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ELECTROMAGNETIC STEKLOFF EIGENVALUES IN INVERSE
SCATTERING
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Abstract. In [5] it was suggested to use Stekloff eigenvalues for the Helmholtz
equation to detect changes in a scatterer using remote measurements of the scattered
wave. This paper investigates the use of Stekloff eigenvalues for Maxwell’s equations
for the same purpose. Because the Stekloff eigenvalue problem for Maxwell’s equations
is not a standard eigenvalue problem for a compact operator, we propose a modified
Stekloff problem that restores compactness. In order to measure the modified Stekloff
eigenvalues of a domain from far field measurements we perturb the usual far field
equation of the Linear Sampling Method by using the far field pattern of an auxil-
iary impedance problem related to the modified Stekloff problem. We are then able
to show 1) existence of modified Stekloff eigenvalues, 2) well-posedness of the corre-
sponding auxiliary exterior impedance problem and 3) provide theorems that support
our claim to be able to detect modified Stekloff eigenvalues from far field measure-
ments. Preliminary numerical results show that for some simple domains it is possible
to measure a few modified Stekloff eigenvalues (as for the Helmholtz equation, not
all eigenvalues can be measured). In addition the modified Stekloff eigenvalues are
changed by perturbations of the scatterer. An open problem is to obtain a proof of
the existence of modified Stekloff eigenvalues for absorbing media.

Key words: Stekloff eigenvalues, inverse problem, non-destructive testing, Herglotz
wave function.

Mathematics subject classifications: 35R30, 35J25, 35P25, 35P05

1. Introduction. In a recent paper [5] it was suggested to use Stekloff eigen-
values for the Helmholtz equation as a novel “target signature” for non-destructive
testing via inverse scattering. In particular it was shown that it is possible to measure
Stekloff eigenvalues for a bounded inhomogeneous scatterer by solving a sequence of
modified far field equations (for a general discussion of the far field operator and asso-
ciated equation, see for example [9]). By numerical examples it was shown that even
in the presence of noise on the far field data it is possible to identify a few Stekloff
eigenvalues. The number of eigenvalues that can be identified depends on the noise
level, the shape of the scatterer and the wavenumber of the incident field. It was
argued that shifts in these eigenvalues can be used to monitor changes in a medium
(or the shape of the scatterer). As an alternative, as mentioned above, the eigenval-
ues could be compared to a dictionary of possible values to determine which of the
possible targets is present. In this paper we shall continue this research program by
considering the determination of Stekloff eigenvalues from far field data for Maxwell’s
equations.

As is well known, the Stekloff eigenvalue problem for the Helmholtz equation
(or more commonly Laplace equation) for a bounded domain is equivalent to the
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determination of eigenvalues of the corresponding Neumann-to-Dirichlet map. For the
Helmholtz equation the compactness of this map allowed the authors of [5] to verify
the existence of Stekloff eigenvalues for the Helmholtz equation even in the case of an
absorbing medium where the problem is not self adjoint. In our case, for Maxwell’s
equations, compactness of the corresponding electric current to magnetic current map
(still referred to as the Neumann-to-Dirichlet or NtD map here) is unlikely as we shall
show. However there is no need for us to use the “natural” NtD map because it is
only used as an auxiliary problem for modifying the far field operator. So we propose
a new modified Stekloff eigenvalue problem that does give rise to a compact and self
adjoint eigenvalue problem in a dielectric medium.

Of course the standard NtD map (or its inverse the Dirichlet-to-Neumann or
DtN map) is widely used for the analysis of inverse problems in electrical impedance
tomography [1] and inverse scattering [3]. For Maxwell’s equations this work goes
back at least to the work of Sun and Uhlmann [18] who used the DtN map to prove a
local uniqueness result for the inverse problem of determining coefficients in Maxwell’s
equations from boundary measurements. In a similar vein the determination of almost
constant electromagnetic properties is considered in [17]. The uniqueness problem
for coefficient identification for the scattering problem was then improved in [15].
More recently Joshi and Lionheart considered general DtN type maps for the Hodge
Laplacian [11]. In this setting they verified that the operator is pseudo-differential of
order -1.

For Laplace’s equation, Stekloff eigenvalues have a long history and many in-
teresting properties [12]. For Maxwell’s equations we are not aware of any work on
Stekloff eigenvalues.

The contributions of this paper are threefold. First we pose the electromagnetic
Stekloff eigenvalue and a new modified Stekloff eigenvalue problems. We point out
that the first problem cannot, in general, be reduced to analyzing a symmetric com-
pact operator, while the second problem can be analyzed in this way. Second, we
prove, using similar arguments to those in [5] but suitably modified for Maxwell’s
equations, results that suggest that Stekloff eigenvalues (if they exist) and modified
Stekloff eigenvalues can be determined from far field data using a modified electromag-
netic far field operator. Thirdly we show some limited numerical results to illustrate
and support the theory. In the future, modifying the far field operator by using the
far field pattern of other scattering problems is also possible, and these will lead to
other target signatures perhaps better suited to particular scatterers.

We now describe the standard forward scattering problem that is the basis of
our study. Suppose D is a bounded domain containing the origin such that R3 \ D
is connected and such that the boundary of D denoted ∂D is smooth. The forward
electromagnetic scattering problem is to find the electric field E ∈ H loc(curl,R3 \D)
and the magnetic field H ∈ H loc(curl,R3 \D) such that

curlE − iκH = 0 , curlH + iκεrE = 0 (1.1)

in R3 where the wavenumber κ is real and positive. In contrast to the case when
transmission eigenvalues are used as target signatures [4], in this paper κ > 0 is fixed
so that the method is applicable to data at a single frequency.

The relative permittivity εr is assumed to be piecewise smooth. If the medium
is conducting, εr is complex valued whereas for a dielectric εr is real valued. In this
paper we assume εr is real valued in order to allow a simple proof of existence of
appropriate eigenvalues. We also assume that scatterer is bounded so that εr(x ) = 1

2



for x ∈ R3 \ D. To assert certain regularity results later in the paper, we assume
that D may be decomposed into M subdomains denoted Dm, m = 1, ...,M , such
that D =

⋃M
m=1Dm; Dm ∩ Dp = ∅, if m 6= p; each subdomain Dm, m = 1, ..., p, is

connected and has a Lipschitz boundary; there is a constant α > 0 such that for each
m, m = 1, ...,M , Re(εr) ≥ α on Dm and Im(εr) ≥ 0. The total fields E and H are
given by

E = E i + E s ,

H = H i + H s ,

where (E s,H s) is the scattered field satisfying the Silver–Müller radiation condition

lim
r→∞

(H s × x − rE s) = 0 (1.2)

uniformly in x̂ := x/|x | where r = |x |. The incident field (E i,H i) is assumed to be
a plane wave given by

E i(x ) =
i

κ
curl curlpe−iκx ·d = iκ(d × p)× de−iκx ·d ,

H i(x ) = curl pe−iκx ·d = iκd × pe−iκx ·d .

(1.3)

Here d is a unit vector giving the direction of propagation of the plane wave and
p is the polarization vector assumed real and non zero. The scattered field has the
following asymptotic expansion in r [9]:

E s(x ) =
eiκr

r
E∞(x̂ ,d ;p) + O

(
1

r2

)
, r →∞ ,

H s(x ) =
eiκr

r
H∞(x̂ ,d ;p) + O

(
1

r2

)
, r →∞ ,

where E∞ (respectively H∞) is called the far field pattern of the scattered wave
E s (respectively H s) depending, as indicated, on the measurement direction x̂ , the
incident direction d , and the polarization p. Note that both far field patterns are
linear functions of p. It is well known that under the restrictions on εr mentioned
previously, and with the given incident field, there is a unique solution to equations
(1.1)-(1.2) [9].

Let S2 = {x ∈ R3 | |x | = 1}. Now we can state the inverse problem we wish
to solve: given the far field pattern for all x̂ ∈ S2, d ∈ S2 and p ∈ R3, p 6= 0, we
wish to compute approximations of modified Stekloff eigenvalues (that we shall define
shortly) for a domain B such that either B = D (in non-destructive testing we may
know the shape of the object and wish to monitor its interior for changes in εr) or
B is a ball containing D in its interior (for example if the shape of D is not a priori
known).

An outline of the paper is as follows. We end this section by defining some
notation. Then in Section 2 we consider the Stekloff eigenvalue problem corresponding
to the standard NtD map for Maxwell’s equations. We show by example that this does
not arise from an eigenvalue problem for a symmetric compact operator. In Section 3
we define a new modified Stekloff eigenvalue problem that we can show is equivalent
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to an eigenvalue problem for a compact self adjoint operator when εr is real, thus
proving existence and discreteness of modified Stekloff eigenvalues. Next in Section 4
we prove theorems analogous to those in [5] that suggest that Stekloff eigenvalues or
modified Stekloff eigenvalues can be determined by solving a suitable modified far
field equation. The results in this section can be proved for either Stekloff eigenvalue
problem assuming such eigenvalues exist (even if εr is complex) or modified Stekloff
eigenvalues. Next in Section 5 we provide preliminary numerical results concerning
the determination of modified Stekloff eigenvalues from far field data. Finally we draw
some conclusions in Section 6.

Let O ⊂ R3 be a bounded open simply connected domain with Lipschitz continu-
ous boundary ∂O and ν the unit outward normal to O. We consider the space L2(O)
with its corresponding norm ‖ · ‖0,O. For convenience, we denote ‖ · ‖0,O the norm of
L2(O)3, too.

Let us introduce the following spaces:

H (curl,O) := {u ∈ L2(O)3 : curlu ∈ L2(O)3} ,

L2
t (∂O) := {u ∈ L2(∂O)3 : ν · u = 0 a.e. on ∂O} ,

X (O) := {u ∈ H (curl,O) : uT ∈ L2
t (∂O)} ,

where uT := (ν × u)× ν corresponds to the tangential component of u . The spaces
H (curl,O) and X (O) are respectively endowed with the norms defined by

‖u‖2curl,O := ‖u‖20,O + ‖ curlu‖20,O and ‖u‖2X (O) := ‖u‖2curl,O + ‖uT ‖20,∂O .

For the exterior domain R3 \ O we define the above spaces in the same way for every
(R3 \ O) ∩BR, with BR a ball containing O in its interior, and denote the spaces by
H loc(curl,R3 \ O) and X loc(curl,R3 \ O), respectively.

In addition, for the case in which the boundary ∂O is smooth, we introduce the
following spaces:

H s
t (∂O) := {u ∈ Hs(∂O)3 : ν · u = 0 a.e. on ∂O} ,

H s(div ∂O, ∂O) := {µ ∈ H s
t (∂O) : div∂B µ ∈ Hs(∂O)} ,

H−1/2(curl ∂O, ∂O) := {µ ∈ H
−1/2
t (∂O) : curl∂B µ ∈ H−1/2(∂O)} ,

where curl ∂O and div ∂O are the surface scalar curl and divergence operator, respec-
tively, and s ∈ R. In addition we will denote by curl∂O the surface vectorial curl . We
rename the spaces H 0

t (∂O) and H 0(div ∂O, ∂O) by L2
t (∂O) and H (div ∂O, ∂O), re-

spectively. The space H s
t (∂O) is equipped with the standard norm (see, for instance,

[13]). In addition, the spaces H s(div ∂O, ∂O) and H−1/2(curl ∂O, ∂O) are endowed
with their respective natural norms

‖u‖H s(div ∂O,∂O) := ‖u‖2s,∂O + ‖div ∂Ou‖2s,∂O

and

‖u‖2
H−1/2(curl ∂O,∂O)

:= ‖u‖2−1/2,∂O + ‖curl ∂Ou‖2−1/2,∂O .

For more details about the norms and properties of this operators, see, for instance
[13].
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To study the far field operator we shall also need the following space of tangential
vector fields

L2
t (S2) := {u : S2 → R3 : u ∈ L2(S2)3 , u(d) · d = 0 , d ∈ S2}

where S2 is the unit sphere in R3 centered at the origin.

2. The Standard Stekloff Boundary Condition. Following the ideas in [5],
we are interested in studying the inverse problem by considering a modified far field
operator whose kernel is the difference between the measured far field pattern due
to the scattering object and the far field pattern of an auxiliary scattering problem
involving a Stekloff (also called the Steklov or impedance) boundary condition on the
boundary of a domain B containing D (possibly B = D). In particular, we introduce
the following auxiliary scattering problem: Let B ⊂ R3 be a ball centered at the origin
containing D in its interior and let E0 ∈ X loc(R3 \ B) and H 0 = (1/iκ) curlE0 be
such that

curl curlE0 − κ2E0 = 0 in R3 \B ,

E0 = E i + E s
0 in R3 \B,

ν × curlE0 − λE0,T = 0 on ∂B ,

lim
r→∞

(curl E s
0 × x − ikrE s

0) = 0,

(2.1)

where ν is the unit outward normal to B, λ is a real constant, λ 6= 0, and the incident
field (E i,H i) is given by (1.3). We denote by (E0,∞,H 0,∞) the far field patterns
of (E s

0,H
s
0). Uniqueness of the solution of this problem will be proved later on.

Following the ideas in [6] it is possible to prove existence of solution for this problem
when λ < 0.

The standard electric far field operator F : L2
t (S2)→ L2

t (S2) is defined by

(Fg)(x̂ ) :=

∫
S2
E∞(x̂ ,d , g(d)) dsd

for all g ∈ L2
t (S2). Then the modified far field operator using far field pattern E0,∞

of the standard exterior Stekloff problem (2.1) is given by

(Fg)(x̂ ) =

∫
S2

[E∞(x̂ ,d , g(d))−E0,∞(x̂ ,d , g(d))] dsd

In order to understand the connection of this modified far field operator with the
interior Stekloff problem we now study the injectivity of F . Thus we consider the
modified homogeneous integral equation Fg = 0 and suppose g ∈ L2

t (S2) is a non-
trivial solution so that∫

S2
[E∞(x̂ ,d , g(d))−E0,∞(x̂ ,d , g(d))] dsd = 0 . (2.2)

Defining the Herglotz wave function vg by

vg (x ) := − iκ
∫
S2
g(d) e−iκx ·d dsd (2.3)
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we obtain that

w∞(x̂ ) :=

∫
S2
E∞(x̂ ,d , g(d)) dsd

is the far field pattern (see [9, Lemma 6.35]) for the solution w of

curl curlw − κ2εrw = 0 in R3 ,

w = vg + ws ,

lim
r→∞

(curlws × x − ikrws) = 0.

(2.4)

In addition,

w0,∞(x̂ ) :=

∫
S2
E0,∞(x̂ ,d , g(d)) dsd

is the far field pattern (see [9, Lemma 6.35]) for the solution w0 of

curl curlw0 − κ2w0 = 0 in R3 \B ,

w0 = vg + ws
0

ν × curlw0 − λw0,T = 0 on ∂B ,

lim
r→∞

(curlws
0 × x − rws

0) = 0 .

(2.5)

Following the argument in [5] for the Helmholtz equation, we obtain from (2.2)
that w∞(x̂ ) = w0,∞(x̂ ). Then by Rellich’s Lemma w(x ) = w0(x ) in R3\D where we
have used the fact that if B is a ball the solution (2.1) can be extended as a solution
of curl curlE0 − κ2E0 = 0 in R3 \ {0}. This can be shown by writing the solution
as a series involving spherical Hankel functions as in the Helmholtz case [9].

From the above argument we obtain that w is a non-trivial solution of the homo-
geneous interior problem

curl curlw − κ2εrw = 0 in B ,

ν × curlw − λwT = 0 on ∂B .
(2.6)

Before continuing with the analysis, we introduce the following definition.

Definition 2.1. For fixed k, λ := λ(k) ∈ C is called a Stekloff eigenvalue if
the homogeneous problem (2.6) has a nontrivial solution w ∈ X (B). Following the
above argument, we see that the far field operator is injective if λ is not a Stekloff
eigenvalue. If λ is a Stekloff eigenvalue, then F is still injective unless w = vg + ws

for some Herglotz wave function vg and radiating field ws. Since this is an analogue
of the result for the Helmholtz equation in [5], this suggests that it may be possible
to identify Stekloff eigenvalues using the far field equation and we shall shortly prove
that this is the case. Furthermore since (2.6) involves εr it may be possible to infer
properties of εr from the Stekloff eigenvalues. Numerical results suggest this is correct.

With this in mind, we are interested in studying the existence of Stekloff eigen-
values. In order to simplify the problem, we start by analyzing the case in which εr is
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constant in which case we may choose εr(x ) = 1. Multiplying by suitable test func-
tions (2.6) and integrating by parts, we obtain the following variational formulation
for the Stekloff eigenvalue problem: Find λ and w ∈ X (B), w 6= 0, such that∫

B

curlw · curl z dx − κ2
∫
B

w · z dx = −λ
∫
∂B

wT · zT dsx , (2.7)

for all z ∈ X (B). Notice that it is very easy to prove that problems (2.6) and (2.7)
are equivalent.

Provided κ2 is not an eigenvalue of the problem:

curl curlu − κ2u = 0 in B ,

ν × curlu = 0 on ∂B ,

for the analysis of problem (2.7), we can consider the Neumann-to-Dirichlet map:

T : L2
t (∂B) −→ L2

t (∂B) ,

f 7−→ Tf := uT ,

with u ∈ X (B) such that∫
B

curlu · curl z dx − κ2
∫
B

u · z dx =

∫
∂B

f · zT dsx , (2.8)

for all z ∈ X (B). Assuming T is well defined the Stekloff eigenvalue problem can be
rewritten as the problem of finding µ ∈ C and non-trivial f ∈ L2

t (∂B) such that

µf = Tf

Here µ = −1/λ. In order to study the eigenvalue problem (2.7), we should start
by analyzing the well-posedness of (2.8) and hope that the Neumann-to-Dirichlet
operator is self-adjoint and compact. We will start by analyzing the last condition.

Let u := (1/iκ) curlw in B. Then, from problem (2.6), we obtain that w =
(−1/iκ) curlu in B and, in particular, we can rewritte the problem (2.6) in terms of
u as follows:

curl curlu − κ2u = 0 in B ,

ν × curlu − κ2

λ
uT = 0 on ∂B .

Thus, if λ 6= 0 is a Stekloff eigenvalue of problem (2.6), then so is −κ2/λ. So if
there are countably many eigenvalues λn → ∞, then there are also countably many
eigenvalues µn = −κ2/λn → 0.

Thus either
• The Neumann-to-Dirichlet map is not compact

or
• There are finitely many eigenvalues.

However for the sphere we know that there are infinitely many Stekloff eigenvalues
(as we shall show shortly) and so in that case the Neumann-to-Dirichlet map is not
compact. In order to prove the existence of countably many eigenvalues and under-
stand this phenomenon, we will study the case of the sphere in detail. To that end,
we need to recall some results. First, we know from [9, Theorem 6.26] that the pair

Mn(x ) = curl

(
x jn(κ|x |)Yn

(
x

|x |

))
,

1

iκ
curlMn(x ) (2.9)
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is an entire solution to Maxwell’s equations, where Yn is a spherical harmonic of order
n ≥ 1 and jn is the spherical Bessel function of order n (see, for instance, [9]). Notice
that Mn can be written equivalently as follows:

Mn(x ) = jn(κ|x |)∇SYn
(

x

|x |

)
× x

|x |
, (2.10)

where ∇S corresponds to the surface gradient on a sphere. From the interior analogue
of [9, Theorem 6.27], we know that we may write the expansion of the electric field
E in the form

E(x ) =

∞∑
n=1

n∑
m=−n

amnMn(x ) +

∞∑
n=1

n∑
m=−n

bmn curlMn(x ) , (2.11)

where amn and bmn are Fourier coefficients.
From (2.9), (2.10) and (2.11) and after some computations, it is possible to obtain

that

x̂ × curlE(x ) − λ (x̂ ×E(x ))× x̂ =

∞∑
n=1

n∑
m=−n

amn x̂ ×∇SY mn (x̂ )

[
1

|x |
{jn(κ|x |) + κ|x |j′n(κ|x |)}+ λjn(κ|x |)+

]
∞∑
n=1

n∑
m=−n

bmn x̂ × (∇SY mn (x̂ )× x̂ )

[
κ2jn(κ|x |)− λ

|x |
{jn(κ|x |) + κ|x |j′n(κ|x |)}

]
,

where x̂ := x/|x |. Using the impedance boundary condition, we see that for a sphere
of radius one, the previous expression could be zero if one of these two situations
happens, for each n ≥ 1:

(a) λn = −jn(κ) + κj′n(κ)

jn(κ)
and the rest of the terms are zero.

(b) λn =
κ2jn(κ)

jn(κ) + κj′n(κ)
and the rest of the terms are zero.

In particular there are countably many eigenvalues with accumulation points at −∞
and 0 (see also Fig. 2.1). So the Neumann-to-Dirichet map cannot be compact which
defeats an easy proof of the existence of Stekloff eigenvalues in the this case (and
presumably in general).

In addition, notice that it can be proved that the surface scalar curl of the term

x̂ × (∇SY mn (x̂ )× x̂ )

[
κ2jn(κ|x |)− λ 1

|x |
{jn(κ|x |) + κ|x |j′n(κ|x |)}

]
is zero and the surface divergence of the term

x̂ ×∇SY mn (x̂ )

[
1

|x |
{jn(κ|x |) + κ|x |j′n(κ|x |)}+ λjn(κ|x |)

]
also is zero. After this analysis arises the idea of considering just a part of the sum
and to try to obtain an eigenvalue problem with an associated compact operator.
Recall that we have arrived to the problem (2.6) from the auxiliary problem defined
in (2.5) which was introduced with the aim of studying the inverse electromagnetic
scattering problem defined at the beginning of this section. We are thus free to choose
a different auxiliary problem. In the following section, we will prove that at least when
we consider the case in which the terms have vanishing surface divergence, we are able
to define a compact operator.
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Fig. 2.1. The first 16 eigenvalues of type a) and b) (see text). One set of eigenvalues tends to
−∞ and the other to 0.

3. Modified Stekloff Boundary Condition. In this section we introduce a
linear operator which will allow us to define a convenient auxiliary problem in order to
analyze the corresponding modified Stekloff eigenvalue problem. We start by defining
the linear operator S as follows:

S : H−1/2(curl ∂B , ∂B) −→ H 1/2(div 0
∂B , ∂B)

µ 7−→ Sµ := curl∂B q ,
(3.1)

where q ∈ H1(∂B)/C is the solution of the problem ∆∂B q = curl∂B curl∂B q =
curl∂B µ. By using an eigensystem expansion (e.g. [14]) we see that curl∂B q ∈
H

1/2
t (∂B). Thus, Sµ ∈ H

1/2
t (∂B), div∂B µ = 0 and

‖Sµ‖H 1/2(div 0
∂B ,∂B) = ‖Sµ‖1/2,∂B = ‖ curl∂B q‖1/2,∂B ≤ CS‖curl∂B µ‖−1/2,∂B .

In addition, since curl∂B (curl∂B q−µ) = 0, then we can find v ∈ H1/2(∂B) such

that curl∂B q − µ = ∇∂B v. Thus, for all µ ∈ H−1/2(curl ∂B , ∂B), there exist q and
v such that µ = curl∂B q − ∇∂B v, or, equivalently,

Sµ = µ + ∇∂B v.

For simplicity of notation, we represent duality pairs as integrals on the boundary
and state the following result that shows that S is self-adjoint.

Lemma 3.1. The operator S satisfies:∫
∂B

SuT · zT ds =

∫
∂B

uT · SzT ds =

∫
∂B

SuT · SzT ds , (3.2)

for all u, z ∈ H(curl, B).
Proof. Let u , z ∈ H (curl, B). Then, there exist v, w ∈ H1/2(∂B) such that

SuT = ∇∂B v + uT and SzT = ∇∂B w + zT . Hence and thanks to the fact that

S
(
H−1/2(curl ∂B , ∂B)

)
⊂ H 1/2(div 0

∂B , ∂B), we obtain that∫
∂B

SuT · zT ds =

∫
∂B

SuT · (SzT −∇∂B w) ds =

∫
∂B

SuT · SzT ds.
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Analogously,∫
∂B

uT · SzT ds =

∫
∂B

(SuT −∇∂B v) · SzT ds =

∫
∂B

SuT · SzT ds,

which completes the proof.
We now assume that the ball B contains D in its interior or B = D. Next

we define the exterior problem for the modified Stekloff boundary condition. Let
ES ∈ H loc(curl,R3 \B) satisfy

curl curlES − κ2ES = 0 in R3 \B ,

ES = E i + E s
S in R3 \B,

ν × curlES − λSES,T = 0 on ∂B ,

lim
r→∞

(curlE s
S × x − ikrE s

S) = 0 ,

(3.3)

where λ is a real constant. Note that the corresponding magnetic field is given by
H S = (1/iκ) curlES . We denote by (ES,∞,H S,∞) the far field pattern of (E s

S ,H
s
S).

Theorem 3.2. Suppose λ ∈ R. If S = I or S is as given in (3.1), the exterior
problem (3.3) has at most one solution.

Proof. Let E1 , H 1 and E2 , H 2 denote two solution pairs to problem (3.3). Then
E0 = E1 −E2 , H 0 = H 1 −H 2 satisfies (3.3) with E i = H i = 0, and in particular
the radiation condition. To prove uniqueness of this exterior problem we consider the
domain BR \ B, where BR = {x ∈ R3 : |x | < R} is a ball containing to B in its
interior. Integrating over BR \B and then using integration by parts, we obtain∫
BR\B

(| curlE0|2 − κ2|E0|2) dx − iκ
∫
∂BR

ν ×E0 ·H 0 ds− λ
∫
∂B

|SE0,T |2 ds = 0.

Hence,

Re

∫
∂BR

ν ×E0 ·H 0 ds

= Re

(
−1

iκ

{∫
BR\B

(| curlE0|2 − κ2|E0|2) dx − λ
∫
∂B

|SE0,T |2 ds

})
= 0.

and therefore, uniqueness follows from [9, Theorem 6.11] and the unique continuation
principle.

To prove existence of a solution by variational means, we need to truncate the
exterior domain. Thus we consider the domain BR \ B where BR is such that B
is contained in the interior of BR. One way to impose the boundary condition on
the artificial surface ∂BR is by incorporating the capacity operator (see, for instance,
[14]). Here we only present the result.

Theorem 3.3. Suppose λ ∈ R, λ < 0 and S = I or λ ∈ R and S as given in
(3.1). Then the exterior problem (3.3) has a unique solution that satisfies

‖EsS‖H(BR\B) ≤ C‖f‖H1/2(div ∂B ,∂B)

for some positive constant C depending on R where f = −(ν × curlEi − λSEiT ).

10



From now on we use the auxiliary problem (3.3), instead of problem (2.1) S 6= I).
The new modified far field operator FS : L2

t (S2) → L2
t (S2) uses the far field pattern

ES,∞ of the modified exterior Stekloff problem (3.3) and is given by

(FSg)(x̂ ) =

∫
S2

[E∞(x̂ ,d , g(d))−ES,∞(x̂ ,d , g(d))] dsd . (3.4)

We can now repeat the argument given in the last section concerning injectivity of
the far field operator, using the new auxiliary function. Suppose that FSg = 0 has a
non-trivial solution so that g ∈ L2

t (S2) is a non-trivial solution of∫
S2

[E∞(x̂ ,d , g(d))−ES,∞(x̂ ,d , g(d))] dsd = 0

and from the definition of the Herglotz wave function vg in (2.3) we now obtain that

wS,∞(x̂ ) :=

∫
S2
ES,∞(x̂ ,d , g(d)) dsd

is the far field pattern (see [9, Lemma 6.35]) for

curl curlwS − κ2wS = 0 in R3 \B ,

wS = vg + ws
S ,

ν × curlwS − λSwS,T = 0 on ∂B ,

lim
r→∞

(curlws
S × x − ikrws

S) = 0 .

(3.5)

Proceeding as in Section 3, we obtain now that the solution w of (2.4) (using the
new vg ) satisfies the boundary value problem

curl curlw − κ2εrw = 0 in B ,

ν × curlw − λSwT = 0 on ∂B .
(3.6)

Thus the modified Stekloff eigenvalue problem serves to study the new modified far
field operator FS .

Before proving the existence of modified Stekloff eigenvalues we first show eigen-
values for the unit sphere as a function of the wave number k when εr = 1 in Fig. 3.1.
As expected from the two dimensional case [5] there are vertical asymptotes (at inte-
rior Maxwell eigenvalues). For low wave number the eigenvalues are negative asymp-
tote to −∞.

We now wish to prove that modified Stekloff eigenvalues exist. So far we are only
able to do this for real εr(x ). We start by deriving a weak form of the eigenvalue
problem. Multiplying (3.6) by suitable test functions and integrating by parts, we
obtain the following variational problem: Find λ and non-trivial w ∈ H (curl, B)
such that∫

B

curlw · curl z dx − κ2
∫
B

εr(x )w · z dx = −λ
∫
∂B

SwT · zT dsx , (3.7)

for all z ∈ H (curl, B). This eigenvalue problem can be rewritten in the following
convenient way: Provided κ2 is not an eigenvalue of the problem

curl curlu − κ2εr(x )u = 0 in B ,

ν × curlu = 0 on ∂B ,

11
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Fig. 3.1. The first three modified Stekloff eigenvalues for the unit sphere as a function of
wave number κ. The eigenvalues are numbered to the index of the Bessel function representing the
corresponding eigenfunction.

we can define the map

T : H 1/2(div 0
∂B , ∂B) −→ H 1/2(div 0

∂B , ∂B) ,

f 7−→ Tf := SuT ,

with u ∈ H (curl, B) such that∫
B

curlu · curl z dx − κ2
∫
B

εr(x )u · z dx =

∫
∂B

f · zT dsx , (3.8)

for all z ∈ H (curl, B). Thus if (λ,w) ∈ R × H (curl, B) solves (3.7) with λ 6= 0
then by design TSwT = µSwT with µ = −1/λ 6= 0. On the other hand if (µ, ξ) ∈
R × H 1/2(div 0

∂B , ∂B), ξ 6= 0, satisfies Tξ = µ ξ then choosing λ = −1/µ we can
compute w̃ ∈ H (curl, B) such that∫

B

curl w̃ · curl z dx − κ2
∫
B

εr(x )w̃ · z dx =

∫
∂B

ξ · zT dsx .

Then by definition µξ = Tξ = Sw̃T . Substituting for ξ above∫
B

curl w̃ · curl z dx − κ2
∫
B

εr(x )w̃ · z dx =
1

µ

∫
∂B

Sw̃T · zT dsx ,

Setting λ = −1/µ we see that (λ,Sw̃T ) is an eigenpair for (3.7). We have thus
established that finding eigenpairs for (3.7) is equivalent to finding eigenpairs for the
modified Neumann-to-Dirichlet map T . It remains to analyze T . The definition of
T was designed to prove the next result:

Lemma 3.4. The operator T : H1/2(div 0
∂B , ∂B)→ H1/2(div 0

∂B , ∂B) is compact.

Proof. Let f ∈ H 1/2(div 0
∂B , ∂B). Notice that u is solution of the problem (3.8)

if and only if u satisfies:

curl curlu − κ2εr(x )u = 0 in B ,

ν × curlu + f = 0 on ∂B .

12



From the first equation, we obtain that curlu ∈ L2(B)3 and, therefore, curlu ∈
H (curl, B) ∩H(div 0, B) where H(div 0, B) := {z ∈ H(div , B) : div (z ) = 0 in B}.
In addition, from the second equality, we have that ν×curlu ∈ H

1/2
t (∂B). These two

conditions together with the last remark in [10] imply that ν ·curlu ∈ L2(∂B). Hence,
we obtain that curl∂B uT = ν · curlu ∈ L2(∂B). On the other hand, by construc-

tion, we know that there exists q such that SuT = curl∂B q ∈ H 1/2(div 0
∂B , ∂B).

Since curl∂B curl∂B q = curl∂B SuT = curl∂B uT ∈ L2(∂B), then we obtain that
curl∂B q ∈ H 1

t (∂B) and, therefore, SuT ∈ H 1(div∂B
0, ∂B). Hence and the fact

that H 1(div∂B
0, ∂B) is compactly included in H 1/2(div 0

∂B , ∂B), we can conclude
the proof.

Lemma 3.5. If εr is real, the operator T : H(div∂B
0, ∂B) −→ H(div∂B

0, ∂B) is
self-adjoint.

Proof. Given f , h ∈ H (div∂B
0, ∂B), let SuT := Tf and SvT := Th . Since

div∂B f = div∂B h = 0, then we only have to prove that∫
∂B

Tf · h ds =

∫
∂B

f ·Th ds .

In fact, ∫
∂B

Tf · h ds =

∫
∂B

SuT · h ds =

∫
∂B

uT · h ds =

∫
∂B

h · uT ds

=

∫
B

curl v · curlu dx − κ2
∫
B

εr(x )v · u dx

=

∫
B

curlu · curl v dx − κ2
∫
B

εr(x )u · v dx

=

∫
∂B

f · vT ds =

∫
∂B

f · SvT ds

=

∫
∂B

f ·Th ds.

Notice that it is easy to prove that T (H (div∂B
0, ∂B)) ⊂ H 1/2(div 0

∂B , ∂B) fol-
lowing the ideas in the proof of Lemma 3.4. Hence, the spectrum of T as a map from
H (div∂B

0, ∂B) −→ H (div∂B
0, ∂B) is the same that the spectrum corresponding to

T : H 1/2(div 0
∂B , ∂B) −→ H 1/2(div 0

∂B , ∂B). Then, by Lemmas 3.4 and 3.5 we can
conclude the following theorem.

Theorem 3.6. When εr is real, a countable discrete set of modified Stekloff
eigenvalues (eigenvalues of (3.7)) exist. They are real and accumulate at ∞.

Remark 3.7. When εr is complex, modified Stekloff eigenvalues, if they exist,
would all be complex. It remains to prove existence of modified Stekloff eigenvalues in
this case.

4. Determination of eigenvalues from far field data. We now want to show
that modified Stekloff eigenvalues can be determined from far field data. Note that
these results are independent the choice of εr (i.e. it could be complex valued) or the
type of Stekloff eigenvalues used, provided they exist. For simplicity, we shall assume
εr is real and that modified Stekloff eigenvalues are sought. With this aim in mind, we
start analyzing the following auxiliary result. Let f ∈ H 1/2(div ∂B , ∂B) and consider
the problem of finding w ∈ H (curl, B) such that

13



curl curlw − κ2εrw = 0 in B ,

ν × curlw − λSwT = f on ∂B .
(4.1)

Lemma 4.1. Assume that λ 6= 0 is not a modified Stekloff eigenvalue. Then (4.1)
has a unique solution w ∈ H(curl, B) that satisfies

‖w‖curl,B ≤ C‖f‖H1/2(div ∂B ,∂B)

for some positive constant C. In addition, this solution can be decomposed as w =
wi + ws where wi ∈ H(curl, B) solves the Maxwell’s equations in B and ws ∈
Hloc(curl,R3) is a radiating field (i.e. satisfies Maxwell’s equations with εr = 1
outside B together with the Silver–Müller radiation condition).

Proof. Thanks to the previous section, we know that T : H 1/2(div 0
∂B , ∂B) −→

H 1/2(div 0
∂B , ∂B) is a compact operator. We assume that f ∈ H 1/2(div 0

∂B , ∂B).
Then, if we set α = ν × curlu on ∂B, and using the definition of T we have

α− λTα = f .

We have uniqueness provided λ is not an eigenvalue, and so by the Fredholm
alternative we have existence of α. Then we can extend inside the domain by solving
the problem:

curl curlw − κ2εr(x )w = 0 in B ,

ν × curlw = α on ∂B ,

since k is not an eigenvalue.
Now, let f ∈ H 1/2(div ∂B , ∂B) the source term of the problem (4.1) and w0 ∈

H (curl, B) solution of the problem:

curl curlw0 − κ2εr(x )w0 = 0 in B ,

ν × curlw0 = f on ∂B .

Decomposing w = w0 + z , we can rewrite the problem (4.1) in terms of the new
unknown z : Find z ∈ H (curl, B) such that

curl curl z − κ2εr(x )z = 0 in B ,

ν × curl z − λSzT = F on ∂B .
(4.2)

where F := λSw0,T ∈ H 1/2(div 0
∂B , ∂B). Then, thanks to the previous analysis

and the fact that λ 6= 0 is not a Stekloff eigenvalue, there exists a unique solution
z ∈ H (curl, B) of the problem (4.2).

On the other hand, thanks to the Stratton–Chu formula (see, for instance, [2,
Theorem 3.2]) we see that w can be decomposed as w(x ) = w i(x ) + ws(x ) where

w i(x ) := − curlx

∫
∂B

ν(y)×w(y) Φ(x ,y) dsy

+∇x

∫
∂B

ν(y) ·w(y) Φ(x ,y) dsy

−
∫
∂B

ν(y)× curlw(y) Φ(x ,y) dsy x ∈ B ,

14



where

Φ(x , z ) :=
eiκ|x−z |

4π|x − z |

is the fundamental solution to the Helmholtz equation. Then we can rewrite w i as

w i(x ) := − curlx

∫
∂B

ν(y)×w(y) Φ(x ,y) dsy

− 1

κ2
curlx curlx

∫
∂B

ν(y)× curlw(y) Φ(x ,y) dsy x ∈ B .

It is then easy to prove that w i satisfies the Maxwell’s equations with εr(x ) = 1in B.
In addition,

ws(x ) := κ2
∫
B

(εr(y)− 1)w(y)Φ(x ,y)dy

−∇x

∫
B

div y (w(y)) Φ(x ,y) dy x ∈ R3

satisfies the Silver–Müller radiation condition. Furthermore since εr(x ) = 1 outside
D, w satisfies curl curlw − κ2w = 0 in there.

Now, we can continue with our analysis of the new modified far field operator
FS defined in (3.4). We know that FS is injective unless λ is a modified Stekloff
eigenvalue with eigenfunction of the form w = vg + ws (see our previous argument
on injectivity). This can be proved similarly to the proof of [9, Theorem 10.42]). Since
E∞ and ES,∞ satisfy the reciprocity relation (see [9, Theorem 6.30]) FS is injective
with dense range if and only if there does not exist a Stekloff eigenfunction for B
which has the above decomposition (see [9, Theorems 6.36, 6.37]).

Let us recall that an electric dipole with polarization q is defined by

E e(x , z , q) :=
i

κ
curlx curlx qΦκ(x , z ) ,

H e(x , z , q) := curlx qΦκ(x , z ) .
(4.3)

In particular, E e(·, z , q) is a radiating solution to Maxwell’s equations outside a
neighborhood of z and the corresponding far field pattern is given by

E e,∞(x̂ , z , q) :=
iκ

4π
(x̂ × q)× x̂ e−iκ x̂ ·z .

Now, we will show that Stekloff eigenvalues can now we obtained by solving the
following modified far field equation: Find g ∈ L2

t (S2) such that

(FSg)(x̂ ) = E e,∞(x̂ , z , q) . (4.4)

In general this problem cannot be solved for any z ∈ B. Indeed, if g z ∈ L2
t (S2)

satisfies (4.4), then by Rellich’s Lemma

w z (x ) − w0z (x ) = ws
z (x ) − ws

0z (x ) = E e(x , z , q) for x ∈ R3 \B

where w z and w0z are defined by (2.4) and (3.5), respectively, with vg = vgz . There-
fore, w z must solve the problem

curl curl w z − κ2εr(x )w z = 0 in B ,

ν × curlw z − λSw z ,T = ν × curlE e(·, z , q)
−λSE e,T (·, z , q) on ∂B ,

(4.5)
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where the last equation comes from the fact that w0z satisfies the third equation of
(3.5). In addition,

w z = vgz
+ ws

z in R3 . (4.6)

As for the Helmholtz case (c.f. [5]), the unique solution of (4.5) (provided that
λ is not a Stekloff eigenvalue for fixed κ2), in general cannot be decomposed of the
form (4.6) with vgz

being a Herglotz function. However according to Lemma 4.1 w z

can be decomposed as w z (x ) = w i
z (x ) + ws

z (x ) for x ∈ B where w i
z ∈ H (curl, B)

satisfies Maxwell’s equations in B, and ws
z ∈ H loc(curl,R3) is a radiating solution

to

curl curl ws
z − κ2εr(x )ws

z = κ2(εr(x )− 1)w i
z in R3 ,

lim
r→∞

(usz × x − rws
z ) = 0 ,

where usz := (1/iκ) curlws
z . Note that 1 − εr is supported inside B. Hence the

kernel g of the Herglotz function vg such that vg approximates the above w i
z in the

H (curl, B) norm (c.f. [8]) satisfies

‖FSg −E e,∞(·, z , q)‖L2
t (S2) < ε.

Let us define the following space

H inc(curl, B) := {u i ∈ H (curl, B) : curl curlu i − κ2u i = 0} .

Notice that the operator FS : L2
t (S2) → L2

t (S2) can be written as FSg = Bvg

where B : H inc(curl, B)→ L2
t (S2) is defined as

B = CwD − Cw0

with Cw0
: H inc(curl, B)→ L2

t (S2), v i 7→ Cw0
(v i) := w0,∞ with w0,∞ being the far

field patters of ws
0 that solves

curl curl ws
0 − κ2ws

0 = 0 in R3 \B ,

ν × curlws
0 − λS ws

0,T = −ν × curl v i + λS v iT on ∂B ,

lim
r→∞

((1/iκ) curl ws
0 × x − rws

0) = 0 ,

D : H inc(curl, B)→ L2(D), v i 7→ D(v i) := κ2(1− εr)v i, and Cw : L2(D)→ L2
t (S2),

f 7→ Cw (f ) := w∞ where w∞ is the far field patters of ws that solves

curl curl ws
z − κ2εr(x )ws

z = f in R3 ,

lim
r→∞

((1/iκ) curl ws
z × x − rws

z ) = 0 .
(4.7)

By construction we have that

Bv i = E e,∞(·, z , q) , z ∈ B

has a solution which is v i := w i
z .

Notice that the operator B clearly is a compact operator since the solution oper-
ators Cw0

and Cw are bounded and compact and D is bounded.
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As a consequence of the previous discussion, we conclude the following theorem.
Theorem 4.2. Assume that λ is a not Stekloff eigenvalue and let z ∈ D. Then,

for every ε > 0 there exists a gzε ∈ L2
t (S2) that satisfies

lim
ε→0
‖FSgzε −Ee,∞(·, z, q)‖L2

t (S2) = 0 (4.8)

such that limε→0 ‖vgzε − vi‖curl,B = 0 and hence ‖vgzε‖curl,B is bounded as ε → 0,
where vgzε is the Herglotz wave function with kernel gzε.

Now we focus on providing a method to compute Stekloff eigenvalues from far
field measured scattering data at a given fixed frequency κ. To this end, first we need
to introduce the following technical result.

Lemma 4.3. For all z ∈ B, q ∈ R3 and for all regular function u, we have∫
∂B

curlu(x) · ν(x)×Ee(x, z, q) dsx

= iκq · ∇zdiv z

∫
∂B

curlu(x)× ν(x) Φκ(x, z) dsx

+ iκq ·
∫
∂B

Φκ(x, z) curlu(x)× ν(x) dsx

and∫
∂B

ν(x)× u(x) · curlx Ee(x, z, q) dsx = iκq · curlz

∫
∂B

ν(x)× u(x) Φκ(x, z) dsx .

Proof.
Let z ∈ B and q ∈ R3. First, from the equality curl curl = −∆ + ∇div , we

remark that

curlx curlx(q Φκ(x , z )) = −∆x (q Φκ(x , z )) +∇xdiv x (q Φκ(x , z ))

= κ2 q Φκ(x , z ) +∇xdiv x (q Φκ(x , z ))
(4.9)

and

curlx curlx curlx (q Φκ(x , z )) = κ2 curlx (q Φκ(x , z )) . (4.10)

In addition, it is easy to prove that

∇xdiv x (qΦκ(x , z )) = ∇x∇xΦκ(x , z ) q and ∇x∇xΦκ(x , z )t = ∇z∇zΦκ(x , z ).
(4.11)

From (4.3), (4.9) and (4.11) we have∫
∂B

curlu · ν ×E e dsx

=
i

κ

∫
∂B

curlu(x ) · ν(x )× curlx curlx (q Φκ(x , z ))dsx

= iκ

∫
∂B

curlu(x ) · ν(x )× q Φκ(x , z ) dsx

+
i

κ

∫
∂B

curlu(x ) · ν(x )×∇xdiv x (q Φκ(x , z )) dsx

= iκ q ·
(∫

∂B

Φκ(x , z ) curlu(x )× ν(x ) dsx

+
1

κ2
∇zdiv z

∫
∂B

curlu(x )× ν(x ) Φκ(x , z ) dsx

)
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which yields the first equality.
On the other hand, from the definition of E e (cf. (4.3)), (4.10) and

ν(x )× u(x ) · curlx (q Φκ(x , z )) = q · curlz (ν(x )× u(x )Φκ(x , z ))

we obtain the second equality.
Now we show that the term ‖vgz

ε
‖curl,B explodes when λ is a Stekloff eigenvalue.

Theorem 4.4. Assume that λ is a Stekloff eigenvalue and gzε ∈ L2
t (S2) satisfies

(4.8). Then ‖vgzε‖curl,B can not be bounded as ε → 0 for almost every z ∈ Bρ where
Bρ ⊂ D is an arbitrary ball of radius ρ.

Proof. Assume to the contrary that for some Bρ ⊂ D and all z ∈ Bρ, ‖v z
gε
‖curl,B

is bounded as ε → 0, i.e. up to a subsequence v z
gε converge weakly to a v i ∈

H inc(curl, B). By compactness of B we conclude that

lim
ε→0
‖Bvgz

ε
− Bv i‖L2

t (S2) = lim
ε→0
‖FSg z

ε − Bv i‖L2
t (S2) = 0 .

From here Bv i = E e,∞(·, z , q) and from the Rellich’s Lemma and the definition of B
we can conclude that w := ws + v i, where ws satisfies (4.7) with w i

z replaced by v i

satisfies (4.5). But from Lemma 4.1 and the Fredholm alternative, (4.5) is solvable if
and only if ∫

∂B

(ν × curlE e(·, z , q)− λSE e,T (·, z , q))wλ,T ds = 0 (4.12)

with wλ ∈ H (curl, B) satisfying

curl curl wλ − κ2εrwλ = 0 in B ,

ν × curlwλ − λSwλ,T = 0 on ∂B .
(4.13)

From the boundary condition satisfied by Swλ on ∂B and (3.2) we obtain that
(4.12) can be rewritten as follows:∫

∂B

(ν × curlE e(·, z , q) ·wλ,T −E e,T (·, z , q) · ν × curlwλ) ds = 0 , (4.14)

for all z ∈ Bρ and q ∈ R3.
Let G a function defined in R3 \B by

G(z ) =

∫
∂B

Φκ(x , z ) curl wλ(x )× ν(x ) dsx

+
1

κ2
∇zdiv z

∫
∂B

curlwλ(x )× ν(x ) Φκ(x , z ) dsx

− curlz

∫
∂B

ν(x )×wλ(x ) Φκ(x , z ) dsx .

Note that G is a radiating solution to Maxwell’s equations. From Lemma 4.3, (4.14)
is equivalent to iκq · G(z ) = 0, for all z ∈ Bρ and all q ∈ R3. As a consequence, using
the unique continuation principle, G = 0 in B. Hence, we obtain that ν × G− = 0
and ν × curl G− = 0 on ∂B, where, by the superscript + and −, we distinguish the
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limit obtained by approaching the boundary ∂B from R3 \ B and B, respectively.
Therefore if z → ∂B, the following jump relations (cf. [9, Theorem 6.12]) hold,

ν × G+ = −ν ×wλ and ν × curl G+ = −ν × curlwλ on ∂B . (4.15)

Combining (4.15) and the second equation of (4.13), we obtain

ν × curl G+ − λSG+T = −(ν × curlwλ − λSwλ,T ) = 0 on ∂B . (4.16)

Therefore, G is a radiating solution to Maxwell’s equations satisfying (4.16). Defining
H := (1/iκ)G and following the ideas in the proof of Theorem 3.2, we obtain that

Re

(∫
∂B

ν × G · H ds
)

= 0 ,

and from here and [9, Theorem 6.11], we conclude that G = H = 0 in R3 \ B. Then
ν×G+ = 0 and ν×curl G+ = 0 on ∂B and therefore, ν×wλ = 0 and ν×curlwλ = 0
on ∂B. Finally, the unique continuation principle let us conclude that wλ = 0 in B
which contradicts the fact that wλ is a eigenfunction.

5. Numerical experiments.

5.1. Detection of modified Stekloff eigenvalues. We start by showing that
for two simple scatterers it is possible to detect a few modified Stekloff eigenvalues
from the far field pattern even at low frequency. In particular all results are computed
using κ = 1 so that the wavelength of light in the exterior is 2π.

For the two domains (a unit sphere and a unit cube) we computed multistatic
scattering data for several incoming waves using quadratic conforming edge finite
elements and the Perfectly Matched Layer (see for example [13]) provided by the
Netgen/NGSolve package [16]. For both the penetrable scattering problem (1.1)-
(1.2) and the modified Stekloff problem (3.3) we used quadratic edge elements and
a spherical PML, and approximate curved boundaries or interfaces by fifth order
polynomials. For the modified Stekloff problem we used cubic H1 conforming elements
on the surface of the unit sphere ∂BR to implement S (see the upcoming discussion
of the modified Stekloff eigenvalue problem).

In both cases we used a requested mesh size of 2π/(12k
√
εr) from Netgen in each

subdomain of the problem (we take εr piecewise constant). The far field pattern is
computed using the procedure from [13] implemented in Python.

The incoming wave directions and measurement directions are taken to be the
vertices of a finite element mesh on S2 computed by Netgen using requested mesh size
h = 0.4 (89 incoming waves) or h = 0.3 (159 incoming waves). The far field equation
(4.4) is then approximated by quadrature using the nodes of the surface grid on S2
as quadrature points. Two independent polarizations are chosen for each incident
direction resulting in a far field matrix FS approximating FS defined in (3.4) of size
178×178 or 318×318.

Then the discrete far field equation

FS~g = ~b

approximating (4.4) is solved for each λ by Tikhonov regularization using

~g = (FHF + αI)−1(FH~b)
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Fig. 5.1. Average norm of the discrete approximation to gz against Stekloff parameter λ. Top
row: 89 incoming waves. Bottom row: 159 incident waves. Left column: εr|D = 2. Right column:
εr|D = 4. Stars mark exact values of the Stekloff eigenvalues.

where FH is the conjugate transpose of F, α = 10−8 and ~b depends on z and the
artificial polarization q (see [5, 7] for more details on the discretization and solution
of the discrete problem). This part of the study was performed in Matlab.

We use 10 randomly chosen points z in a cube of side length 1/5 centered at
the origin and all three unit vectors for polarization. This results in 30 discrete
approximations to ~g and we average these to produce the approximate results shown
in Fig. 5.1 and Fig, 5.2.

The results in Fig. 5.1 show the averaged norm of ~g against λ for the unit sphere
in which εr = 2 or εr = 4 (the second case is a 3D analogue of results in [5]). We also
tested two surface triangulations on S2. When εr = 2 we can detect three eigenvalues
and a fourth less accurately. For εr = 4 only two eigenvalues in the range being
analyzed could be detected. There was little improvement moving to the finer surface
mesh, and so we did not use that mesh again.

In Fig. 5.2 we show corresponding results for the unit cube as scatterer, but using
the unit sphere for the modified Stekloff problem (i.e. ∂B is the surface of the unit
sphere) so that the outer boundary is smooth. Results are broadly similar to the case
of the sphere. In both cases four modified Stekloff eigenvalues can be approximated.

5.2. Modified Stekloff eigenvalues. Next we show that modified Stekloff
eigenvalues are effected both by bulk changes in the permittivity of the scatterer
as well as by more localized changes. We do this by computing modified Stekloff
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Fig. 5.2. Average norm of the discrete approximation to gz against Stekloff parameter λ for
scattering by a cube. Left: εr|D = 2. Right: εr|D = 4. Stars mark exact values of the Stekloff
eigenvalues.

eigenvalues directly in the following way.
First we describe in detail our procedure for computing modified Stekloff eigen-

values. We note that for the modified Stekloff eigenvalue problem (3.7), because

SwT ∈ H1/2(∂B), Costabel’s regularity result shows that w ∈ H 1/2+s(∂B) for some
s > 0 and so wT ∈ L2

t (∂B). It thus suffices to seek solutions w ∈ X (B). In this case,
for wT ∈ L2

t (∂B) the operator S has a variational definition. In particular

SwT = wT +∇∂Bφ

where φ ∈ H1(∂B) satisfies∫
∂B

(wT +∇∂Bφ) · ∇∂Bψ dsx = 0,

∫
∂B

φdsx = 0,

for all ψ ∈ H1(∂B). Thus

λ

∫
∂B

(wT +∇∂Bφ) · ∇∂Bψ dsx = 0,

∫
∂B

φdsx = 0.

Subtracting this equation from (3.7) and expanding S we obtain the problem of finding
(w , φ) ∈ X (B)×H1(∂B)/C, w 6= 0 and λ ∈ R such that∫
B

curl w ·curl z dx − κ2
∫
B

εr(x )w ·z dx = −λ
∫
∂B

(wT+∇∂Bφ)·(zT+∇∂Bψ) dsx ,

for all (z , ψ) ∈ X (B) × H1(∂B)/C. This formulation would degenerate badly if
λ = 0 is a generalized Stekloff eigenvalue, or equivalently if κ2 is an interior Neumann
eigenvalue for Maxwell’s equations. We shall assume that such values of κ are excluded
from our study.

In practice we add a small regularizing term in place of the constraint on the
average value to guarantee that φ is well defined and solve the problem of finding
(w , φ) ∈ X (B)×H1(∂B), w 6= 0, and λ ∈ R such that∫

B

curl w · curl z dx − κ2
∫
B

εr(x )w · z dx

= −λ
∫
∂B

[
(wT +∇∂Bφ) · (zT +∇∂Bψ) + γφψ)

]
dsx ,
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for all (x , ψ) ∈ X (B) × H1(∂B) where γ > 0 is chosen, in our calculations, to be
10−8.

After discretization by curl conforming finite elements for z and H1 conforming
elements for φ we have the block matrix problem(

A 0
0 0

)(
~z
~φ

)
= −λ

(
Mcurl B
B∗ MH1

)(
~z
~φ

)
where A is the usual Maxwell matrix with natural boundary conditions, and ~z and
~φ are vectors of degrees of freedom. Then since λ 6= 0, as long as we are not at an
interior Maxwell eigenvalue and the mesh is fine enough,

~φ = −M−1H1B
∗~z

and we arrive at a more standard Stekloff type eigenvalue problem

A~z = −λ(Mcurl −BM−1H1B
∗)~z

This still involves interior unknowns but then we can further decompose into interior
and boundary degrees of freedom ~z = [~zbnd, ~zint] then

~zbnd = −λ[A−1(Mcurl −BM−1H1B
∗)~zbnd]bnd

This reduces to a large dense eigenvalue problem involving only boundary degrees of
freedom. Unfortunately this algorithm doesn’t scale well. For the upcoming example
of a sphere when h = 0.25 the dense matrix A−1(Mcurl−BM−1H1B

∗) (using quadratic
edge elements) is 900×900 while when h = .125 it is 11, 700× 11, 700.

We solve the eigenvalue problem using quadratic full degree edge elements to
approximate X (B) and cubic Lagrange elements to approximate H1(∂B) (tests with
quadratic Lagrange elements showed a failure to converge while quartic Lagrange
elements showed little improvement on the computed eigenvalues as is to be expected
from consideration of the discrete de Rham diagram [13]). In addition we use curved
elements of degree 5 to approximate the boundary.

To check convergence of our method we first computed the modified Stekloff
eigenvalues for the unit sphere with κ = 2 and εr = 1 as shown Table 5.1. The
reported mesh size h is the maximum element size requested from Netgen. The
actual mesh size may differ from this. Considering the 4th and 5th eigenvalue we
see that the order of convergence is O(h) and O(h5/2) respectively and this is lower
than we might expect for a quadratic edge element approximation to a self adjoint
eigenvalue problem. However this problem involves boundary and interior terms and
so the actual optimal rate is unknown. This troubling issue needs to be investigated
further.

Now we can investigate changes in eigenvalues for the unit cube. First we consider
how changes to the bulk permittivity εr in D change the Stekloff eigenvalues. We
simply compute the modified Stekloff eigenvalues for the cube inside the unit sphere,
and for the cube alone, as εr is varied. In these cases their are obvious multiple
eigenvalues and since the shape of the scatterer is unchanged this multiplicity persists
for each εr. So we show the average of the eigenvalues in each cluster. Results are
shown in Fig. 5.3. Two things are evident: first, over this range of parameters, the
change appears linear. We have no explanation for this! The second is that the
eigenvalues for the cube alone are much more sensitive to changes in εr than for the
cube in the sphere.
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Exact Eigenvalue Computed Eigenvalue Multiplicity
h = 0.5 h = 0.25 h = 0.125

-1.0884 -1.0920 -1.0886 -1.0884 3
-2.3880 -2.3993 -2.3884 -2.3880 5
-3.5363 -3.5714 -3.5392 -3.5364 7
-4.6257 -4.8882 -4.6416 -4.6264 9
-5.6857 -6.5180 -5.7370 -5.6885 11
-6.7290 -8.5890 -6.8530 -6.7367 13

Table 5.1
Modified Stekloff eigenvalues for the unit sphere, k = 2 and εr|D = 1.
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Fig. 5.3. Relative change in the Modified Stekloff eigenvalues as εr changes. Left: Unit cube
inside the unit sphere. Right: Unit cube alone

Our second example in Fig. 5.4 shows changes in the first five eigenvalues (with no
averaging) as a function of the radius of a spherical inclusion positioned at (x, y, z) =
(0.25, 0, 0). The inclusion is assumed to have εr = 1 inside. Again the sensitivity of
the eigenvalues to the presence of this inclusion is better for eigenvalues of the unit
cube alone, rather than the cube inside the unit sphere.

6. Conclusion. While much more numerical testing on realistic geometries is
need, the results here suggest that modified Stekloff eigenvalues can be detected from
far field data. In addition these eigenvalues change as the internal permittivity of the
scatter changes either due to bulk changes of more localized changes. However the
sensitivity of the eigenvalues to changes in the scatterer is decreased when the surface
∂B 6= ∂D.

The major open problem suggested by this study is whether standard Stekloff
eigenvalues exist. If they do exist it should be possible to detect them from scattering
data. In either case (Stekloff or modified Stekloff) improved understanding of the
convergence of the discrete eigenvalue problem and better methods for computing the
eigenvalues would allow a more complete study.
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