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Abstract. Polymer flooding is an important stage of enhanced oil recovery in petroleum reser-
voir engineering. A model of this process is based on the study of multicomponent viscous flow in
porous media with adsorption. This model can be expressed as a Brinkman-based model of flow in
porous media coupled to a system of non-strictly hyperbolic conservation laws having multiple com-
ponents. The discretisation proposed for this coupled flow-transport problem combines a stabilised
non-conforming method for the Brinkman flow problem with a discontinuous Galerkin (DG) method
for the transport equations. The DG formulation of the transport problem is based on discontinu-
ous numerical fluxes. An invariant region property is proved under the (mild) assumption that the
underlying mesh is a B-triangulation [B. Cockburn, S. Hou, and C.-W. Shu, Math. Comp., 54
(1990), pp. 545–581]. This property states that only physically relevant (bounded and non-negative)
saturation and concentration values are generated by the scheme. Numerical tests illustrate the
accuracy and stability of the proposed method.
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discontinuous Galerkin method, invariant region property, polymer flooding, enhanced oil recovery

AMS subject classifications. 65M12, 65M60, 76S05

1. Introduction.

1.1. Scope. We are interested in the numerical simulation of two-phase, multi-
component flows in heterogeneous porous media governed by balance laws derived
from multi-phase mixture theory. From the diverse applications described by such a
general framework (and including for instance, tissue growth or paper manufactur-
ing), here we focus on the process of polymer flooding, which is a mechanism of oil
displacement usually employed in enhanced oil recovery (EOR; see [30] and the ref-
erences therein). In principle, after the so-called secondary oil recovery step (mainly
driven by water flooding), a large amount of oil still remains trapped within the rock
due to the unfavourable mobility ratio between the water and the displaced oil (see
e.g. [13]). Then polymer flooding consists in adding a certain amount of polymers to
water to be injected to increase the viscosity of the aqueous phase, and thereby to
improve the mobility of the oil and to increase the volumetric sweep efficiency of the
flooded reservoir.

Fluid flow in the reservoir is mainly driven by the heterogeneity of the medium
and mobility difference between the involved phases. These mechanisms produce a
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2 BÜRGER, SUDARSHAN, RUIZ-BAIER, AND TORRES

complex structure arising from the nonlinearities of flow, intrinsic fluid properties,
and interaction with transport processes. Thus, any numerical scheme targeted for
such applications needs to be accurate enough to describe these components (flow
process, high nonlinearities, medium heterogeneities, complex reservoir geometry, high
gradients of volume fractions).

We assume that there exist three fluid components: oil, water, and polymers;
which flow and interact within two phases: aqueous (wetting, “w”) and oleic (non-
wetting, “n”), of respective saturations sw and sn such that sw + sn = 1. The oleic
phase consists of oil only, whereas the aqueous phase is conformed by both water
and the mixture of M types of injected polymers of concentrations (mass fractions)
c1, . . . , cM. If we neglect capillary pressure and assume that the fluids are incom-
pressible, immiscible and there are no sources or sinks, then the phasic conservation
of mass yields the local continuity equation [7]

(1.1) ϕ
∂s

∂t
+ divF = 0, F = F (s, c,u,x), c := (c1, . . . , cM)T,

where s := sw, t is time, ϕ is the rock porosity, and the nonlinear flux vector F
depends on s, the concentrations of polymers c, the volume average flow velocity u,
and spatial position x. Under the same assumptions, the transport of the polymers
in the aqueous phase (cf., e.g., [28, 33]) is described by the continuity equations

ϕ
∂

∂t
(scl) +

∂

∂t

(
(1− ϕ)ρral(cl)

)
+ div(clF ) = 0, l = 1, . . . ,M,(1.2)

where ρr is the density of rock and al(cl) is the adsorption of the polymer cl per unit
mass of the rock. The precise algebraic definition of F and a1, . . . , aM is provided in
Section 2.1. Note that the transport equations (1.1) and (1.2) are nonlinearly coupled
in s and c. In addition, the flux function F usually depends discontinuously on x
since the porous medium is heterogeneous. Finally, the volume average flow velocity u
is determined from the following Brinkman model [5] that represents the momentum
and mass conservation of the mixture:

K(x)−1u− div
(
µ(s, c)ε(u)− pI

)
= (ρw − ρn)sg,

divu = j,
(1.3)

where p is the pressure field, g = (0,−g)T is the gravitational acceleration, and j is
a mass source or sink in the system. Here K(x) is the absolute permeability tensor
of the medium, µ(s, c)ε(u) − pI is the Cauchy stress tensor, ε(u) = 1

2 (∇u + ∇uT)
is the infinitesimal rate of strain and µ = µ(s, c) is the viscosity (inverse of the total
mobility, defined below) that is assumed uniformly bounded here. The constants ρw

and ρn are the densities of aqueous and oleic phase, respectively. In the case of an
isotropic medium, the permeability tensor reduces to K(x) = κ(x)I, where κ(x) is a
scalar function (assumed uniformly bounded), and I is the identity matrix. Thus, the
problem at hand consists in determining theM+5 scalar components of s, c, u and p
as functions of x and t from the coupled system (1.1)–(1.3) of the same numbers of
scalar PDEs, supplied with suitable initial and boundary conditions.

Although we neglect capillary pressure and dispersion terms, the predominance of
different processes might change the mathematical character of the equations (1.1)–
(1.3). In addition, the transport of the polymers is coupled to the phase equations,
it changes the phase viscosity, and hence alters flow patterns in the system. To solve
(1.1)–(1.3), supplied with suitable boundary conditions, we here adopt a discontinuous
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Galerkin (DG) discretisation: a non-conforming Galerkin approximation is introduced
for the transport equations (1.1), (1.2) and we utilise a stabilised non-conforming
Galerkin method for the flow equations (1.3) based on the treatment by Könnö and
Stenberg [23] specifically tailored for Brinkman equations. DG methods feature de-
sirable properties in line with the present application: flexibility for hp−refinement,
locking-free approximations, ability to handle discontinuous coefficients, sharp solu-
tion interface capturing, and many others (see [37] for its application on a similar
transport-flow problem). Moreover, the phenomenon at hand suggests that fluxes
may admit discontinuities, and such a feature will be imposed also on the numerical
fluxes across element boundaries, following the approach introduced in [34], and here
adapted to unstructured simplicial meshes. A Newton method is employed to resolve
the main nonlinearity in the transport equations (more precisely, in the isothermal
adsorption term). The time discretisation of the transport problems follows a third-
order strong stability preserving Runge-Kutta (SSP-RK) method, and the coupling
with the flow equations is performed by a sequential iteration scheme. This choice is
mainly driven by computational cost and memory requirements (usually much higher
in the fully coupled approach).

The main novel contributions in this paper consist in combining high-order space
discretisations (which are moreover well suited for parallelisation and useful in large
scale EOR simulations) with RK methods, specially targeted for a large class of mul-
ticomponent flow problems; and in the analysis of the proposed methods in terms of
invariance properties of the discrete saturation and concentration fields.

1.2. Related work. The flow of the fluid components is described by an exten-
sion of the two-phase Buckley-Leverett model [7] arising from a fractional flow analysis
in [28]. Such a model has been analysed as a hyperbolic system of conservation laws
in [17, 18] (see also [19–22, 29, 35]). The additional difficulties due to the nonlinear
adsorption terms within the time derivative are addressed in [29, Sect. 1.8] and [34].

Here, that system of mass conservation equations is coupled to a mass and mo-
mentum equation for the mixture. In the regime we are interested in, it suffices to
incorporate the Stokes-Darcy (or Brinkman) approximation of viscous flow in porous
media. Discretisations involving discontinuous elements in combination with finite
volume element methods and applied to flow-transport equations in similar contexts
can be found in [3, 9–11,15,24–26,31,32].

1.3. Outline of the paper. We have organised the contents of the paper in
the following manner. Section 2 contains an overview of the model problem and the
governing equations we will advocate to. The stabilised mixed DG approximation
of the flow equations, for a fixed value of the saturation field, is stated in Section 3.
Next, the DG scheme for the transport equations is presented in Section 4. We
derive the semi-discrete and fully discrete methods, and make precise the choice of
discontinuous numerical fluxes. In Section 5 we establish an invariant region property
of the transport DG discretisation, and in Section 6 we collect a series of numerical
tests illustrating convergence, stability, and performance of the proposed scheme in
simplified and more application-oriented cases.

2. Preliminaries.

2.1. Flux vector and adsorption functions. Polymer adsorption determines
the success of polymer flooding both technically and economically [14]. This process
is modelled here through the terms a1, . . . , aM that could be functions of salinity,
polymer concentration, and permeability. However, for simplicity, we adopt the simple
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Langmuir-type isotherms

al(cl) = cmax
l

bcl
1 + bcl

, l = 1, . . . ,M,

(see [36]), where b is a Langmuir constant and cmax
l is the maximum polymer concen-

tration of the l-th component adsorbed to the rock, which will be specified later.
The nonlinear flux vector F = F (s, c,u,x) takes the form

F (s, c,u,x) = f(s, c)u+ b(s, c)K(x)g,

where f is the fractional flow function related to aqueous phase given by

f(s, c) =
λw(s, c)

λw(s, c) + λn(s)
,

and b(s, c) = f(s, c)λn(s)(ρw − ρn). The corresponding phase mobilities λw and λn

are expressed in terms of the phase relative permeabilities krw and krn and the phase
viscosities µw and µn: λw = krw/µw and λn = krn/µn, and we define λtotal = λw +λn

and µ(s, c) = 1/λtotal. For the relative permeabilities we use the Brooks-Corey model
[6], as implemented in [33]. The viscosity µn is kept constant as the flow is immiscible
and polymers are transported only through the aqueous phase. The viscosity µw =
µw(c) depends on the concentration of the polymers and we adopt an expression for
µw as presented in [33, p. 433], namely µw(c) = µw(c) = µw,0 + aC, where C is a
scalar variable that can be chosen as C = c1 + · · ·+ cM and a is a positive constant.
The original treatment, and our examples, however, are limited to M = 1.

2.2. Initial and boundary conditions. Adequate initial and boundary data
complementing (1.1)-(1.3) are necessary to close the system. We will consider the case
of a constant initial saturation and concentrations s0, cl,0, a boundary saturation and
concentration are assumed on a part of the boundary identified as the inlet, and on
the remainder of the boundary we set zero-flux conditions for the saturation and
concentrations, together with either Dirichlet conditions for the velocity, or Dirichlet
conditions for the pressure field. The presentation of the discretisation will focus on
the case of homogeneous Dirichlet velocity and zero-flux saturation and concentration.

3. Mixed non-conforming discretisation for the Brinkman problem. Let
us consider a fixed saturation s such that µ(s) is positive and bounded. We denote
standard spaces by H := H1(Ω), Q := L2

0(Ω), multiply (1.3) by suitable test functions
(v, q) ∈ H×Q, and integrate the result by parts in such a way that the weak form of
(1.3) is as follows: find (u, p) ∈ H×Q such that

(3.1) Ss,c
(
(u, p), (v, q)

)
= Fs(v, q) ∀(v, q) ∈ H×Q,

where the involved forms and functionals are defined for all (u, p), (v, q) ∈ H×Q as

Ss,c
(
(u, p), (v, q)

)
:= as,c(u,v) + b(v, p) + b(u, q),

Fs(v, q) :=
(
(ρw − ρn)sg,v

)
Ω
− (j, q)Ω,

as,c(u,v) := (K−1u,v)Ω +
(
µ(s, c)ε(u), ε(v)

)
Ω
, b(v, q) := −(div v, q)Ω.

The discretisation of (1.3) will seek discrete velocities in an H(div,Ω)-conforming
finite-dimensional space Hh, associated to a regular partition Th of Ω into triangles.
We recall that a family of triangulations F = {Th}h>0 is regular if

(3.2) ∃σ > 0 : hK/mK ≥ σ ∀K ∈ Th, ∀Th ∈ F ,
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where hK is the diameter of a generic element K ∈ Th and mK is that of the largest
circle inscribed in K. For all K ∈ Th and e ∂K, we denote by ne the normal vector
to e outward to K. The set of neighbours of K ∈ Th will be denoted by NK . If
L ∈ NK is the element sharing with K the edge e = K|L, then the normal is denoted
component-wise as ne = nK|L = (n1

K|L, n
2
K|L)T.

We here choose Brezzi-Douglas-Marini elements of degree one [4] to approxi-
mate u, and piecewise constant approximations of p, that is

Hh =
{
v ∈ H(div,Ω) : v|K ∈ P1(K)2 ∀K ∈ Th

}
,

Qh =
{
q ∈ L2

0(Ω) : q|K ∈ P0(K) ∀K ∈ Th
}
,

which satisfy div Hh ⊂ Qh. As usual, Pk(K) denotes the space spanned by polyno-
mials of degree less than or equal than k. Since Hh is not a subspace of H, additional
terms are required in the discrete formulation in order to ensure stability. We adapt
to our configuration the interior penalty method introduced in [23], consisting in
replacing the bilinear form a(·, ·) by its mesh-dependent counterpart

ash(uh,vh) := (K−1uh,vh)Ω +
∑
K∈Th

(
µ(s)ε(uh), ε(vh)

)
K

+
∑
e∈Eh

(
α

he

〈
[[µ(s, c)uh]], [[vh]]

〉
e
−
〈
{{µ(s, c)ε(uh)n}}, [[vh]]

〉
e

−
〈
{{µ(s, c)ε(vh)n}}, [[uh]]

〉
e

)
for a given stabilisation parameter α > 0, where the standard symbols [[·]] and {{·}}
denote the jump and mean values, respectively, of a quantity across a point on e.
The non-conforming method associated to (3.1) can now be formulated as follows: for
fixed saturation s and polymer concentration c, find (uh, ph) ∈ Hh ×Qh such that

(3.3) Ss,ch
(
(uh, ph), (vh, qh)

)
= Fs(vh, qh) ∀(vh, qh) ∈ Hh ×Qh,

where we define

Ss,ch
(
(uh, ph), (vh, qh)

)
:= as,ch (uh,vh) + b(vh, ph) + b(uh, qh).

The solvability, consistency, and stability of this formulation, along with a priori and
a posteriori error bounds for (3.3), have been derived in [23]. The suggested energy
norms depend on the meshsize h and, as in [23], also on the permeability and viscosity:

‖v‖2h := ‖v‖20,Ω + η

( ∑
K∈Th

‖ε(v)‖20,K +
∑
e∈Eh

1

he
‖[[v · t]]‖20,e

)
,

‖q‖2h := ‖q‖20,Ω +
∑
e∈Eh

he
h2
e + η

‖[[q]]‖20,e, where η = κmaxµmax.

(3.4)

4. A DG method for the transport equations.

4.1. General formulation and semi-discrete approximation. We multiply
the transport equations (1.1) and (1.2) by φs, φcl ∈ V := H1(Ω), respectively, where
l = 1, . . . ,M, and integrate the results by parts over an arbitrary subset R ⊂ Ω to



6 BÜRGER, SUDARSHAN, RUIZ-BAIER, AND TORRES

obtain the following local weak formulation, where F (s, c,u) := F (s, c,u, ·):

d

dt
(ϕs, φs)R −

(
F (s, c,u),∇φs

)
R

+
〈
F (s, c,u) · nR, φs

〉
∂R

= 0,

d

dt

(
ϕscl + (1− ϕ)ρral(cl), φcl

)
R
−
(
clF (s, c,u),∇φcl

)
R

+
〈
clF (s, c,u) · nR, φcl

〉
∂R

= 0, l = 1, . . . ,M,

(4.1)

where nR denotes the outward unit normal to ∂R. Next, we introduce the following
finite element space (non-conforming to V ) for k > 0:

Vh :=
{
φ ∈ L2(Ω) : φ|K ∈ Pk(K) ∀K ∈ Th

}
,

and consider its localisation to the element K, Vh(K), so that a semi-discrete DG
method for (4.1) reads: for 0 < t ≤ T , and for a fixed discrete velocity uh, find
(sh(t), ch(t)) ∈ Vh × VMh such that for a given K ∈ Th,

d

dt
(ϕsh, φs)K −

(
F (sh, ch,uh),∇φs

)
K

+ 〈F̂ , φs〉∂K = 0 ∀φs ∈ Vh(K),(4.2)

d

dt

(
ϕshclh + (1− ϕ)ρral(clh), φcl

)
K
−
(
clhF (sh, ch,uh),∇φcl

)
K

+ 〈Ĝl, φcl〉∂K = 0 ∀φcl ∈ Vh(K), l = 1, . . . ,M,(4.3)

where F̂ and Ĝ1, . . . , ĜM are numerical fluxes specified in the next section.

4.2. Choice of numerical fluxes. In this section (and whenever clear from the
context) the explicit dependence on the time variable will be dropped. As in [12], we
consider the flux approximation

F (sh, ch,uh,x
K) · ne ≈ F̂

(
sh(x̌K), sh(x̂K), ch(x̌K), ch(x̂K),uh,ne

)
,

where φh(x̌K) and φh(x̂K) represent the traces of the approximate generic field φ (e.g.
concentration and saturation) taken from the interior and exterior of K, respectively.
In addition, the numerical fluxes Ĝ1, . . . , ĜM in (4.3) are defined as follows:

(4.4) Ĝl =

{
clh(x̌K)F̂ if F̂ > 0,

clh(x̂K)F̂ otherwise,
l = 1, . . . ,M,

depending on the characteristic speed of the local polymer concentrations clh (see [34, §
2]). Note that it suffices to define F̂ to make precise the definitions in (4.4), and here
we employ discontinuous fluxes as proposed in [34], together with the numerical flux
formulation of [8, §3.4]. There, one treats c(x) as a discontinuous datum across the
boundaries. That is, on each e ⊂ ∂K we consider

F̂
(
α, β, ch(x̌K , t), ch(x̂K , t),uh,ne

)
= F̂1(α, β, n1

e) + F̂2(α, β, n2
e),(4.5)

where the components F̂1 and F̂2 are the DFLU numerical fluxes [1] computed as

F−e,i(·) := Fi
(
·, ch(x̌K),uh(x),x−

)
nie,

F+
e,i(·) := Fi

(
·, ch(x̂K),uh(x),x+

)
nie, i = 1, 2,

a ∨ b := max{a, b}, a ∧ b := min{a, b} for all a, b ∈ R.
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Since the components F±e,i satisfy the hypotheses (H1) and (H2) of [1], we get

F̂i(α, β, n
i) = sgn(ni)

[
sgn(ni)F−e,i

(
sgn(ni)δ1

i

)
∨ sgn(ni)F+

e,i

(
sgn(ni)δ2

i

)]
,(4.6)

where we have replaced nie and F±e,i by ni and F±i and set for i = 1, 2

δ1
i := sgn(ni)α ∨ sgn(ni)θF−i

, δ2
i := sgn(ni)β ∧ sgn(ni)θF+

i
,

and θF±i
are chosen such that F±i (θF±i

) = min
0≤φ≤1

(
sgn(ni)F±i (φ)

)
.

Lemma 4.1. For fixed values of uh(x), ch(x̌K), and ch(x̂K), the numerical flux F̂
defined by (4.5) is monotone (i.e., it is a non-decreasing function of α and a non-
increasing function of β) and conservative, that is

F̂
(
α, β, ch(x̌K), ch(x̂K),uh,n

)
= −F̂

(
β, α, ch(x̌K), ch(x̂K),uh,−n

)
.

The proof of Lemma 4.1 follows along the lines of [8]. We note that the numerical
fluxes F̂ and Ĝ1, . . . , ĜM are not consistent in the usual sense as the correspond-
ing flux functions are discontinuous in x. However, this does not compromise the
possibility of deriving convergence of the scheme, because the stability still holds
(see [2, p. 181]).

4.3. Fully-discrete scheme for the transport equations. We insert the
corresponding numerical fluxes F̂ and Ĝl into the expressions (4.2) and (4.3) and
approximate the boundary and interior integrals by suitable quadrature formulas over
each edge e of an element K. Specifically, for ease of notation we denote for a given
element K and interior node xKi , i = 1, . . . , p, the argument of F by

yK,i,h(t) :=
(
sh(xKi , t), ch(xKi , t),uh(xKi ),xKi

)
,

and for each element K, edge e = K|L ∈ ∂K and boundary node xei , i = 1, . . . , q, the

argument of F̂ and Ĝl, l = 1, . . . ,M, by

we,i,h(t) :=
(
sh(x̌ei , t), sh(x̂ei , t), ch(x̌ei , t), ch(x̂ei , t),u

e
h,x

e
i ,ne

)
.

Then (4.2) and (4.3) are approximated as follows, where without loss of generality we
choose φh = φs = φcl :

d

dt

(
ϕsh(x, t), φh(x)

)
K
−

p∑
i=1

ω̄iF
(
yK,i,h(t)

)
· ∇φh(xKi )|K|

+
∑
e∈∂K

q∑
i=1

ωiF̂
(
we,i,h(t)

)
φh(xei )|e| = 0,

d

dt

(
πlh, φh(x)

)
K
−

p∑
i=1

ω̄iclh(xKi , t)F
(
yK,i,h(t)

)
· ∇φh(xKi )|K|

+
∑
e∈∂K

q∑
i=1

ωiĜl
(
we,i,h(t)

)
φh(xei )|e| = 0, l = 1, . . . ,M,

(4.7)

where πlh := ϕshclh + (1− ϕ)ρral(clh) and ω̄i and ωi are the weights corresponding
to the interior and boundary quadrature points xKi and xei , respectively. We choose
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a basis {ψ1, . . . , ψJ} for the space Pk(K) and write the approximate variables as

sh(x, t) ≈
J∑
j=1

sKj (t)ψj(x), πlh(x, t) ≈
J∑
j=1

πl,Kj (t)ψj(x), ∀x ∈ K, l = 1, . . . ,M.

Choosing φh = ψj , j = 1, . . . , J , we can recast (4.7) as the ODE system

d

dt
ϕsKh (t) = −A−1(w + z);

d

dt
πl,Kh (t) = −A−1(ŵl + ẑl), l = 1, . . . ,M,(4.8)

where sKh (t) := (sK1 (t), . . . , sKJ (t))T and πl,Kh (t) := (πl,K1 (t), . . . , πl,KJ (t))T. The en-
tries of the matrix A = (ajk)J×J and the vectors w, z, ẑ, and ŵl are given by

ajk = (ψj , ψk)K , wk = −
p∑
i=1

ω̄iF
(
yK,i,h(t)

)
· ∇ψk(xKi )|K|,

zk =
∑
e∈∂K

q∑
i=1

ωiF̂
(
we,i,h(t)

)
ψk(xei )|e|, ẑk =

∑
e∈∂K

q∑
i=1

ωiĜ
(
we,i,h(t)

)
ψk(xei )|e|,

ŵl,k = −
p∑
i=1

ω̄iclh(xKi , t)F
(
yK,i,h(t)

)
· ∇ψk(xKi )|K|.

The semi-discrete system (4.8) is evolved in time with a third order SSP-RK method
[27]. The key point in here is not to split the numerical flux during the SSP-RK
stages. Usually the needed fluxes are obtained by solution of local Riemann problems
for (1.1) and (1.2), or by approximation via a Lax-Friedrichs method. However,
the former strategy can be quite expensive in most cases and the latter might be
highly inefficient in capturing shocks. Then, following [34] we can derive discontinuous
numerical fluxes for the coupled equations (4.8) by decoupling the system into scalar
equations. This is achieved by treating the approximate polymer concentration as a
discontinuous coefficient entering the numerical flux (cf. [34, §2.4]). The procedure is
illustrated for a forward Euler scheme by writing the set of equations

ϕsKh (tn+1) = ϕsKh (tn)−A−1(w + z),

πl,Kh (tn+1) = πl,Kh (tn)−A−1(ŵ + ẑ), l = 1, . . . ,M,

which in turn amounts to determine the value of F̂ in the vectors zk and ẑk, from
the expression (4.5), where the arguments are the known concentrations, saturation
and velocity at time tn. Thereby the values sKh (tn+1) and πl,Kh (tn+1) are computed
separately, and the approximate solutions at time tn+1 are updated by

sh(x, tn+1) =
(
ψ1(x), ψ2(x), . . . , ψL(x)

)
sKh (tn+1) ∀x ∈ K,

πlh(x, tn+1) =
(
ψ1(x), ψ2(x), . . . , ψL(x)

)
πl,Kh (tn+1) ∀x ∈ K, l = 1, . . . ,M.

Then the approximate concentrations cl
n+1
h are recovered by a Newton method solving

πlh(x, tn+1) = ϕsn+1
h cl

n+1
h + (1− ϕ)ρral(cl

n+1
h ).

5. Invariant region for the discrete transport equations. In this section
we assess the L∞ stability of the DG discretisation applied to the coupled system
(1.1), (1.2). We will show that the element averages of the DG solutions

s̄nK :=
1

|K|

∫
K

sh(x, tn) dx, c̄nlK :=
1

|K|

∫
K

clh(x, tn) dx, l = 1, . . . ,M,
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satisfy a maximum principle. We recall that in each K the approximate solutions
sh(x, tn) and clh(x, tn) are polynomials, here denoted by pns,K and pncl,K , respectively.
As the SSP-RK scheme preserves the stability of the forward Euler method for the
same timestep restriction (see [16,27]), it suffices to analyse the latter case.

5.1. Invariant region for the discrete saturation. Taking φh ≡ 1 and dis-
cretising (4.7) in time with a forward Euler scheme leads to

s̄n+1
K = s̄nK −

∆t

ϕ|K|
∑
e∈∂K

q∑
i=1

ωiF̂e,i|e|,(5.1)

s̄n+1
K c̄n+1

lK +
1− ϕ
ϕ

ρral(c̄
n+1
lK ) = s̄nK c̄

n
lK+

1− ϕ
ϕ

ρral(c̄
n
lK)− ∆t

ϕ|K|
∑
e∈∂K

q∑
i=1

ωiĜe,i|e|,

where we use the convention

F̂e,i := F̂
(
we,i,h(t)

)
; Ĝe,i := Ĝl

(
we,i,h(t)

)
, l = 1, . . . ,M.

We need to compute the edge integral in (4.7) exactly, for polynomials of degree
2k+1 (see [12, Prop. 2.1]). We choose a (k+1)-point Gauss rule, where the q = k+1
quadrature points corresponding to each edge e ∈ ∂K are {xei , i = 1, . . . , q}.

In order to verify the maximum principle for the discrete saturation resulting
from (5.1), one can proceed along the lines of [8]. The key step consists in writing the
approximate value as a function of 6q + p scalar arguments as follows:

s̄n+1
K = H

(
sh(x̌ei , t

n), sh(x̂ei , t
n) : i = 1, . . . , q, e ∈ ∂K; sh(xKj , t

n) : j = 1, . . . , p
)
.

(5.2)

Expression (5.2) can be obtained once we formulate the approximate average in terms
of the DG solution computed at the quadrature points. Then the concentration can
be regarded as a discontinuous coefficient in the numerical flux, so that the following
result can readily be proved (repeating the arguments in the proof of [8, Lemma 4.1]).

Lemma 5.1. The function H in (5.2) is increasing in each of its arguments pro-
vided the following CFL condition is satisfied, where ω̂1 is the first weight of the
Gauss-Lobatto quadrature rule on [−1/2, 1/2]:

∆t

ϕ|K|
∑
e∈∂K

|e| ≤ 2

3
ω̂1.(5.3)

In turn, we can assert the following result.

Theorem 5.1. The DG solution computed from (4.2), using the DFLU numerical
flux (4.5)–(4.6) and a forward Euler time stepping, satisfies 0 ≤ s̄n+1

K ≤ 1 for all
n ≥ 0, provided condition (5.3) is met and pns,K(x) ∈ [0, 1], where pns,K is the computed
DG polynomial at the time step tn.

We remark that at time tn, the cell-wise DG polynomial pns,K need not assume values
in [0, 1]. Actually, a linear scaling limiter (cf. [8, p. 140]) is applied at this stage to
enforce this condition, but a bound on the evolved DG solution is not guaranteed.
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5.2. Invariant region for the element-wise concentration. In order to ver-
ify whether the computed concentrations lie within the bound of initial concentrations,
we first consider a splitting of the numerical fluxes as

F̂e,i = F̂+
e,i + F̂−e,i, where F̂+

e,i = max{0, F̂e,i} and F̂−e,i = min{0, F̂e,i},
Ĝe,i = če,iF̂

+
e,i + ĉe,iF̂

−
e,i, where če,i = ch

(
x̌ei , t

)
, ĉe,i = ch

(
x̂ei , t

)
,

where, if no confusion arises, we suppress the index l of the concentration and ad-
sorption terms for the rest of this section. In analogy to the analysis for the discrete
saturation, here we choose φh ≡ 1 in the second equation of (4.7) and apply a forward
Euler scheme giving

s̄n+1
K c̄n+1

K +
1− ϕ
ϕ

ρra(c̄n+1
K )

= s̄nK c̄
n
K +

1− ϕ
ϕ

ρra(c̄nK)− ∆t

ϕ|K|
∑
e∈∂K

q∑
i=1

|e|ωi
(
če,iF̂

+
e,i + ĉe,iF̂

−
e,i

)
.

(5.4)

For a given edge e = K|L and each quadrature point xei we can expand the DG
solution as

(5.5) ch
(
x̌ei , t

n
)

= c̄nK + c̃nK,L,i and ch
(
x̂ei , t

n
)

= c̄nL + c̃nL,K,i

(using both interior and exterior points), where the terms with tildes indicate a given
fluctuation around the elementary averages. Next we denote by cb

e,i = cb(xei ) the
vector of predetermined boundary values of the concentration.

The following geometric property is essential for the derivation of the local max-
imum principle.

Lemma 5.2. Any smooth function φ : R2 → R can be expressed as φ̄K = φ(xK)+
O(h2

K), where xK is the barycentre of K ∈ Th.

Proof. As xK is the barycentre of K, we can write xK = 1
|K|
∫
K
ξ dξ. Moreover,

setting ∇φ(xK) := ∇φ|xK , we can assert that∫
K

(x− xK) · ∇φ(xK) dx =

∫
K

(
x− 1

|K|

∫
K

ξ dξ

)
· ∇φ(xK) dx

=

∫
K

x · ∇φ(xK) dx−
∫
K

ξ · ∇φ(xK) dξ

(
1

|K|

∫
K

1 dx

)
=

∫
K

x · ∇φ(xK) dx−
∫
K

ξ · ∇φ(xK) dξ = 0.

Utilising the Taylor expansion φ(x) = φ(xK)+(x−xK) ·∇φ(xK)+O(h2
K) now yields

φ̄ :=
1

|K|

∫
K

φ(x) dx =
1

|K|

∫
K

(
φ(xK) + (x− xK) · ∇φ(xK) +O(h2

K)
)
dx

= φ(xK) +
1

|K|

∫
K

(x− xK) · ∇φ(xK) dx+
1

|K|

∫
K

O(h2
K) dx

= φ(xK) +
1

|K|

∫
K

O(h2
K) dx = φ(xK) +O(h2

K).

This completes the proof.
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xK

M

N

K

e = K|L
dK,L

L diL,K

diK,L

xei

e = K|N
xL

e = K|M

Fig. 1. Sketch of a given element K and its neighbours L,M,N , in a B-triangulation.

In addition, we require the concept of B-triangulations [12], defined in what
follows, where for sake of simplicity, for any edge lying on ∂Ω its adjacent element
will be treated as a ghost cell.

Let xK and xL denote the barycentre of K and L, respectively; and xe denote
the midpoint of the edge e (see Figure 1). For K ∈ Th we denote

(5.6) dK,L :=

{
xe − xK if L is a ghost cell,

xL − xK otherwise.

We identify the segments diK,L = xei − xK , for all e = K|L, and recall the follow-
ing definitions from [12].

Definition 5.1. A mesh Th is a B-triangulation if for any K ∈ Th and pairs
diK,L, d

i
L,K , with i = 1, . . . , q indicating an index for the quadrature points, one can

choose segments dK,M and dK,N (defined in (5.6) where M,N ∈ NK) such that

−diK,L = θiK,L,MdK,M + θiK,L,NdK,N , diL,K = ϑiL,K,MdK,M + ϑiL,K,NdK,N ,

for some non-negative constants θiK,L,M , θ
i
K,L,N , ϑ

i
L,K,M and ϑiL,K,N .

Definition 5.2. A family of triangulations {Th}h>0 is B-uniform if each trian-
gulation Th is a B-triangulation, and if there exists a constant ν > 0 such that

∀K ∈ Th, h > 0 : ∀L,M,N ∈ NK : ∀i = 1, . . . , q :

θiK,L,M , θ
i
K,L,N , ϑ

i
L,K,M , ϑ

i
L,K,N ∈ [0, ν].

The constant ν depends on the choice of {Th}h>0. For acute angle triangles, the
existence of such a ν can be verified and the following result holds (see [12]).

Lemma 5.3. If F is a family of meshes consisting of acute triangles, then it is
B-uniform with constant ν = 2σ3(1 + σ2)3/2, where σ is as in (3.2).

Going back to our numerical scheme we present a useful result (provided in [12,
(2.14)] without proof), and we postpone the proof to the Appendix.
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Lemma 5.4. If ch is a smooth function (inside K), then

−c̃nK,L,i = θiK,L,M∆K,M + θiK,L,N∆K,N +O(h2),(5.7)

c̃nL,K,i = ϑiL,K,M∆K,M + ϑiL,K,N∆K,N +O(h2),(5.8)

where we define

∆K,L =

{
c̄nL − c̄nK if e= K|L ∈ ∂K,
c̄be − c̄nK if e ∈ ∂K ∩ ∂Ω,

where c̄be :=
1

|e|

∫
e

cb ds,

and θiK,L,M , θiK,L,N , ϑiL,K,M and ϑiL,K,N are as in Definition 5.1.

Lemma 5.4 indicates that for a suitable choice of κ ≥ 1 we can ensure that

(5.9) c̃nK,L,i ∈ I(0, κCK,L,i), c̃nL,K,i ∈ I(0, κCL,K,i),

where

CK,L,i = −(θiK,L,M∆K,M + θiK,L,N∆K,N ),

CL,K,i = ϑiL,K,M∆K,M + ϑiL,K,N∆K,N ,

and where for finitely many numbers a1, . . . , aJ , the interval I is

I(a1, . . . , aJ) := [min{a1, . . . , aJ},max{a1, . . . , aJ}].

Note that in the regions where ch is smooth, conditions (5.9) are satisfied as a
consequence of Lemma 5.4. However, if the solution is discontinuous then we require
a projection operator ΛΠh (defined in [12] for the class of B-triangulations), which in
particular, does not compromise the initial order of accuracy.

Definition 5.3 (cf. [12]). The quantity ΛΠh(ch)|K is defined as the projection
by ΛΠh : Vh → Vh of ch|K into the non-empty convex set

Q(K, ch) :=
{
ϕ : Ω→ R | ϕ|K ∈ Pk(K), ϕ̄ = c̄h, and (5.9) holds

}
.

Lemma 5.5. If ch is computed on a B-uniform family, then

−c̃nK,L,i = θiK,L,M∆K,M + θiK,L,N∆K,N ,

c̃nL,K,i = ϑiL,K,M∆K,M + ϑiL,K,N∆K,N ,

where ∆K,M ,∆K,N and the constants θi and ϑi are as in Definition 5.1.

Proof. The proof follows from a direct application of Lemma 5.4 (including con-
ditions (5.9)) together with the projection operator.

We are now in position to state the local maximum principle for ch.

Theorem 5.2. Let ch be the discrete concentration resulting from (4.7), advanced
in time using the forward Euler scheme on a B-uniform triangulation together with
the projection in Definition 5.3. Then

c̄n+1
K ∈ I

(
c̄nK ; c̄nL : L ∈ NK ; c̄be , c

b
1,e, . . . , c

b
q,e : e ∈ ∂K ∩ ∂Ω

)
∀K ∈ Th,(5.10)

provided that ωi ≥ 0 for all i, and

cfl := ∆t sup
e∈∂K:K∈Th

|e|
ϕ|K|S ≤

1

5 + 40κν
,(5.11)
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where

S = sup
s∈[0,1]

{
∂F1

∂s
,
∂F2

∂s
, F1

(
s+

1− ϕ
ϕ

ρra
′
)−1

, F2

(
s+

1− ϕ
ϕ

ρra
′
)−1}

.

Proof. Adding and subtracting s̄n+1
K c̄nK in (5.4) and rearranging terms gives(

s̄n+1
K +

1− ϕ
ϕ

ρra
′(ξK)

)
(c̄n+1
K − c̄nK) + c̄nK(s̄n+1

K − s̄nK)

= − ∆t

ϕ|K|
∑
e∈∂K

q∑
i=1

|e|ωi
(
če,iF̂

+
e,i + ĉe,iF̂

−
e,i

)
,

where

a′(ξK) =
a(c̄n+1

K )− a(c̄nK)

c̄n+1
K − c̄nK

for some point ξK between c̄n+1
K and c̄nK .

We then proceed to replace s̄n+1
K − s̄nK by (5.1), leading to(

s̄n+1
K +

1− ϕ
ϕ

ρra
′
l(ξK)

)
(c̄n+1
K − c̄nK) + c̄nK

(
− ∆t

ϕ|K|
∑
e∈∂K

q∑
i=1

ωi|e|
(
F̂+
e,i + F̂−e,i

))

= − ∆t

ϕ|K|
∑
e∈∂K

q∑
i=1

|e|ωi
(
če,iF̂

+
e,i + ĉe,iF̂

−
e,i

)
,

which can be written as

c̄n+1
K = c̄nK −

∆t

ςKϕ|K|
∑
e∈∂K

q∑
i=1

|e|ωi
(
F̂+
e,i(če,i − c̄nK) + F̂−e,i(ĉe,i − c̄nK)

)
,(5.12)

where ςK := s̄n+1
K + (1 − ϕ)ϕ−1ρra

′(ξK) > 0, since s̄nK ∈ [0, 1] and da/dc > 0.
Considering also the boundary terms, and using (5.5), we obtain from relation (5.12)

c̄n+1
K = c̄nK + ∆t

∑
e=K|L∈∂K\∂Ω

q∑
i=1

(
η+
e,i(−c̃nK,L,i) + η−e,i(c̃

n
L,K,i + c̄nL − c̄nK)

)
+ ∆t

∑
e∈∂K∩∂Ω

q∑
i=1

(
η+
e,i(−c̃nK,e,i) + η−e,i(c

b
e,i − c̄nK)

)
,

(5.13)

where

(5.14) η+
e,i =

|e|ωiF̂+
e,i

ςKϕ|K|
≥ 0, η−e,i = −

|e|ωiF̂−e,i
ςKϕ|K|

≥ 0.

Then Lemma 5.5 allows us to write

−c̃K,L,i =
∑

N∈NK

θiK,L,N (∆K,N ) +
∑

d∈∂K∩∂Ω

θiK,L,d(∆K,d),

c̃L,K,i =
∑

N∈NK

ϑiL,K,N (∆K,N ) +
∑

d∈∂K∩∂Ω

ϑiL,K,d(∆K,d),
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where θiK,L,N , ϑ
i
L,K,N , θ

i
K,L,d, ϑ

i
L,K,d ≥ 0. Inserting these values into (5.13) leads to

c̄n+1
K = c̄nK + ∆t

∑
N∈NK

ΘK,N (∆K,N ) + ∆t
∑

d∈∂K∩∂Ω

ΘK,d(∆K,d)

+ ∆t
∑

d∈∂K∩∂Ω

q∑
i=1

η−d,i(c
b
d,i − c̄nK),

(5.15)

with

ΘK,N :=
∑

e=K|L∈∂K\∂Ω

q∑
i=1

(η+
e,iθ

i
K,L,N + η−e,iϑ

i
L,K,N ) +

∑
d∈∂K∩∂Ω

q∑
i=1

η+
d,iθ

i
K,d,N

+

q∑
i=1

η−eN ,i,

ΘK,d :=
∑

e=K|L∈∂K\∂Ω

q∑
i=1

(η+
e,iθ

i
K,L,d + η−e,iϑ

i
L,K,d) +

∑
σ∈∂K∩∂Ω

q∑
i=1

η+
σ,iθ

i
K,σ,d,

(5.16)

where eN = K|N . The following result gives a bound for ∆t, valid whenever (5.11)
holds and ωi ≥ 0 for all i. Therefore, from (5.15) we conclude that (5.10) holds.

Lemma 5.6. Under the assumptions of Theorem 5.2 there holds

ΥK := ∆t

( ∑
N∈NK

ΘK,N +
∑

d∈∂K∩∂Ω

ΘK,d +
∑

d∈∂K∩∂Ω

q∑
i=1

η−d,i

)
≤ 1 for all K ∈ Th,

where ΘK,N ,ΘK,d and η−d,i are given in (5.16) and (5.14), respectively.

Proof. For a given K, let A := ∂K ∩ ∂Ω and B := ∂K \ ∂Ω. We write

ΥK = ∆t

( ∑
N∈NK

{ ∑
e=K|L∈B
i=1,...,q

(
η+
e,iθ

i
K,L,N + η−e,iϑ

i
L,K,N

)
+

∑
d∈A

i=1,...,q

η+
d,iθ

i
K,d,N +

q∑
i=1

η−eN ,i

}

+
∑
d∈A

{ ∑
e=K|L∈B
i=1,...,q

(
η+
e,iθ

i
K,L,d + η−e,iϑ

i
L,K,d

)
+

∑
σ∈A

i=1,...,q

η+
σ,iθ

i
K,σ,d

}
+

∑
d∈A

i=1,...,q

η−d,i

)

≤ cfl

( ∑
N∈NK

{ ∑
e=K|L∈B
i=1,...,q

ωi(θ
i
K,L,N + ϑiL,K,N ) +

∑
d∈A

i=1,...,q

ωiθ
i
K,d,N +

q∑
i=1

ωi

}

+
∑
d∈A

{ ∑
e=K|L∈B
i=1,...,q

ωi
(
θiK,L,d + ϑiL,K,d

)
+

∑
σ∈A

i=1,...,q

ωiθ
i
K,σ,d

}
+

∑
d∈A

i=1,...,q

ωi

)
.
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Finally, noting that
∑
i ωi = 1, we obtain

ΥK ≤ cfl

( ∑
e=K|L∈B
i=1,...,q

ωi2κν
∑

N∈NK

1 +
∑
d∈A

i=1,...,q

ωiκν
∑

N∈NK

1 +
∑

N∈NK

1

+
∑

e=K|L∈B
i=1,...,q

ωi2κν
∑
d∈A

1 +
∑
σ∈A

i=1,...,q

ωiκν
∑
d∈A

1 +
∑
d∈A

1

)

≤ cfl

( ∑
e=K|L∈B

6κν +
∑
e∈A

3κν + 3 +
∑

e=K|L∈B

4κν +
∑
e∈A

2κν + 2

)
≤ cfl(18κν + 6κν + 3 + 12κν + 4κν + 2) ≤ 1.

6. Numerical results. Before presenting the numerical tests, we recall that the
interaction between the flow and transport solvers is realised using a classical iterative
coupling (or sequential strategy). Starting from an initial saturation distribution, one
solves first (1.3) for velocity and pressure, followed by a saturation/concentration
solution which comprises an inner iteration loop to reduce the nonlinear residuals
associated to the adsorption term. The Newton algorithm uses a relative tolerance
of 10−5. Additional fixed-point iterations of the local-in-time coupling are performed
until a prescribed stopping criterion is met (based on the residuals and a tolerance
of 10−6), and then the algorithm advances to the next time step. In practice, no
more than three Picard steps are required. All linear solves, including those inside
the Newton steps, are performed using the distributed SuperLU method.

6.1. Spatio-temporal accuracy of transport and flow approximations.
In our first set of examples, we study the accuracy of the flow and transport solvers
separately. First, regarding the flow approximation, if we assume a constant satura-
tion and polymer concentration, we can construct the following closed-form solutions
for the steady Brinkman problem

(6.1) u(x, y) =

(
−256x2(x− 1)2y(y − 1)(2y − 1)
256y2(y − 1)2x(x− 1)(2x− 1)

)
, p(x, y) =

(
x− 1

2

)(
y− 1

2

)
,

defined on the unit disk. Permeability and viscosity take constant values κ = µ = 1,
and g is constructed inserting (6.1) in the momentum equation of (1.3). We choose the
stabilisation parameter α = 2×105 and the mean value of the pressure approximation
is fixed to zero using a real Lagrange multiplier. The convergence history associated
to the scheme (3.3) is portrayed in Table 1, showing optimal convergence rates (of
O(h)) measured in the energy norms (3.4).

Secondly, the accuracy of the approximate transport problem in case of smooth
coefficients and regular solutions can be assessed through a convergence history gen-
erated using the following exact solution

s = cos2(πx) cos2(πy) exp(−t), cl = 0.2l2 + 0.025l sin2(πx) sin2(πy) exp(−t),

for l = 1, 2 and defined on the unit disk, for t ∈ [0, 1]. A known velocity of the mixture
is assumed u = (sin(πx) cos(πy),− cos(πx) sin(πy))T sin(t), and a set of adimensional
parameters and nonlinear model functions closing the system is given by α = 103,
f(s, c) = s2[s2 + (1 − s)2(0.5 + 10c1 + 5c2)]−1, a(cl) = cl(5 + 5cl)

−1, krw = s2,
krn = (1−s)2, ϕ = 1, µw(c1, c2) = µw,0 +µw,0(c1 +c2), µw,0 = 0.1, µn = 1, and κ = 1.
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D.o.f. h e0(u) rate eh(u) rate eh(p) rate

84 0.4714 0.8044 – 6.8137 – 2.9578 –
220 0.2828 0.3443 1.8014 3.8800 0.8916 1.4863 0.9394
684 0.1571 0.1129 1.8522 2.2360 0.9376 0.6668 1.3638

2380 0.0832 0.0367 1.8996 1.1969 0.9827 0.2358 1.4343
8844 0.0429 0.0108 1.9239 0.6209 0.9896 0.1122 1.1202

34060 0.0218 0.0031 1.9711 0.3205 0.9853 0.0612 0.9854
133607 0.0110 0.0009 1.9821 0.1614 0.9864 0.0368 0.9918
529458 0.0055 0.0003 1.9944 0.0734 0.9933 0.0181 0.9985

Table 1
Test 1A: convergence history for the stabilised mixed DG method for the Brinkman flow equa-

tions using a BDM1 − P0 approximation of velocity and pressure.

To assess the convergence properties of the spatial DG discretisation, we choose a
fine timestep ∆t = 10−3 and partition Ω into a sequence of eight successively refined
meshes and measure errors in the energy norm for piecewise linear and piecewise
quadratic approximations (i.e. k = 1, 2), computed at the final time t = 1. Table 2
indicates that the method achieves an asymptotic O(hk) convergence. The accuracy
of the temporal optimal SSP-RK scheme (explicit, of three stages and of third order,
using an effective SSP coefficient of 1/3) is studied by setting a fine-resolution space
discretisation with h = 2−7 and successively refine the time interval on seven levels.
For these smooth solutions, an optimal convergence order of O(∆t3) is obtained when
measuring errors in the `∞(H1)−norm at t = 0.5, as presented in Figure 2. The use
of more RK stages will produce smaller errors, but the convergence order will remain
the same.

Fig. 2. Test 1C: error history associated to the time discretisation of the coupled system using
a SSP-RK method of order 3.

6.2. Water-oil system. With the aim of testing the suitability of the method
in the presence of rough coefficients and when sharp features are expected in the
solution, let us now consider the infiltration of water into oil, first without the action
of polymers, that is, we set c ≡ 0. We conduct a classical simulation on a porous
box Ω = (0, 1.4) × (0, 1), with constant porosity ϕ = 0.35 and having an idealised
winding crack of sinusoidal shape, characterised by the intrinsic permeability κ(x, y) =



SCHEMES FOR FLOW IN POROUS MEDIA WITH ADSORPTION 17

D.o.f. h e(s) rate e(c1) rate e(c2) rate

(k = 1)

18 2.0000 2.3284 – 0.7835 – 0.5116 –
54 1.0000 1.1266 0.9798 0.2998 1.3857 0.1415 1.1951

162 0.8854 0.9411 1.0778 0.1753 0.9514 0.0720 0.8478
558 0.5000 0.3521 1.0204 0.1275 1.0413 0.0361 0.9681

1890 0.2848 0.1258 1.0284 0.0961 0.9525 0.0196 0.9862
6732 0.1489 0.0406 1.0455 0.0584 0.9616 0.0101 0.9752

26946 0.0770 0.0215 0.9574 0.0301 0.9884 0.0060 0.9641
104634 0.0427 0.0153 0.9502 0.0188 0.9463 0.0032 0.9547

(k = 2)

36 2.0000 1.4722 – 0.4025 – 0.2599 –
108 1.0000 0.8280 1.4112 0.1832 1.5648 0.1258 1.8019
324 0.8854 0.2322 1.9733 0.0614 1.9634 0.0438 1.4250

1116 0.5000 0.1266 1.8991 0.0175 1.8773 0.0162 1.9081
3780 0.2848 0.0403 1.9802 0.0048 1.9678 0.0042 1.8655

13464 0.1489 0.0161 1.9753 0.0013 1.9471 0.0011 1.6568
53892 0.0770 0.0054 1.9276 0.0004 1.8612 0.0004 1.9523

209268 0.0427 0.0015 1.7427 0.0001 1.8951 0.0001 2.0091

Table 2
Test 1B: convergence history for the stabilised DG method (using piecewise linear and piecewise

quadratic elements) for the transport equations. Errors are measured in the broken H1−norm.

max{exp(−10y+5+sin(10x))2, 0.01}. We employ the mildly nonlinear Brooks-Corey
relative permeabilities krw = s2, krn = (1 − s)2, so the mobilities and fractional flow
function (of the wetting phase) depend only on the water saturation. No gravity effects
are taken into account, and the remaining model parameters are set as µw = 0.25 and
µn = 1. We construct an unstructured triangular mesh of 45360 elements, and at
each time iteration, the timestep is determined from a CFL condition, which in this
case produces an average step of ∆t = 5 × 10−4. The stabilisation parameter used
here is α = 103. The porous block is initially full of oil (that is, s = 0) and a constant
profile of water (s = 1) is imposed on the left wall (which is the inflow boundary),
a linear pressure profile p0(x, y) = (1.4 − x)/1.4 is imposed on the whole boundary
(and actually implemented as a natural boundary condition, with an additional term
−〈p0,vh · n〉∂Ω appearing as part of the right hand side Fs of the weak formulation
(3.3)), and the velocity is not prescribed. It is stressed that a careful treatment of the
numerical flux at the inflow boundary is essential to actually onset the injection of
water into the domain. The system is evolved for about 1000 timesteps, and we collect
the numerical results in Figure 3. Iso-contours of each individual field are displayed
at two time instants, showing the expected advancing of the water front following the
preferential path marked by the winding crack, and high velocity gradients on the
region of large permeabilities.

6.3. Polymer flooding of an idealised reservoir. We now turn to the simu-
lation of polymer flooding of an oil reservoir, where the full model specified in Section 2
is relevant. We considerM = 1 and model parameters together with constitutive rela-
tionships (modified from those in [34]) are taken as follows: a1(c) = a(c) = cmax

a0c
1+a0c

,

µw(c) = µw,0 + 0.75µw,0c
−1
maxc, ρw = 1, ρn = 0.58, µ0

w = 0.35, µn = 3.5, ϕ = 0.25,
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Fig. 3. Test 2: numerical solution of the water infiltration in porous media computed with
a non-conforming Brezzi-Douglas-Marini approximation of velocity, and piecewise discontinuous
saturation and pressure. Evolution of the water saturation (top), magnitude of the velocity field
(middle panels) and pressure profiles (bottom).

a0 = 0.1, λw(s, c) = s2/µw(c), λn(s) = (1 − s)2/µn. The stabilisation constant is
α = 1 and the domain is now the unit square Ω = (0, 1)2. The heterogeneity in
the medium is incorporated through the same sinusoidal absolute permeability profile
from last section. A quadratic pressure profile is imposed in the form of a natural
boundary condition and we regard the obtained simulated scenarios at three different
time instants. We consider again that the porous slab is initially full of oil and a con-
stant profile of water (s = 1) and polymers (cmax ∈ {0.2, 3.2}) is injected on the left
wall. The domain is divided into 32K triangular elements and from Figure 4 we can
observe the differences between the sweeping process (of transporting the oleic phase
from the inlet boundary to the outlet) according to the concentration of polymers
present at the inlet boundary. We then proceed to modify the permeability distribu-
tion incorporating a non-homogeneous field where 25 disks of radius 0.005 and having
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a much lower permeability, are randomly located in the domain. More precisely, we
set κ(x, y) = max(

∑25
i=1 exp[− 1

0.005{(x − qx(i))2 + (y − qy(i))2}], 0.0001), where the
random points are (qx(i), qy(i)). Moreover, the rock porosity is decreased ϕ = 0.2, the
pressure profile imposed on the boundaries is now linear, and we now assume that the
effect of the external motion of the flow patterns is due to the polymer concentration
rather than the water saturation. In this case the numerical results imply that more
oil is displaced in the presence of a higher polymer concentration (here we compare
the cases of cmax ∈ {0.22, 3.9}), but due to gravity the polymers will tend to get
retained within the reservoir (see Figure 5).

Appendix: proof of Lemma 5.4. We present the proofs for (5.7) and (5.8)
in the following lines. From (5.5), suppressing the dependence on tn and using
Lemma 5.2, we obtain

−c̃nK,L,i = −ch(x̌ei ) + c̄nK = −ch(x̌ei ) + ch(xK) +O(h2).

A Taylor expansion of ch around xK now gives

−c̃nK,L,i = −(xei − xK) · ∇ch(xK) +O(h2) = −diK,L · ∇ch(xK) +O(h2)

= (θiK,L,MdK,M + θiK,L,NdK,N ) · ∇ch(xK) +O(h2),(A.2)

and rearranging terms we get

dK,L · ∇ch(xK) = (xL − xK) · ∇ch(xK) = ch(xL)− ch(xK) +O(h2), L ∈ NK .

By Lemma 5.2, ch(xL) = c̄L +O(h2) for L ∈ NK ; consequently,

dK,L · ∇ch(xK) = c̄L − c̄K +O(h2), L ∈ NK .

Inserting these values into (A.2) we get

−c̃nK,L,i = θiK,L,M (c̄M − c̄K +O(h2)) + θiK,L,N (c̄N − c̄K +O(h2)) +O(h2),

= θiK,L,M∆K,M + θiK,L,N∆K,N +O(h2),

which verifies (5.7). Since ch is assumed smooth, c̃h(x̌ei , t
n) = ch(x̂ei , t

n). Next, from
(5.5) we can use similar arguments as above (namely a Taylor expansion of ch around
xK and Lemma 5.2 repeatedly) to obtain

c̃nL,K,i = ch
(
x̂ei , t

n
)
− c̄nL = ch(xK) +

(
xei − xK

)
· ∇ch(xK)− c̄nL +O(h2)

= c̄nK +
(
xei − xL + xL − xK

)
· ∇ch(xK)− c̄nL +O(h2)

= c̄nK − c̄nL +
(
ch(xL)− ch(xK)

)
+
(
xei − xL

)
· ∇ch(xK) +O(h2)

= c̄nK − c̄nxl +
(
c̄L − c̄K

)
+
(
x̌ei − xL

)
· ∇ch(xK) +O(h2)

= ϑiL,K,MdK,M · ∇ch(xK) + ϑiL,K,NdK,N · ∇ch(xK) +O(h2).

Using once again the Taylor expansion of ch around the point B we get

dK,L · ∇ch(xK) = (xL − xK) · ∇ch(xK) = ch(xL)− ch(xK) +O(h2), L ∈ NK ,

and as before, dK,L · ∇ch(xK) = c̄L − c̄K +O(h2) for L ∈ NK . This finally leads to
(5.8) in the following manner

c̃nL,K,i = ϑiL,K,M
(
c̄M − c̄K +O(h2)

)
+ ϑiL,K,N

(
c̄N − c̄K +O(h2)

)
+O(h2)

= ϑiL,K,M∆K,M + ϑiL,K,N∆K,N +O(h2).
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Fig. 4. Test 3A: snapshots at t = 0.2 of the saturation (top), polymer concentration (middle),
and velocity profiles (bottom) obtained according to a low (left) and high (right) polymer concentra-
tion imposed at the inlet boundary.
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[23] J. Könnö and R. Stenberg, H(div)−conforming finite elements for the Brinkman
problem, Math. Models Methods Appl. Sci., 21(11) (2011), pp. 2227–2248.

[24] S. Kumar, A mixed and discontinuous Galerkin finite volume element method for in-
compressible miscible displacement problems in porous media, Numer. Methods Par-
tial Differential Equations, 28(4) (2012), pp. 1354–1381.

[25] S. Kumar, On the approximation of incompressible miscible displacement problems in
porous media by mixed and standard finite volume element methods, Int. J. Model.
Simul. Sci. Comput., 4(3) (2013), pp. 1–30.

[26] M. Ohlberger, Convergence of a mixed finite element-finite volume method for the two
phase flow in porous media, East-West J. Numer. Math., 5 (1997), pp. 183–210.



SCHEMES FOR FLOW IN POROUS MEDIA WITH ADSORPTION 23

[27] S. Osher and C.-W. Shu, Efficient implementation of essentially non-oscillatory
shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[28] G. Pope, The application of fractional flow theory to enhanced oil recovery, Soc. Pet.
Eng. J., 20 (1980), pp. 191–205.

[29] H.-K. Rhee, R. Aris, and N.R. Amundson, First-Order Partial Differential Equa-
tions. Volume 2: Theory and Application of Hyperbolic Systems of Quasilinear
Equations, Prentice Hall, Englewood Cliffs, NJ, 1989.

[30] D. Rodriguez, L. Romero-Zerón, and B. Wei, Oil displacement mechanisms of
viscoelastic polymers in enhanced oil recovery (EOR): a review, J. Petrol. Explor.
Prod. Technol., 4 (2014), pp. 113–121.

[31] R. Ruiz-Baier and I. Lunati, Mixed finite element–discontinuous finite volume ele-
ment discretization of a general class of multicontinuum models, J. Comput. Phys.,
322 (2016), pp. 666–688.

[32] R. Ruiz-Baier and H. Torres, Numerical solution of a multidimensional sedimenta-
tion problem using finite volume-element methods, Appl. Numer. Math., 95 (2015),
pp. 280–291.

[33] K. S. Schmid, S. Geiger, and K. S. Sorbie, Higher order FE–FV method on unstruc-
tured grids for transport and two-phase flow with variable viscosity in heterogeneous
porous media, J. Comput. Phys., 241 (2013), pp. 416–444.

[34] K. Sudarshan Kumar, C. Praveen, and G. D. Veerappa Gowda, A finite volume
method for a two-phase multicomponent polymer flooding, J. Comput. Phys., 275
(2014), pp. 667–695.

[35] A. Tveito and R. Winther, The solution of nonstrictly hyperbolic conservation laws
may be hard to compute, SIAM J. Sci. Comput., 16 (1995), pp. 320–329.

[36] J. Wegner and L. Ganzer, Numerical simulation of oil recovery by polymer injection
using COMSOL, Proceedings of the 2012 COMSOL conference.

[37] J. Whiteley, A discontinuous Galerkin finite element method for multiphase viscous
flow, SIAM J. Sci. Comput., 37 (2015), pp. B591–B612.



Centro de Investigación en Ingenieŕıa Matemática (CI
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