, ϕ) = (0, 0.5) and the tolerance is set to 10−8.

We show part of the solution obtained with the present augmented mixed-primal finite element
method in Figure 4.1, whereas in Table 4.1 we show the convergence history for a sequence of quasi-
uniform mesh refinements and two different orders of approximation. As expected, the rates of con-
vergence of the method when using the elements RT0 - P1 - P0 - P1 - P0 and RT1 - P2 - P1 - P2 - P1

are O(h) and O(h2), respectively. In addition, the effectivity index eff(θ̃) remains bounded in both
cases, thus verifying the reliability of θ̃ but also suggesting that this estimator is indeed efficient, as
already proved for θ.

4.2 Test 2: Adaptativity in a non-convex domain

Here we consider the L-shaped domain Ω := [−1, 1]2\(0, 1)2; viscosity, thermal conductivity and body
force as

µ(ϕ) = ϕ2/3, K = I, g = (0, 1)t,

and source terms and boundary conditions as in [15] such that the exact solution is given by

u(x, y) =

(
−(y − 0.1)

(
(x− 0.1)2 + (y − 0.1)2

)−1/2

(x− 0.1)
(
(x− 0.1)2 + (y − 0.1)2

)−1/2
,

)
,

p(x, y) =
1

x+ 1.1
+ p0, ϕ(x, y) = exp

(
0.5x(x− 1)y(y − 1)

)
,
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Finite Element: RT0 - P1 - P0 - P1 - P0

DOF e(~t) r(~t) θ̃ eff(θ̃) IT

971 5.6346 - 17.7228 0.3179 10

3,613 2.8609 1.0317 9.6265 0.2972 10

13,781 1.5198 0.9450 5.4870 0.2770 10

54,082 0.7335 1.0656 2.5630 0.2862 10

216,722 0.3807 0.9452 1.3817 0.2755 10

856,008 0.1909 1.0052 0.7082 0.2695 10

e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

3.5847 2.2294 0.6234 3.7115 0.3538 0.1667

1.7801 0.9826 0.2876 2.0038 0.1734 0.0727

0.8741 0.4811 0.1331 1.1431 0.0827 0.0287

0.4439 0.2406 0.0688 0.5302 0.0426 0.0113

0.2193 0.1193 0.0324 0.2866 0.0211 0.0035

0.1093 0.0586 0.0156 0.1447 0.0105 0.0014

Finite Element: RT1 - P2 - P1 - P2 - P1

DOF e(~t) r(~t) θ̃ eff(θ̃) IT

3,186 0.6609 0.0000 2.4987 0.2645 10

12,150 0.1643 2.0797 0.6732 0.2441 10

46,950 0.0447 1.9247 0.2015 0.2220 10

185,520 0.0109 2.0520 0.0467 0.2341 10

746,064 0.0029 1.9298 0.0131 0.2181 10

e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

5.1261e-01 2.8435e-01 1.1166e-01 3.0237e-01 4.0869e-02 7.5810e-03

1.2079e-01 6.5058e-02 2.9820e-02 8.9829e-02 9.6965e-03 3.0753e-03

3.0702e-02 1.6024e-02 7.3302e-03 2.8216e-02 2.2736e-03 9.2860e-04

7.7563e-03 4.1221e-03 1.8236e-03 6.4630e-03 6.0121e-04 2.4973e-04

1.9075e-03 1.0045e-03 4.5206e-04 1.8610e-03 1.4896e-04 6.3515e-05

Table 4.1: Results for Test 1 with a quasi-uniform mesh refinement and two different orders of ap-
proximation.
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Figure 4.2: From left to right: initial mesh, second, fourth and seventh step of adaptive refinement
according to the residual-based a posteriori error estimator θ̃ and the data given in Test 2.

Figure 4.3: Part of the solution to Test 2 (u1, σ22 and ϕ, respectively the first component of the velocity,
fourth component of the pseudostress and temperature) at a seventh step of adaptive refinement
(203,779 DOF) with a first order approximation.

where p0 is a constant such that p ∈ L2
0(Ω), that is,

∫
Ω p = 0. Then, the Korn-like constant and the

stabilization are taken as in (4.1), the viscosity bounds are estimated in µ1 = 0.5, µ2 = 4.0, the initial
solution for the fixed-point algorithm is taken as (u, ϕ) = (1, 1) and the tolerance is set to 10−8.

As observed from Tables 4.2 and 4.3, in both quasi-uniform and adaptive refinements, the effectivity
index remains bounded and the method converges with order O(h), yet the total error decreases
faster in the adaptive scenario, as clearly seen in Figure 4.4, thus lowering the computational cost of
computing the solution. In Figure 4.2 we show the resulting meshes at a second, fourth and seventh
step of adaptive refinement according to θ̃, whereas in Figure 4.3 we show part of the solution to the
Boussinesq problem at this last step.

4.3 Test 3: Recovering the optimal rate of convergence

To this end, we consider the pacman-shaped domain Ω := {(x, y) : x2 +y2 ≤ 1}\(0, 1)2. First, we take
the viscosity, thermal conductivity and body force as,

µ(ϕ) = exp(−0.25ϕ) + 0.5, K = I, g := (− cos(θ),− sin(θ)),

then, the boundary conditions and source terms are set such that the exact solution is given by

u(x, y) =

(
− cos(πx) sin(πy)
sin(πx) cos(πy),

)
, p(r, θ) = − 1

r2 − 1.05
+ p0, ϕ(r, θ) =

0.5

(r + 0.15)2
,

where r =
√
x2 + y2, θ = arctan(y/x) and p0 is a constant such that p ∈ L2

0(Ω). Finally, the Korn-like
constant and the stabilization parameters are taken as in (4.1), the viscosity bounds are estimated in
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DOF e(~t) r(~t) θ̃ eff(θ̃) IT

2,645 10.8871 - 18.7231 0.5815 10

9,964 6.1331 0.8654 12.0722 0.5080 10

38,814 3.4136 0.8618 8.1652 0.4181 10

153,824 1.8069 0.9240 4.7271 0.3823 10

613,601 0.9013 1.0055 2.3312 0.3866 10

2,440,292 0.4598 0.9752 1.2429 0.3699 10

e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

8.8244 3.5006 0.8805 3.8140 0.8066 3.6342

5.0580 1.1939 0.4782 2.6564 0.3470 1.8516

2.6700 0.4057 0.2598 1.8729 0.1778 0.9054

1.3629 0.1656 0.1299 1.0862 0.0862 0.4390

0.6885 0.0725 0.0639 0.5332 0.0442 0.2162

0.3411 0.0338 0.0309 0.2862 0.0224 0.1071

Table 4.2: Convergence history for Test 2 with a quasi-uniform refinement and a first order approxi-
mation (RT0 - P1 - P0 - P1 - P0).

DOF e(~t) r(~t) θ̃ eff(θ̃) IT

2,645 10.8871 - 18.7231 0.5815 10

5,572 4.8239 2.185 10.7499 0.4487 10

11,494 3.5713 0.8304 7.5754 0.4714 10

20,247 2.6265 1.0855 5.5349 0.4745 10

35,891 1.9149 1.1039 4.2131 0.4545 10

63,390 1.4166 1.0598 3.2468 0.4363 10

113,980 1.0995 0.8637 2.4932 0.4410 10

203,779 0.8085 1.0586 1.8675 0.4329 10

e(σ) e(u) e(p) e(γ) e(ϕ) e(λ)

8.8244 3.5006 0.8805 3.8140 0.8066 3.6342

3.8523 0.6730 0.3861 2.4542 0.3514 1.3529

3.0184 0.4142 0.2882 1.6453 0.3186 0.8146

2.2401 0.2724 0.2309 1.2099 0.2019 0.5490

1.5992 0.1807 0.1630 0.9350 0.1617 0.4200

1.1642 0.1303 0.1220 0.7316 0.1167 0.2926

0.9135 0.0902 0.0923 0.5592 0.0920 0.2127

0.6662 0.0643 0.0683 0.4203 0.0697 0.1553

Table 4.3: Convergence history for Test 2 with an adaptive refinement and a first order approximation
(RT0 - P1 - P0 - P1 - P0).
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Figure 4.4: Log-log plot of the total error vs. degrees of freedom used with two different refinements
for Test 2.

Figure 4.5: From left to right: initial mesh, first, fourth and eighth step of adaptive refinement
according to the residual-based a posteriori error estimator θ̃ and the data given in Test 3.

µ1 = 0.4, µ2 = 1.6, the initial solution for the fixed-point algorithm is taken as (u, ϕ) = (0, 1) and the
tolerance is also set to 10−8.

In this case, we expect to see some loss in the rate of convergence of the method due to the non-
convexity of the domain, as well as from the peculiarities of the exact solution, namely the radial
singularity of p in the vicinity of the border, and the high gradient of ϕ at the origin. This is
effectively shown in in Table 4.4, where only a rate of convergence of 0.8 is achieved, however, this can
be improved by using an adaptive refinement algorithm that refines the mesh only where it is needed
(see Figure 4.5), thus recovering the first order approximation, as shown in Table 4.5 and Figure 4.7.
Notice also how the adaptive algorithm improves the efficiency of the method by delivering quality
solutions at a lower computational cost, to the point that it is possible to get the same one (in terms
of the total error) with only the 7.6% of the DOF of a quasi-uniform mesh. Part of the solution is
shown in Figure 4.6 after eight steps of adaptive refinement according to the indicator θ̃.
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Investigación en Ingenieŕıa Matemática (CI2MA), Universidad de Concepción, Chile, (2016).

[4] P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric
and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184 (2000), 501-520.

[5] F. Brezzi, and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New
York, 1991.
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