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ELENA TORFSE, AND PETER A. VANROLLEGHEME

Abstract. In [E. Torfs et al., Water Sci. Technol., in press] a new unified framework to model
settling tanks in water resource recovery facilities was proposed providing a set of partial differ-
ential equations (PDEs) modelling different settling unit processes in wastewater treatment such
as primary and secondary settling tanks (PSTs and SSTs). The extension to a multi-class frame-
work to deal with the distributed properties of the settling particles leads to a system of nonlinear
hyperbolic-parabolic PDEs whose solutions may contain really sharp transitions. This necessitates
the use of a consistent and robust numerical method to obtain well-resolved and reliable approx-
imations to the PDE solutions. The use of implicit-explicit Runge-Kutta (IMEX-RK) schemes,
along with the weighted essentially non-oscillatory (WENO) shock-capturing technology for the
discretization of the set of equations, is advocated in this work. The versatility of the proposed
unified framework is demonstrated through a set of numerical examples for batch settling occuring
in both PSTs and SSTs, along with the efficiency and reliability of the numerical scheme.

Keywords
multi-class kinematic flow model, wastewater treatment, convection-diffusion equation, implicit-
explicit Runge-Kutta scheme, settling velocity distribution

1. Introduction

1.1. Scope. Several unit processes in water resource recovery facilities (WRRFs), formerly known
as wastewater treatment plants (WTTPs), rely on settling as a separation method. These include
primary and secondary settling tanks but also other processes such as sequencing batch reactors
and grit chambers. According to the current state of the art, each of these unit processes is
modelled in its own way and several models (ranging from very simplified to more fundamentally
supported) are available for the various unit processes [2,6,25,26,32]. The reason for the choice of a
particular model for each unit process lies in the variability of the settling suspensions (ranging, for
example, from wastewater with approximately 0.1 g/l total suspended solids in PSTs to activated
sludge with approximately 3 g/l total suspended solids in SSTs). Depending on the concentration
of the suspension and its composition, different settling regimes occur. Settling can be either
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2 BÜRGER, DIEHL, MARTÍ, MULET, NOPENS, TORFS, AND VANROLLEGHEM

discrete (at low concentrations where particles settle as individuals), hindered (in more concentrated
suspensions where particles influence each other’s settling and drag each other along) or compressive
(at high concentrations where particles form a concentrated network and the stress developed by
the network hampers further thickening), see [20].

Because the settling behaviour is so clearly influenced by the concentration of the suspension,
settling models often describe the settling velocity as a function of concentration alone. However,
the solid components in settling suspensions show a number of distributed properties that will also
influence the settling behaviour. Examples of such distributed properties are size, shape, density
or porosity. These distributed properties lead to a distributed settling velocity and changes in
the distribution of these properties (for example due to different operational or environmental
conditions) will lead to changes in the settling behaviour. Experimental evidence and examples of
the effect of changes in size, shape and density distributions on the different settling regimes can
be found in [34].

The influence of these distributed properties cannot be captured by a model that only considers
the local concentration of the suspension. Advances in this domain have been made by Bachis
et al. [2] who developed a model that considers distributions in settling velocity to describe discrete
settling in PSTs. This concept was further extended to encompass also hindered and compression
settling by Torfs et al. in [34] leading to a unified framework that is able to capture variability in
distributed properties and their effect on all three settling regimes and that can thus model different
settling unit processes. Implementation of this new framework requires appropriate numerics to
ensure reliable and robust solutions. This is the focus of the current work.

1.2. Related work. From the mathematical point of view, the extension to a multi-class scenario
leads us to a system of non-linear convection-diffusion equations of the type

∂X

∂t
+
∂f(X)

∂z
=

∂

∂z

(
B(X)

∂X

∂z

)
, (1.1)

where X = (X1, . . . , XN )T is the sought solution depending on the spatial position z and time t,
Xi = Xi(z, t) the concentration of the class i, i = 1, . . . , N , where N is the number of classes
considered, f(X) = (f1(X), . . . , fN (X)) is a vector of convective flux density functions modelling
the settling of the sludge and B(X) is a given N × N matrix expressing the diffusive correction,
in this case, the solids compressibility. Other possible phenomena arising in continuously operated
units such as advection (bulk movement of the suspension) and dispersion, are not considered in
this work. Such effects will, however, not change the principal mathematical structure of (1.1).
This system has to be supplied with initial and boundary conditions.

It is well known that (1.1) is a degenerate parabolic system. When compressibility effects are
neglected, B(X) = 0, the settling effects are dominant and (1.1) is first-order hyperbolic, imply-
ing that discontinuities or sharp gradients are expected to develop. This property calls for specific
techniques for the numerical simulations. High resolution shock-capturing finite difference weighted
essentially non-oscillatory (WENO) schemes have been extensively used for the numerical treat-
ment of hyperbolic one-dimensional multi-species flow models in recent years, especially in the area
of polydisperse sedimentation of suspensions [7,8,12,24] and multi-class vehicular traffic [18,37,38].
These schemes combine an explicit time discretization [29, 30] with a high-order procedure for
the spatial discretization of the convective term ∂f(X)/∂z, involving the use of the character-
istic information of the system [19] and the WENO reconstruction technique [22, 23, 28]. Such
sophisticated techniques ensure obtaining precise numerical approximations, accurately resolving
the shocks arising and avoiding the spurious oscillations that otherwise often appear.
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When diffusion terms become nonzero and the system (1.1) becomes parabolic, the stability
condition defined in the hyperbolic case changes into a restrictive condition that diminishes the
time step size dramatically, making the use of explicit schemes really inefficient, at least for the
time discretization of the diffusive part. As the implicit treatment of the convective term is compli-
cated, because of the nonlinear scheme with possibly discontinuous derivatives used for its spatial
discretization, implicit-explicit (IMEX) schemes [1] emerge as an interesting alternative in this con-
text, combining an explicit treatment for the time discretization of the convective terms with an
implicit treatment of the diffusive ones. See also [16] for a discussion of this point.

The IMEX framework has been applied to extend the work done with high-resolution shock
capturing schemes for hyperbolic systems to hyperbolic-parabolic systems in several areas: poly-
disperse sedimentation of suspensions [4, 5], multi-class vehicular traffic [4, 10], sedimentation in
porous media [17,21] among others and has been proven to be more efficient than explicit schemes
in most of them.

1.3. Outline of the paper. In Section 2, we derive the model equations for the multi-class
concentration-driven model for the treatment of wastewater first introduced in [34], detailing the
simplifications and definitions for the constitutive functions considered in this work. In Section 3
we briefly review the numerical technique that we apply, paying attention to the spatial and tem-
poral discretizations. In Section 4 we show numerically that the results obtained by the multi-class
concentration-driven model proposed in [34] are consistent with those obtained by the reference
model, the Bürger-Diehl model [6] (“BD model” henceforth). Within the multi-class model the
settling behaviour does not only depend on the total initial concentration but also on the settling
velocity distributions and the initial concentrations of the classes. It could be seen that the pro-
posed numerical technique provides a robust and efficient tool to numerically solve this system of
PDEs when applied to different unit processes. Finally, in Section 5 we present some conclusions.

2. Mathematical model

2.1. Balance equations. In [34], a unified description for the settling processes taking place in
both PSTs and SSTs was proposed as an extension of the existing BD framework for SSTs [6].
Building on the idea that the distributed properties of the sludge can be captured by dividing the
total sludge concentration into a number of particle classes, based on settling velocity distributions
in this case, a system of conservation PDEs modelling the changes in concentration for all classes
is introduced in [34]. This system is of the form

∂Xi

∂t
= − ∂

∂z
Fi

(
X,

∂X

∂z
,Xi, z, t

)
+
Qf(t)Xf,i(t)

A
δ(z) + ri(Qf , Xi, X,Cchem), i = 1, . . . , N, (2.1)

where Xi = Xi(z, t) is the concentration of particle class i, depending on depth z and time t,
X is the total sludge concentration defined as the sum of the concentrations of all classes, X =
X1 + · · · + XN , Fi is the flux density function for class i, the source term with the delta function
δ(z) models the incoming feed flow at the feed inlet, with Qf the incoming feed flow rate, Xf,i the
concentration of class i in the feed flow, and A the constant cross-sectional area. The reaction terms
ri(Qf , Xi, X,Cchem) describe flocculation/break-up processes that depend mainly on the incoming
flow rate Qf(t) but can also be influenced by the presence of chemicals represented by Cchem.

An important novelty of the model presented in [34] is a distributed flux function that describes
distributed settling behaviour over the entire concentration interval (going from discrete settling at
very dilute conditions to hindered and compression settling at more concentrated states).

We consider here a batch sedimentation case where the focus is on the settling flux and neither
bulk flows nor incoming feed flow or reactions between classes are considered. Equation (2.1) can
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Figure 1. Settling velocities in function of concentration for different classes com-
puted using both Vesilind hindered settling function [36] (left) and the rational
function by Diehl [15] (right).

then be simplified and rewritten as follows:

∂Xi

∂t
= − ∂

∂z
Fi

(
X,

∂X

∂z
,Xi, z, t

)
, i = 1, . . . , N, (2.2)

where the flux functions Fi are defined by

Fi

(
X,

∂X

∂z
,Xi, z, t

)
=

(
vdhs,i(X)− dcomp,i(X)

X

∂X

∂z

)
Xi, i = 1, . . . , N.

2.2. Constitutive functions. The following “discrete-hindered settling” velocity function that
models both the distributed dynamics for discrete settling and the decreasing distributed behaviour
during hindered settling, was proposed in [34]:

vdhs,i(X) =

{
v0,i for X < Xtrans,

v0,iv(X −Xtrans) for X ≥ Xtrans,
i = 1, . . . , N. (2.3)

The parameter Xtrans ≥ 0 represents the transition concentration between discrete and hindered
settling, v0,i is the maximum discrete settling velocity of phase i and v(X) is given by a hindered
settling function, for example by the expression

v(X) = e−rVX , rV > 0 (2.4)

due to Vesilind [36]. At concentrations X < Xtrans, the settling behaviour in each class i is governed
by its discrete settling velocity v0,i while when the concentration increases and exceeds Xtrans, the
settling velocity decreases as the particles start to hinder each other’s settling behaviour. Discrete
settling is modelled by hindered settling functions satisfying v′(0) = 0. Hence, if this is already
satisfied, e.g. by the rational function by Diehl [15], then a smooth transition between discrete
and hindered settling is obtained without the parameter Xtrans. An example of settling velocities
computed using both Vesilind’s and Diehl’s hindered settling function can be seen in Figure 1.
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The effect of sediment compressibility is traditionally modeled by a function dcomp depending on
the total concentration that satisfies

dcomp(X)

{
= 0 for 0 ≤ X ≤ Xcrit,

> 0 for X > Xcrit,
(2.5)

where Xcrit is a critical concentration (defined below in (2.8)) at which the solid particles touch each
other and start to form a porous network [14, 27]. The functional form of dcomp,i, for i = 1, . . . , N
can be defined by

dcomp,i(X) = vdhs,i(X)
ρXσ

′
e(X)

g(ρX − ρL)
, (2.6)

where ρX and ρL are the solid and liquid mass densities respectively, g is the acceleration of gravity,
and σ′e(X) := dσe(X)/dX is the derivative of the so-called effective solid stress function σe = σe(X).
This function is assumed to satisfy

σ′e(X)

{
= 0 for 0 ≤ X ≤ Xcrit,

> 0 for X > Xcrit,

which ensures that dcomp,i indeed has the property (2.5) for each i = 1, . . . , N .
We can rewrite (2.2) as

∂Xi

∂t
+

∂

∂z
(vdhs,i(X)Xi) =

∂

∂z

(
dcomp,i(X)

X
Xi
∂X

∂z

)
, i = 1, . . . , N, (2.7)

obtaining a system of convection-diffusion equations written in the same fashion as (1.1) with the
flux density functions given by

fi(X) = vdhs,i(X)Xi, i = 1, . . . , N,

and the diffusion matrix B(X) = (Bij(X))i,j=1,...,N , where

Bij(X) =
dcomp,i(X)

X
Xi, i, j = 1, . . . , N,

with the functions vdhs,i(X) and dcomp,i(X) defined by (2.3) and (2.6), respectively.

2.3. Mathematical properties of the governing model. As the functions vdhs,i(X) depend
only on X, applying the secular equation analysis performed in [19], we can establish the hyper-
bolicity of the system, when B(X) = 0, and that the eigenvalues of the Jacobian matrix of the
system interlace with the velocities vdhs,i [19]. This property is a key tool for the application of
high resolution shock-capturing WENO schemes to numerically solve those systems. With respect
to the diffusion matrix, when B(X) 6= 0, it is a rank-one matrix, with N − 1 zero eigenvalues and
a non-zero eigenvalue

∑
i dcomp,iXi/X > 0, for X > Xcrit.

The specific concentration above which the sludge forms a compressible network has been shown
to depend on the composition of the suspension [14,34]. Therefore, in [34] it is proposed to account
for polydispersity in the definition of Xcrit as follows: assume that each particle class i is associated
with an individual critical density Xcrit,i, which may represent, for instance, the critical concentra-
tion in case a monodisperse sample of this class was settling. Then if Xcrit := (Xcrit,1, . . . , Xcrit,N )T,
the total critical concentration can be defined as the following convex combination of the critical
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concentrations of the classes:

Xcrit := Xcrit(X) :=


max{Xcrit,1, . . . , Xcrit,N} if X = 0,
N∑
i=1

Xi

X
Xcrit,i =

1

X
XTXcrit if X > 0.

(2.8)

Of particular interest is the critical manifold

Mcrit := {X ∈ RN : X1, . . . , XN ≥ 0, X = Xcrit(X)},

with X = X1 + · · · + XN , which separates the phase space into two disjoint regions where the
PDE system is hyperbolic and parabolic, respectively. By (2.8) we have X ∈ Mcrit if and only if
J(X) = 0 and X 6= 0, where

J(X) := X2 −XTXcrit. (2.9)

Clearly, J(X) < 0 for small |X| > 0, X ≥ 0, and J(X) ≤ 0 and J(X) > 0 correspond to the
regions where dcomp,i(X) = 0 and dcomp,i(X) > 0, respectively.

To illustrate that Mcrit separates a subregion of {X ∈ RN : X1, . . . , XN ≥ 0}, that is close to
the origin from another region that is farther away, let e = (1, . . . , 1)T, so that (2.9) can be written
as J(X) = XTeeTX −XTXcrit. This is a quadratic form with the Hessian matrix 2eeT, which is
positive semidefinite. Hence J is a convex function and the set K := {X ∈ RN : X ≥ 0, J(X) ≤ 0}
is convex by standard arguments. (If X,Y ∈ K, 0 < a < 1 and Z := aX + (1 − a)Y , then it
follows that Z ≥ 0 and J(Z) = J(aX + (1− a)Y ) ≤ aJ(X) + (1− a)J(Y ) ≤ 0; hence Z ∈ K.)

To visualize this manifold, we consider N = 2. From J(X) = 0, we have that

Y1 = −Y2 +
r

2
+

√
Y2(1− r) +

r2

4
, (2.10)

where Yi := Xi/Xcrit,2, i = 1, 2 and r := Xcrit,1/Xcrit,2. Consequently, the only relevant parameter
is 0 ≤ r ≤ 1. Figure 2 shows the corresponding critical manifolds, that is, solutions of (2.10).

3. Numerical method

In order to apply IMEX schemes to numerically compute accurate approximations to the solution
of this convection-diffusion system of equations, first of all we define a semi-spatial discretization of
the system setting a computational mesh on the interval [0, L], with L the height of the vessel, by
defining the grid points zj = (j− 1

2)∆z for j = 1, . . . ,M with ∆z = L/M the uniform grid spacing,
∆z = zj+1 − zj for j = 1, . . . ,M .

3.1. Spatial discretization. Following the spatial discretization proposed in [10], we can dis-
cretize (2.7) in space as

dXi,j(t)

dt
:= − 1

∆z
∆−fi,j+1/2 +

1

∆z
∆−gi,j+1/2, i = 1, . . . , N, j = 1, . . . ,M,

where ∆−gl,k = gl,k − gl,k−1, the first term is the discretization of the convective term ∂f(X)/∂z
and the second part is the discretization of the diffusive term (∂/∂z)(B(X)∂X/∂z).

For the discretization of the convective term we utilize a component-wise fifth-order WENO
(WENO5) approximation [7,37]. Component-wise finite differences WENO5 schemes compute the
numerical fluxes fi,j+1/2 ≈ fi(zj+1/2, t) at the mesh mid-points zj+1/2 as follows:

fi,j+1/2 = R+
(
f+
i (Xj−2), . . . , f+

i (Xj+2), zj+1/2

)
+R−

(
f−i (Xj−1), . . . , f−i (Xj+3), zj+1/2

)
,
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Figure 2. Critical manifolds Mcrit for r = Xcrit,1/Xcrit,2 = 0, 1/6, 1/3, . . . , 1 cal-
culated from (2.10). In each case, the region enclosed by Mcrit and the X1- and
X2-axes corresponds to J(X) ≤ 0, that is, to dcomp = 0, hence only discrete or
hindered settling are present.

where X denotes the total solids concentration, R± denotes the upwind-biased WENO5 reconstruc-
tion procedure and the functions f±i = 1

2(fi ± αXi) define a global Lax-Friedrichs flux splitting for
each i = 1, . . . , N . The numerical viscosity α, defined as a proper upper bound for characteristic
velocities in the system being solved, can be numerically computed using the interlacing prop-
erty [19]. For more detailed information about those schemes, see [22,23,28–30] and the references
therein.

For the discretization of the diffusive part we define an approximate diffusive flux at zj+1/2, that
is

gj+1/2 ≈ B(X)
∂X

∂z

∣∣∣∣
z=zj+1/2

, gj+1/2 = (g1,j+1/2, . . . , gN,j+1/2)T,

as follows:

gj+1/2 :=
1

2∆z

(
B(Xj+1) + B(Xj)

)
∆−Xj+1, j = 1, . . . ,M,

which gives a second-order approximation for the diffusive term of the form

1

∆z
∆−gj+ 1

2
:=

1

2∆z2

((
B(Xj+1) + B(Xj)

)
Xj+1 −

(
B(Xj+1) + 2B(Xj) + B(Xj−1)

)
Xj

+
(
B(Xj) + B(Xj−1)

)
Xj−1

)
, j = 2, . . . ,M − 1.

For j = 1 and j = M this formula has to be modified to take into account the boundary conditions.
The zero-flux boundary conditions can be easily discretized by setting

fi,k+1/2 − gi,k+1/2 = 0, i = 1, . . . , N, k = 0,M,
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and we get

dX1(t)

dt
= − 1

∆z
f3/2 +

1

2∆z2

(
B(X2) + B(X1)

)
(X2 −X1), (3.1)

dXM (t)

dt
=

1

∆z
fM−1/2 −

1

2∆z2

(
B(XM−1) + B(XM ))(XM −XM−1). (3.2)

Let X ∈ RNM be defined by XT := (XT
1 , . . . ,X

T
M )T. One can rewrite this semi-discretization

in a matrix/vector form as

dX
dt

= − 1

∆z
(∆−f)(X ) +

1

∆z2
B(X )X , (3.3)

where B(X ) is an (NM)× (NM) block tridiagonal matrix whose blocks Bij are N by N matrices
generally given by

Bi,i(X ) =
1

2∆z2

(
B(Xi+1) + 2B(Xi) + B(Xi−1)

)
, i = 2, . . . ,M − 1,

Bi,i−1(X ) = Bi−1,i(X ) = − 1

2∆z2

(
B(Xi) + B(Xi−1)

)
, i = 2, . . . ,M,

with B1,1(X ) and BM,M (X ) properly defined taking into account the boundary condition discretiza-
tions (3.1)–(3.2).

3.2. Time discretization. For the time discretization we use the linearly implicit IMEX-RK
scheme (LI-IMEX-RK) proposed in [4]. Linearly implicit methods were developed as an alternative
to non-lineraly implicit IMEX-RK schemes (NI-IMEX-RK). In NI-IMEX-RK schemes the whole
diffusive term B(X )X is treated implicitly requiring the resolution of at least one non-linear system
of N by M scalar equations per time step. To solve those systems it is necessary to use a sophis-
ticated solver for non-linear equations which can be really expensive in terms of computational
time.

In LI-IMEX-RK schemes, the appearance of non-linear systems is avoided by considering the
term B(X ) in the product B(X )X as non-stiff while X is considered stiff. The semi-discrete
formulation (3.3) can then be written as

dX
dt

= − 1

∆z
(∆−f)(X ∗) +

1

∆z2
B(X ∗)X ,

where X ∗ is treated explicitly as an argument of f and B while X is implicit in the diffusive part.
The simplest first-order LI-IMEX-RK scheme for (3.3) is the one-step scheme that can be written

as follows (this scheme will, however, not be used herein):

X n+1 = X n − 1

∆z
(∆−f)(X n) +

1

∆z2
B(X n)X n+1.

As it can be seen, the numerical solution can be obtained by solving a convection-diffusion equation
with a linear diffusion term in which the matrix function B is given.

4. Numerical examples

In all examples we assume that the transition concentration between discrete and hindered
settling Xtrans in (2.3) is set to a constant value Xtrans = 1 kg/m3 and v(X) is defined by (2.4) with
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rV = 0.45 m3/kg [36]. The solid and liquid densities are ρX = 1050 kg/m3 and ρL = 998 kg/m3 [6],
respectively, and the acceleration of gravity is g = 9.81 m/s2. The effective solids stress chosen is

σe(X) =

{
0 for 0 ≤ X ≤ Xcrit,

α̃(X −Xcrit) for X > Xcrit,

where α̃ = 0.5 m2/s2.
For the simulations we assume that the particle classes are ordered such that

0 < v0,1 < v0,2 < · · · < v0,N ,

and we assume that if v0,i < v0,j , then Xcrit,i < Xcrit,j , following the idea that faster settling
particles would provide a denser packing before being subjected to the force of compression, due
to their less porous structure [34]. Specifically, the individual critical concentrations are proposed
to be

Xcrit,i = Xcrit,1 + (i− 1)
Xcrit,N −Xcrit,1

N − 1
, i = 2, . . . , N − 1,

where Xcrit,1 is the critical concentration of the slowest class and hence the one with the smaller
critical concentration, and Xcrit,N is the critical concentration of the fastest class, which has the
largest critical concentration. Note that when Xcrit,1 = Xcrit,N , then Xcrit,i = Xcrit,1 for i =
2, . . . , N − 1.

4.1. Experiment 1. To test the consistency of the multi-class model we compare the results
obtained with the multi-class model with just one class present with the results obtained with the
BD model. In Figure 3 we show the results obtained by both models using a mesh with M = 100
nodes. The critical concentration is set to Xcrit = 6 kg/m3 while Xtrans = 0 since the BD model
was designed only for the treatment of SST scenarios and does not acknowledge changes between
discrete and hindered setlling. As can be seen in Figure 3 the results obtained by both models are
very similar, even near discontinuities and the compression area, where the LI-IMEX-RK scheme
results present smoother transitions.

To further test the consistency of the multi-class model we consider two suspensions: one with
only a single class with initial concentration X0 settling with velocity v and another one with the
same total initial concentration as the first suspension but divided evenly between five classes, each
one settling with velocity v (thus creating five identical classes). In this case the individual critical
concentrations are Xcrit,i = 12 kg/m3 for i = 1, . . . , N . As expected the sum of the concentrations
of each class in the second suspension has the same settling behavior as the solids in the first
suspension, as shown in Figure 4, proving the consistency of the multi-class model.

4.2. Experiment 2. In this experiment we apply the multi-class model to simulate discrete settling
behaviour in a raw wastewater sample (as one would find in a PST). A batch experiment known
as ViCAs [11] can be used to investigate this type of settling behaviour. A ViCAs experiment
consists of a hanging column open at the bottom, where settled particles are captured as they exit
the column. The mass of settled particles recovered at the bottom as a function of time provides
a measure of the settling velocity distribution of the particles provided the total concentration is
kept so low that only discrete settling occurs.

To simulate this experiment, we consider a homogeneous suspension with total initial concentra-
tion X0 = 0.1 kg/m3 < Xtrans = 1 kg/m3 in a column of height 1 m, where z = 0 represents the top
of the column and z = 1 represents its bottom. The suspension consists of 10 classes of particles
with initial concentrations and velocities given by Table 1.



10 BÜRGER, DIEHL, MARTÍ, MULET, NOPENS, TORFS, AND VANROLLEGHEM

0 1 2 3 4 5 6 7 8 9

concentration [kg/m
3
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
e
p
th

 [
m

]
BD model
multi-class model

X
crit

0 1 2 3 4 5 6 7 8 9

concentration [kg/m
3
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
e
p
th

 [
m

]

BD model
multi-class model

X
crit

t = 5 min t = 15 min

4.5 5 5.5 6 6.5 7 7.5 8

concentration [kg/m
3
]

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

d
e
p
th

 [
m

]

BD model
multi-class model

X
crit

2.5 3 3.5 4 4.5 5 5.5 6 6.5

concentration [kg/m
3
]

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

d
e
p
th

 [
m

]

BD model
multi-class model

X
crit

Figure 3. Experiment 1: simulated concentrations [kg/m3] as function of nor-
malized vessel depth. BD model and multi-class approximate solutions (top) and
enlarged views (bottom) for times t = 5, 15 min.

Since X0 < Xtrans and the solids are not accumulating at the bottom of the vessel, the total
concentration will remain below the paramenter Xtrans in all the domain. In this regime, where
X < Xtrans, the model is linear, and no interaction between classes takes place, so the structure
forming between the bulk suspension at its initial composition and the supernatant clear liquid is
a fan of 10 contact discontinuities, one per class, propagating downwards at speeds v1,0 < v2,0 <
. . . < v10,0, where the discontinuity traveling at speed vk,0 separates a region that is void of class
k from a region in which class k is present at its initial concentration, as it can be seen in the
concentration profiles displayed in Figure 5.

In this figure we can see the concentration profiles for times t = 15 min, 1 h and 5 h and the
fraction of mass recovered from the vessel per class and per time step. As can be seen the different
classes are removed sequentially from the column depending on their initial velocities and no hin-
drance is in effect. For example, while the tenth class, the fastest, has completely left the column
after less than one minute, only 15% of the total mass of the slowest class has been removed from
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Figure 4. Experiment 1: comparison of the approximated solutions for the multi-
class model between one and five classes satisfying X1class =

∑5
i=1X5classes,i.

Experiment 2 Experiment 3

i v0,i [m/d] v0,i [m/s] X0,i [kg/m3] v0,i [m/d] v0,i [m/s]
1 0.5 5.78× 10−6 0.021 5 5.78× 10−5

2 2 2.31× 10−5 0.003 20 2.31× 10−4

3 7 8.10× 10−5 0.005 70 8.10× 10−4

4 15 1.73× 10−4 0.01 150 1.73× 10−3

5 30 3.47× 10−4 0.011 300 3.47× 10−3

6 50 5.78× 10−4 0.01 500 5.78× 10−3

7 80 9.25× 10−4 0.0125 800 9.25× 10−3

8 130 1.50× 10−3 0.0085 1300 1.50× 10−2

9 200 2.31× 10−3 0.007 2000 2.31× 10−2

10 450 5.20× 10−3 0.012 4500 5.20× 10−2

Table 1. Initial concentrations X0,i and velocities v0,i, in m/d and m/s, for Ex-
periments 2 and 3.

the vessel after five hours of settling. Hence, this fraction will likely not be removed in full-scale
PSTs where the typical residence time is approximately two hours.

In Figure 6 the simulated fraction of mass that is recovered from the vessel per time step is
shown. It can be seen that a large part of the present particles is recovered early in the experiment
(consisting of the faster settling classes and some slower settling particles present initially at the
bottom of the column). Slower settling particle classes take much longer to reach the bottom of
the column.

4.3. Experiment 3. In sharp contrast to PSTs where discrete settling is predominant, settling
conditions in SSTs are such that all three settling regimes may occur simultaneously at different
depths. This challenges the numerical method as transitions between different settling regimes
may create sharp changes in the concentration and settling velocity profile. Therefore, in this third
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Figure 5. Experiment 2: concentration of each class (left) and the fraction of
initial mass per class that has left the vessel (right) at times t = 15 min, 1 h, 5 h.

experiment, we simulate batch settling of activated sludge. The settling suspension is again divided
into 10 classes with initial velocities given by Table 1.
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Experiment 3a. In a first example, the total initial homogeneous concentration (X0 = 4 kg/m3)
is equally distributed over the different classes, i.e X0,i = 0.4 kg/m3, i = 1, . . . , 10, and the same
critical concentration is considered for each class Xcrit,i = 12 kg/m3, i = 1, . . . , 10.

Figures 7 and 8 show the concentration and velocity profiles for all classes throughout the settling
column at different settling times. Faster particle classes can be seen to accumulate at the bottom
early in the experiment, reaching the compression regime within t = 1 min. The discrete settling
region is made up of only the slower settling classes since their settling velocities causes them
to remain in the upper region where low concentrations prevail. In the hindered settling region
particles of several classes are settling together which corresponds to the situation in which particles
will be influencing each other’s settling velocity. However, a slow segregation of particles of different
classes can be observed causing the total concentration profile to decrease in a staircase fashion.
This segregation is more pronounced as the total concentration decreases and particles become
less hindered in their movement by surrounding particles. Moreover, upconcentration of specific
classes can be observed at certain heights in the settling column. For example, at t = 1 min, the
concentration of class 7 between z = 0.2 m and z = 0.3 m is increased compared to the concentration
of this class below z = 0.3 m. This phenomenon was first observed experimentally by Smith [31] and
is therefore sometimes called the “Smith effect” and is consistent with Corollary 3 of [35] that states
that “when the fastest-settling species disappear, the concentration of each of the remaining species
increases”, see [9]. As class 8 is no longer present above z = 0.3 m, the total concentration decreases
causing the remaining classes to be less hindered resulting in higher local settling velocities and an
increase in concentration.

The same behavior is also reflected in the velocity distributions in Figure 8, where it can be
seen that velocities are constant in the discrete area while they diminish and span a smaller range
as particles start to hinder each other in the hindered regime. Finally, the settling velocities drop
considerably when compression starts. The changes between settling regions are marked using dark
dashed lines through all figures.

Experiment 3b. If we redefine the individual critical concentrations to vary linearly on a range
between Xcrit,1 = 8 kg/m3 and Xcrit,10 = 14 kg/m3 (based on observations made in [14]), then some
changes in the settling behavior of the system can be seen, especially in the compression area. In



14 BÜRGER, DIEHL, MARTÍ, MULET, NOPENS, TORFS, AND VANROLLEGHEM

0 2 4 6 8 10 12 14 16

concentration [kg/m
3
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
e

p
th

 [
m

]

X

X
crit

X
trans

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

Compres.

Hind.

Disc.

0 2 4 6 8 10 12 14 16

concentration [kg/m
3
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
e
p
th

 [
m

]

X

X
crit

X
trans

t = 1 min t = 5 min

0 2 4 6 8 10 12 14 16

concentration [kg/m
3
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
e

p
th

 [
m

]

X

X
crit

X
trans

0 2 4 6 8 10 12 14 16

concentration [kg/m
3
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
e
p
th

 [
m

]

X

X
crit

X
trans

t = 10 min t = 15 min

Figure 7. Experiment 3: temporal evolution of the concentration of each class
using constant critical concentrations. The different settling regions are marked
using black dashed lines.

Figure 9 we show the concentration profiles for times t = 1, 5, 10, 15 min. It can be seen how the
function Xcrit changes depending on the total concentration. In this case the compression region
spans a wider concentration region and the sludge blanket shows a more gradual build-up than
when using constant individual critical concentrations. Such more gradual build-up of the sludge
blanket corresponds to experimental observations of De Clercq et al. [13].

Experiment 3c. Although the uniform initial distribution of total concentrations over the different
classes allows us to test the behaviour of the model, it is not a distribution present in more realistic
contexts. A normal or slightly skewed distribution would better represent typical wastewater or
activated sludge samples. Changes in the initial homogeneous concentration distribution may
produce different settling scenarios. We will therefore consider three different initial configurations
with the same total initial concentration as before, X0 = 4 kg/m3: a normally distributed initial
concentration and a left- and a right-skewed initial distributions, see Figure 10. The velocity and
individual critical concentration for each class are considered as before. The fact that the presented
model is able to simulate differences in settling behaviour caused by changes in distribution and
not solely by changes in concentration is one of the main features of the new framework. The
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Figure 8. Experiment 3: temporal evolution of the velocity distribution for each
class using constant critical concentration.

corresponding numerical method should thus be able to adequately handle such changes in initial
particle distribution.

In Figure 11 we can see the concentration profiles obtained for times t = 5 and 15 min when
considering the different initial concentration. As expected, the compression region develops faster
when using a right-skewed initial concentration distribution as the faster classes have higher initial
concentrations, while in the left-skewed distribution the settling is much slower. As a consequence,
significant differences are observed in the predictions of sludge blanket height and bottom concen-
tration. This is further illustrated in Figure 12 where the distribution of the particles through height
and time is displayed for the left- and right-skewed distributions. Note that the line interpolating
the nodes has only been drawn to better visualize the distribution of the particles.

Experiment 3d. Finally, to test the capabilities of the multi-class model for more extreme distribu-
tions we consider a right-skewed distribution for the concentrations with a peak in the first class,
the one with the slowest particles, with a total initial concentration of X0 = 4 kg/m3. The initial
velocities and individual critical concentrations are considered as in Experiment 3b. The definition
of the concentration for each class can be seen in Figure 13 together with the temporal evolution
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Figure 9. Experiment 3: temporal evolution of the concentration of each class
using linerarly distributed critical concentrations.

of the concentrations. As is shown, we have a large amount of small particles moving really slow
and thus remaining in the supernatant.

5. Conclusions

This article is part of an ongoing work to develop a consistent unified framework for the simulation
of settling tanks in water resource recovery facilities.

We have shown the derivation of the model paying special attention to the application of multi-
class to the definition of the critical concentration, giving an explicit representation of the critical
manifold where a change of the character of the PDE system occurs, illustrated when two classes
are considered. We have described in detail the numerical scheme applied to numerically solve
the system of PDEs. Finally, in Section 4 we displayed a number of experiments that allow us to
conclude that the proposed numerical technique is a reliable and robust tool for numerically solving
our model. The results obtained with the multi-class model are comparable to those obtained by the
state-of-the-art single class BD model and the results for both PST and SST simulation experiments
seem physically correct and compatible with the results obtained for batch settling in laboratory
experiments.
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Figure 10. Experiment 3: initial distribution configurations.

While the numerical results essentially reconfirm that the model exhibits the expected solution
behaviour, let us comment that the well-posedness and numerical analysis of strongly degenerate
parabolic systems of PDEs such as (1.1) is a topic of current mathematical research.
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2016-30 Ernesto Cáceres, Gabriel N. Gatica, Filander A. Sequeira: A mixed vir-
tual element method for the Brinkman problem

2016-31 Ana Alonso-Rodriguez, Jessika Camaño, Rodolfo Rodŕıguez, Alberto
Valli, Pablo Venegas: Finite element approximation of the spectrum of the curl
operator in a multiply-connected domain

2016-32 David Mora, Gonzalo Rivera, Rodolfo Rodŕıguez: A posteriori error esti-
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gmar Nopens, Elena Torfs, Peter Vanrolleghem: Numerical solution of a
multi-class model for batch settling in water resource recovery facilities

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de
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