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Abstract We analyze in this paper a virtual element approximation for the acoustic
vibration problem. We consider a variational formulation relying only on the fluid
displacement and propose a discretization by means of H(div) virtual elements with
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1 Introduction

The Virtual Element Method (VEM) introduced in [6] is a recent generalization of the
Finite Element Method which is characterized by the capability of dealing with very
general polygonal/polyhedral meshes and the possibility to easily implement highly
regular discrete spaces. Indeed, by avoiding the explicit construction of the local basis
functions, the VEM can easily handle general polygons/polyhedrons without complex
integrations on the element (see [7] for details on the coding aspects of the method).
The interest in numerical methods that can make use of general polytopal meshes has
recently undergone a significant growth in the mathematical and engineering literature;
among the large number of papers on this subject, we cite as a minimal sample [3,
9,22,26,27,35,36]. Regarding the VEM literature, we limit ourselves to the following
few articles [1,2,4,6–8,10,11,20,21,28,32,33].

The numerical approximation of eigenvalue problems for partial differential equa-
tions derived from engineering applications, is object of great interest from both, the
practical and theoretical points of view. We refer to [17,18] and the references therein
for the state of the art in this subject area. In particular, this paper focus on the so
called acoustic vibration problem; namely, to compute the vibration modes and the
natural frequencies of an inviscid compressible fluid within a rigid cavity [37]. One mo-
tivation for considering this problem is that it constitutes a stepping stone towards the
more challenging goal of devising virtual element spectral approximations for coupled
systems involving fluid-structure interaction, which arises in many engineering prob-
lems. The simplest formulation of this problem is obtained by using pressure variations
which leads to an eigenvalue problem for the Laplace operator [37]. However, for cou-
pled problems, it is convenient to use a dual formulation in terms of fluid displacements
(see [30]). A standard finite element approximation of this problem leads to spurious
modes (see [29]). Such a spectral pollution can be avoided by using H(div)-conforming
elements, like Raviart-Thomas finite elements [12,15,16,18,34]. See [14] for a thorough
discussion on this topic.

The aim of this paper is to introduce and analyze an H(div) VEM which applies to
general polygonal (even non-convex) meshes for the two-dimensional acoustic vibration
problem. We begin with a variational formulation of the spectral problem relying only
on the fluid displacement. Then, we propose a discretization based on the mixed VEM
introduced in [8] for general second order elliptic problems. The well-known abstract
spectral approximation theory (see [5]) cannot be used to deal with the analysis of our
problem. Indeed, the kernel of the bilinear form on the left-hand side of the variational
formulation has in our case an infinite-dimensional kernel. Although the standard shift
strategy allows a solution operator to be defined, this is not compact and its nontrivial
essential spectrum may in such cases lead to spectral pollution at the discrete level.
However, by appropriately adapting the abstract spectral approximation theory for
non-compact operators developed in [24,25], under rather mild assumptions on the
polygonal meshes, we establish that the resulting scheme provides a correct approxi-
mation of the spectrum and prove error estimates for the eigenfunctions and a double
order for the eigenvalues. As a by-product, we derive optimal approximation estimates
for H(div) virtual elements with vanishing rotor, a result that could be useful also for
other applications. These results and their corresponding proofs are collected in an
appendix.

The outline of this article is as follows: We introduce in Section 2 the variational
formulation of the acoustic vibration problem, define a solution operator and establish
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its spectral characterization. In Section 3, we introduce the virtual element discrete
formulation, describe the spectrum of a discrete solution operator and establish some
auxiliary results. In Section 4, we prove that the numerical scheme provides a correct
spectral approximation and establish optimal order error estimates for the eigenvalues
and eigenfunctions. In Section 5, we report a couple of numerical tests that allow us to
assess the convergence properties of the method, to confirm that it is not polluted with
spurious modes and to check that the experimental rates of convergence agree with the
theoretical ones. Finally, we introduce in an appendix the proofs of the approximation
results for the introduced virtual element interpolant.

Throughout the paper, Ω is a generic Lipschitz bounded domain of R2. For s ≥ 0,
‖·‖s,Ω stands indistinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω) or

[Hs(Ω)]2 with the convention H0(Ω) := L2(Ω). We also define the Hilbert space
H(div;Ω) :=

{
v ∈ [L2(Ω)]2 : div v ∈ L2(Ω)

}
, whose norm is given by ‖v‖2div,Ω :=

‖v‖20,Ω + ‖div v‖20,Ω . Finally, we employ 0 to denote a generic null vector and C to
denote generic constants independent of the discretization parameters, which may
take different values at different places.

2 The spectral problem

We consider the free vibration problem for an acoustic fluid within a bounded rigid
cavity Ω ⊂ R

2 with polygonal boundary Γ and outward unit normal vector n:





−ω2̺w = −∇p in Ω,

p = −̺c2 divw in Ω,

w · n = 0 on Γ,

where w is the fluid displacement, p is the pressure fluctuation, ̺ the density, c the
acoustic speed and ω the vibration frequency. Multiplying the first equation above by
a test function

v ∈ V := {v ∈ H(div;Ω) : v · n = 0 on Γ} ,

integrating by parts, using the boundary condition and eliminating p, we arrive at
the following weak formulation in which, for simplicity, we have taken the physical
parameters ̺ and c equal to one and denote λ = ω2:

Problem 1 Find (λ,w) ∈ R×V, w 6= 0, such that

∫

Ω

divw div v = λ

∫

Ω

w · v ∀v ∈ V.

Since the bilinear form on the left-hand side is not H(div;Ω)-elliptic, it is convenient
to use a shift argument to rewrite this eigenvalue problem in the following equivalent
form:

Problem 2 Find (λ,w) ∈ R×V, w 6= 0, such that

a(w,v) = (λ+ 1) b(w,v) ∀v ∈ V,
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where the bilinear forms are defined for any w,v ∈ V by

a(w,v) :=

∫

Ω

divw div v +

∫

Ω

w · v,

b(w,v) :=

∫

Ω

w · v.

We define the solution operator associated with Problem 2:

T : V −→ V,

f 7−→ Tf := u,

where u ∈ V is the solution of the corresponding source problem:

a(u,v) = b(f ,v) ∀v ∈ V.

Since the bilinear form a(·, ·) is H(div;Ω)-elliptic, the problem above is well posed. As
an immediate consequence, we deduce that the linear operator T is well defined and
bounded. Notice that (λ,w) ∈ R×V solves Problem 1 if and only if (1/ (1 + λ) ,w) is
an eigenpair of T, i.e, if and only if

Tw = µw, with µ :=
1

λ+ 1
.

Moreover, it is easy to check that T is self-adjoint with respect to the inner products
a(·, ·) and b(·, ·) in V.

In what follows, we recall some results that can be found in [12] in the more general
context of fluid-solid vibration problems. The proofs in [12] can be readily adapted to
this case to obtain the following results. Let the space

K := {v ∈ V : div v = 0 in Ω} .

Lemma 1 The operator T admits the eigenvalue µ = 1 with associated eigenspace K.

The following result provides a simple characterization of the orthogonal comple-
ment of K in V.

Lemma 2 Let G :=
{
∇q : q ∈ H1(Ω)

}
. Then,

V = K⊕ (G ∩V) ,

is an orthogonal decomposition in both [L2(Ω)]2 and H(div;Ω).
Moreover, there exists s ∈ (1/2, 1] such that, for all v ∈ V, if v = ϕ+∇q with ϕ ∈ K

and ∇q ∈ G ∩V, then ∇q ∈ [Hs(Ω)]2 and ‖∇q‖s,Ω ≤ C ‖div v‖0,Ω.

From now on, we fix s ∈ (1/2, 1] such that the above lemma holds true.
The following result shows that the subspace G ∩V is invariant for T.

Lemma 3 There holds

T(G ∩V) ⊂ (G ∩ V) .

Smoothing properties of T as an operator from G ∩V into itself are established in
what follows.
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Theorem 1 There holds

T(G ∩V) ⊂
{
v ∈ [Hs(Ω)]2 : div v ∈ H1(Ω)

}

and there exists C > 0 such that, for all f ∈ G ∩V, if u = Tf , then

‖u‖s,Ω + ‖divu‖1,Ω ≤ C ‖f‖div,Ω .

Consequently, the operator T|G∩V : G ∩V → G ∩V is compact.

Finally, the following result provides a spectral characterization of T.

Theorem 2 The spectrum of T decomposes as sp(T) = {0, 1} ∪ {µk}k∈N
, where:

i) µ = 1 is an infinite-multiplicity eigenvalue of T and its associated eigenspace is K;

ii) {µk}k∈N
⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of T which converge

to 0 and if w is an eigenfunction of T associated with such an eigenvalue, then there

exists s̃ > 1/2 and C > 0, both depending on the eigenvalue, such that

‖w‖s̃,Ω + ‖divw‖1+s̃,Ω ≤ C ‖w‖div,Ω ;

iii) µ = 0 is not an eigenvalue of T.

3 The virtual elements discretization

We begin this section, by recalling the mesh construction and the assumptions consid-
ered to introduce a discrete virtual element space. Then, we will introduce a virtual
element discretization of Problem 1 and provide a spectral characterization of the re-
sulting discrete eigenvalue problem. Let {Th} be a family of decompositions of Ω into
polygons E. Let hE denote the diameter of the element E and h := maxE∈Ω hE .

For the analysis, we make the following assumptions on the meshes as in [8,20]:
there exists a positive real number CT such that, for every E ∈ Th and for every Th,

– A1: the ratio between the shortest edge and the diameter of E is larger than CT ;

– A2: E is star-shaped with respect to every point of a ball of radius CT hE .

For any subset S ⊆ R
2 and any non-negative integer k, we indicate by Pk(S) the

space of polynomials of degree up to k defined on S. To keep the notation simpler, we
denote by n a generic normal unit vector; in each case, its precise definition will be
clear from the context. We consider now a polygon E and, for any fixed non-negative
integer k, we define the following finite dimensional space (inspired in [20,8]):

V
E
h :=

{
vh ∈ H(div;E) : (vh · n) ∈ Pk(e) ∀e ⊂ ∂E, div vh ∈ Pk(E), rotvh = 0 in E

}
.

Remark 1 It is elementary to check that a vector field vh ∈ VE
h satisfying vh · n = 0

on ∂E and div vh = 0 in E is identically zero. In fact, since a star-shaped polygon E

is simply connected and rotvh = 0 in E, there exists γ ∈ H1(E) such that vh = ∇γ.
Then, ∆γ = div vh = 0 in E and ∂γ/∂n = vh · n = 0 on ∂E. Hence, vh = ∇γ = 0

in E. This implies that VE
h is finite dimensional, the dimension being less or equal to

NE (k + 1) + (k + 1) (k + 2) /2− 1, where NE is the number of edges of E.
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We define the following degrees of freedom for functions vh in VE
h :

∫

e

(vh · n) q ds ∀q ∈ Pk(e), ∀ edge e ⊂ ∂E; (1)

∫

E

vh · ∇q ∀q ∈ Pk(E)/P0(E). (2)

Proposition 1 The degrees of freedom (1)–(2) are unisolvent in VE
h .

Proof It is easy to check that the number of degrees of freedom (1)–(2) equals the
dimension of VE

h . Thus, we only need to show that if vh in VE
h is such that

∫

e

(vh · n) q ds = 0 ∀q ∈ Pk(e), ∀ edge e ⊂ ∂E,

∫

E

vh · ∇q = 0 ∀q ∈ Pk(E)/P0(E),

then vh = 0. Since div vh ∈ Pk(E), by taking q := div vh above, we have

∫

E

(div vh)
2 =

∫

E

div vh q = −

∫

E

vh · ∇q +

∫

∂E

(vh · n) q ds = 0.

Then, div vh = 0. Similarly, for each edge e ⊂ ∂E, since vh · n ∈ Pk(e), by taking
q := vh · n we obtain ∫

e

(vh · n)2 ds = 0.

Hence, vh · n = 0 on ∂E. Therefore, according to Remark 1, vh = 0 in E. ⊓⊔

Remark 2 For the degrees of freedom (2), we could integrate by parts and substitute
them with ∫

E

div vh q ∀q ∈ Pk(E)/P0(E).

Needless to say, certain degrees of freedom will be more convenient when writing the
code and the others might be more convenient when writing a proof.

For each decomposition Th of Ω into polygons E, we define

Vh :=
{
vh ∈ V : vh|E ∈ V

E
h

}
.

In agreement with the local choice, we choose the following global degrees of freedom:

∫

e

(vh · n) q ds ∀q ∈ Pk(e), for each internal edge e 6⊂ Γ ;

∫

E

vh · ∇q ∀q ∈ Pk(E)/P0(E), for each element E ∈ Th.
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Remark 3 The number of internal degrees of freedom of the Virtual Element Method
here considered (V EMk) is in general less than that of standard finite elements of
the same order such as Raviart-Thomas (RTk) or Brezzi-Douglas-Marini (BDMk)
elements, while the number of degrees of freedom per edge is the same. A count of the
internal degrees of freedom gives

RTk : k (k + 1) , BDMk : (k + 1) (k − 1) , V EMk : (k + 1) (k + 2) /2− 1.

The proposed family may therefore be preferable to more standard finite elements even
in the case of triangular meshes, especially for moderate-to-high values of k.

In order to construct the discrete scheme, we need some preliminary definitions.
First, we split the bilinear form a(·, ·) introduced in the previous section as follows:

a(uh,vh) =
∑

E∈Th

(∫

E

divuh div vh +

∫

E

uh · vh

)
, uh,vh ∈ Vh.

The local matrices associated with the first term on the right hand side above are easily
computable since divuh and div vh are polynomials in each element. We explicitly
point out that, as can be seem from (1)–(2), the divergence of any vector vh ∈ Vh

can be easily computed from knowledge of the degrees of freedom of vh. Instead, for
the local matrices associated with the second term on the right hand side above, we
must take into account that, due to the implicit space definition, it is not possible to
compute exactly the integrals. Because of this, we will use an approximation of them.
The final output will be a local matrix on each element E whose associated bilinear
form is exact whenever one of the two entries is a gradient of a polynomial of degree
k + 1. This will allow us to retain the optimal approximation properties of the space
Vh. With this aim, we define first for each element E the space

V̂
E

h := ∇(Pk+1(E)) ⊂ V
E
h .

Then, we define the [L2(E)]2-orthogonal projector ΠE
h : [L2(E)]2 −→ V̂

E

h by

∫

E

Π
E
h v · ûh =

∫

E

v · ûh ∀ûh ∈ V̂
E

h . (3)

We point out that ΠE
h vh is explicitly computable for every vh ∈ VE

h using only its
degrees of freedom (1)–(2). In fact, it is easy to check that for all vh ∈ VE

h and for all
q ∈ Pk+1(E),

∫

E

Π
E
h vh · ∇q =

∫

E

vh · ∇q = −

∫

E

div vh q +

∫

∂E

(vh · n) q ds.

Remark 4 In particular, for k = 0, for all vh ∈ VE
h and for all q ∈ P1(E), we have that

∫

E

Π
E
h vh · ∇q = −

(
1

|E|

∑

e⊂∂E

∫

e

vh · n ds

)(∫

E

q

)
+
∑

e⊂∂E

∫

e

(vh · n) q ds.
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On the other hand, let SE(·, ·) be any symmetric positive definite (and computable)
bilinear form to be chosen as to satisfy

c0

∫

E

vh · vh ≤ SE(vh,vh) ≤ c1

∫

E

vh · vh ∀vh ∈ V
E
h , (4)

for some positive constants c0 and c1 depending only on the constant CT from mesh
assumptions A1 and A2. Then, we define on each element E the bilinear form

bEh (uh,vh) :=

∫

E

Π
E
h uh ·Π

E
h vh+S

E
(
uh−Π

E
h uh,vh−Π

E
h vh

)
, uh,vh ∈ V

E
h , (5)

and, in a natural way,

bh(uh,vh) :=
∑

E∈Th

bEh (uh,vh), uh,vh ∈ Vh.

The following two properties of the bilinear form bEh (·, ·) are easily derived by repeating
in our case the arguments from [20, Proposition 4.1].

– Consistency:

bEh (ûh,vh) =

∫

E

ûh · vh ∀ûh ∈ V̂
E

h , ∀vh ∈ V
E
h , ∀E ∈ Th. (6)

– Stability: There exist two positive constants α∗ and α∗, independent of E, such
that:

α∗

∫

E

vh · vh ≤ bEh (vh,vh) ≤ α∗
∫

E

vh · vh ∀vh ∈ V
E
h , ∀E ∈ Th. (7)

Now, we are in a position to write the virtual element discretization of Problem 1.

Problem 3 Find (λh,wh) ∈ R×Vh, wh 6= 0, such that
∫

Ω

divwh div vh = λhbh(wh,vh) ∀vh ∈ Vh.

We use again a shift argument to rewrite this discrete eigenvalue problem in the
following convenient equivalent form.

Problem 4 Find (λh,wh) ∈ R×Vh, wh 6= 0, such that

ah(wh,vh) = (λh + 1) bh(wh,vh) ∀vh ∈ Vh,

where

ah(wh,vh) :=

∫

Ω

divwh div vh + bh(wh,vh) ∀wh,vh ∈ Vh.

We observe that by virtue of (7), the bilinear form ah(·, ·) is bounded. Moreover,
as is shown in the following lemma, it is also uniformly elliptic.

Lemma 4 There exists a constant β > 0, independent of h, such that

ah(vh,vh) ≥ β ‖vh‖
2
div,Ω ∀vh ∈ Vh.

Proof Thanks to (7), the above inequality holds with β := min {α∗, 1}. ⊓⊔
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The next step is to introduce the discrete version of the operator T:

Th : Vh −→ Vh,

fh 7−→ Thfh := uh,

where uh ∈ Vh is the solution of the corresponding discrete source problem:

ah(uh,vh) = bh(fh,vh) ∀vh ∈ Vh.

We deduce from Lemma 4, (7) and the Lax-Milgram Theorem, that the linear operator
Th is well defined and bounded uniformly with respect to h.

Once more, as in the continuous case, (λh,wh) solves Problem 3 if and only if
(1/(1 + λh),wh) is an eigenpair of Th, i.e, if and only if

Thwh = µhwh, with µh :=
1

λh + 1
.

Moreover, it is easy to check that Th is self-adjoint with respect to ah(·, ·) and bh(·, ·).
To describe the spectrum of this operator, we proceed as in the continuous case and
decompose Vh into a convenient direct sum. To this end, we define

Kh := Vh ∩K = {vh ∈ Vh : div vh = 0 in Ω}

and notice that, here again, Th|Kh
: Kh −→ Kh reduces to the identity. Moreover, we

have the following result.

Proposition 2 µh = 1 is an eigenvalue of Th and its eigenspace is Kh.

Proof We have that wh ∈ Vh is an eigenfunction associated with the eigenvalue µh = 1
if and only if

∫
E
divwh div vh = 0 ∀vh ∈ Vh, namely, if and only if wh ∈ Kh. ⊓⊔

As a consequence of all this, we have the following spectral characterization of the
discrete solution operator.

Theorem 3 The spectrum of Th consists of Mh := dim(Vh) eigenvalues, repeated accord-

ing to their respective multiplicities. It decomposes as sp(Th) = {1} ∪ {µhk}
Nh

k=1, where:

i) the eigenspace associated with µh = 1 is Kh;

ii) µhk ∈ (0, 1), k = 1, . . . , Nh := Mh − dim(Kh), are non-defective eigenvalues repeated

according to their respective multiplicities.

In what follows, we derive several auxiliary results which will be used in the follow-
ing section to prove convergence and error estimates for the spectral approximation.

First, we establish interpolation properties in the discrete space Vh. Although the
Vh-interpolant can be defined for less regular functions, in our case it is enough to
consider v ∈ V such that v|E ∈ [Ht(E)]2 for some t > 1/2 and for all E ∈ Th, so that
we can easily take its trace on each individual edge. Then, we define its interpolant
vI ∈ Vh by fixing its degrees of freedom as follows:

∫

e

(v − vI) · n q ds = 0 ∀q ∈ Pk(e), ∀ internal edge e 6⊂ Γ ; (8)

∫

E

(v − vI) · ∇q = 0 ∀q ∈ Pk(E)/P0(E), ∀E ∈ Th. (9)
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In what follows, we state two results about the approximation properties of this
interpolant, whose proof we postpone to the Appendix. The first one concerns approx-
imation properties of div vI and follows from a commuting diagram property for this
interpolant, which involves the L2(Ω)-orthogonal projection

Pk : L2(Ω) −→
{
q ∈ L2(Ω) : q|E ∈ Pk(E) ∀E ∈ Th

}
.

Lemma 5 Let v ∈ V be such that v ∈ [Ht(Ω)]2 with t > 1/2. Let vI ∈ Vh be its

interpolant defined by (8)–(9). Then,

div vI = Pk(div v) in Ω.

Consequently, for all E ∈ Th, ‖div vI‖0,E ≤ ‖div v‖0,E and, if div v|E ∈ Hr(E) with

r ≥ 0, then

‖div v − div vI‖0,E ≤ Ch
min{r,k+1}
E |div v|r,E .

The second result concerns the L2(Ω) approximation property of vI .

Lemma 6 Let v ∈ V be such that v ∈ [Ht(Ω)]2 with t > 1/2. Let vI ∈ Vh be its

interpolant defined by (8)–(9). Let E ∈ Th. If 1 ≤ t ≤ k + 1, then

‖v − vI‖0,E ≤ ChtE |v|t,E ,

whereas, if 1/2 < t ≤ 1, then

‖v − vI‖0,E ≤ C
(
htE |v|t,E + hE ‖div v‖0,E

)
.

Let K⊥
h be the [L2(Ω)]2-orthogonal complement of Kh in Vh, namely,

K
⊥
h :=

{
vh ∈ Vh :

∫

Ω

vh · ξh = 0 ∀ξh ∈ Kh

}
.

Note that Kh and K⊥
h are also orthogonal in H(div;Ω). The following lemma shows

that, although K⊥
h 6⊂ K⊥ = G ∩ V, the gradient part in the Helmholtz decomposition

of a function in K⊥
h is asymptotically small.

Lemma 7 Let vh ∈ K⊥
h . Then, there exist p ∈ H1+s(Ω) with s ∈ (1/2, 1] as in Lemma 2

and ψ ∈ K such that vh = ψ +∇p and

‖∇p‖s,Ω ≤ C ‖div vh‖0,Ω , (10)

‖ψ‖0,Ω ≤ Chs ‖div vh‖0,Ω . (11)

Proof Let vh ∈ K⊥
h ⊂ Vh ⊂ V. As a consequence of Lemma 2, we know that there exist

p ∈ H1+s(Ω) and ψ ∈ K such that vh = ∇p + ψ and that ‖∇p‖s,Ω ≤ C ‖div vh‖0,Ω ,
which proves (10).

On the other hand, we have that

‖ψ‖20,Ω =

∫

Ω

(∇p− vh) · (∇p− (∇p)I) +

∫

Ω

(∇p− vh) · ((∇p)I − vh) .
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Now, according to Lemma 5, div((∇p)I) = Pk(div(∇p)). Therefore, since ∆p = div vh,
we obtain

div ((∇p)I − vh) = Pk (∆p)− div vh = Pk (div vh)− div vh = 0,

where we have used that for vh ∈ Vh, div vh|E ∈ Pk(E). Therefore ((∇p)I − vh) ∈

Kh ⊆ K and since ∇p ∈ G ∩V = K⊥ and vh ∈ K⊥
h , we have that

∫

Ω

(∇p− vh) · ((∇p)I − vh) = 0.

Thus,

‖ψ‖20,Ω =

∫

Ω

(∇p− vh) · (∇p− (∇p)I)

and, by using Cauchy-Schwarz inequality, Lemma 6 and (10), we obtain

‖ψ‖20,Ω ≤
∑

E∈Th

‖∇p− vh‖0,E ‖∇p− (∇p)I‖0,E

≤ C
∑

E∈Th

‖∇p− vh‖0,E

(
hsE ‖∇p‖s,E + hE ‖div(∇p)‖0,E

)

≤ Chs ‖ψ‖0,Ω ‖div vh‖0,Ω ,

which allows us to complete the proof. ⊓⊔

To end this section, we prove the following result which will be used in the sequel.
Let Πh be defined in V by

(Πhv) |E :=Π
E
h (v|E) for all E ∈ Th (12)

with ΠE
h defined by (3).

Lemma 8 There exists a constant C > 0 such that, for every p ∈ H1+t(Ω) with 1/2 <
t ≤ k + 1, there holds

‖∇p−Πh(∇p)‖0,Ω ≤ Cht ‖∇p‖t,Ω .

Proof The result follows from the fact that, since ΠE
h is the [L2(E)]2-projection onto

V̂
E

h := ∇(Pk+1(E)) (cf. (3)),

∥∥∇p−ΠE
h (∇p)

∥∥
0,E

= inf
q∈Pk+1(E)

‖∇p−∇q‖0,E ≤ ChtE ‖∇p‖t,E .

Let us remark that the last inequality is a consequence of standard approximation
estimates for polynomials on polygons in case of integer t (see, for instance, [19,
Lemma 4.3.8]) and standard Banach space interpolation results for non-integer t. ⊓⊔
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4 Spectral approximation and error estimates

To prove that Th provides a correct spectral approximation of T, we will resort to the
theory developed in [24] for non-compact operators. To this end, we first introduce
some notation. For any linear bounded operator S : V −→ V, we define

‖S‖h := sup
0 6=vh∈Vh

‖Svh‖div,Ω
‖vh‖div,Ω

.

We recall the definition of the gap δ̂ between two closed subspaces X and Y of V:

δ̂(X ,Y) := max {δ(X ,Y), δ(Y,X )} ,

where

δ(X ,Y) := sup
x ∈ X

‖x‖
div,Ω = 1

δ(x,Y) with δ(x,Y) := inf
y∈Y

‖x− y‖div,Ω .

The theory from [24] guarantees approximation of the spectrum of T, provided the
following two properties are satisfied:

– P1: ‖T−Th‖h → 0 as h→ 0;

– P2: ∀v ∈ V lim
h→0

δ(v,Vh) = 0.

Property P2 follows immediately from the density of the smooth functions in V

and the approximation properties in Lemmas 5 and 6. Hence, there only remains to
prove property P1. With this aim, first we note that since T|Kh

and Th|Kh
both

reduce to the identity, it is enough to estimate ‖(T−Th)fh‖div,Ω for fh ∈ K⊥
h .

Lemma 9 There exists C > 0 such that, for all fh ∈ K⊥
h ,

‖(T−Th)fh‖div,Ω ≤ Chs ‖fh‖div,Ω

with s ∈ (1/2, 1] as in Lemma 2.

Proof Let fh ∈ K⊥
h , u := Tfh and uh := Thfh. According to Lemma 2, we write

u = ϕ+∇q with ϕ ∈ K, ∇q ∈ [Hs(Ω)]2 and ‖∇q‖s,Ω ≤ C ‖divu‖0,Ω . We have

‖(T−Th)fh‖div,Ω ≤ ‖u− (∇q)I‖div,Ω + ‖uh − (∇q)I‖div,Ω , (13)

where (∇q)I is the Vh-interpolant of ∇q defined by (8)–(9). We define vh := uh −

(∇q)I ∈ Vh. Thanks to Lemma 4, the definition (5) of bEh (·, ·) and those of T and Th,
we have

β ‖vh‖
2
div,Ω ≤ ah(vh,vh) = ah(uh,vh)− ah((∇q)I ,vh)

= bh(fh,vh)−

∫

Ω

div((∇q)I) div vh −
∑

E∈Th

bEh ((∇q)I ,vh)

= bh(fh,vh)−

∫

Ω

fh · vh +

∫

Ω

div(u− (∇q)I) div vh

−
∑

E∈Th

(
bEh

(
(∇q)I −ΠE

h u,vh

)
+

∫

E

(
Π

E
h u− u

)
· vh

)
,
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where for the last equality we have also used the consistency property (6). Since
div((∇q)I) = Pk(div(∇q)) (cf. Lemma 5), we have that

∫
Ω
div(u − (∇q)I) div vh = 0

for all vh ∈ Vh. Then,

β ‖vh‖
2
div,Ω ≤

(
bh(fh,vh)−

∫

Ω

fh · vh

)

−
∑

E∈Th

(
bEh ((∇q)I −ΠE

h u,vh) +

∫

E

(
Π

E
h u− u

)
· vh

)
. (14)

The first term on the right hand side can be bounded as follows:

bh(fh,vh)−

∫

Ω

fh · vh =
∑

E∈Th

(
bEh (fh,vh)−

∫

E

fh · vh

)

=
∑

E∈Th

(∫

E

Π
E
h fh ·ΠE

h vh + SE
(
fh −ΠE

h fh,vh −ΠE
h vh

)
−

∫

E

fh · vh

)

=
∑

E∈Th

∫

E

(
Π

E
h fh − fh

)
· vh +

∑

E∈Th

SE
(
fh −ΠE

h fh,vh −ΠE
h vh

)
,

where we have used (3) to write the last equality. Now, from the symmetry of SE(·, ·),
(4), a Cauchy-Schwarz inequality and the fact that ΠE

h is an L2(E)-projection (cf.
(3)), we have that

∑

E∈Th

SE
(
fh −ΠE

h fh,vh −ΠE
h vh

)
≤
∑

E∈Th

c1
∥∥fh −ΠE

h fh

∥∥
0,E

‖vh‖0,E .

Therefore, using Cauchy-Schwarz inequality again,

bh(fh,vh)−

∫

Ω

fh · vh ≤ C
∑

E∈Th

∥∥fh −ΠE
h fh

∥∥
0,E

‖vh‖0,E . (15)

Substituting the above estimate in (14), from (7) and Cauchy-Schwarz inequality we
obtain

β ‖vh‖
2
div,Ω ≤ C

∑

E∈Th

(∥∥fh −ΠE
h fh

∥∥
0,E

+ ‖u− (∇q)I‖0,E +
∥∥u−ΠE

h u
∥∥
0,E

)
‖vh‖0,E

≤ C
(
‖fh −Πhfh‖0,Ω + ‖u− (∇q)I‖0,Ω + ‖u−Πhu‖0,Ω

)
‖vh‖div,Ω ,

with Πh as defined in (12). Therefore, from (13),

‖(T−Th)fh‖div,Ω ≤ C
(
‖fh −Πhfh‖0,Ω + ‖u−Πhu‖0,Ω + ‖u− (∇q)I‖div,Ω

)
.

Thus, there only remains to estimate the three terms on the right-hand side above.
For the first one we write fh = ψ +∇p with ψ ∈ K and p ∈ H1+s(Ω) as in Lemma 7.
Hence, by using this and Lemma 8,

‖fh −Πhfh‖0,Ω ≤ ‖ψ −Πhψ‖0,Ω + ‖∇p−Πh(∇p)‖0,Ω

≤ C
(
‖ψ‖0,Ω + ‖∇p−Πh(∇p)‖0,Ω

)

≤ Chs ‖div fh‖0,Ω .



14 Lourenço Beirão da Veiga et al.

On the other hand, we have that u = T(ψ+∇p) = ψ+T(∇p) and, from Lemmas 3
and 2, T(∇p) = ∇q and ψ = ϕ. Moreover, by virtue of Theorem 1, q ∈ H1+s(Ω) and

‖∇q‖s,Ω ≤ C ‖∇p‖div,Ω ≤ C ‖fh‖div,Ω ,

whereas estimate (11) still holds true for ψ:

‖ψ‖0,Ω ≤ Chs ‖div fh‖0,Ω .

Then, using that Πh is an [L2(Ω)]2-projection, from Lemmas 7 and 8 we have

‖u−Πhu‖0,Ω ≤ ‖ψ −Πhψ‖0,Ω + ‖∇q −Πh(∇q)‖0,Ω)

≤ C
(
‖ψ‖0,Ω + ‖∇q −Πh(∇q)‖0,Ω

)

≤ Chs ‖div fh‖0,Ω + Chs ‖∇q‖s,Ω

≤ Chs ‖fh‖div,Ω .

Finally, using once more that u = ψ +∇q and Lemmas 7, 6 and 5, we write

‖u− (∇q)I‖div,Ω ≤ ‖ψ‖div,Ω + ‖∇q − (∇q)I‖div,Ω

≤ Chs ‖div fh‖0,Ω + ‖∇q − (∇q)I‖0,Ω + ‖div(∇q)− div((∇q)I)‖0,Ω

≤ Chs ‖fh‖div,Ω + C
(
hs |∇q|s,Ω + h ‖div(∇q)‖0,Ω

)
+ Ch |div(∇q)|1,Ω

≤ Chs ‖fh‖div,Ω ,

where, we have used that ∇q = T(∇p) and, hence, since ∇p ∈ G ∩V, from Theorem 1
div(∇q) ∈ H1(Ω) and ‖div(∇q)‖1,Ω ≤ C ‖∇p‖div,Ω ≤ C ‖fh‖div,Ω .

Collecting the previous estimates, we obtain

‖(T−Th)fh‖div,Ω ≤ Chs ‖fh‖div,Ω

and we end the proof. ⊓⊔

Now, we are in a position to conclude property P1.

Corollary 1 There exists C > 0, independent of h, such that

‖T−Th‖h ≤ Chs.

Proof Given vh ∈ Vh, we have that vh = ψh + fh with ψh ∈ Kh and fh ∈ K⊥
h , then

‖(T−Th)vh‖div,Ω = ‖(T−Th)fh‖div,Ω ≤ Chs ‖fh‖div,Ω ,

where the last inequality follows from Lemma 9. The proof follows by noting that, since
vh = ψh + fh is an orthogonal decomposition in H(div;Ω), we have that ‖fh‖div,Ω ≤

‖vh‖div,Ω . ⊓⊔

In order to establish spectral convergence and error estimates, we recall some other
basic definitions from spectral theory.

Given a generic linear bounded operator S : V −→ V defined on a Hilbert space
V, the spectrum of S is the set sp(S) := {z ∈ C : (zI− S) is not invertible} and the
resolvent set of S is its complement ρ(S) := C \ sp(S). For any z ∈ ρ(S), Rz(S) :=
(zI− S)−1 : V −→ V is the resolvent operator of S corresponding to z.

The following two results are consequence of property P1, see [24, Lemma 1 and
Theorem 1].
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Lemma 10 Let us assume that P1 holds true and let F ⊂ ρ(T) be closed. Then, there

exist positive constants C and h0 independent of h, such that for h < h0

sup
vh∈Vh

‖Rz(Th)vh‖div,Ω ≤ C ‖vh‖div,Ω ∀z ∈ F.

Theorem 4 Let U ⊂ C be an open set containing sp(T). Then, there exists h0 > 0 such

that sp(Th) ⊂ U for all h < h0.

An immediate consequence of this theorem and Corollary 1 is that the proposed
virtual element method does not introduce spurious modes with eigenvalues inter-
spersed among those with a physical meaning. Let us remark that such a spectral
pollution could be in principle expected from the fact that the corresponding solution
operator T has an infinite-dimensional eigenvalue µ = 1 (see [12,16,17]).

By applying the results from [24, Section 2] to our problem, we conclude the spec-
tral convergence of Th to T as h→ 0. More precisely, let µ ∈ (0, 1) be an isolated eigen-
value of T with multiplicitym and let C be an open circle in the complex plane centered
at µ, such that µ is the only eigenvalue of T lying in C and ∂C ∩ sp(T) = ∅. Then,

according to [24, Section 2], for h small enough there exist m eigenvalues µ
(1)
h
, . . . , µ

(m)
h

of Th (repeated according to their respective multiplicities) which lie in C. Therefore,

these eigenvalues µ
(1)
h
, . . . , µ

(m)
h

converge to µ as h goes to zero.

Our next step is to obtain error estimates for the spectral approximation. The
classical reference for this issue on non-compact operators is [25]. However, we cannot
apply the results from this reference directly to our problem, because of the variational
crimes in the bilinear forms used to define the operator Th. Therefore, we need to
extend the results from this reference to our case. With this purpose, we follow an
approach inspired by those of [13,31].

Consider the eigenspace E of T corresponding to µ and the Th-invariant subspace

Eh spanned by the eigenspaces of Th corresponding to µ
(1)
h
, . . . , µ

(m)
h

. As a consequence
of Lemma 10, we have for h small enough

‖(zI−Th)vh‖div,Ω ≥ C ‖vh‖div,Ω ∀vh ∈ Vh, ∀z ∈ ∂C. (16)

Let Ph : V −→ Vh →֒ V be the projector with range Vh defined by the relation

a(Phu− u,vh) = 0 ∀vh ∈ Vh.

In our case, the bilinear form a(·, ·) is the inner product of V, so that ‖Phu‖div,Ω ≤

‖u‖div,Ω and

‖u−Phu‖div,Ω = δ(u,Vh) ∀u ∈ V.

Now, we define T̂h := ThPh : V −→ Vh. Notice that sp(T̂h) = sp(Th) ∪ {0}.
Furthermore, we have the following result (cf. [25, Lemma 1]).

Lemma 11 There exist h0 > 0 and C > 0 such that

∥∥Rz(T̂h)
∥∥
div,Ω

≤ C ∀z ∈ ∂C, ∀h ≤ h0.



16 Lourenço Beirão da Veiga et al.

Proof Since T̂h is compact, it suffices to check that
∥∥(zI − T̂h)v

∥∥
div,Ω

≥ C ‖v‖div,Ω
∀v ∈ V and ∀z ∈ ∂C. By using (16) and basic properties of the projector Ph, we obtain

‖v‖div,Ω ≤ ‖Phv‖div,Ω + ‖v −Phv‖div,Ω

≤ C ‖(zI−Th)Phv‖div,Ω + |z|−1 ‖z (v −Phv)‖div,Ω

≤ C
∥∥(zI− T̂h

)
Phv

∥∥
div,Ω

+ |z|−1
∥∥z (v −Phv)− T̂h (v −Phv)

∥∥
div,Ω

= C
∥∥Ph

(
zI− T̂h

)
v
∥∥
div,Ω

+ |z|−1
∥∥ (I−Ph)

(
zI− T̂h

)
v)
∥∥
div,Ω

≤ C
∥∥(zI− T̂h

)
v
∥∥
div,Ω

,

where we have used that the curve ∂C is bounded away from 0. ⊓⊔

Next, we introduce the following spectral projectors (the second one, is well defined
at least for h small enough):

– the spectral projector of T relative to µ: F :=
1

2πi

∫

∂C

Rz(T) dz;

– the spectral projector of T̂h relative to µ
(1)
h
, . . . , µ

(m)
h

: F̂h :=
1

2πi

∫

∂C

Rz(T̂h) dz.

We also introduce the quantities

γh := δ(E,Vh) and ηh := sup
w∈E

‖w −Πhw‖0,Ω
‖w‖div,Ω

.

These two quantities are bounded as follows:

γh ≤ Chmin{s̃,k+1} and ηh ≤ Chmin{s̃,k+1}, (17)

where s̃ > 1/2 is such that E ⊂ [Hs̃(Ω)]2 (cf. Theorem 2). In fact, the first estimate
follows from Lemmas 5 and 6 and Theorem 2(ii), whereas the latter follows from the
fact that E ⊂ G ∩V, Lemma 8 and Theorem 2(ii) again.

The following estimate is a variation of Lemma 3 from [25]) that will be used to
prove convergence of the eigenspaces.

Lemma 12 There exist positive constants h0 and C such that, for all h < h0,

∥∥(F− F̂h

)
|E
∥∥
div,Ω

≤ C
∥∥(T− T̂h

)
|E
∥∥
div,Ω

≤ C (γh + ηh) .

Proof The first inequality is proved using the same arguments of [25, Lemma 3] and
Lemma 11. For the other estimate, let f ∈ E, w := Tf and wh := T̂hf = ThPhf .
Note that, by Theorem 2(ii), f ∈ ∇(H1+s̃(Ω)), s̃ > 1/2. By using the first Strang
lemma (see, for instance, [23, Theorem 4.1.1]), we have

‖w −wh‖div,Ω ≤ C

(
‖w −Phw‖div,Ω + sup

vh∈Vh

|b(Phw,vh)− bh(Phw,vh)|

‖vh‖div,Ω

+ sup
vh∈Vh

|b(f ,vh)− bh(Phf ,vh)|

‖vh‖div,Ω

)



A virtual element method for the acoustic vibration problem 17

and by proceeding as in the proof of Lemma 9 to derive (15), we obtain

|b(Phw,vh)− bh(Phw,vh)| ≤ C
∑

E∈Th

∥∥Phw −ΠE
h Phw

∥∥
0,E

‖vh‖0,E

≤ C
∑

E∈Th

∥∥(I−ΠE
h

)
(Phw −w) +

(
I−ΠE

h

)
w
∥∥
0,E

≤ C
(
‖w −Phw‖0,Ω + ‖w −Πhw‖0,Ω

)
‖vh‖div,Ω .

On the other hand,

|b(f ,vh)− bh(Phf ,vh)| ≤ |b(f −Phf ,vh)|+ |b(Phf ,vh)− bh(Phf ,vh)|

≤ C
(
‖f −Phf‖0,Ω ‖vh‖0,Ω

)
+ |b(Phf ,vh)− bh(Phf ,vh)|

≤ C
(
‖f −Phf‖0,Ω + ‖f −Πhf‖0,Ω

)
‖vh‖div,Ω ,

where, for the last inequality, we have used the same argument as above. Then, we
have

‖w −wh‖div,Ω ≤ C
(
‖w −Phw‖div,Ω + ‖w −Πhw‖0,Ω

+ ‖f −Phf‖0,Ω + ‖f −Πhf‖0,Ω

)

≤ C
(
γh + ‖w −Πhw‖0,Ω + ‖f −Πhf‖0,Ω

)

= C
(
γh +

(
1 + µ−1) ‖w −Πhw‖0,Ω

)

≤ C (γh + ηh) ,

where we have used that, for f ∈ E, w := Tf = µf . Thus, we conclude the proof. ⊓⊔

To prove an error estimate for the eigenspaces, we also need the following result.

Lemma 13 Let

Λh := F̂h|E : E −→ Eh.

For h small enough, the operator Λh is invertible and there exists C independent of h such

that ∥∥Λ−1
h

∥∥ ≤ C.

Proof It follows by proceeding as in the proof of Lemma 2 from [25], by using Lemma 12
and the fact that γh → 0 and ηh → 0 as h→ 0 (cf. (17)). ⊓⊔

The following theorem shows that the eigenspace of Th (which coincides with that
of T̂h) approximates the eigenspace of T.

Theorem 5 There exists C > 0 such that,

δ̂(E,Eh) ≤ C (γh + ηh) .

Proof It follows by arguing exactly as in the proof of Theorem 1 from [25] and using
Lemmas 12 and 13. ⊓⊔
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Finally, we will prove a double-order error estimate for the eigenvalues. With this

aim, let λ :=
1

µ
−1 be the eigenvalue of Problem 1 with eigenspace E. Let λih :=

1

µi
h

−1,

i = 1, . . . ,m, be the eigenvalues of Problem 3 with invariant subspace Eh. We have the
following result.

Theorem 6 There exist positive constants C and h0 independent of h, such that, for h <

h0, ∣∣λ− λ
(i)
h

∣∣ ≤ C
(
γ2h + η2h

)
, i = 1, . . . ,m.

Proof Let wh ∈ Eh be an eigenfunction corresponding to one of the eigenvalues λ
(i)
h

(i = 1, . . . ,m) with ‖wh‖div,Ω = 1. According to Theorem 5, δ(wh,E) ≤ C (γh + ηh).
It follows that there exists w ∈ E such that

‖w −wh‖div,Ω ≤ C (γh + ηh) . (18)

Moreover, it is easy to check that w can be chosen normalized in H(div;Ω)-norm.
From the symmetry of the bilinear forms and the facts that w and wh are solutions

of Problem 1 and 3, respectively, we have

∫

Ω

div(w −wh)
2 − λ

∫

Ω

(w −wh)
2 = λ

(i)
h
bh(wh,wh)− λ b(wh,wh)

= λ
(i)
h (bh(wh,wh)− b(wh,wh)) +

(
λ
(i)
h

− λ
)
b(wh,wh),

from which we obtain the following identity:

(
λ
(i)
h

− λ
)
b(wh,wh) =

∫

Ω

div(w −wh)
2 − λ

∫

Ω

(w −wh)
2

− λ
(i)
h (bh(wh,wh)− b(wh,wh)) . (19)

The next step is to estimate each term on the right hand side above. The first and
the second ones are easily bounded by using the Cauchy-Schwarz inequality and (18):

∣∣∣∣
∫

Ω

div(w −wh)
2 − λ

∫

Ω

(w −wh)
2

∣∣∣∣ ≤ C ‖w −wh‖
2
div,Ω ≤ C

(
γ2h + η2h

)
. (20)

For the third term, we use (4)–(5) to write

|bh(wh,wh)− b(wh,wh)|

=

∣∣∣∣∣∣

∑

E∈Th

(∫

E

(
Π

E
hwh

)2
+ SE

(
wh −ΠE

hwh,wh −ΠE
hwh

))
−
∑

E∈Th

∫

E

(wh)
2

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

E∈Th

(∥∥ΠE
hwh

∥∥2
0,E

− ‖wh‖
2
0,E

)
∣∣∣∣∣∣
+
∑

E∈Th

c1

∫

E

(
wh −ΠE

hwh

)2

=
∑

E∈Th

∥∥wh −ΠE
hwh

∥∥2
0,E

+ c1
∑

E∈Th

∥∥wh −ΠE
hwh

∥∥2
0,E

≤ C ‖wh −Πhwh‖
2
0,Ω

≤ C
(
‖wh −w‖20,Ω + ‖w −Πhw‖20,Ω + ‖Πh(w −wh)‖

2
0,Ω

)
.
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Then, from the last inequality, the definition of ηh, the fact that Πh is an [L2(Ω)]2-
projection and (18), we obtain

|b(wh,wh)− bh(wh,wh)| ≤ C
(
γ2h + η2h

)
. (21)

On the other hand, from the stability property (7),

‖divwh‖
2
0,Ω = λ

(i)
h
bh(wh,wh) ≤ λ

(i)
h
α∗ ‖wh‖

2
0,Ω ,

hence (
1 + λ

(i)
h
α∗) ‖wh‖

2
0,Ω ≥ ‖wh‖

2
div,Ω = 1.

Therefore, since λ
(i)
h

→ λ as h goes to zero, the theorem follows from (19), (20), (21)
and the inequality above. ⊓⊔

As shown in Theorem 2(ii), the eigenfunctions satisfy additional regularity. The fol-
lowing result shows that this implies an optimal order of convergence for the numerical
method.

Corollary 2 If E ⊂ [Hs̃(Ω)]2 with s̃ > 1/2, then

δ̂(E,Eh) ≤ Chmin{s̃,k+1}.

and ∣∣λ− λ
(i)
h

∣∣ ≤ Ch2min{s̃,k+1}, i = 1, . . . ,m.

Proof It follows from the above theorems and the estimates (17). ⊓⊔

5 Numerical results

Following the ideas proposed in [7], we have implemented in a MATLAB code a lowest-
order VEM (k = 0) on arbitrary polygonal meshes. We report in this section a couple
of numerical tests which allowed us to assess the theoretical results proved above.

To complete the choice of the VEM, we had to fix the bilinear form SE(·, ·) sat-
isfying (4) to be used. To do this, we proceeded as in [6]. For each element E ∈ Th
with edges e1, . . . , eNE

, let
{
ϕ1, . . . ,ϕNE

}
be the dual basis of VE

h associated with the

degrees of freedom (1); namely, ϕi ∈ VE
h are such that

∫

ej

ϕi · n ds = δij , i, j = 1, . . . , NE .

Therefore, ‖ϕi‖∞,E ≃
1

hE
, namely, there exists C > 0 such that

1

ChE
≤ ‖ϕi‖∞,E ≤

C

hE
, i = 1, . . . , NE .

Hence, a natural choice for SE(·, ·) is given by

SE(uh,vh) := σE

NE∑

k=1

(∫

ek

uh · n

)(∫

ek

vh · n

)
, uh,vh ∈ V

E
h ,

where σE is the so-called stability constant which will be taken of the order of unity
(see for instance [6]).
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5.1 Test 1: Rectangular acoustic cavity

In this test, the domain is a rectangle Ω := (0, a) × (0, b), in which case the exact
analytic solution is known. The non vanishing eigenvalues of Problem 1 are given by

λnm := π2
((

n

a

)2
+
(
m

b

)2)
, n,m = 0, 1, 2, . . . , n+m 6= 0,

while the corresponding eigenfunctions are

wnm :=




n

a
sin

nπx

a
cos

mπy

b
m

b
cos

nπx

a
sin

mπy

b


 .

We have used a = 1 and b = 1.1. The stability constant has been taken σE = 1. We
have used three different families of meshes (see Figure 1):

– T 1
h : triangular meshes;

– T 2
h : rectangular meshes;

– T 3
h : hexagonal meshes.

The refinement parameter N used to label each mesh is the number of elements inter-
secting each edge.

Fig. 1 Sample meshes: T 1
h (left), T 2

h (middle) and T 3
h (right). In all of them N = 9.

Let us remark that for triangular and rectangular meshes like T 1
h and T 2

h , respec-
tively, the discrete spaces Vh coincide with those of the standard lowest-order Raviart-
Thomas discretization. However, the resulting discrete problems are not the same. In
fact, the matrices corresponding to the left-hand side of Problem 3 also coincide, but
this does not happen with the matrices corresponding to right-hand side.

We report in Table 1 the scaled lowest eigenvalues λ̂hi := λhi/π
2 computed with the

method analyzed in this paper. The table also includes estimated orders of convergence.
The exact eigenvalues are also reported in the last column to allow for comparison.

It can be seen from Table 1 that the computed eigenvalues converge to the exact
ones with an optimal quadratic order as predicted by the theory in almost all cases. The
exception seems to be the computation of some of the eigenvalues with the hexagonal
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Table 1 Test 1. Computed lowest eigenvalues λ̂hi, 1 ≤ i ≤ 5, on different meshes with σE = 1.

Th λ̂hi N = 19 N = 35 N = 53 N = 71 Order λi
λ̂h1 0.8248 0.8259 0.8262 0.8263 2.01 0.82645

T 1
h λ̂h2 0.9976 0.9993 0.9997 0.9998 2.00 1.00000

λ̂h3 1.8182 1.8240 1.8254 1.8259 2.01 1.82645

λ̂h4 3.2788 3.2978 3.3023 3.3039 2.02 3.30579

λ̂h5 3.9595 3.9883 3.9949 3.9972 2.03 4.00000

λ̂h1 0.8200 0.8245 0.8256 0.8260 1.99 0.82645

T 2
h λ̂h2 0.9896 0.9969 0.9987 0.9992 1.99 1.00000

λ̂h3 1.8096 1.8214 1.8243 1.8252 1.99 1.82645

λ̂h4 3.2047 3.2754 3.2925 3.2983 1.98 3.30579

λ̂h5 3.8389 3.9512 3.9786 3.9880 1.97 4.00000

λ̂h1 0.8249 0.8260 0.8262 0.8263 1.98 0.82645

T 3
h λ̂h2 0.9948 0.9982 0.9990 0.9993 1.56 1.00000

λ̂h3 1.8132 1.8220 1.8241 1.8249 1.63 1.82645

λ̂h4 3.2805 3.2979 3.3024 3.3039 1.98 3.30579

λ̂h5 3.9387 3.9823 3.9912 3.9946 1.84 4.00000

meshes. In this case, although the computed eigenvalues are as good approximations
to the exact ones as those computed with the other families of meshes, the order of
convergence deteriorates mildly. We have observed from our numerical experiments
that this can be avoided by choosing a smaller stability constant σE .

This can be clearly seen by comparing the lowest part of Table 1 with Table 2,
where we report the result obtained with a smaller value of σE and meshes T 3

h . A
more detailed discussion about the effect of the stability constant σE appears in the
following test.

Table 2 Test 1. Computed lowest eigenvalues λ̂hi, 1 ≤ i ≤ 5, on meshes T 3
h with σE = 2−4.

Th λ̂hi N = 19 N = 35 N = 53 N = 71 Order λi
λ̂h1 0.8294 0.8272 0.8268 0.8266 2.09 0.82645

T 3
h λ̂h2 1.0032 1.0009 1.0004 1.0002 2.15 1.00000

λ̂h3 1.8389 1.8297 1.8278 1.8272 2.12 1.82645

λ̂h4 3.3539 3.3179 3.3112 3.3088 2.09 3.30579

λ̂h5 4.0536 4.0149 4.0063 4.0034 2.09 4.00000

Figure 2 shows plots of the computed eigenfunctions wh1 and wh3 correspond-
ing to the first and third lowest eigenvalues, respectively. The figure also includes the
corresponding pressure fluctuation phi = −divwhi, i = 1, 3. In both cases, the eigen-
functions have been computed on an hexagonal mesh T 3

h with N = 27 and stability
constant σE = 1.

5.2 Test 2: Effect of the stability constant σE

As was shown in the previous test, in some cases the quality of the computation can be
affected by the choice of the stability constant σE . A similar behavior was observed in
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Fig. 2 Eigenfunctions of the acoustic problem corresponding to the first and third lowest eigenval-
ues: displacement field wh1 (upper left), pressure fluctuation ph1,(upper right), displacement field
wh3 (bottom left), pressure fluctuation ph3 (bottom right).

other VEM for different eigenvalue problems. In particular, it was demonstrated in [32]
that certain VEM discretizations of the Steklov eigenvalue problem introduces spuri-
ous eigenvalues which can be well separated from the physical spectrum by choosing
appropriately the stability constant σE .

In the present case, no spurious eigenvalue was detected for any choice of the
stability constant. However, for large values of σE , the eigenvalues computed with
coarse meshes could be very poor. The aim of this test is to analyze the influence of
the stability constant σE on the computed spectrum.

We report in Table 3 the lowest eigenvalue computed with varying values of σE on
the family of meshes T 2

h (see Figure 2, middle). The table also includes the estimated
order of convergence.
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Table 3 Test 2. The lowest eigenvalue λ̂h1 for σE = 0 and σE = 2−k with −6 ≤ k ≤ 6.

N σE = 0 σE = 2−6 σE = 2−5 σE = 2−4 σE = 2−3 σE = 2−2 σE = 2−1

8 0.8482 0.8472 0.8463 0.8444 0.8406 0.8332 0.8187
16 0.8318 0.8316 0.8313 0.8309 0.8300 0.8281 0.8245
32 0.8278 0.8277 0.8277 0.8275 0.8273 0.8269 0.8260
64 0.8268 0.8268 0.8268 0.8267 0.8267 0.8265 0.8263
128 0.8265 0.8265 0.8265 0.8265 0.8265 0.8265 0.8264
256 0.8265 0.8265 0.8265 0.8265 0.8265 0.8265 0.8264

Order 2.00 2.00 2.00 2.00 2.00 2.00 2.00
λ1 0.82645 0.82645 0.82645 0.82645 0.82645 0.82645 0.82645
N σE = 20 σE = 21 σE = 22 σE = 23 σE = 24 σE = 25 σE = 26

8 0.7912 0.7415 0.6586 0.5383 0.3943 0.2569 0.1513
16 0.8174 0.8034 0.7770 0.7289 0.6487 0.5317 0.3907
32 0.8242 0.8206 0.8135 0.7997 0.7735 0.7258 0.6463
64 0.8259 0.8250 0.8233 0.8196 0.8125 0.7988 0.7726
128 0.8263 0.8261 0.8256 0.8247 0.8229 0.8193 0.8123
256 0.8264 0.8264 0.8262 0.8260 0.8256 0.8247 0.8229

Order 1.99 1.97 1.94 1.90 1.82 1.70 1.55
λ1 0.82645 0.82645 0.82645 0.82645 0.82645 0.82645 0.82645

It can be seen from Table 3 that for values of the parameter σE ≤ 1 the computed
eigenvalues depend very mildly on this parameter. Moreover, this dependence becomes
weaker, as the mesh is refined or σE is taken smaller. In fact, it can be seen from this
table that even the value σE = 0 yields very accurate results, in spite of the fact that
for such a value of the parameter the stability estimate and hence most of the proofs
of the theoretical results do not hold. On the other hand, it can be seen from Table 3
that the numerical results depend much more significantly on this parameter σE when
it is chosen larger. In such a case, the results for coarse meshes are poorer and more
refined meshes are needed for the computed eigenvalues to lie close to the exact ones.

This analysis suggests that the user of H(div) VEM for this kind of spectral prob-
lems has to be aware of the risk of degeneration of the eigenvalues for certain values of
the stability constant σE . The way of minimizing this risk in this case is to take small
values of σE (what “small” means in a real problem will of course depend on the value
of the physical constants).

A Appendix

We derive in this appendix optimal approximation properties for the H(div) virtual elements with
vanishing rotor introduced in Section 3. The main goal of this appendix will be to prove the error
estimates stated in Lemmas 5 and 6 for the Vh-interpolant defined by (8)–(9). Let us remark that
these results could be useful for other applications as well.

Our first result, whose proof is quite straightforward, is a commuting diagram property and
some consequences that follow from it. We recall that Pk denotes the L2(Ω)-orthogonal projection
onto the subspace

{
q ∈ L2(Ω) : q|E ∈ Pk(E) ∀E ∈ Th

}
.

Lemma 5 Let v ∈ V be such that v ∈ [Ht(Ω)]2 with t > 1/2. Let vI ∈ Vh be its interpolant

defined by (8)–(9). Then,

div vI = Pk(div v) in Ω.

Consequently, for all E ∈ Th, ‖div vI‖0,E ≤ ‖div v‖0,E and, if div v|E ∈ Hr(E) with r ≥ 0, then

‖div v − div vI‖0,E ≤ Ch
min{r,k+1}
E |div v|r,E .
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Proof As a consequence of (8)–(9), for every element E and for every q ∈ Pk(E)

∫

E
div(v − vI) q =

∫

E
(v − vI) · ∇q +

∫

∂E
(v − vI) · n q ds = 0.

Since div vI ∈ Pk(E), we have that

div vI = Pk(div v) in E.

Therefore,
‖div vI‖0,E ≤ ‖div v‖0,E .

Additionally, if div v|E ∈ Hr(E) with r a non-negative integer, as a consequence of [19,
Lemma 4.3.8], we have that for every E ∈ Th

‖div v − div vI‖0,E ≤ Ch
min{r,k+1}
E |div v|r,E .

Thus, the second estimate of the lemma follows by standard Banach space interpolation. ⊓⊔

In order to prove Lemma 6 about the L2(Ω) approximation property of this interpolant, we
need several previous results. We begin with the following local trace estimate on polygons.

Lemma 14 Let v ∈ V and E ∈ Th such that v|E ∈ [Ht(E)]2 with t ∈ (1/2, 1]. Then, there exists

C > 0 such that

‖v‖0,∂E ≤ C
(
h
−1/2
E ‖v‖0,E + h

t−1/2
E |v|t,E

)
.

Proof Consider the triangulation T E
h of the element E obtained by joining each vertex of E with

the midpoint of the ball with respect to which E is star-shaped. Since we are assuming that the
meshes satisfy A1 and A2, the triangles T ∈ T E

h have a shape ratio (i.e., the quotient between
outer and inner diameters) bounded above by a constant that only depends on CT . Moreover, each
triangle T ∈ T E

h has one edge on ∂E. Hence, a scaling argument and a trace inequality in the
reference triangular element allow us to conclude the proof. ⊓⊔

In order to prove an L2(Ω) error estimate for the interpolant vI , we will introduce a basis of
VE

h dual to the degrees of freedom (1)–(2).

Let E ∈ Th with edges e1, . . . , eNE
and F : E −→ Ê be an affine mapping of the form

F

(
x
y

)
:=

1

hE

(
x− xE
y − yE

)
=:

(
x̂
ŷ

)
,

where xE = (xE , yE)T is the center of the ball with respect to which E is star-shaped according to

assumption A2. Note that Ê := F (E) has diameter 1. Moreover, F maps the above mentioned ball

onto a ball of radius CT with 0 < CT ≤ 1 and CT independent of hE , Moreover, Ê is star-shaped
with respect to each point of this ball.

We define the following basis of Pk(E) :

p0(x, y) := 1,

ps(x, y) :=
(x− xE)α1 (y − yE)α2

hα1+α2

E

+ Cs, α1, α2 ∈ N, 0 < α1 + α2 ≤ k,

with the constant Cs ∈ R such that
∫
E ps = 0. We have associated above each s = 1, . . . , Ñ :=

dim(Pk(E))−1 with one particular couple (α1, α2), by fixing a particular ordering of these couples.

Therefore, the set
{
p0, p1, . . . , pÑ

}
is a basis for Pk(E) that satisfies

∫
E ps = 0 for s = 1, . . . , Ñ .

Let now p̂s := ps ◦ F−1 be defined in Ê. Then, for the particular (α1, α2) associated with s, we

have that p̂s(x̂, ŷ) = x̂α1 ŷα2 + Cs. Moreover, since |E| = h2E
∣∣Ê
∣∣, we have

Cs = −
1

|E|

∫

E

(x− xE)α1 (y − yE)α2

hα1+α2

E

dx dy = −
1
∣∣Ê
∣∣

∫

Ê
x̂α1 ŷα2 dx̂ dŷ.
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As a consequence, note that |Cs| ≤ 1 and, hence, ‖ps‖∞,E = ‖p̂s‖∞,Ê
≤ 2, s = 0, . . . , Ñ .

For each edge el of E (l = 1, . . . , NE), let Tl be the affine function mapping ê := [−1, 1] onto el.

We define qil := q̂ i◦T−1
l (i = 1, . . . , k) with q̂ i being the Legendre polynomials on [−1, 1] normalized

by q̂ i(1) = 1. Then,
{
q0l , . . . , q

k
l

}
is a basis of Pk(el) which satisfies q0l = 1,

∫
el
qilq

j
l ds = δij ,

i, j = 1, . . . , k, and
∥∥qil
∥∥
∞,el

= 1. Note that, in particular,
∫
el
qil ds = 0, i = 1, . . . , k.

Therefore, {
qil
}
i=0,...,k, l=1,...,NE

and {ps}s=1,...,Ñ

are bases for the spaces of test functions appearing in the degrees of freedom (8) and (9), respec-
tively. Next, we introduce a set of dual basis functions for VE

h :

{
ϕi

l

}
i=0,...,k, l=1,...,NE

∪ {ϕ̃s}
s=1,...,Ñ

. (22)

The first ones, ϕi
l , are the “boundary basis functions” determined by

ϕi
l ∈ V

E
h , (23)

∫

em

(
ϕi

l · n
)
qjm ds = δlmδij , m = 1, . . . , NE , j = 0, . . . , k, (24)

∫

E

(
divϕi

l

)
pr = 0, r = 1, . . . , Ñ . (25)

Note that these boundary basis functions use two indexes, i and l, one for the moment and the
other for the edge. On the other hand, note also that as a consequence of (23)–(24) ϕi

l · n = 0 on
∂E \ el The second kind of functions in (22), ϕ̃s, are the “internal basis functions” determined by

ϕ̃s ∈ V
E
h , (26)

ϕ̃s|∂E · n = 0, (27)
∫

E
(div ϕ̃s) pr = δsr, r = 1, . . . , Ñ . (28)

Remark 5 Since divϕi
l ∈ Pk(E) = span {1, p1, . . . , ps} and

∫
E ps = 0 for s = 1, . . . , Ñ , equation

(25) implies that divϕi
l has to be constant. Therefore,

divϕi
l =

1

|E|

∫

E
divϕi

l =
1

|E|

∫

∂E
ϕi

l · n ds.

Moreover, thanks to (24), we have that

∫

∂E
ϕi

l · n ds =

NE∑

m=1

∫

em

(
ϕi

l · n
)
q0m ds =

NE∑

m=1

δlmδi0 = δi0.

Then,

divϕi
l =

δi0

|E|
.

Next goal is to prove that all the functions in (22) are bounded uniformly in h. We begin with the
boundary basis functions.

Lemma 15 There exists C > 0 such that
∥∥ϕi

l

∥∥
0,E

≤ C for l = 1, . . . , NE and i = 0, . . . , k.

Proof Since ϕi
l ∈ VE

h , we know that rotϕi
l = 0. Therefore, there exists γ ∈ H1(E) such that

ϕi
l = ∇γ. Hence, from the remark above and (24), we have that γ is a solution of the following

problem:




∆γ =
δi0

|E|
in E,

∂γ

∂n
= ϕi

l · n on ∂E,
∫

E
γ = 0.
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It is easy to check that these Neumann problems are compatible. Therefore,

∫

E
∇γ · ∇ζ =

∫

∂E

(
ϕi

l · n
)
ζ ds−

∫

E

δi0

|E|
ζ =

∫

el

(
ϕi

l · n
)
ζ ds ∀ζ ∈ H1(E) :

∫

E
ζ = 0.

Now, taking ζ = γ, we obtain

∥∥ϕi
l

∥∥2
0,E

= ‖∇γ‖20,E ≤
∥∥ϕi

l · n
∥∥
0,el

‖γ‖0,el

≤ C
∥∥ϕi

l · n
∥∥
0,el

(
h
−1/2
E ‖γ‖0,E + h

1/2
E ‖∇γ‖0,E

)

≤ Ch
1/2
E

∥∥ϕi
l · n

∥∥
0,el

‖∇γ‖0,E ,

where we have used Lemma 14 with t = 1, the generalized Poincaré inequality and a scaling argu-
ment. Now, because of (24) with m = l and the orthogonality property of Legendre polynomials,

ϕi
l · n

∣∣
el

=
(∫

el

(
qil
)2
ds
)−1

qil . Therefore,

∥∥ϕi
l · n

∥∥2
0,el

=

(∫

el

(
qil
)2
ds

)−1

=
1

hE

(∫

ê

(
q̂ i
)2
dŝ

)−1

.

Thus, from the last two estimates we derive that
∥∥ϕi

l

∥∥
0,E

≤ C and we end the proof. ⊓⊔

Next, we show a similar result for the internal basis functions.

Lemma 16 There exists C > 0 such that ‖ϕ̃s‖0,E ≤ C for s = 1, . . . , Ñ .

Proof Since ϕ̃s ∈ VE
h , there exists γ ∈ H1(E) such that ϕ̃s = ∇γ. Hence, by virtue of (27), we

have that γ is a solution of the following well posed Neumann problem:





∆γ = − div ϕ̃s in E,

∂γ

∂n
= 0 on ∂E,

∫

E
γ = 0.

Therefore, ∫

E
∇γ · ∇ζ = −

∫

E
ψsζ ∀ζ ∈ H1(E) :

∫

E
ζ = 0,

where ψs := div ϕ̃s. Now, taking ζ = γ and using the generalized Poincaré inequality and a scaling
argument, we have that

‖ϕ̃s‖20,E = ‖∇γ‖20,E ≤ C ‖ψs‖0,E ‖γ‖0,E ≤ ChE ‖ψs‖0,E ‖∇γ‖0,E .

Thus,
‖ϕ̃s‖0,E ≤ ChE ‖ψs‖0,E . (29)

On the other hand, since ψs ∈ Pk(E), it is easy to check that

hE ‖ψs‖0,E ≤ Ch2E ‖ψs‖∞,E = Ch2E
∥∥ψ̂s

∥∥
∞,Ê

, (30)

where ψ̂s := (ψs ◦ F−1) ∈ Pk(Ê).

For ψ̂s ∈ Pk(Ê), we write ψ̂s =
∑Ñ

i=1 β
s
i p̂i and, since ‖p̂i‖∞,Ê

≤ 2, we have that

∥∥ψ̂s
∥∥
∞,Ê

≤ max
1≤i≤Ñ

|βs
i |

Ñ∑

i=1

‖p̂i‖∞,Ê
≤ C max

1≤i≤Ñ
|βs

i | . (31)
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Now, from (28), a change of variables from E to Ê yields

∫

Ê
ψ̂sp̂r = h−2

E δsr , r = 1, . . . , Ñ ,

which can be written as

Ñ∑

i=1

βs
i

∫

Ê
p̂ip̂r = h−2

E δsr, r = 1, . . . , Ñ . (32)

Let

M =
(
mir

)
∈ R

Ñ×Ñ with mir :=

∫

Ê
p̂ip̂r, i, r = 1, . . . , Ñ .

Therefore, from (32), if M is invertible, then βs =
(
βs
1 · · · βs

Ñ

)T
is equal to h−2

E times the s-th

column of M−1.
Next, we will show that M is invertible and that its inverse is bounded uniformly in h. With this

aim, note that the polygon Ê is uniquely defined by the vector ((x̂1, ŷ1), . . . , (x̂NE
, ŷNE

)) ∈ R2NE

that collects the coordinates of its (ordered) vertexes. Let U ⊂ R2NE , be the set of all possible
values of these coordinates such that the mesh regularity assumptions A1 and A2 are satisfied.

Since the diameter of Ê is equal to 1, U is a bounded set. On the other hand, the constraints that
arise from hypotheses A1 and A2 yield that U is a closed set. Therefore U is compact.

The function from U into RÑ×Ñ that maps the coordinates of the vertexes of Ê into the entries

of the matrix M is a continuous function. Moreover, for any coordinates in U , Ê satisfies A1 and
A2 and, hence, it contains a ball of radius CT . Let us show that this implies that M has to be

positive definite. In fact, given α ∈ RÑ , αTMα =
∫
Ê

∣∣∑Ñ
r=1 αr p̂r

∣∣2 ≥ 0 and the equality holds

only if
∑Ñ

r=1 αr p̂r vanishes a.e. in Ê, which in turn implies that α has to vanish (since Ê contains
a ball of radius CT > 0). Thus, M is positive definite and hence invertible. Therefore, taking also
into account the continuity of the mapping M 7−→ M−1 for invertible matrices, we conclude that
the mapping

U ∋ ((x̂1, ŷ1), . . . , (x̂NE
, ŷNE

)) 7−→ M−1 ∈ R
Ñ×Ñ

is well defined and continuous and, hence, bounded above in the compact set U . Consequently,
from (32),

‖βs‖∞ ≤ Ch−2
E ,

which recalling (31) yields ∥∥ψ̂s
∥∥
∞,Ê

≤ Ch−2
E . (33)

Let us remark that, in principle, the constant C above depends on the number NE of vertexes of E.
However, by virtue of assumption A1, this number is bounded above in terms of CT . Therefore, NE

can take only a finite number of possible values and, hence, (33) holds true with C only depending
on CT . Thus, we conclude the proof by combining (29), (30) and (33). ⊓⊔

Now, we are in a position to prove L2(Ω) error estimates for the Vh-interpolant.

Lemma 6 Let v ∈ V be such that v ∈ [Ht(Ω)]2 with t > 1/2. Let vI ∈ Vh be its interpolant

defined by (8)–(9). Let E ∈ Th. If 1 ≤ t ≤ k + 1, then

‖v − vI‖0,E ≤ ChtE |v|t,E , (34)

whereas, if 1/2 < t ≤ 1, then

‖v − vI‖0,E ≤ C
(
htE |v|t,E + hE ‖div v‖0,E

)
. (35)
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Proof First, we consider the case 1 ≤ t ≤ k+1. The first step is to bound ‖vI‖0,E . Since vI ∈ VE
h ,

thanks to (23)–(28) we write it in the basis (22) as follows:

vI =

NE∑

l=1

k∑

i=0

(∫

el

(v · n) qil ds

)
ϕi

l +

Ñ∑

s=1

(∫

E
(div v) ps

)
ϕ̃s.

Therefore, from Lemmas 15 and 16 we have

‖vI‖0,E ≤ C




NE∑

l=1

k∑

i=0

∣∣∣∣∣

∫

el

(v · n) qil ds

∣∣∣∣∣+
Ñ∑

s=1

∣∣∣∣
∫

E
(div v) ps

∣∣∣∣


 .

Then, by using that
∥∥qil
∥∥
∞,el

= 1 for i = 1, . . . , k and l = 1, . . . , NE , ‖ps‖∞,E ≤ C for s = 1, . . . , Ñ ,

the Cauchy-Schwarz inequality and Lemma 14, we obtain

‖vI‖0,E ≤ C
(
h
1/2
E ‖v‖0,∂E

∥∥qil
∥∥
∞,el

+ ÑhE ‖div v‖0,E ‖ps‖∞,E

)

≤ C
(
‖v‖0,E + hE |v|1,E + hE ‖div v‖0,E

)

≤ C
(
‖v‖0,E + hE |v|1,E

)
. (36)

Now, for all vk ∈ [Pk(E)]2 we note that (vk)I = vk and, hence, using the above estimate for
v − vk, we write

‖v − vI‖0,E =
∥∥v − vk − (v − vk)I

∥∥
0,E

≤ ‖v − vk‖0,E + C
(
‖v − vk‖0,E + hE |v − vk|1,E

)
.

Thus, by choosing vk as in [6, Proposition 4.2], we have that ‖v − vk‖0,E + hE |v − vk|1,E ≤

ChtE |v|t,E , which together with the above inequality allow us to conclude (34).

Next, we consider the case 1/2 < t ≤ 1. Using the same arguments as above, we obtain in this
case instead of (36),

‖vI‖0,E ≤ C
(
‖v‖0,E + htE |v|t,E + hE ‖div v‖0,E

)
. (37)

Therefore, repeating again the arguments above with v0 ∈ [P0(E)]2 instead of vk, we have

‖v − vI‖0,E ≤
∥∥v − v0 − (v − v0)I

∥∥
0,E

≤ ‖v − v0‖0,E + C
(
‖v − v0‖0,E + htE |v|t,E + hE ‖div v‖0,E

)

≤ C
(
htE |v|t,E + hE ‖div v‖0,E

)
,

where we have used again [6, Proposition 4.2]. Thus, the proof is complete. ⊓⊔

Remark 6 Estimate (35) can be improved for k = 0 and 1/2 < t ≤ 1. In fact, in such a case, the
interpolant vI ∈ Vh is defined only by (8). Hence,

vI =

NE∑

l=1

(∫

el

(v · n) q0l ds

)
ϕ0

l

and repeating the arguments above we obtain

‖vI‖0,E ≤ C
(
‖v‖0,E + htE |v|t,E

)
,

instead of (37), which leads to
‖v − vI‖0,E ≤ ChtE |v|t,E .
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