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Abstract

We propose and analyze two mixed approaches for numerically solving the stationary Boussinesq
model describing heat driven flows. For the fluid equations, the velocity gradient and a Bernoulli
stress tensor are introduced as auxiliary unknowns. For the heat equation, we consider primal
and mixed-primal formulations; the latter, incorporating additionally the normal component of the
temperature gradient on the Dirichlet boundary. Both dual–mixed formulations exhibit the same
classical structure of the Navier–Stokes equations. We derive a priori estimates and the existence
of continuous and discrete solutions for the formulations. In addition, we prove the uniqueness
of solutions and optimal–order error estimates provided the data is sufficiently small. Numerical
experiments are given which back up the theoretical results and illustrate the robustness and
accuracy of both methods for a classic benchmark problem.

Key words: Mixed finite element methods, Boussinesq problem, mixed-primal formulation, dual-
mixed formulation, a priori estimates.

Mathematics subject classifications (2000): 65N30, 65N12, 65N15, 35Q79, 80A20, 76R05, 76D07

1 Introduction

Natural convection, or heat driven flow problems, are described in the Boussinesq approximation
framework by the Navier-Stokes and advection-diffusion equations, nonlinearly coupled via buoyancy
forces and convective heat transfer. This model takes place in diverse situations arising in sciences
and engineering. Typical examples include convective hydrothermal systems, environmental processes,
thermal regulation of electronic devices, among others. In such applications, an accurate knowledge of
the flow patterns contributes to the improvement of configuration designs and operating conditions. In
light of this, several computational techniques have been proposed in order to predict the behavior of
the fluid as well as to quantify the inherent physical variables (see, e.g., [1, 3, 5, 6, 4, 9, 10, 12, 19, 20]
and the references therein).

One of the first finite element analyses for the Boussinesq problem is given in [1]. There, the model
is considered with non-homogeneous Dirichlet and mixed boundary conditions for the velocity and the
temperature, respectively. The authors propose a primal formulation and apply the topological degree
theory to state existence results of solutions. Their results show that employing finite element spaces
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with the same order for the velocity and the temperature leads to optimal–order convergence. The
analysis carried out in the aforementioned paper is later extended to a new mixed scheme developed
in [9], in which both the velocity gradient and the temperature gradient of the fluid are incorporated
as additional unknowns in the Boussinesq problem (with non–symmetric stress). There, the auxiliary
variables are approximated by the lowest order Raviart–Thomas elements, and the primary unknowns
are approximated by piecewise constants. Existence of solutions and convergence results are proven
near a nonsingular solution, and quasi-optimal error estimates are also derived. Moreover, the data
restriction to ensure uniqueness is more explicit than the primal method. However, that work does not
address the physically relevant non-homogeneous Dirichlet condition case for the temperature, where
more difficulties arise in the analysis (cf. [1, Section 2.5] and Section 3.2).

Primal methods for solving the generalized Boussinesq model, in which the viscosity and the thermal
conductivity of the fluid depend on the temperature, have been also developed [19, 20]. In [19]
divergence-conforming elements for the velocity, discontinuous elements for the pressure and Lagrange
elements for the temperature are considered. Meanwhile, in [20] a conforming scheme is proposed
involving the normal derivative of the temperature as an additional unknown on the boundary. Both
works provide existence results of solutions under small data assumptions, uniqueness of continuous
solutions under an additional regularity hypothesis, and optimal–order convergence of the discrete
problems; however uniqueness of discrete solutions is left as an open question.

Recently, two new augmented mixed finite element schemes have been developed for solving the
Boussinesq problem with Dirichlet boundary conditions [5, 6, 4]. The methods extend the methodol-
ogy in [2], where a modified pseudostress tensor is introduced as an auxiliary unknown, and redundant
stabilization terms are included in the variational formulation. These Galerkin schemes are conver-
gent for arbitrary finite element spaces, and in particular, converge with optimal order if the auxiliary
and primitive unknowns are approximated by Raviart–Thomas and Lagrange spaces, respectively.
Additionally, other variables of physical interest can be computed by simple postprocessing of the
discrete solution. However, the existence results are stated only under small data assumptions and for
feasible stabilization parameters; numerically, we have found that the choice of stabilization param-
eters has a significant influence on the solvability, the stability, and the robustness of the numerical
approximations.

The objective of this paper is to complement, to improve, and to contribute to the methodologies
used so far to solve the Boussinesq problem. We propose two schemes based on a dual-mixed method
developed in [14, 15] for the Navier-Stokes equations, in which the stress and the velocity gradient of
the fluid are the primary unknowns of interest. Regarding the heat equation, we employ both primal
and mixed-primal variational formulations. The latter incorporates the normal component of the
temperature gradient on the Dirichlet boundary as an additional unknown. Both formulations exhibit
the same classical structure of the Navier-Stokes equations. Using a suitable extension operator of the
temperature Dirichlet data, we derive a priori estimates and establish existence of solutions for the
continuous problem without data constraints.

Finite element methods based on the dual–mixed formulations are then described. Here, the velocity
and the trace–free gradient are approximated by discontinuous piecewise polynomials, the stress is
approximated by the Raviart–Thomas finite element space, and the temperature is approximated by
the Lagrange finite element space. These discrete spaces are constructed over triangulations with a
macroelement structure to ensure that an inf–sup condition and a discrete Korn inequality is satisfied.
Similar to the continuous setting, we show that there exists a solution to the discrete problem. In
addition we show that solutions are unique and that the errors converge quasi–optimally provided the
data is sufficiently small.
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1.1 Outline

The end of this section introduces some standard notations and function spaces. In Section 2 we state
the model problem, the assumptions of the data, and the strong form of the dual–mixed formula-
tion. We state the variational formulation of the continuous problem in Section 3 and derive a priori
estimates and existence results. In addition we show that if the data is sufficiently small, then the
solutions are unique. Section 4 gives the finite element method based on the dual–mixed approach.
Similar to the continuous setting, we show that there exists a solution to the discrete scheme, and if the
data is sufficiently small, solutions are unique. In Section 5 we introduce a mixed–primal formulation
for the heat equation and state the convergence results. Finally, numerical experiments are presented
in Section 6 which back up the theoretical results.

1.2 Notation

Let Ω ⊂ Rn (n ∈ {2, 3}) be a bounded domain with polyhedral boundary Γ with outward unit
normal n, and let ΓD ,ΓN ⊆ Γ be such that ΓD ∩ ΓN = ∅, |ΓD| 6= 0 and Γ = ΓD ∪ ΓN. We use
Ws,p(Ω) (s ≥ 0) to denote the set of all Lp(Ω) functions whose distributional derivatives up to order s
are in Lp(Ω), and denote the corresponding norm and seminorm by ‖ · ‖s,p,Ω and | · |s,p,Ω, respectively.
The special case p = 2 is denoted by Hs(Ω) := Ws,2(Ω), and the norm and seminorm are given by
‖ · ‖s,Ω := ‖ · ‖s,2,Ω and | · |s,Ω := | · |s,p,Ω, respectively. The case s = 1/2 on the domain ΓD is defined as

‖φ‖1/2,ΓD
= inf

{
‖ψ‖1,Ω : ψ ∈ H1(Ω), ψ|ΓD

= φ
}
.

The pairing (·, ·)D denotes the L2 inner product over a subdomain D ⊂ Ω for scalar, vector, and tensor
functions; in the case D = Ω the subscript is omitted. For a scalar function space M, we denote by
M = Mn and M = Mn×n the corresponding vectorial and tensorial spaces, respectively. If M is a
vector–valued function space, then we set M = Mn. The norm ‖ · ‖, with no subscripts, will stand
for the natural norm of either an element or an operator in any product function space. A generic,
positive constant is denoted by C which, unless labeled, is independent of any mesh parameters and
data parameters.

2 The model problem

We consider the stationary Boussinesq problem for describing the motion of fluid of natural convection
which is given by the following system of partial differential equations

−divA(∇u) + (u · ∇)u + ∇p − ϕg = 0 in Ω ,

divu = 0 in Ω ,

−κ∆ϕ + u · ∇ϕ = 0 in Ω ,

(2.1a)

along with the boundary conditions

u = 0 on Γ , ϕ = ϕD on ΓD and
∂ϕ

∂n
= 0 on ΓN . (2.1b)

Here, A(∇u) := ν
(
∇u + (∇u)t

)
is the symmetric gradient of u, and the unknowns are the velocity

u, the pressure p, and the temperature ϕ of a fluid occupying the region Ω. The given data is the
kinematic viscosity ν > 0, the external force per unit mass g ∈ L2(Ω), the boundary temperature
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ϕD ∈ H1/2(ΓD), and the thermal conductivity κ > 0. To simplify the presentation, it is assumed that
the viscosity and thermal conductivity are constant.

The formulation we consider introduces as auxiliary unknowns the gradient of the velocity G := ∇u

and the Bernoulli stress tensor S given by

S := A(G) − p I −
1

2
(u⊗ u). (2.2)

From the incompressibility condition, the first equation in (2.1a) becomes

1

2
Gu − div S − ϕg = 0.

Moreover, by taking the deviatoric part and trace in (2.2) we find that

Sd = A(G) −
1

2
(u⊗ u)d in Ω and p = −

1

2n
tr( 2S + u⊗ u ) . (2.3)

In this way, the pressure is eliminated from the formulation and can be recovered later by a simple
postprocessing calculation through the second equation of (2.3). As a result, we consider the following
system of equations with unknowns G, S, u and ϕ :

G = ∇u in Ω , Sd = A(G) −
1

2
(u⊗ u)d in Ω ,

1

2
Gu − div S − ϕg = 0 in Ω , −κ∆ϕ + u · ∇ϕ = 0 in Ω ,

u = 0 on Γ , ϕ = ϕD on ΓD ,
∂ϕ

∂n
= 0 on ΓN and

∫

Ω
tr(2S + u⊗ u) = 0 .

(2.4)

Note that the incompressibility condition of the fluid is implicitly present in the new constitutive
equation. The last statement in (2.4) ensures that the pressure has zero mean.

3 The continuous formulation

3.1 The dual-mixed variational problem

We now proceed to derive a variational formulation for the problem (2.4). Let H(div; Ω) denote the
space of square integrable matrix–valued functions with divergence (taken row–wise) in L4/3(Ω), and
the corresponding norm by ‖ · ‖2

div,Ω = ‖ · ‖20,Ω + ‖div · ‖20,4/3,Ω . Then set

H0(div; Ω) :=

{
T ∈ H(div; Ω) :

∫

Ω
tr(T ) = 0

}
,

so that the stress can be written as S = S0 + c I where S0 ∈ H0(div; Ω) and

c =
1

n|Ω|

∫

Ω
tr(S) = −

1

2n |Ω|

∫

Ω
tr(u⊗ u). (3.1)

Since Sd = Sd
0 and div S = divS0 , we rename S0 by S ∈ H0(div; Ω) from now on and observe that

the second and third equations of (2.4) remain unchanged. The incompressibility condition leads us
to look for the unknown G in the space

L
2
tr(Ω) :=

{
H ∈ L

2(Ω) : tr(H) = 0
}
.
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Multiplying the first equation of (2.4) by a test function T ∈ H0(div; Ω), integrating by parts and
using the Dirichlet condition for u, we obtain

(G,T ) + (u,div T ) = 0 ∀T ∈ H0(div; Ω).

Additionally, since L
2(Ω) = L

2
tr(Ω) ⊕ RI (see, e.g., [11]), we observe that the constitutive equation

can be written in the weak form as

(A(G),H) −
1

2
(u⊗ u,H) − (S,H) = 0 ∀H ∈ L

2
tr(Ω) . (3.2)

In turn, the equilibrium relation given by the third equation in (2.4) is

1

2
(Gu,v) − (div S,v) − (ϕg,v) = 0 ∀ v ∈ L4(Ω) . (3.3)

For the temperature equation, we consider the closed subspace of H1(Ω) defined as

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ|ΓD

= 0
}
.

Multiplying the fourth equation of (2.4) by a function ψ ∈ H1
ΓD

(Ω), integrate by parts, and applying
the Neumann boundary condition on ΓN we get

κ (∇ϕ,∇ψ) + (u · ∇ϕ,ψ) = 0 ∀ψ ∈ H1
ΓD

(Ω) .

The underlying formulation is then: Find ((G,u, ϕ), S) ∈ (L2
tr(Ω) × L4(Ω) × H1(Ω)) × H0(div; Ω)

such that ϕ|ΓD
= ϕD and

(A(G),H) −
1

2
(u⊗ u,H) − (S,H) = 0

1

2
(Gu,v) − (div S,v) − (ϕg,v) = 0

(G,T ) + (u,div T ) = 0

κ (∇ϕ,∇ψ
)
+ (u · ∇ϕ,ψ) = 0

(3.4)

for all ((H,v, ψ), T ) ∈ (L2
tr(Ω)× L4(Ω)×H1

ΓD
(Ω)) × H0(div; Ω).

Similar to [14, 15], we now introduce the following forms to illustrate that the problem (3.4) exhibits
the same structure as the usual formulation of the Navier-Stokes equations.

Definition 3.1

1. a : (L2
tr(Ω)× L4(Ω)×H1(Ω))2 −→ R,

a((G,u, ϕ), (H,v, ψ)) = (A(G),H) + κ (∇ϕ,∇ψ) . (3.5)

2. b : H0(div; Ω) × (L2
tr(Ω)× L4(Ω)) −→ R,

b(T, (G,u)) = (G,T ) + (u,div T ) . (3.6)

3. c : (L2
tr(Ω)× L4(Ω)×H1(Ω))3 −→ R,

c((F,w, φ), (G,u, ϕ), (H,v, ψ)) =
1

2

[
(Gw,v) − (Hw,u)

]
+ (w · ∇ϕ,ψ) .
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The variational problem (3.4) can be written in the dual-mixed form: Find ((G,u, ϕ), S) ∈ (L2
tr(Ω)×

L4(Ω)×H1(Ω)) × H0(div; Ω) such that with ϕ|ΓD
= ϕD and

a((G,u, ϕ), (H,v, ψ)) + c((G,u, ϕ), (G,u, ϕ), (H,v, ψ)) − b(S, (H,v)) = (ϕg,v),

b(T, (G,u)) = 0 ,
(3.7)

for all ((H,v, ψ), T ) ∈ (L2
tr(Ω)× L4(Ω)×H1

ΓD
(Ω))×H0(div; Ω).

To simplify the presentation we define H := Z × H1
ΓD

(Ω) , where Z is the kernel of b(·, ·):

Z :=
{
(H,v) ∈ L

2
tr(Ω)× L4(Ω) : (H,T ) + (v,div T ) = 0 T ∈ H0(div; Ω)

}
. (3.8)

Since the solution (G,u) to (3.7) belongs to Z, we deduce that

(G,u) ∈ Z =⇒ u ∈ H1
0(Ω) , G = ∇u and divu = 0 . (3.9)

We summarize some key properties of the forms in the next lemma.

Lemma 3.1 Let a(·, ·), b(·, ·), c(·, ·, ·) be the forms given in Definition 3.1.

1. a(·, ·) and b(·, ·) are continuous and a(·, ·) is coercive on H, i.e., there exists Ca > 0, such that

a((G,u, ϕ), (G,u, ϕ)) ≥ Ca ‖(G,u, ϕ)‖
2 ∀ (G,u, ϕ) ∈ H .

2. There exists β > 0, such that

sup
(G,u)∈L2

tr(Ω)×L
4(Ω)

(G,u)6=0

b(S, (G,u))

‖(G,u)‖
≥ β ‖S‖div,Ω ∀S ∈ H0(div; Ω) ,

3. c(·, ·, ·) : H×H →
(
L
2
tr(Ω)× L4(Ω)×H1

ΓD
(Ω)

)′
is weakly continuous.

Proof. The continuity of the bilinear forms a(·, ·) and b(·, ·) follows from Cauchy-Schwarz inequality.
The coercivity of a(·, ·) follows from the Korn inequality, the Poincare inequality, and the definition
of H, and the inf–sup condition is proven in [14, 15, Lemma 2.4].

To show the weak continuity of c(·, ·, ·), let (G,u, ϕ) ∈ H and {(Gn,un, ϕn)}n≥1 ⊂ H such that
(Gn,un, ϕn)⇀ (G,u, ϕ) in H . Then, it follows from (3.9) that

u,un ∈ H1
0(Ω) , Gn = ∇un G = ∇u and div(un) = div(u) = 0 , for each n ,

and therefore un → u (and ϕn → ϕ) strongly in L4(Ω) due to the Rellich-Kondrachov Theorem.
Using the definition of c(·, ·, ·), we find for all (H,v, ψ) ∈ H that

c((Gn,un, ϕn), (Gn,un, ϕn), (H,v, ψ)) − c((G,u, ϕ), (G,u, ϕ), (H,v, ψ)) (3.10)

=
1

2

[
(Gnun,v) − (Hun,un)

]
+ (un · ∇ϕn, ψ) −

1

2

[
(Gu,v) − (Hu,u)

]
− (u · ∇ϕ,ψ)

=
1

2

[
((Gn −G)un,v) + (G(un − u),v) + (H(u− un),un) + (Hu,u− un)

]

− ((un − u) · ∇ψ,ϕn) + (u · ∇ψ,ϕ− ϕn)

≤
1

2

[
(Gn −G,v ⊗ un) + ‖un − u‖0,4,Ω

(
‖G‖0,Ω‖v‖0,4,Ω + ‖H‖0,Ω(‖u‖0,4,Ω + ‖un‖0,4,Ω)

)]

+ ‖un − u‖0,4,Ω‖∇ψ‖0,Ω‖ϕn‖0,4,Ω + ‖u‖0,4,Ω‖∇ψ‖0,Ω‖ϕ− ϕn‖0,4,Ω −→ 0 as n → ∞ ,

which follows from the fact that {un}n≥1 and {ϕn}n≥1 are bounded sequences in their corresponding
spaces. Thus, c(·, ·, ·) is weakly continuous. �
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3.2 Well-posedness

Observe that the problem (3.7) can be equivalently written as: Find ((G,u), ϕ) ∈ Z × H1(Ω) with
ϕ|ΓD

= ϕD and such that

a((G,u, ϕ), (H,v, ψ)) + c((G,u, ϕ), (G,u, ϕ), (H,v, ψ)) = (ϕg,v) ∀ (H,v, ψ) ∈ H , (3.11)

which follows straightforwardly from the properties of the forms stated in Lemma 3.1. In this way,
the solvability of our dual-mixed formulation is studied as follows. In Section 3.2.1 below, we derive
a priori estimates for continuous solutions G, u and ϕ to the restricted problem (3.11). Next, in
Section 3.2.2, we employ a fixed point approach to establish existence and uniqueness results. Then,
the inf-sup condition of the bilinear form b(·, ·) stated in the previous lemma will be applied to show
the existence of the tensor S.

3.2.1 A priori estimates

To derive estimates for solutions of (3.11), we require the following technical result.

Lemma 3.2 Let Ω be a bounded domain in Rn, n = 2 or n = 3, with Lipschitz continuous bound-
ary. Then for any δ ∈ (0, 1), there exists an extension operator Eδ : H1/2(ΓD) → H1(Ω) such that
‖Eδψ‖0,3,Ω ≤ Cδ‖ψ‖1/2,ΓD

and ‖Eδψ‖1,Ω ≤ Cδ−4‖ψ‖1/2,ΓD
for all ψ ∈ H1/2(ΓD).

Proof. We employ arguments similar to in [1, Lemma 2.8] and [17, Lemma 4.1].

Define the subdomain
Ωδ :=

{
x ∈ R : dist(x,Γ) < δ6

}
,

and let βδ ∈ W1,∞(Ω) such that

0 ≤ βδ ≤ 1 in Ωδ , βδ ≡ 0 in R \ Ωδ , and ‖∇βδ‖∞,Ω ≤ Cδ−6 .

Let E : H1/2(ΓD) → H1(Ω) be an extension operator satisfying ‖Eψ‖1,Ω ≤ C‖ψ‖1/2,ΓD
∀ψ ∈ H1/2(ΓD),

and set Eδ := βδE. We then have, by Hölder’s inequality and a Sobolev embedding,

‖Eδψ‖
3
0,3,Ω ≤ ‖Eψ‖30,3,Ω∩Ωδ

≤ |Ωδ|
1/2‖Eψ‖30,6,Ω ≤ Cδ3‖Eψ‖31,Ω ≤ Cδ3‖ψ‖31/2,ΓD

.

This is the first inequality. By similar arguments we find

‖∇Eδψ‖0,Ω ≤ Cδ−6‖Eψ‖0,Ω∩Ωδ
+ ‖∇Eψ‖0,Ω

≤ Cδ−6|Ωδ|
1/3‖Eψ‖0,6,Ω + ‖∇Eψ‖0,Ω ≤ Cδ−4‖ψ‖1/2,ΓD

,

which gives the desired result. �

Theorem 3.3 Any solution (G,u, ϕ) to (3.11) satisfies the a priori estimates

‖(G,u)‖ ≤ C1(ϕD,g) and ‖ϕ‖1,Ω ≤ C2(ϕD,g) , (3.12)

where C1(ϕD,g) = Cν−5κ−4‖ϕD‖
5
1/2,ΓD

‖g‖50,Ω, and C2(ϕD,g) = Cν−4κ−4‖ϕD‖
5
1/2,ΓD

‖g‖40,Ω.

Proof. Let ϕ1 = EδϕD ∈ H1(Ω) be an extension of ϕD with δ > 0 to be determined (cf. Lemma 3.2),
and set ϕ0 = ϕ− ϕ1 ∈ H1

ΓD
(Ω). Replacing ϕ = ϕ0 + ϕ1 into (3.11) yields

a((G,u, ϕ0), (H,v, ψ)) + c((G,u, ϕ0), (G,u, ϕ0), (H,v, ψ)) = (ϕ0 g,v) + (ϕ1 g,v)

−κ (∇ϕ1,∇ψ) − (u · ∇ϕ1, ψ) ∀ (H,v, ψ) ∈ H .
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Decoupling the equations, taking (H,v, ψ) = (G,u, ϕ0), and using the skew-symmetric property of
c(·, ·, ·), we obtain

(A(G), G) = (ϕ0 g,u) + (ϕ1 g,u)

κ ‖∇ϕ0‖
2
0,Ω = −κ (∇ϕ1,∇ϕ0) − (u · ∇ϕ1, ϕ0) = −κ (∇ϕ1,∇ϕ0) + (u · ∇ϕ0, ϕ1) ,

(3.13)

where an integration–by–parts formula was used to derive the last equality. Next, applying Hölder’s
inequality in the first equation of (3.13) and two Sobolev embeddings, we find that

(
A(G), G

)
≤ ‖g‖0,Ω

(
‖ϕ0‖0,3,Ω + ‖ϕ1‖0,3,Ω

)
‖u‖0,6,Ω ≤ C‖g‖0,Ω

(
‖ϕ0‖1,Ω + ‖ϕ1‖1,Ω

)
‖G‖0,Ω .

Therefore by Korn’s inequality and the estimate ‖u‖0,4,Ω ≤ C‖G‖0,Ω,

ν ‖(G,u)‖ ≤ C ‖g‖0,Ω
(
‖ϕ0‖1,Ω + ‖ϕ1‖1,Ω

)
. (3.14)

Likewise, from the second equation in (3.13), we bound the L2−norm of ∇ϕ0 by applying Hölder’s
inequality and a Sobolev embedding:

κ‖∇ϕ0‖
2
0,Ω ≤ κ ‖∇ϕ1‖0,Ω ‖∇ϕ0‖0,Ω + C ‖G‖0,Ω ‖∇ϕ0‖0,Ω ‖ϕ1‖0,3,Ω . (3.15)

Therefore, simplifying and applying the Poincaré inequality and Lemma 3.2, we obtain

‖ϕ0‖1,Ω ≤ C
(
‖ϕ1‖1,Ω + κ−1 δ ‖ϕD‖1/2,ΓD

‖(G,u)‖
)
. (3.16)

Thus, applying this estimate in (3.14), we have

ν ‖(G,u)‖ ≤ C‖g‖0,Ω
(
‖ϕ1‖1,Ω + κ−1 δ ‖ϕD‖1/2,ΓD

‖(G,u)‖
)
.

Taking δ > 0 such that

C κ−1 δ ν−1 ‖ϕD‖1/2,ΓD
‖g‖0,Ω =

1

2
(3.17)

then yields
‖(G,u)‖ ≤ C ν−1‖g‖0,Ω ‖ϕ1‖1,Ω . (3.18)

Finally, we obtain the a priori estimate for ϕ by combining (3.17)–(3.18) with (3.16):

‖ϕ‖1,Ω ≤ ‖ϕ0‖1,Ω + ‖ϕ1‖1,Ω (3.19)

≤ C
(
‖ϕ1‖1,Ω + κ−1 δ ‖ϕD‖1/2,ΓD

ν−1 ‖g‖0,Ω‖ϕ1‖1,Ω) ≤ C‖ϕ1‖1,Ω.

The desired estimate (3.12) now follows from (3.17)–(3.19) and Lemma 3.2. �

3.2.2 Existence of solutions

In this section we establish an existence result to the problem (3.11) by using the standard Leray-
Schauder principle (cf. [13, Theorem 11.3], [22, Theorem 6.A], [16],[18]). To this end, for (G,u, ϕ0) ∈
H, we define the linear functionals Fi,(G,u,ϕ0) : H → H

′ by

F1,(G,u,ϕ0)((H,v, ψ)) = −c((G,u, ϕ0), (G,u, ϕ0), (H,v, ψ))

F2,(G,u,ϕ0)((H,v, ψ)) = − (u · ∇ϕ1, ψ) + (ϕ0 g,v) ,

F3((H,v, ψ)) = (ϕ1 g,v) − κ (∇ϕ1,∇ψ) ,

(3.20)

for all (H,v, ψ) ∈ H, where ϕ1 = EδϕD ∈ H1(Ω) with δ > 0 given by (3.17).
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Lemma 3.4 The functionals Fi,(G,u,ϕ0) satisfy

‖F1,(G,u,ϕ0)‖H′ ≤ C3(u) ‖(G,u, ϕ0)‖ , ‖F2,(G,u,ϕ0)‖H′ ≤ C4(ϕD,g) ‖(G,u, ϕ0)‖

and ‖F3‖H′ ≤ C5(ϕD,g) ,
(3.21)

with C3(u) = C‖u‖0,3,Ω, C4(ϕD,g) = Cmax{‖g‖0,Ω, ν
−4κ−4‖ϕD‖

5
1/2,ΓD

‖g‖40,Ω}, and C5(ϕD,g) =

Cν−4κ−4‖ϕD‖
5
1/2,ΓD

‖g‖40,Ω
(
κ + ‖g‖0,Ω

)
.

The proof of Lemma 3.4 is standard, relying only on Hölder’s inequality, Sobolev embeddings and
Lemma 3.2; the proof is given in Appendix A.

We consider the sequence of fixed point problems: Find (G,u, ϕ0) ∈ H such that

(G,u, ϕ0) = τA((G,u, ϕ0)) for each τ ∈ [0, 1] , (3.22)

where the operator τA : H −→ H is defined for all (G,u, ϕ0) ∈ H as τA((G,u, ϕ0)) = (Ĝ, û, ϕ̂0)
and (Ĝ, û, ϕ̂0) ∈ H satisfies

a((Ĝ, û, ϕ̂0), (H,v, ψ)) = τ
(
F1,(G,u,ϕ0) + F2,(G,u,ϕ0) + F3

)
(H,v, ψ) ∀ (H,v, ψ) ∈ H . (3.23)

In this way, we realize that the problems (3.11) and (3.22) (with τ = 1) are equivalent.

We observe that τA is well-defined by virtue of Lax-Milgram Theorem (see e.g. [11, Theorem 1.1]),
since a(·, ·) is continuous and coercive on H (see Lemma 3.1), and F1,(G,u,ϕ0) + F2,(G,u,ϕ0) +F3 ∈ H

′.

Lemma 3.5 The operator A given by (3.22) is compact. Moreover, the operator is locally Lipschitz
continuous:

‖A((G,u, ϕ0))−A((G′,u′, ϕ′
0))‖ ≤ CLIP‖(G−G′,u− u

′, ϕ0 − ϕ′
0‖, (3.24)

with

CLIP = CLIP(G,u,u
′, ϕ′

0, ϕD,g) = C−1
a

{
C
(
‖G‖0,Ω + ‖u‖0,4,Ω + ‖u′‖0,4,Ω + ‖ϕ′

0‖0,4,Ω
)
+C4(ϕD,g)

}
,

and Ca = Cmin{ν, κ} is the coercivity constant of the bilinear form a(·, ·).

Proof. To prove the compactness property, consider (G,u, ϕ0) ∈ H and {(Gn,un, ϕn)}n≥1 ⊂ H such
that (Gn,un, ϕn) ⇀ (G,u, ϕ0) in H. For clarity, we set Ψn = (Gn,un, ϕn) ∈ H, Ψ = (G,u, ϕ0) ∈ H,
and

A(Ψn) = Ψ̂n = (Ĝn, ûn, ϕ̂n) and A(Ψ) = Ψ̂ = (Ĝ, û, ϕ̂) .

Using the coercivity and linearity of a(·, ·) and the definition (3.23) of A, we find that

‖A(Ψn) − A(Ψ)‖2 = ‖Ψ̂n − Ψ̂‖2

≤ Ca
−1 a(Ψ̂n − Ψ̂, Ψ̂n − Ψ̂) = C−1

a

{
a(Ψ̂n, Ψ̂n − Ψ̂)− a(Ψ̂, Ψ̂n − Ψ̂)

}

= Ca
−1

{(
F1,Ψn −F1,Ψ

)
(Ψ̂n − Ψ̂) +

(
F2,Ψn −F2,Ψ

)
(Ψ̂n − Ψ̂)

}
.

(3.25)

Using the definition of F1 and the weak continuity of c(·, ·, ·) (see Lemma 3.1)), we have that

(
F1,Ψn −F1,Ψ

)
(Ψ̂n − Ψ̂) −→ 0 as n → ∞ . (3.26)
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On the other hand, using the definition of F2 from (3.20), it follows that

(
F2,Ψn −F2,Ψ

)
(Ψ̂n − Ψ̂) = F2,Ψn−Ψ(Ψ̂n − Ψ̂) = ((un − u) · ∇ϕ1, ϕ̂n − ϕ̂) − ((ϕn − ϕ0)g, ûn − û)

≤ ‖un − u‖0,4,Ω ‖∇ϕ1‖0,Ω ‖ϕ̂n − ϕ̂‖0,4,Ω + ‖g‖0,Ω ‖ϕn − ϕ0‖0,4,Ω ‖ûn − û‖0,4,Ω −→ 0 .
(3.27)

and thus, according to (3.26) and (3.27) we deduce from (3.25) that

‖A((Gn,un, ϕn)) − A((G,u, ϕ0))‖ −→ 0 as n→ ∞ ,

and therefore {A((Gn,un, ϕn))}n≥1 converges strongly to A((G,u, ϕ0)) in H; hence, A is compact.

To show Lipschitz continuity, we take Ψ = (G,u, ϕ0) ∈ H, Ψ′ = (G′,u′, ϕ′
0) ∈ H and denote

A(Ψ) = Ψ̂ = (Ĝ, û, ϕ̂0) and A(Ψ′) = Ψ̂′ = (Ĝ′, û′, ϕ̂′
0) .

Proceeding similarly as in (3.25) we get

‖A(Ψ) − A(Ψ′)‖2 = ‖Ψ̂ − Ψ̂′‖2 ≤ Ca
−1

{ (
F1,Ψ − F1,Ψ′

)
(Ψ̂− Ψ̂′) + F2,Ψ−Ψ′(Ψ̂− Ψ̂′)

}
. (3.28)

From the estimate (3.10), we find
(
F1,Ψ − F1,Ψ′

)
(Ψ̂− Ψ̂′) = −c(Ψ,Ψ, Ψ̂− Ψ̂′) + c(Ψ′,Ψ′, Ψ̂− Ψ̂′) (3.29)

≤ C
(
‖G‖0,Ω + ‖u‖0,4,Ω + ‖u′‖0,4,Ω + ‖ϕ′

0‖0,4,Ω
)
‖Ψ−Ψ′‖‖Ψ̂ − Ψ̂′‖.

Next, applying the estimate (3.21) we obtain
∣∣F2,Ψ−Ψ′(Ψ̂ − Ψ̂′)

∣∣ ≤ C4(ϕD,g) ‖Ψ−Ψ′‖‖Ψ̂ − Ψ̂′‖ . (3.30)

The Lipschitz condition (3.24) now follows from (3.28) and the estimates (3.29)–(3.30). �

Next, we show that the solutions to (3.23) are uniformly bounded with respect to τ ∈ [0, 1].

Lemma 3.6 Any solution to (3.22), with τ ∈ [0, 1], satisfies the a priori estimate

‖(G,u)‖ ≤ CC1(ϕD,g) and ‖ϕ0‖1,Ω ≤ CC2(ϕD,g) , (3.31)

where C > 0 is independent of τ , and the constants C1(ϕD,g) and C2(ϕD,g) are given in Theorem
3.3.

Proof. We proceed similarly as in Section 3.2.1. Suppose (G,u, ϕ0) = (Gτ ,uτ , ϕτ ) ∈ H satisfies
(3.23) for a fixed τ ∈ [0, 1]. Taking (H,v, ψ) = (G,u, ϕ0), using the skew-symmetric property of
c(·, ·, ·) and decoupling, we find that

(
A(G), G

)
= − τ (ϕ0g,u) + τ(ϕ1g,u)

κ ‖∇ϕ0‖
2
0,Ω = − τ κ (∇ϕ1,∇ϕ0) + τ (u · ∇ϕ0, ϕ1).

Following the same arguments used in Theorem 3.3, we obtain

ν ‖(G,u)‖ ≤ τ C ‖g‖0,Ω
(
‖ϕ0‖1,Ω + ‖ϕ1‖1,Ω

)
≤ C ‖g‖0,Ω

(
‖ϕ0‖1,Ω + ‖ϕ1‖1,Ω

)
, (3.32)

as well as

‖ϕ0‖1,Ω ≤ τ C
(
‖∇ϕ1‖0,Ω + κ−1‖G‖0,Ω ‖ϕ1‖0,3,Ω

)
≤ C

(
‖ϕ1‖1,Ω + κ−1 δ ‖ϕD‖1/2,ΓD

‖(G,u)‖
)
,

(3.33)
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where δ satisfies (3.17). Estimates (3.32)–(3.33) are the same as (3.14)–(3.16) in the proof of Theorem
3.3. Therefore by applying the arguments in the proof verbatim, we obtain the estimates (3.31). �

Since solutions to (3.22) are uniformly bounded with respect to τ , and since the operator A is
compact, the existence of solutions follows from a direct application of the Leray-Schauder Principle.

Theorem 3.7 There exists a solution (G,u, ϕ) to (3.11).

Here, we emphasize that, in contrast to [5, 6, 4], the previous result establishes existence of a
solution without a restriction on the data. Additionally, we are further able to establish conditions
under which the solution is unique. Indeed, if (G,u, ϕ0), (G

′,u′, ϕ′
0) ∈ H are both solutions to (3.11)

(equivalently, fixed points of A), then we have by Lemma 3.5 and Theorem 3.3,

‖A((G,u, ϕ0))−A((G′,u′, ϕ′
0))‖ = ‖(G−G′,u− u

′, ϕ0 − ϕ′
0)‖ ≤ CLIP‖(G −G′,u− u

′, ϕ0 − ϕ′
0‖,

with

CLIP ≤ CC−1
a

{
C1(ϕD,g) + C2(ϕD,g) + C4(ϕD,g)

}
. (3.34)

Therefore if the data is sufficiently small, we immediately deduce the following uniqueness result.

Theorem 3.8 Suppose that the data is small enough such that CLIP < 1 (cf. (3.34)). Then there
exists a unique solution (G,u, ϕ) to (3.11).

Note also that no additional regularity of the solution is required to establish our uniqueness result
(e.g. Theorem 2.3 in [19] and [20]).

We close the section stating the existence of the tensor S solution to problem (3.7). To this end,
given a solution (G,u, ϕ) to (3.11), it follows from the inf–sup conditions (2) and the continuity of
the forms (see Lemma 3.1) that there exists a unique S ∈ H0(div; Ω) satisfying

b(S, (H,v)) = a((G,u, ϕ), (H,v, ψ)) + c((G,u, ϕ), (G,u, ϕ), (H,v, ψ)) − (ϕg,v)

for all (H,v, ψ) ∈ L
2
tr(Ω)× L4(Ω)×H1

ΓD
(Ω) . Moreover,

‖S‖div,Ω ≤ C
(
‖a‖ + ‖c‖ ‖(G,u, ϕ)‖ + ‖g‖0,Ω

)
‖(G,u, ϕ)‖ .

4 The Galerkin scheme

In this section we describe the discrete setting of the formulation (3.7). We present a family of spaces
developed in [15] for the fluid unknowns satisfying a inf–sup/LBB compatibility condition as well as
the Korn/Poincaré inequality in two and three dimensions

4.1 The discrete setting and finite element spaces

Let Th be a shape–regular triangulation of Ω, made up of simplices K of diameter hK , and meshsize
h := maxK∈Th hK . For simplicity we assume that if ∂K ∩ ∂Ω 6= ∅, then either |∂K ∩ ΓD| = 0 or
|∂K ∩ΓN| = 0. We denote by T r

h the corresponding barycentric refinement of a triangulation Th of Ω,
for each h > 0, and for a given integer k ≥ 0, we set

Pk(T
r
h ) =

{
ph ∈ C(Ω) : ph|K ∈ Pk(K) ∀K ∈ T r

h

}
,

Pdisck (T r
h ) =

{
ph ∈ L2(Ω) : ph|K ∈ Pk(K) ∀K ∈ T r

h

}
,
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as the spaces of continuous (Lagrange) and discontinuous piecewise polynomials of degree k on T r
h ,

respectively. Similar to the notations described in the Section 1, the analogous vector spaces (resp.,
tensor spaces) with components in these spaces are denoted by Pk(T

r
h ) and Pdisc

k (T r
h ) (resp., Pk(T

r
h )

and P
disc
k (T r

h )). The finite element subspaces approximating the unknowns G and u are given by

H
G
h = L

2
tr(Ω) ∩ P

disc
k (T r

h ) and Hu

h = Pdisc
k (T r

h ), (4.1)

and the finite element space approximating the tensor S is the global Raviart–Thomas space of order
k:

H
S
h =

{
Th ∈ H0(div; Ω) : ct Th

∣∣
K

∈ RTk(K) ∀ c ∈ Rn ∀K ∈ T r
h

}
, (4.2)

where RTk(K) is the local Raviart–Thomas space of order k, i.e.,

RTk(K) := Pk(K) ⊕ Pk(K)x ,

and Pk(K) stands for the homogeneous space of piecewise polynomials of degree k.

For the temperature, we let Hϕh ⊂ H1(Ω) denote the Lagrange space of degree ≤ k+1 with respect
to T r

h , and set
Hϕh,ΓD

:=
{
ψh ∈ Hϕh : ψh

∣∣
ΓD

= 0
}

(4.3)

to be the analogous space with homogeneous Dirichlet boundary conditions. We define ϕD,h :=
ISZh ϕD|ΓD

to be the approximate Dirichlet boundary data, where ISZh : H1(Ω) → Hϕh denotes the
Scott–Zhang interpolant of degree k + 1 [21]. Hence, ϕD,h belongs to the discrete trace space on ΓD

given by

H
1/2
h (ΓD) :=

{
ψD,h ∈ C(ΓD) : ψD,h

∣∣
e
∈ Pk+1(e) for all e ∈ ErΓD

}
,

where ErΓD
stands for the set of edges/faces on ΓD.

The discrete problem is: Find ((Gh,uh, ϕh), Sh) ∈ (HG
h ×Hu

h ×Hϕh)×H
S
h such that ϕh|ΓD

= ϕD,h

and

a((Gh,uh, ϕh), (Hh,vh, ψh)) + cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Hh,vh, ψh))

−b(Sh, (Hh,vh)) = (ϕh g,vh) ∀ (Hh,vh, ψh) ∈ H
G
h × Hu

h × Hϕh,ΓD

b(Th, (Gh,uh)) = 0 ∀Th ∈ H
S
h ,

(4.4)

where a(·, ·) and b(·, ·) are the bilinear forms defined by (3.5) and (3.6), and the trilinear form cskw(·, ·, ·)
is given by

cskw((Fh,wh, φh), (Gh,uh, ϕh), (Hh,vh, ψh)) =
1

2

[
(Ghwh,vh)− (Hhwh,uh)

]

+
1

2

[
(wh · ∇ϕh, ψh)− (wh · ∇ψh, ϕh)

]
,

(4.5)

which comes from the discrete skew-symmetrization of the form c(·, ·, ·). More precisely, note that
the property (u · ∇ϕ,ψ) = −(u · ∇ψ,ϕ) follows from integration by parts and the fact that u is
divergence-free in Ω. Nevertheless, elements in the discrete kernel

Zh :=
{
(Gh,uh) ∈ H

G
h ×Hu

h : b(Th, (Gh,uh)) = (Gh, Th) + (uh,div Th) = 0 , ∀Th ∈ H
S
h

}
, (4.6)

do not necessarily satisfy this property and hence c(·, ·, ·) is not skew-symmetric at discrete level (c.f.
(3.8)–(3.9)). We circumvent this issue by observing that the nonlinear convective term associated to
the heat equation can also be written as

(u · ∇ϕ,ψ) =
1

2
(u · ∇ϕ,ψ) −

1

2
(u · ∇ψ,ϕ) ,
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for all u ∈ H1
0(Ω) with divu = 0 and for all ϕ,ψ ∈ H1(Ω). In particular, if we set ψ = ϕ, then the

term at the right-hand side of the latter equality vanishes (regardless if u is divergence-free or not).
This explains why we employ cskw(·, ·, ·) in our formulation (4.4).

We end this section by stating the following useful compatibility properties of the subspaces H
G
h ,

Hu

h and H
S
h defined above. The proofs are found in [14, 15, Lemma 3.3, Lemma 4.12].

Lemma 4.1 Let
{
(HG

h ,H
u

h ,H
S
h)
}
h>0

be the family of finite element subspaces defined by (4.1)–(4.2),
and let Zh be the discrete kernel defined by (4.6).

1. If (Gh,uh) ∈ Zh and Gh ⇀ G in L
2(Ω), then uh → u in L

2(Ω).

2. There exists a constant C > 0 independent of h such that ‖uh‖0,6,Ω ≤ C‖Gsym

h ‖0,Ω for all
(Gh,uh) ∈ Zh

3. If k ≥ (n− 1) (n = 2, 3), then the finite element triple H
G
h ×Hu

h ×H
S
h satisfies

sup
(Gh,uh)∈H

G
h ×Hu

h
(Gh,uh)6=0

b(Sh, (Gh,uh))

‖(Gh,uh)‖
≥ β∗ ‖Sh‖div,Ω ∀Sh ∈ H

S
h , (4.7)

‖(Gskw
h ,uh)‖ ≤ C∗ ‖Gsym

h ‖0,Ω ∀ (Gh,uh) ∈ Zh , (4.8)

with constants β∗, C∗ > 0 depending only upon the aspect ratio of Th.

Remark 4.1 Set Hh := Zh × Hϕh,ΓD
(cf. (4.3) and (4.6)) and observe from Lemma 4.1 and the

Poincaré inequality that a(·, ·) is coercive on Hh. In particular, there exists C∗
a = Cmin{ν, κ} > 0,

independent of h, such that

a((Gh,uh, ϕh), (Gh,uh, ϕh)) ≥ C∗
a ‖(Gh,uh, ϕh)‖

2 ∀ (Gh,uh, ϕh) ∈ Hh .

Remark 4.2 In reference [14, 15], the estimate ‖uh‖0,6,Ω ≤ C‖Gsym

h ‖0,Ω is proven provided the tri-
angulation is quasi–uniform. However, Lemma 4.4 below and a discrete Sobolev inequality show that
this mesh restriction is not needed.

4.2 Preliminary results

Similar to the continuous case, we consider problem (4.4) restricted to the kernel Zh. In particular,
we first study the problem: Find ((Gh,uh), ϕh) ∈ Zh ×Hϕh with ϕh|ΓD

= ϕD,h such that

a((Gh,uh, ϕh), (Hh,vh, ψh)) + cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Hh,vh, ψh)) = (ϕh g,vh) (4.9)

for all (Hh,vh, ψh) ∈ Hh.

In advance, we point out that, due to the skew–symmetrization of the convective term, the solvability
analysis of the discrete problem does not immediately follow from the continuous one. For example,
it is easy to see that when proceeding as in Section 3.2.1, the discrete counterpart of the estimation
(3.15) becomes

κ‖∇ϕ0,h‖
2
0,Ω ≤ κ‖∇ϕ1,h‖0,Ω‖∇ϕ0‖0,Ω

+ C ‖Gh‖0,Ω
(
‖∇ϕ0,h‖0,Ω ‖ϕ1,h‖0,3,Ω + ‖∇ϕ1,h‖0,Ω ‖ϕ0,h‖0,3,Ω

)
,
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where ϕ1,h is any discrete extension of ϕD,h, i.e., ϕ1,h ∈ Hϕh and ϕ1,h|ΓD
= ϕD,h. Hence, it is observed

that the factor multiplying the L2−norm of Gh depends on the H1-norm of the discrete extension ϕ1,h,
not its L3−norm (as in the continuous case). This bound is due to estimating the term

(uh · ∇ϕ1,h, ϕ0,h) − (uh · ∇ϕ0,h, ϕ1,h) (4.10)

which involves the gradient of ϕ1,h. Proceeding as in the continuous case would therefore lead us to
data constraints in order to derive a priori estimates and existence results for the discrete solution
(e.g. [19, 20]). Thus, in order to overcome this restriction and to establish results at discrete level
similar to the continuous one, we focus on the following goals:

1. To extend an analogous version of Lemma 3.2 providing some stability properties of discrete
extensions.

2. To derive a suitable bound for (4.10) in terms of some Lp−norm of ϕ1,h.

4.2.1 A Discrete Extension Operator

To define an appropriate discrete extension operator, we first state a well–known property of the
Scott–Zhang interpolant.

Lemma 4.2 ([21],Theorem 3.1 [8],Lemma 1.130) Let p and ℓ satisfy 1 ≤ p < ∞ and ℓ ≥ 1 if
p = 1, and ℓ > 1/p otherwise. Then for all K ∈ T r

h , for any non–negative integer m and 1 ≤ q ≤ ∞,

‖ISZh v‖m,q,K ≤ C

ℓ∑

k=0

h
k−m+n

q
−n

p

K |v|k,p,ωK
∀ v ∈ Wℓ,p(ωK) .

Here, ωK stands for the set of elements in T r
h sharing at least one vertex with K.

With Lemma 4.2 we obtain a discrete version of Lemma 3.2 that guarantees the existence of a
discrete extension operator with similar properties found in the continuous setting.

Lemma 4.3 For any δ ∈ (0, 1) there exists an hδ > 0 and an extension operator Eδ,h : H1/2(ΓD) → Hϕh
such that, for h ≤ hδ,

‖Eδ,hψD‖0,3,Ω ≤ Cδ‖ψD‖1/2,ΓD
, and ‖Eδ,hψD‖1,Ω ≤ Cδ−4‖ψD‖1/2,ΓD

, (4.11)

where C > 0 is independent of h. In particular,

‖Eδ,hϕD,h‖0,3,Ω ≤ Cδ‖ϕD‖1/2,ΓD
, and ‖Eδ,hϕD,h‖1,Ω ≤ Cδ−4‖ϕD‖1/2,ΓD

. (4.12)

Proof. Let Eδ,h := ISZh Eδ, where Eδ is the extension operator constructed in Lemma 3.2. Then the
second estimate in (4.11) follows from Lemmas 4.2 and 3.2:

‖Eδ,hψ‖1,Ω ≤ C‖Eδψ‖1,Ω ≤ Cδ−4‖ψ‖1/2,ΓD
.

Likewise Lemmas 4.2 and Hölder’s inequality gives us

‖Eδ,hψD‖0,3,K ≤ C
(
h
−n

6

K ‖EδψD‖0,ωK
+ h

1−n
6

K ‖EδψD‖1,ωK

)
≤ C

(
‖EδψD‖0,3,ωK

+ h
1−n

6

K ‖EδψD‖1,ωK

)
.
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Therefore by Lemma 3.2,

‖Eδ,hψD‖0,3,Ω ≤ C
(
δ + h1−

n
6 δ−4

)
‖ψD‖1/2,ΓD

.

Hence for h sufficiently small we have ‖Eδ,hψD‖0,3,Ω ≤ Cδ‖ψD‖1/2,ΓD
.

To prove (4.12) it suffices to show ‖ISZh ψD‖1/2,ΓD
≤ C‖ψD‖1/2,ΓD

for all ψD ∈ H1/2(ΓD). To this

end, for a fixed ψD ∈ H1/2(ΓD), let ψ∗, ψ̃∗ ∈ H1(Ω) satisfy

‖ψD‖1/2,ΓD
:= inf

{
‖φ‖1,Ω : φ ∈ H1(Ω), φ

∣∣
ΓD

= ψD

}
= ‖ψ∗‖1,Ω ,

‖ISZh ψD‖1/2,ΓD
:= inf

{
‖φ‖1,Ω : φ ∈ H1(Ω), φ

∣∣
ΓD

= ISZh ψD

}
= ‖ψ̃∗‖1,Ω .

By the stability properties stated in Lemma 4.2 we have

‖ISZh ψ∗‖1,Ω ≤ C ‖ψ∗‖1,Ω .

Since ψ̃∗|ΓD
= ISZh ψ∗|ΓD

, it follows from the definition of ψ̃∗ that

‖ψ̃∗‖1,Ω ≤ C ‖ISZh ψ∗‖1,Ω .

Thus,
‖ISZh ψD‖1/2,ΓD

= ‖ψ̃∗‖1,Ω ≤ C ‖ISZh ψ∗‖1,Ω ≤ C ‖ψ∗‖1,Ω = C ‖ψD‖1/2,ΓD
.

�

4.2.2 A weak continuity property of the discrete kernel

Recall that in the continuous setting, an element in the kernel (G,u) ∈ Z satisfies u ∈ H1
0(Ω). A

discrete analogue of this property is now shown in the following lemma.

Lemma 4.4 There exists a positive constant C, independent of h, such that

∑

K∈T r
h

‖∇uh‖
2
0,K +

∑

e∈Er
h

h−1
e ‖ [[uh]]‖

2
0,e ≤ C ‖Gh‖

2
0,Ω ∀ (Gh,uh) ∈ Zh , (4.13)

where Erh denotes the set of edges/faces of T r
h . Here, [[·]] is the jump operator given by

[[v]]|e = v
+
∣∣
e
− v

−
∣∣
e
, e = ∂K+ ∩ ∂K−,

[[v]]|e = v
+
∣∣
e
, e = ∂K+ ∩ ∂Ω,

where v
± = v|K±, and K+ has a global labeling number smaller than K−.

Proof. Recall that any function Th in the global Raviart-Thomas space is uniquely determined on
each K ∈ T r

h by the conditions

∫

K
Th : S ∀S ∈ Pk−1(K) and

∫

e
Thn · v ∀ v ∈ Pk(e) , e ⊂ ∂K .

Moreover, a simple scaling argument shows that

‖Th‖
2
0,K ≤ C

(
‖Πk−1,K(Th)‖

2
0,K +

∑

e⊂∂K

he ‖Thne‖
2
0,e

)
∀K ∈ T r

h ,
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where Πk−1,K is the L
2−projection onto Pk−1(K). Now, recall from (4.6) that (Gh,uh) ∈ Zh if and

only if
(Gh, Th) + (uh,div Th) = 0 ∀Th ∈ H

S
h ,

or after integrating by parts,

(Gh, Th) −
∑

K∈T r
h

(∇uh, Th)0,K +
∑

e∈Er
h

∫

e
Thn · [[uh]] = 0 . (4.14)

Letting Th satisfy

Th ne|e = h−1
e [[uh]]|e ∈ Pk(e) ∀ e ∈ Erh and Πk−1,K(Th) = 0 ∀K ∈ T r

h ,

we find from (4.14) and Cauchy-Schwarz inequality that

∑

e∈Er
h

h−1
e ‖[[uh]]‖

2
0,e = (Gh, Th) ≤ ‖Gh‖0,Ω ‖Th‖0,Ω ≤ C ‖Gh‖0,Ω

( ∑

e∈Er
h

h−1
e ‖[[uh]]‖

2
0,e

)1/2
.

Thus, ∑

e∈Er
h

h−1
e ‖[[uh]]‖

2
0,e ≤ C ‖Gh‖

2
0,Ω . (4.15)

Likewise, taking now Th such that

Thne|e = 0 ∀ e ∈ Erh and Πk−1,K(Th) = Πk−1,K(∇uh|K) ∀K ∈ T r
h ,

yields

∑

K∈T r
h

‖∇uh‖
2
0,K = (Gh, Th) ≤ ‖Gh‖0,Ω ‖Th‖0,Ω ≤ C ‖Gh‖0,Ω

( ∑

K∈T r
h

‖∇uh‖
2
0,K

)1/2
,

and therefore ∑

K∈T r
h

‖∇uh‖
2
0,K ≤ C ‖Gh‖

2
0,Ω . (4.16)

The estimate (4.13) follows by combining (4.15) and (4.16). �

With the help of Lemma 4.4, we now provide a suitable upper bound for the nonlinear convective
expression (4.10) in terms of the L3−norm of ϕ1,h.

Lemma 4.5 Set ϕh = ϕ0,h+ϕ1,h, where ϕ0,h ∈ Hϕh,ΓD
and ϕ1,h is a discrete extension of ϕD,h. Then

for any (Gh,uh) ∈ Zh, there exists a positive constant C, independent of h, such that

∣∣ (uh · ∇ϕ1,h, ϕ0,h) − (uh · ∇ϕ0,h, ϕ1,h)
∣∣ ≤ C ‖Gh‖0,Ω ‖ϕ0,h‖1,Ω ‖ϕ1,h‖0,3,Ω . (4.17)

Proof. Integrating by parts we find

(uh · ∇ϕ1,h, ϕ0,h) = −
∑

K∈T r
h

(div(ϕ0,h uh),∇ϕ1,h)K +
∑

e∈Er
h

([[uh · n]]ϕ0,h, ϕ1,h)e

= −(uh · ∇ϕ0,h, ϕ1,h) −
∑

K∈T r
h

(div(uh)ϕ0,h, ϕ1,h)K +
∑

e∈Er
h

([[uh · n]]ϕ0,h, ϕ1,h)e ,
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and therefore,

(uh · ∇ϕ1,h, ϕ0,h) − (uh · ∇ϕ0,h, ϕ1,h)

= −2 (uh · ∇ϕ0,h, ϕ1,h) −
∑

K∈T r
h

(div(uh)ϕ0,h, ϕ1,h)K +
∑

e∈Er
h

([[uh · n]]ϕ0,h, ϕ1,h)e

=: J1 + J2 + J3 .

Next, we proceed to estimate each term Ji by applying Hölder’s inequality, Sobolev embeddings, and
the Lemmas 4.1–4.4. Thus,

|J1| ≤ 2 ‖uh‖0,6,Ω ‖∇ϕ0,h‖0,Ω ‖ϕ1,h‖0,3,Ω ≤ C ‖Gh‖0,Ω ‖ϕ0,h‖1,Ω ‖ϕ1,h‖0,3,Ω ,

and likewise

|J2| ≤ C
( ∑

K∈T r
h

‖∇uh‖
2
0,Ω

)1/2
‖ϕ0,h‖0,6,Ω ‖ϕ1,h‖0,3,Ω ≤ C ‖Gh‖0,Ω ‖ϕ0,h‖1,Ω ‖ϕ1,h‖0,3,Ω .

Finally, we further use an inverse inequality to get

|J3| ≤
( ∑

e∈Er
h

h−1
e ‖[[uh]]‖

2
0,e

)1/2 ( ∑

e∈Er
h

he‖ϕ0,h‖
6
0,6,e

)1/6 ( ∑

e∈Er
h

he‖ϕ1,h‖
3
0,3,e

)1/3

≤ C ‖Gh‖0,Ω ‖ϕ0,h‖1,Ω ‖ϕ1,h‖0,3,Ω .

Combining these upper bounds yields the estimate (4.17). �

4.3 A priori estimates

We now derive a priori estimates of solutions of (4.9).

Theorem 4.6 There exists an hδ > 0 such that for h ≤ hδ, any solution (Gh,uh, ϕh) to (4.9) satisfies

‖(Gh,uh)‖ ≤ C∗
1 (ϕD,g) and ‖ϕh‖1,Ω ≤ C∗

2 (ϕD,g),

where C∗
1 (ϕD,g) = CC1(ϕD,g) > 0, C∗

2 (ϕD,g) = CC2(ϕD,g), C > 0 is independent of h, and
C1(ϕD,g) and C2(ϕD,g) are given in Theorem 3.3.

Proof. Let ϕ1,h = Eδ,hϕD,h ∈ Hϕh be the discrete extension of ϕD,h satisfying (4.11), and let ϕ0,h =
ϕh −ϕ1,h ∈ Hϕh,ΓD

. Then problem (4.9) takes the equivalent form: Find (Gh,uh, ϕ0,h) ∈ Hh such that

a((Gh,uh, ϕ0,h), (Hh,vh, ψh)) + cskw((Gh,uh, ϕ0,h), (Gh,uh, ϕ0,h), (Hh,vh, ψh)) = (ϕ0,h g,vh)

+ (ϕ1,h g,vh) + κ (∇ϕ1,h,∇ψh) −
1

2

[
(uh · ∇ϕ1,h, ψh)− (uh · ∇ψh, ϕ1,h)

]
∀ (Hh,vh, ψh) ∈ Hh .

Similarly to the continuous case, to derive a priori estimates, we take (Hh,vh, ψh) = (Gh,uh, ϕ0,h)
decouple the equations and use the skew-symmetric property of the trilinear form to obtain

(A(Gh), Gh) = (ϕ0,h g,uh) + (ϕ1,h g,uh)

κ ‖∇ϕ0,h‖
2
0,Ω = −κ (∇ϕ1,h,∇ϕ0,h) −

1

2

[
(uh · ∇ϕ1,h, ϕ0,h)− (uh · ∇ϕ0,h, ϕ1,h)

]
.

(4.18)
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In light of the discrete Korn inequality stated in Lemma 4.1, we can apply the same arguments in
the proof of Theorem 3.3 to obtain

ν‖(Gh,uh)‖ ≤ C‖g‖0,Ω
(
‖ϕ0,h‖1,Ω + ‖ϕ1,h‖1,Ω

)
. (4.19)

For the second equation in (4.18), we employ the estimate (4.17) for the nonlinear convective term
provided by the Lemma 4.5 to get

κ‖∇ϕ0,h‖
2
0,Ω ≤ κ ‖ϕ1,h‖1,Ω ‖ϕ0,h‖1,Ω + C ‖Gh‖0,Ω ‖ϕ0,h‖1,Ω ‖ϕ1,h‖0,3,Ω .

Applying Poincaré inequality on the left–hand side and Lemma 4.3 on the right–hand side and sim-
plifying, we obtain

‖ϕ0,h‖1,Ω ≤ C
(
‖ϕ1,h‖1,Ω + κ−1 δ‖ϕD‖1/2,ΓD

‖(Gh,uh)‖
)
. (4.20)

Note that the estimates (4.19)–(4.20) are the same as (3.14)–(3.16) in Theorem 3.3 (up to an h–
independent multiplicative factor). Therefore by applying the same arguments in the proof of Theorem
3.3 we obtain the desired estimates. �

4.4 Well-posedness

Analogous to the continuous analysis, we observe that a solution (Gh,uh, ϕ0,h) ∈ Hh to the problem
(4.9) equivalently satisfies the discrete fixed point equation

(Gh,uh, ϕ0,h) = Ah((Gh,uh, ϕ0,h)) ,

where ϕh = ϕ0,h + ϕ1,h, ϕ1,h = Eδ,hϕD,h is the discrete extension of ϕD satisfying the conditions in

Theorem 4.6, and Ah((Gh,uh, ϕ0,h)) = (Ĝh, ûh, ϕ̂0,h) is uniquely defined by the variational problem

a((Ĝh, ûh, ϕ̂0,h), (Hh,vh, ψh)) =
(
Fh
1,(Gh,uh,ϕ0,h)

+ Fh
2,(Gh,uh,ϕ0,h)

+ Fh
3

)
(Hh,vh, ψh) ,

for all (Hh,vh, ψh) ∈ Hh. Here, F
h
1,(G,u,ϕ0)

, Fh
2,(G,u,ϕ0)

and Fh
3 are the linear functionals defined by

Fh
1,(Gh,uh,ϕ0,h)

((Hh,vh, ψh)) = cskw((Gh,uh, ϕ0,h), (Gh,uh, ϕ0,h), (Hh,vh, ψh))

Fh
2,(Gh,uh,ϕ0,h)

((Hh,vh, ψh)) = −
1

2
(uh · ∇ϕ1,h, ψh) +

1

2
(uh · ∇ψh, ϕ1,h) + (ϕ0,h g,vh) ,

Fh
3 ((Hh,vh, ψh)) = (ϕ1,h g,vh) − κ (∇ϕ1,h,∇ψh) ,

for all (Hh,vh, ψh) ∈ Hh. From the Hölder Cauchy-Schwarz inequalities and Lemma 4.1 there holds

|Fh
1,(Gh,uh,ϕ0,h)

(Hh,vh, ψh)| ≤ C∗
3 (uh) ‖(Gh,uh, ϕ0,h)‖ ‖(Hh,vh, ψh)‖ ,

|Fh
2,(Gh,uh,ϕ0,h)

(Hh,vh, ψh)| ≤ C∗
4 (ϕD,g) ‖(Gh,uh, ϕ0,h)‖ ‖(Hh,vh, ψh)‖ , ,

|Fh
3 (Hh,vh, ψh)| ≤ C∗

5 (ϕD,g) ‖(Hh,vh, ψh)‖ ,

where C∗
3 (uh) = C‖uh‖0,3,Ω, C

∗
4 (ϕD,g) = CC4(ϕD,g), and C

∗
5 (ϕD,g) = C5(ϕD,g). Since the bilinear

form a(·, ·) is uniformly continuous and coercive in Hh, Ah is well-defined thanks to the Lax-Milgram
Theorem. Since Ah is a compact operator, we trivially have the following existence result. Its proof
is identical to the proof of Theorem 3.7.

Theorem 4.7 There exists a solution (Gh,uh, ϕh) satisfying (4.9) provided h ≤ hδ.
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Next, to establish a uniqueness result we study the continuity of Ah by proceeding as in the con-
tinuous case. Take Ψh := (Gh,uh, ϕ0,h), Ψ

′
h := (G′

h,u
′
h, ϕ

′
0,h) ∈ Hh and denote

Ah((Gh,uh, ϕ0,h)) = (Ĝh, ûh, ϕ̂0,h) =: Ψ̂h and Ah((G
′
h,u

′
h, ϕ

′
0,h)) = (Ĝ′

h, û
′
h, ϕ̂

′
0,h) := Ψ̂′

h .

It follows, similarly to (3.28), by employing the definition of Ah, and the coercivity of a(·, ·) that

‖Ah(Ψh) − A(Ψ′
h)‖

2 = ‖Ψ̂h − Ψ̂′
h‖

2

≤
1

C∗
a

{ (
Fh
1,Ψh

− Fh
1,Ψ′

h

)
(Ψ̂h − Ψ̂′

h) + Fh
2,Ψh−Ψ′

h
(Ψ̂h − Ψ̂′

h)
}
.

Applying the same arguments to derive (3.29) and (3.30) we then obtain

‖Ah(Ψh) − A(Ψ′
h)‖

2 = ‖Ψ̂h − Ψ̂′
h‖

2

≤
1

C∗
a

{
C
(
‖Gh‖0,Ω + ‖uh‖0,4,Ω + ‖u′

h‖0,4,Ω + ‖ϕ′
0,h‖0,4,Ω

)
+ C∗

4(ϕD,g)
}
‖Ψh −Ψ′

h‖‖Ψ̂ − Ψ̂′‖.

Therefore

‖Ah(Ψh)−A(Ψ′
h)‖ ≤ C∗

LIP‖(Ψh −Ψ′
h)‖,

with C∗
LIP = C∗

LIP(Gh,uh,u
′
h, ϕ

′
0, ϕD,g) = 1

C∗
a

{
C
(
‖Gh‖0,Ω + ‖uh‖0,4,Ω + ‖u′

h‖0,4,Ω + ‖ϕ′
0,h‖0,4,Ω

)
+

C∗
4 (ϕD,g)

}
. Now if (Gh,uh, ϕh), (G

′
h,u

′
h, ϕ

′
h) ∈ Hh are two solutions to (4.9) then

‖(Gh −G′
h,uh − u

′
h, ϕ0,h − ϕ′

0,h)‖ ≤ C∗
LIP‖(Gh −G′

h,uh − u
′
h, ϕ0,h − ϕ′

0,h)‖,

and by Theorem 4.6

C∗
LIP ≤

C

C∗
a

{
C∗
1 (ϕD,g) + C∗

2 (ϕD,g) + C∗
4 (ϕD,g)

}
. (4.21)

Thus, we arrive at the following uniqueness result.

Theorem 4.8 If the data is sufficiently small so that the constant C∗
LIP satisfies C∗

LIP < 1, then
solutions to (4.9) are unique.

Finally, such as in the continuous case, the existence of the discrete tensor Sh follows from the
inf-sup condition given in Lemma 4.1. Furthermore, we have that

‖Sh‖div,Ω ≤ C
(
‖a‖ + ‖cskw‖ ‖(Gh,uh, ϕh)‖ + ‖g‖0,Ω

)
‖(Gh,uh, ϕh)‖ . (4.22)

4.5 A priori error analysis

In this section we proceed to derive error estimates for our numerical scheme. To this end, we recall
from Theorems 3.3 and 4.6 that the following a priori estimates hold

‖(G,u)‖ ≤ C1(ϕD,g) and ‖ϕ‖1,Ω ≤ C2(ϕD,g) ,

‖(Gh,uh)‖ ≤ C∗
1 (ϕD,g) and ‖ϕh‖1,Ω ≤ C∗

2 (ϕD,g) ,
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Moreover, from the Theorems 3.8 and 4.8, we have that if the data is sufficiently small so that if
CLIP < 1 and C∗

LIP < 1 (cf. (3.34) and (4.21)), then the solutions are unique. Therefore by setting

R := max
{
C1(ϕD,g) , C2(ϕD,g)

}
, and R∗ := max

{
C∗
1 (ϕD,g) , C

∗
2 (ϕD,g)

}
, (4.23)

it follows that
‖(G,u, ϕ)‖ ≤ R , and ‖(Gh,uh, ϕh)‖ ≤ R∗ . (4.24)

We state the convergence of our Galerkin scheme through the next result.

Theorem 4.9 Assume that the hypotheses of the Theorems 3.8 and 4.8 hold, and the data is suffi-
ciently small so that

1

C∗
a

(
‖g‖0,Ω + R∗ ‖cskw‖

)
≤

1

2
, (4.25)

where C∗
a is the coercivity constant of the bilinear form a(·, ·) on Hh × Hh and R∗ is defined as in

(4.23). Suppose further that the solution satisfies ((G,u, ϕ), S) ∈
(
H
s(Ω)×Hs(Ω)×Hs+1(Ω)

)
×H

s(Ω)
with div S ∈ Hs(Ω) for some s ∈ (0, k + 1]. Then, the errors satisfy

‖((G,u, ϕ), S) − ((Gh,uh, ϕh), Sh)‖ ≤ Chs, (4.26)

where the constant C > 0 depends on the data and high-order norms of the solution, but is independent
of h.

Proof. We extend in detail the proof of the a priori error estimate result for the dual-mixed formulation
of the Navier-Stokes equations given in [14, 15, Theorem 3.4]. In this way, by subtracting (4.4) from
(3.7) we obtain the following nonlinear error equation:

a((G−Gh,u− uh, ϕ− ϕh), (Hh,vh, ψh))− b(S − Sh, (Hh,vh, ψh)) = ((ϕ− ϕh)g,vh)

cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Hh,vh, ψh))− c((G,u, ϕ), (G,u, ϕ), (Hh,vh, ψh)) .
(4.27)

Let (Gp,up, ϕp) ∈ Z×Hϕh be arbitrary, where ϕp|ΓD
= ϕD,h and write

(E, e, e) := (G−Gh,u− uh, ϕ− ϕh) = (G−Gp,u− up, ϕ− ϕp) + (Gp −Gh,up − uh, ϕp − ϕh)

=: (Ep, ep, ep) + (Eh, eh, eh) .
(4.28)

Note that eh = ϕp − ϕh ∈ Hϕh,ΓD
, and so (Eh, eh, eh) ∈ H. Hence, using the coercivity of a(·, ·) in H

and the equation (4.27) with (Hh,vh, ψh) = (Eh, eh, eh), we find that

C∗
a ‖(Eh, eh, eh)‖

2 ≤ a((Eh, eh, eh), (Eh, eh, eh))

= a((Ep, ep, ep), (Eh, eh, eh)) + a((E, e, e), (Eh, eh, eh))

= a((Ep, ep, ep), (Eh, eh, eh)) + b(S − Sh, (Eh, eh)) + ((ϕ− ϕh)g, eh)

+ cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Eh, eh, eh))− c((G,u, ϕ), (G,u, ϕ), (Eh, eh, eh)) .

(4.29)

Now, we proceed to bound each term of the right-hand side in (4.29).

First, since (Eh, eh) ∈ Zh, we have for any Th ∈ H
S
h that

b(S − Sh, (Eh, eh)) = b(S − Th, (Eh, eh)) + b(Th − Sh, (Eh, eh))
≤ ‖b‖ ‖S − Th‖div,Ω ‖(Eh, eh)‖ .

(4.30)

20



For the trilinear forms, observe that by adding and subtracting (Gh,uh, ϕh) in the second component
of c(·, ·, ·) and that this form is consistent with cskw(·, ·, ·) on Z; thus,

cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Eh, eh, eh)) − c((G,u, ϕ), (G,u, ϕ), (Eh, eh, eh))

= cskw((G,u, ϕ), (G −Gh,u− uh, ϕ − ϕh), (Eh, eh, eh))

− cskw((G−Gh,u− uh, ϕ − ϕh), (Gh,uh, ϕh), (Eh, eh, eh)) .

(4.31)

Therefore by adding and subtracting (Gp,up, ϕp) in the second component of the first term at the
right of the latter expression, and employing the skew-symmetric property of the trilinear form we
deduce that

cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Eh, eh, eh)) − c((G,u, ϕ), (G,u, ϕ), (Eh, eh, eh))

= cskw((G,u, ϕ), (Ep, ep, ep), (Eh, eh, eh)) + cskw((Ep, ep, ep), (Gh,uh, ϕh), (Eh, eh, eh))

+ cskw((Eh, eh, eh), (Gh,uh, ϕh), (Eh, eh, eh)) .

(4.32)

Thus, applying (4.30)–(4.32) to (4.29), bounding the resulting terms and simplifying yields

C∗
a ‖(Eh, eh, eh)‖ ≤ ‖a‖ ‖(Ep, ep, ep)‖ + ‖b‖ ‖S − Th‖div,Ω + ‖g‖0,Ω(‖ep‖1,Ω + ‖eh‖1,Ω)

+ ‖cskw‖
( (

‖(G,u, ϕ)‖ + ‖(Gh,uh, ϕh)‖
)
‖(Ep, ep, ep)‖ + ‖(Gh,uh, ϕh)‖ ‖(Eh, eh, eh)‖

)
.

Hence, by manipulating terms, and using the bounds (4.24) we get

‖(Eh, eh, eh)‖ ≤ C−1
a

(
‖a‖ + ‖g‖0,Ω +

(
R + R∗

)
‖cskw‖

)
‖(Ep, ep, ep)‖ + C−1

a ‖b‖ ‖S − Th‖div,Ω

+C−1
a

(
‖g‖0,Ω + R∗ ‖cskw‖

)
‖(Eh, eh, eh)‖ .

In this way, if the data is sufficiently small so that the hypothesis (4.25) holds, then the last term on
the right can be absorbed into the left:

‖(Eh, eh, eh)‖ ≤
2

C∗
a

{(
‖a‖ + ‖g‖0,Ω +

(
R + R∗

)
‖cskw‖

)
‖(Ep, ep, ep)‖ + ‖b‖ ‖S − Th‖div,Ω

}
.

It then follows from (4.28) that

‖(E, e, e)‖ ≤ C
(
‖(Ep, ep, ep)‖ + ‖S − Th‖div,Ω

)

≤ C
{

inf
(Gp,up,ϕp)∈Zh×Hϕ

h

‖(G −Gp,u− up, ϕ− ϕp)‖ + inf
Th∈H

S
h

‖S − Th‖div,Ω
}

≤ C
{

inf
Hh∈H

G
h

‖G−Hh‖0,Ω + inf
vh∈H

u

h

‖u− vh‖0,4,Ω + inf
ψh∈H

ϕ
h

‖ϕ− ψh‖1,Ω + inf
Th∈H

S
h

‖S − Th‖div,Ω
}
,

(4.33)
where the last statement follows from the inf–sup condition.

Finally, we estimate the error for the stress tensor. To this end we have by the discrete inf-sup
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condition (4.7), for arbitrary Th ∈ H
S
h ,

β∗ ‖Th − Sh‖div,Ω ≤ sup
(Hh,vh)∈H

G
h ×H

u

h
(Hh,vh)6=0

b(Th − Sh, (Hh,vh))

‖(Hh,vh)‖

≤ sup
(Hh,vh)∈H

G
h ×H

u

h
(Hh,vh)6=0

b(Th − S, (Hh,vh))

‖(Hh,vh)‖
+ sup

(Hh,vh)∈H
G
h ×H

u

h
(Hh,vh)6=0

b(S − Sh, (Hh,vh))

‖(Hh,vh)‖

≤ ‖b‖ ‖S − Th‖div,Ω + sup
(Hh,vh)∈H

G
h ×H

u

h
(Hh,vh)6=0

b(S − Sh, (Hh,vh))

‖(Hh,vh)‖
.

(4.34)

Using the error equation (4.27) and the identity (4.31) we have

b(S − Sh, (Hh,vh)) = a((G−Gh,u− uh, ϕ− ϕh), (Hh,vh, ψh)) − ((ϕ− ϕh)g,vh)

− cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Hh,vh, ψh)) + c((G,u, ϕ), (G,u, ϕ), (Hh,vh, ψh))

≤ ‖a‖ ‖(G −Gh,u− uh, ϕ− ϕh)‖ ‖(Hh,vh, ψh)‖ + ‖ϕ− ϕh‖1,Ω ‖g‖0,Ω ‖vh‖0,Ω

+(R+R∗) ‖(G −Gh,u− uh, ϕ− ϕh)‖ ‖c
skw‖ ‖(Hh,vh)‖ .

(4.35)

Applying (4.35) to bound the last term in (4.34) and then using the triangle inequality yields

‖S−Sh‖div,Ω ≤ C
(
‖S−Th‖div,Ω + ‖(E, e, e)‖

)
≤ C

{
inf

Th∈H
S
h

‖S−Th‖div,Ω + ‖(E, e, e)‖
}
. (4.36)

Thus, (4.26) follows by combining (4.33), (4.36) and standard approximation properties of the finite
element spaces. �

5 An alternative formulation

In this section we introduce and analyze an alternative formulation for the problem (2.4) which differs
from (3.4) on the treatment of the mixed boundary conditions for the temperature. More precisely,
along with the set of equations (3.2) and (3.3) associated to the fluid, we consider a primal-mixed
formulation for the heat equation [5, 6].

5.1 The continuous problem and its well-posedness

Multiplying the fourth equation of (2.4) by a function ψ ∈ H1(Ω), and after integrating by parts and
employing the Neumann boundary condition, we introduce the normal derivative of the temperature
λ := −κ∇ϕ · n ∈ H−1/2(ΓD) as a new unknown on ΓD, namely,

κ (∇ϕ,∇ψ) + 〈λ, ψ〉ΓD
+ (u · ∇ϕ,ψ) = 0 ∀ψ ∈ H1(Ω) ,

where 〈·, ·〉ΓD
:= 〈 · , γ0(·)|ΓD

〉ΓD
stands for the dual product between H−1/2(ΓD) and H1/2(ΓD), and

γ0|ΓD
: H1(Ω) −→ H1/2(ΓD) is the trace operator γ0 in H1(Ω) restricted to ΓD. The Dirichlet condition

is then weakly imposed as

〈ξ, ϕ〉ΓD
= 〈ξ, ϕD〉ΓD

∀ ξ ∈ H−1/2(ΓD) . (5.1)
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Hence, the underlying formulation is: Find ((G,u), S, (ϕ, λ)) ∈ (L2
tr(Ω) × L4(Ω) ) × H0(div; Ω) ×

(H1(Ω) × H−1/2(ΓD)) such that

(A(G),H) −
1

2
(u⊗ u,H) − (S,H) = 0

1

2
(Gu,v) − (div S,v) − (ϕg,v) = 0

(G,T ) + (u,div T ) = 0

κ (∇ϕ,∇ψ) + 〈λ, ψ〉ΓD
+ (u · ∇ϕ,ψ) = 0

〈ξ, ϕ〉ΓD
= 〈ξ, ϕD〉ΓD

.

(5.2)

for all ((H,v), T, (ψ, ξ)) ∈ (L2
tr(Ω) × L4(Ω) ) × H0(div; Ω) × (H1(Ω) × H−1/2(ΓD)).

Define the bilinear form b̃ : (H0(div; Ω) × H−1/2(ΓD)) × (L2
tr(Ω)× L4(Ω)×H1(Ω)) −→ R,

b̃((T, ξ), (H,v, ψ)) = (H,T ) + (v,div T ) − 〈ξ, ψ〉ΓD
, (5.3)

whose kernel is H = Z × H1
ΓD

(Ω), where Z is given by (3.8). With the same forms a(·, ·) and
c(·, ·, ·) from Definition 3.1, we see that problem (5.2) is equivalent to: Find ((G,u, ϕ), (S, λ)) ∈
(L2

tr(Ω)× L4(Ω)×H1(Ω))× (H0(div; Ω) × H−1/2(ΓD)) such that:

a((G,u, ϕ), (H,v, ψ)) + c((G,u, ϕ), (G,u, ϕ), (H,v, ψ)) − b̃((S, λ), (H,v, ψ)) = (ϕg,v)

b̃((T, ξ), (G,u, ϕ)) = 〈ξ, ϕD〉ΓD

(5.4)
for all ((H,v, ψ), (T, ξ)) ∈ (L2

tr(Ω)× L4(Ω)×H1(Ω))× (H0(div; Ω) × H−1/2(ΓD)).

Observe that the properties relative to the forms a(·, ·) and c(·, ·, ·) stated in Lemma 3.1 hold.
Regarding the bilinear form b̃(·, ·), note that it involves additionally the term 〈ξ, ψ〉ΓD

associated to
the Lagrange multiplier. Denote by R−1/2,ΓD

: H−1/2(ΓD) −→ H1/2(ΓD) the usual Riesz operator
and by R∗

−1/2,ΓD
its adjoint (which are bijective). Since

〈ξ, ψ〉ΓD
= 〈ξ, γ0(ψ)|ΓD

〉ΓD
= 〈ξ,

(
R∗

−1/2,ΓD
◦ γ0|ΓD

)
(ψ)〉−1/2,ΓD

,

and since the operator R∗
−1/2,ΓD

◦ γ0|ΓD
: H1(Ω) −→ H−1/2(ΓD) is surjective, Lemma 3.1 implies

that b̃(·, ·) satisfies the inf-sup condition. Thus, there exists a positive constant β̃ such that

sup
(H,v,ψ)∈L2

tr(Ω)×L4(Ω)×H1(Ω)
(H,v,ψ)6=0

b̃((T, ξ), (H,v, ψ))

‖(H,v, ψ)‖
≥ β̃ ‖(T, ξ)‖ ∀ (T, ξ) ∈ H0(div; Ω)×H−1/2(ΓD) .

(5.5)

Note that the variational problem (5.4) restricted to the kernel H reduces to problem (3.11). Hence
the corresponding solvability analysis follows from Section 3.2. In particular, from the Theorem 3.3
we have the same a priori estimates stated there for G, u and ϕ, and from Theorems 3.7 and 3.8,
existence of continuous solution is guaranteed with no constraint on data and the uniqueness follows
for small data assumption. In turn, the existence of the stress tensor S and the Lagrange multiplier
λ is a consequence of the inf-sup condition (5.5), and

‖(S, λ)‖ ≤ C
(
‖a‖ + ‖c‖ ‖(G,u, ϕ)‖ + ‖g‖0,Ω

)
‖(G,u, ϕ)‖ .
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5.2 The discrete scheme

To discretize the primal–mixed formulation, we adopt the notations introduced in Section 4.1, and in
addition, consider an independent triangulation {Γ̃1, Γ̃2, . . . , Γ̃m} of ΓD (consisting of straight segments
in R2 or triangles in R3) and define h̃ := max

j∈{1,...,m}
|Γ̃j |. Then, with the same integer k ≥ 0 employed

in the definitions (4.1)–(4.2), we introduce the finite element subspace

Hλ
h̃
:=

{
ξ
h̃
∈ L2(ΓD) : ξ

h̃

∣∣∣
Γ̃j

∈ Pk(Γ̃j) ∀ j ∈ { 1, 2, · · · ,m }
}
. (5.6)

The discrete problem based on (5.4) is then: Find ((Gh,uh, ϕh), (Sh, λh̃)) ∈ (HG
h × Hu

h × Hϕh) ×

(HS
h × Hλ

h̃
) such that:

a((Gh,uh, ϕh), (Hh,vh, ψh)) + cskw((Gh,uh, ϕh), (Gh,uh, ϕh), (Hh,vh, ψh))

− b̃((Sh, λh̃), (Hh,vh, ψh)) = (ϕh g,vh) ∀ (Hh,vh, ψh) ∈ H
G
h × Hu

h × Hϕh

b̃((Th, ξh̃), (Gh,uh, ϕh)) = 〈ξ
h̃
, ϕD〉ΓD

∀ (Th, ξh̃) ∈ H
S
h × Hλ

h̃
,

(5.7)
where a(·, ·) and cskw(·, ·) are the forms defined by (3.5) and (4.5), and b̃(·, ·) is defined by (5.3).

The first step to show that problem (5.7) is well–posed is to verify that the finite element spaces are
compatible. This issue is addressed in the next result. The proof essentially follows from [11, Lemma
4.7] and the inf-sup property (4.7) in Lemma 4.1.

Lemma 5.1 There exist C0 > 0 and β̂∗ > 0, independent of h and h̃, such that for all h ≤ C0 h̃,
there holds

sup
ψh∈H

ϕ
h

ψh 6=0

〈ξ
h̃
, ψh〉ΓD

‖ψh‖1,Ω
≥ β̂∗ ‖ξ

h̃
‖−1/2,ΓD

∀ ξ
h̃
∈ Hλ

h̃
. (5.8)

Consequently,

sup
(Hh,vh,ψh)∈H

G
h ×Hu

h×Hϕ
h

(Hh,vh,ψh)6=0

b̃((Th, ξh̃), (Hh,vh, ψh))

‖(Hh,vh, ψh)‖
≥ β̃∗ ‖(Th, ξh̃)‖ ∀ (Hh, ξh̃) ∈ H

S
h ×Hλ

h̃
, (5.9)

with β̃∗ := min{β∗, β̂∗}.

We introduce the discrete kernel Zh given by

Zh :=
{
ψh ∈ Hϕh : 〈 ξ

h̃
, ψh 〉ΓD

= 0 ∀ ξ
h̃
∈ Hλ

h̃

}
.

Such as in [11, Section 4.3], observe that ξ
h̃
≡ 1 belongs to Hλ

h̃
and then

Zh ⊆
{
ψ ∈ H1(Ω) : 〈 1 , ψ 〉ΓD

= 0
}

=
{
ψ ∈ H1(Ω) :

∫

ΓD

ψ = 0
}
.

Therefore, from the Poincaré inequality, we have that ‖ · ‖1,Ω and | · |1,Ω are equivalent in Zh. In this

way, setting H̃h = Zh × Zh, it is easy to see that this property along with Lemma 4.1 implies that the
bilinear form a(·, ·) is coercive, that is,

a((Gh,uh, ϕh), (Gh,uh, ϕh)) ≥ C̃∗
a ‖(Gh,uh, ϕh)‖

2 ∀ (Gh,uh, ϕh) ∈ H̃h . (5.10)
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Remark 5.1 The formulation (4.4) involves an approximation of the boundary temperature whereas
problem (5.7) incorporates it via the discrete form of the corresponding weak imposition (5.1). Because
of this difference, the analogous extension ϕ1,h to be used in the discrete analysis must be defined
differently (cf. Sections 4.3–4.4). To this end, denote by ΠZ⊥

h
the orthogonal projection from Hϕh

onto the kernel complement Z⊥
h , and observe that the inf–sup condition (5.8) is equivalent to (see [11,

Lemma 2.1])

sup
ξ
h̃
∈Hλ

h̃
ξ
h̃
6=0

〈ξ
h̃
,ΠZ⊥

h
ψh〉ΓD

‖ξ
h̃
‖−1/2,ΓD

≥ β̂∗ ‖ΠZ⊥
h
ψh‖1,Ω ∀ψh ∈ Hϕh and ∀h ≤ C0h̃ .

In particular, since 〈ξ
h̃
,ΠZ⊥

h
ϕh〉ΓD

= 〈ξ
h̃
, ϕD〉ΓD

≤ ‖ξ
h̃
‖−1/2,ΓD

‖ϕD‖1/2,ΓD
∀ ξ

h̃
∈ Hλ

h̃
, there holds

‖ΠZ⊥
h
ϕh‖1,Ω ≤ (1/β̂∗)‖ϕD‖1/2,ΓD

∀h ≤ C0h̃ .

As a result, applying Lemma 4.3 to ΠZ⊥
h
ϕh|ΓD

∈ H1/2(ΓD), and a trace inequality, we conclude that

for any δ ∈ (0, 1) there exists an hδ > 0 such that

‖Eδ,h
(
ΠZ⊥

h
ϕh|ΓD

)
‖0,3,Ω ≤ Cδ‖ϕD‖1/2,ΓD

and ‖Eδ,h
(
ΠZ⊥

h
ϕh|ΓD

)
‖1,Ω ≤ Cδ−4‖ϕD‖1/2,ΓD

, (5.11)

for all h ≤ {hδ , C0h̃}. The discrete extension is then defined as ϕ1,h = Eδ,h
(
ΠZ⊥

h
ϕh

∣∣
ΓD

)
.

We are in position to state the main result of this section.

Theorem 5.2 Let the discrete spaces H
G
h , H

u

h , H
S
h , and Hϕh be defined as in Section 4.1, and Hλ

h̃
be

defined by (5.6). Then, there exist an hδ > 0 and at least one solution ((Gh,uh, ϕh), (Sh, λh̃)) to (5.7)

for all h ≤ {hδ , C0h̃}, satisfying

‖(Gh,uh)‖ ≤ C̃∗
1 (ϕD,g) , ‖ϕh‖1,Ω ≤ C̃∗

2 (ϕD,g) , and

‖(Sh, λh̃)‖ ≤ C
(
‖a‖ + ‖cskw‖ ‖(Gh,uh, ϕh)‖ + ‖g‖0,Ω

)
‖(Gh,uh, ϕh)‖ ,

(5.12)

where C̃∗
1 (ϕD,g) = CC1(ϕD,g) > 0, C̃∗

2 (ϕD,g) = CC2(ϕD,g), C > 0 is independent of h and h̃, and
C1(ϕD,g) and C2(ϕD,g) are given in Theorem 3.3. Moreover, provided the data is small enough (cf.
(5.14)–(5.15) below) and ((G,u, ϕ), (S, λ)) ∈

(
H
s(Ω) ×Hs(Ω) × Hs+1(Ω)

)
×

(
H
s(Ω) × H−1/2+s(ΓD)

)

with div S ∈ Hs(Ω) for some s ∈ (0, k + 1], the errors satisfy

‖((G,u, ϕ), (S, λ)) − ((Gh,uh, ϕh), (Sh, λh̃))‖ ≤ C hs + C h̃s (5.13)

where C > 0 depends on the data and high-order norms of the solution, but is independent of h and h̃.

Proof. Observe that, thanks to the inf–sup condition (5.9), the coercivity result (5.10) and Remark
5.1, the same arguments used in Sections 4.2–4.5 hold by replacing Hϕh,ΓD

, Hh and b(·, ·) by Zh, H̃h,

and b̃(·, ·), respectively, and defining ϕ1,h = Eδ,h
(
ΠZ⊥

h
ϕh|ΓD

)
which satisfies the estimates (5.11).

Next, the same fixed-point approach in Section 4.4 shows the existence of solutions. The arguments
in this section (cf. (4.21) and Theorem 4.8) also show the uniqueness of solutions provided the data
is sufficiently small so that the resulting Lipschitz continuity constant, denoted by C̃∗

LIP, satisfies

C̃∗
LIP ≤

C

C̃∗
a

{
C̃∗
1 (ϕD,g) + C̃∗

2 (ϕD,g) + C̃∗
4 (ϕD,g)

}
< 1 . (5.14)
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Likewise, the a priori estimate (5.12) for the tensor and the Lagrange multiplier as well as the cor-
responding existence result are a consequence of the inf–sup condition (5.9) (cf. (4.22)). Finally, the
error estimate (5.13) is obtained by slightly modifying the proof of Theorem (4.9), with b̃(·, ·) in place
of b(·, ·), and noting that the small data constraint (4.25) takes the form

1

C̃∗
a

(
‖g‖0,Ω + R̃∗ ‖cskw‖

)
≤

1

2
(5.15)

with R̃∗ = max{C̃∗
1 (ϕD,g), C̃

∗
2 (ϕD,g)}.

�

6 Numerical results

In this section we present a two examples to support the theoretical results and to illustrate the
performance of our dual-mixed finite element schemes. The computations are performed on a set of
meshes T r

h created as a barycenter refinement of uniform triangular meshes Th (cf. Figure 1) which
satisfy the macro–element structure required for the inf–sup/LBB compatibility condition at discrete
level (see Section 4.1). We consider n = 2 and order of approximation k = 1, and thus the finite
element spaces for the fluid unknowns in both formulations are given explicitly as

H
G
h = L

2
tr(Ω) ∩ P

disc
1 (T r

h ) , Hu

h = Pdisc
1 (T r

h ) , H
S
h = H0(div; Ω) ∩ RT1(T

r
h ) .

For the heat equation unknowns, we consider the subspaces

Hϕh = P2(T
r
h ), and Hλ

h̃
= Pdisc1 (T r

h̃
∩ ΓD) ,

where Hλ
h̃
is only employed for the formulation involving the Lagrange multiplier. Similar to [5], we

take h̃ as two times h, which comes from the restriction on the mesh sizes h ≤ Ch̃ when considering
the constant C = 1/2. The numeric results confirm that this choice is suitable.

Figure 1: Uniform mesh and its barycenter refinement with meshsize h = 1/3 of the square [−1, 1]2.
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The individual errors are denoted by:

e(G) := ‖G−Gh‖0,Ω , e(u) := ‖u− uh‖0,Ω , e(S) := ‖S − Sh‖div,Ω ,

e(ϕ) := ‖ϕ− ϕh‖1,Ω , e(λ) := ‖λ− λh‖0,Γ , and e(p) := ‖p− ph‖0,Ω ,

where ‖ · ‖2
div,Ω = ‖ · ‖20,Ω + ‖div · ‖20,Ω, p is the exact pressure of the fluid, and ph is the recovered

discrete pressure suggested by the formulas given in the second equation of (2.3) and (3.1), namely,

ph = −
1

2n
tr
{
2Sh + chI + (uh ⊗ uh)

}
, with ch := −

1

2n|Ω|

∫

Ω
tr(uh ⊗ uh) .

Moreover, it is easy to see that there exists C > 0, independents of h, such that

‖p− ph‖0,Ω ≤ C
{
‖S − Sh‖0,Ω + ‖u− uh‖0,Ω

}

which says that the rate of convergence of the postprocessed discrete pressure is the same of S and u.
In turn, we let r(·) be the experimental rate of convergence given by

r(·) :=
log(e(·)/e′(·))

log(h/h′)

where h and h′ (resp. h̃ and h̃′ for λ) denote two consecutive mesh sizes with errors e and e
′.

Example 1. In our first example we illustrate the accuracy of our methods considering manufac-
tured non-homogeneous exact solutions. For the dual-mixed formulation we set Ω = (0, 1)2, and

u(x1, x2) = sin(πx1) sin(πx2)e
x2
1
+x2

(
2π sin(πx1) cos(πx2) + sin(πx1) sin(πx2)

−2π sin(πx2) cos(πx1)− 2x1 sin(πx1) sin(πx2)

)
,

p(x1, x2) = x2x
4
1 − 0.1 and ϕ(x1, x2) = (x1 − 1)2 sin2(π(x2 − 1)) ,

and for testing the alternative scheme we take Ω = (−1, 1)2 and

u(x1, x2) =

(
2π cos(πx2) sin

2(πx1) sin(πx2)
−2π cos(πx1) sin(πx1) sin

2(πx2)

)
,

p(x1, x2) = 5x1 sin(x2) and ϕ(x1, x2) = esin(x1)+sin(x2) .

In both cases, the Dirichlet data for the temperature ϕD, and the right-hand sides are constructed
with the corresponding manufactured exact solutions on the respective domains, and consider ν = 1,
κ = 1, g = (1, 0)t. In Table 1 we present the convergence history of the computed solutions for both
schemes, and observe that the convergence rates are quadratic with respect to h and h̃; these results
are in agreement with Theorems 4.9 and 5.2 with k = 1.

Example 2. The natural convection problem in a differentially heated cavity. In this
example we study the robustness of our dual-mixed method by solving a benchmark problem in natural
convection flows (see [7] and [12]). We consider Ω = (0, 1)2 and boundary conditions corresponding to
internal flow (no slip for the velocity) with the top and bottom insulated, and heating/cooling applied
to the left and right side. The external force field corresponding to the buoyancy term is given as
Raϕg, where Ra is the Rayleigh number and the gravity g is assumed to act upward vertically, and
we take the physical parameters ν = κ = 1.

In figure 2, we display the approximations of the velocity (its magnitude and streamlines), the
temperature and pressure for several values of Ra ∈ [1000, 1000000], and in Figure 3 we present the
velocity vector field, streamlines and components for the highest values of Ra. It is observed that
the flow substantially changes as a result of the convective effects when Ra increases. In particular,
the fluid rises along the hot side and comes down along the cold wall, a secondary flow arises at a
Rayleigh number between 104 and 105, and boundary layers appears near the vertical walls due to the
isothermal deformation.
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Figure 2: Example 2: Velocity streamlines (left), temperature (center) and pressure (right) profiles of
the natural convection problem with Ra = 100 × 10n (n-th row).
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h e(G) r(G) e(u) r(u) e(S) r(S) e(p) r(p) e(ϕ) r(ϕ) e(λ) r(λ)

Dual-mixed scheme

0.5000 4.8642 – 0.3243 – 12.872 – 2.4383 – 0.0973 – – –
0.2500 1.9831 1.2944 0.1134 1.5166 4.9201 1.3875 0.8999 1.4380 0.0357 1.4449 – –
0.1250 0.7171 1.4675 0.0342 1.7294 1.6859 1.5452 0.3210 1.4870 0.0112 1.6762 – –
0.0625 0.2173 1.7224 0.0094 1.8585 0.4934 1.7726 0.0965 1.7337 0.0032 1.8263 – –
0.03125 0.0598 1.8625 0.0025 1.9232 0.1328 1.8938 0.0264 1.8685 0.0008 1.9109 – –

Scheme with Lagrange multiplier

0.5000 2.6116 – 0.6632 – 44.1841 – 2.1437 – 0.3007 – 0.7252 –
0.2500 1.8680 0.4834 0.1325 2.3239 9.0464 2.2881 1.1550 0.8921 0.0577 2.3818 0.1093 2.7304
0.1250 0.5302 1.8168 0.0326 2.0238 2.3195 1.9635 0.3414 1.7583 0.0139 2.0504 0.0279 1.9708
0.0833 0.2406 1.9487 0.0144 2.0152 1.0367 1.9862 0.1575 1.9085 0.0061 2.0288 0.0127 1.9341
0.0625 0.1363 1.9752 0.0081 2.0084 0.5843 1.9929 0.0898 1.9509 0.0034 2.0066 0.0073 1.9823
0.0417 0.0609 1.9866 0.0036 2.0037 0.2601 1.9955 0.0404 1.9732 0.0015 2.0057 0.0033 1.9934

Table 1: Example 1: mesh sizes, errors and rates of convergence for the dual-mixed approximations
of the Boussinesq equations.
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[4] E. Colmenares, G. N. Gatica and R. Oyarzúa, An augmented fully-mixed finite element method for
the stationary Boussinesq problem. Calcolo, to appear.
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A Proof of Lemma 3.4

From the definition of c(·, ·, ·), Hölder’s inequality, Sobolev embeddings and the Poincaré and Cauchy-
Schwarz inequalities we have that

F1,(G,u,ϕ0)((H,v, ψ)) =
1

2

[
(G,v ⊗ u) − (u⊗ u,H)

]
+ (u · ∇ϕ0, ψ)

≤ ‖u‖0,3,Ω
(
‖G‖0,Ω ‖v‖0,6,Ω + ‖u‖0,6,Ω ‖H‖0,Ω + ‖∇ϕ0‖0,Ω ‖ψ‖0,6,Ω

)

≤ C ‖u‖0,3,Ω ‖(G,u, ϕ0)‖ ‖(H,v, ψ)‖ .

Similarly, we find that

F2,(G,u,ϕ0)((H,v, ψ)) ≤ C
(
‖u‖0,3,Ω ‖∇ϕ1‖0,Ω ‖ψ‖0,6,Ω + ‖g‖0,Ω ‖ϕ0‖0,4,Ω ‖v‖0,4,Ω

)
,

≤ Cmax{‖g‖0,Ω, ‖ϕ1‖1,Ω} ‖(G,u, ϕ0)‖‖(H,v, ψ)‖ ,

then applying Lemma 3.2 to bound the H1-norm of the extension ϕ1 with δ given by (3.17), and
defining C4(ϕD,g) := Cmax{‖g‖0,Ω, ν

−4κ−4‖ϕD‖
5
1/2,ΓD

‖g‖40,Ω}, we get

∣∣F2,(G,u,ϕ0)((H,v, ψ))
∣∣ ≤ C4(ϕD,g) ‖(G,u, ϕ0)‖ ‖(H,v, ψ)‖ .

Likewise, with C5(ϕD,g) := Cν−4κ−4‖ϕD‖
5
1/2,ΓD

‖g‖40,Ω
(
κ + ‖g‖0,Ω

)
, we observe that

∣∣F3((H,v, ψ))
∣∣ ≤ C

(
‖g‖0,Ω ‖ϕ1‖1,Ω‖v‖0,6,Ω + κ ‖∇ϕ1‖0,Ω ‖∇ψ‖0,Ω

)
≤ C5(ϕD,g) ‖ (H,v, ψ) ‖ .
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