UNIVERSIDAD DE CONCEPCION

CENTRO DE INVESTIGACION EN
INGENIERIA MATEMATICA (CT°MA)

A

Centro de Investigacion en Ingenieria Matematica

A weak local linearization scheme for stochastic differential
equations with multiplicative noise

JUAN C. JIMENEZ, CARLOS M. MORA,
MONICA SELVA

PREPRINT 2015-43

SERIE DE PRE-PUBLICACIONES







A weak Local Linearization scheme for stochastic differential
equations with multiplicative noise

J.C. Jimenez * C. Mora Tand M. Selva *
June 24, 2015

Abstract

In this paper, a weak Local Linearization scheme for Stochastic Differential Equations (SDEs) with
multiplicative noise is introduced. First, for a time discretization, the solution of the SDE is locally
approximated by the solution of the piecewise linear SDE that results from the Local Linearization
strategy. The weak numerical scheme is then defined as a sequence of random vectors whose first
moments coincide with those of the piecewise linear SDE on the time discretization. The scheme
preserves the first two moments of the solution of SDEs with linear drift and diffusion coefficients
in state and time, and inherits the mean-square stability that such solution may have. The rate of
convergence is derived and numerical simulations are presented for illustrating the performance of the
scheme.

1 Introduction

During 30 years the class of local linearization integrators has been developed for different types of
deterministic and random differential equations. The essential principle of such integration methods
is the piecewise linearization of the given differential equation to obtain consecutive linear equations
that are explicitly solved at each time step. This general approach has worked well for the classes of
ordinary, delay, random and stochastic differential equations with additive noise. Key element of such
success is the use of explicit solutions or suitable approximations for the resulting linear differential
equations. Precisely, the absence of explicit solution or adequate approximation for linear Stochastic
Differential Equations (SDEs) with multiplicative noise is the main reason of the limited application of
the Local Linearization approach to nonlinear SDEs with multiplicative noise. For these equations, the
available local linearization integrators are of two types: the introduced in [2] for scalar equations and
the considered in [14, 16, 17]. The former uses the explicit solution of the scalar linear equations with
multiplicative noise, while the latter employs the solution of the linear equation with additive noise that
locally approximates the nonlinear equation.

Directly related to the development of the local linearization integrators is the concept of Local Linear
approximations (see, e.g., [7, 8, 10]). These approximations to the solution of the differential equations
are defined as the continuous time solution of the piecewise linear equations associated to the Local
Linearization method. These continuous approximations have played a fundamental role for studying the
convergence, stability and dynamics of the local linearization integrators for all the classes of differential
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equations mentioned above with the exception of the SDEs with multiplicative noise. For this last class of
equations, the Local Linear approximations have only been used for constructing piecewise approximations
to the mean and variance of the states in the framework of continuous-discrete filtering problems (see
[10)).

The purpose of this work is to construct a weak Local Linearization integrator for SDEs with mul-
tiplicative noise based on suitable weak approximation to the solution of piecewise linear SDEs with
multiplicative noise. For this, we cross two ideas: 1) as in [10], the use of the Local Linear approxima-
tions for constructing piecewise approximations to the mean and variance of the SDEs with multiplicative
noise; and 2) as in [3], at each integration step, the generation of a random vector with the mean and
variance of the Local Linear approximation at this integration time. For implementing this, new formulas
recently obtained in [6] for the mean and variance of the solution of linear SDEs with multiplicative noise
are used, which are computationally more efficient than those formerly proposed in [9, 10]. Notice that
this integration approach is conceptually different to that usually employed for designing weak integrators
for SDEs. Typically, these integrators are derived from a truncated Ito-Taylor expansion of the equation’s
solution at each integration step, and include the generation of random variables with moments equal to
those of the involved multiple Ito integrals [11, 12].

The paper is organized as follows. After some basic notations in Section 2, the new Local Linearization
integrator is introduced in Section 3. Its rate of convergence is derived in Section 4 and, in the last section,
numerical simulations are presented in order to illustrate the performance of the numerical integrator.

2 Basic notations

Let us consider the SDE with multiplicative noise

t mo ot
X, = X, + / (s, X.)ds + Z/ o (s, X ) dWE, Vi€ [to, T), (1)

to k=1 to
where f, g* : [to, T] x R? — R? are smooth functions, W,..., W™ are independent Wiener processes on a

filtered complete probability space (Q, 5, (gt)tzto ,IP’), and X, is an adapted R%valued stochastic process.

In addition, let us assume the usual conditions for the existence and uniqueness of a weak solution of (1)
with bounded moments (see, e.g., [11]).

Throughout this paper, we consider the time discretization t9 = 790 < 74 < --- < 75y = T with
Totl —Tn < Aforalln =0,...,N—1and A > 0. We use the same symbol K (-) (resp., K) for
different positive increasing functions (resp., positive real numbers) having the common property to be
independent of (7y),_, . Moreover, AT stands for the transpose of the matrix A, and |-| denotes the

Euclidean norm for vectors or the Frobenious norm for matrices. By Cf; (Rd, R) we mean the collection
of all (-times continuously differentiable functions g : R? — R such that ¢ and all its partial derivatives
of orders 1,2, ..., ¢ have at most polynomial growth.

3 Numerical method

Suppose that z, ~ X, withn=0,..., N —1. Set ¢g° = f. Taking the first-order Taylor expansion of g*
yields

dg* dg*
(Tn7 Zn) (l‘ - Zn) + ﬁ

k k
t ~ ny ~n
¢ (6,2) = 0" (ra2n) +

(Tns 2n) (t - Tn)



whenever x =~ z, and t = 7,,. Therefore
Xy~ 2z + Z/ (BEX,+ 08 (5)) dWE Wt € [, Tnga]

k
with W0 = s, BF = %i (Tn, 2n) and
x
Oa* k

bfL (s) = g* (Tns 2n) — e (Tny 2n) 2n + 99

o ot (T 2n) (5 — 7). (2)

This follows that, for all ¢ € [7,,, T,+1], X; can be approximated by
Y=z + Z/ (BEY, + bk (s)) Wk, Vt € [Tn, Tt1] (3)

which is the first order Local Linear approximation of X; used in [10]. Hence, E¢ (XTn +1) ~E¢ ( n +1)
for any smooth function ¢, and so X, , might be weakly approximated by a random variable 2z, such
that the first moments of z, 1 — 2, be similar to those of Y., , — z,. This leads us to the following Local
Linearization scheme.

Scheme 1. Let nd,...,n5% ,nk_1,.--,N%_ be i.i.d. symmetric random variables having variance 1
and finite moments of any order. For a given zg, we define recursively (Zn)nzo,...,N by

Zn1 = P (Tnt1) + 4/ 0n (Tng1) — pn (Tns1) o) (Trns1) s (4)

where 1, = (77,1” . m,T)T and py, (t), oy, (t) satisfy the linear differential equations

i (£) = 20 + / (B pin () + 02 () ds Wt € [T Tga]. (5)

¢
On (t) = 2nz,) +/ Ly (8,00 (8))ds Yt € [Tn, Tt - (6)
Here

Lo (5,0) =0 (BD) "+ BY T+ un (5) (0 () + 5 (5) ] )
> (Bl (BE) T+ Bl (3) (0 ()T + Vi () () (BE) "+ (5) (05 ()T ) -

k=1
Remark 3.1. From (5) it follows that i, (Tn41) is the expected valued of Yz, .| given Y, = z,. Moreover,
(6) implies
On (TnJrl) =E (YT,L+1YT+1/YT,L Zn) .

Remark 3.2. By construction, Scheme 1 preserves the first two moments of the linear equation dX; =
ZZL:O(B’“Xt + bF 1t + R0YaWE. This includes, for instance, the equations of stochastic oscillators with
random frequency and force [4, 6], and large systems of stiff linear SDEs that result from the method of
lines for linear stochastic partial differential equations [15].



Remark 3.3. By construction, Scheme 1 preserves the mean-square stability property that the solution of
the linear equation dXy = Y e o (B* Xy + 051t + b80)dW} might have. For instance, if the trivial solution
of the homogenous equation dX; = ZZLO BR X dW}F is mean-square asymptotically stable, Scheme 1
inherits this property.

Remark 3.4. A key point in the implementation of Scheme 1 is the evaluation of just one matriz
exponential for computing pu, (Tn41) and oy, (Tne1) at each time step. Indeed, from Theorem 2 in [6],

o (Trg1) = 2n + £2€Mn(7—n+177—n)un (7)
and
vec(oy, (Try1)) = LyeMnTri=Tnly, (8)
where the matrices M,,, L1, Lo and the vector u,, are given by
.A 85 84 Bg BQ Bl UeC(ZnZ;E)
0 C Zy2o 0 0 O 0
_ 0 0 C 0 0 0 o r d?+2d+7
Mi=1lo9 o0 0 o 2 o "~ 0 <R ’
0 0 0 0 0 1 0
0 o0 0 0o 0 O 1

Ly = [ Odx(d2+d+2) Za Oaxs } and L1 = [ Tgz Og2x(2d+7) ], with matrices A, B;, C and r defined by

m B) b9t Bz, 450 0
A=BoB,+Y Bf®(B)T, C=| 0 0 1 , _ [ (d+11)x1 ]
k=1 0 0 0

Bi = wvec(B1) + Bazn, Ba = vec(B2) + Bszn, Bs = vec(Bs), Bs = BaL, and By = psL. Here L =
[Id deg ] and

Br=D 00RO, Ba= ) b )T O RO s =D 0t ()T
k=1 k=1

k=1

m m
Ba=b0" @00+ V0@ BE + BE@bEC, By =00t @byt + ) bht @ BE + BE @bl
k=1 k=1
being b0 and b1 defined via (2) as bEC+bE1 (s — 7,) = bF (5). The symbols vec, © and ® denote the vec-
torization operator, the Kronecker sum and the Kronecker product, respectively. Ty is the d—dimensional
identity matriz. The matriz exponential in (7) and (8) can be efficiently computed via the Padé method
with scaling and squaring strategy or via the Krylov subspace method in the case of large system of SDEs

(see, e.g., [13]). For autonomous equations or for equations with additive noise, the exponential matrix
in (7) and (8) reduces to simpler forms [6].

Remark 3.5. For SDEs with additive noise, Scheme 1 reduces to the weak order-1 Local Linearization
scheme introduced in [3].
4 Rate of convergence

Next theorem establishes the linear rate of weak convergence of Scheme 1 when the drift and diffusion
coefficients are smooth enough.



Hypothesis 1. For any k =0,...,m we have g* € C ([tO,T] X Rd,Rd). Moreover,

k k

)| <K(1+]z)  and \8g<t,x>| n \8"<t,z>

<
ot ox <K )

for all t € [to, T] and x € R

Theorem 4.1. In addition to Hypothesis 1, suppose that X, has finite moments of any order and that
for all g € CH (Rd,R),
B¢ (Xi,) — E¢ (20)] < KA.

Then, for all ¢ € C}, (Rd,R),
|E¢ (X1) —E¢ (2n)] < K (T) A,

where zy s given by Scheme 1.
Theorem 4.1 is a straightforward result of Theorem 14.5.2 in [11] and the two following Lemmata.

Lemma 4.1. Under the assumptions of Theorem 4.1, for any q > 1 we have

E (n_rg%_w zn|2q) < K(T) (1+E (J20/")) (10)

and
E (2t = 2al** /Br, ) < K (D) (i = )" (14 [2al*) ()

forallm=0,...,N —1.
Proof. From Hypothesis 1 it follows that ‘Bﬂ < K and

|05 ()] < K (T) (1 + |za]) (12)

foralln =0,....N—1,k=0,...,m and s € [7,, Tn+1]- Then, combining Gronwall’s lemma with (5)
gives

b ()] < K(T) (1 + |2n) Vs € [Tn, Tnt1] - (13)

Since |z y"| = |2||y| for any z,y € R?, (12) and (13) lead to
L, (s,0)| < K |o| + K (T) (1 + \an) Vs € [T, Tnsn] (14)
where n =0,...,N —1 and £,, is as in (6). Using Gronwall’s lemma, (6) and (14) we deduce that
o (5)] < K (T) (1+ |20 Vs € [T, Tusn) (15)

Decomposing
5o (1) = 00 (8) — pta (1) ], (1)

as o (1) — 20z — 20 (i () — 20) T = (pn () — 20) 27 — (sn (£) = 2n) (tn (£) — 2) " we have

n

T t
(B () 00) ds) = [ (B )40 (6) ds]

T

_ /T: (BY i, (5) + 80 (s)) ds (/: (BY 1 (5) + 12 (5)) ds) 7



and so (13), (14) and (15) yields
Ga I <K@ (1+1f) (t=70)  VEE [ry Tl (16)

Iterating (4) we obtain

Tn+1
Zng1 = 20 + / (32(5) fin(s) (8) + 0 (5)) ds + Sp+1, (17)

to

where n=0,...,N—1,n(t) =max{n=0,...,N:7, <t} and

Sn1 =) \/Uk (Tht1) = i (Tgr) i (Thegn) 7

k=0
Applying Holder’s inequality we get

2q

Tn+1 0 0
/t (Bn(s) Lings) (8) + bygs) (5)> ds
0

-~ Tn+1 2q
< (Tnt1 — t0)2q ' / (Bg(s) Hn(s) (s) + b?t(s) (3)> ds,
to
and so (12) and (13) yield
Tn+1 0 0 2q Tnt+1 2q
/t (Bn(s) fns) (8) + bpgs) (s)) ds| < K(T) (1 + /t |2 (s)| ds) . (18)
9 0

Set Sg =0. Forany n=0,...,N —1,

E (|Sn+1|2) —E

—~

S;+1Sn+1)

E (0} (o (Tha1) = s (Tre1) o, (Tre1)) )

ZE <0'k (Thr1)"" + (,Uk (Tk+1)£>2> :

04=1

M= 11-

~
Il

Since oy, (Tj41) = E (Y7k+1YT—£+1/%Tk>7 (13) yields

B (18w ?) € 3 (B [V 0 ) + Blpe (rean) ) < 400,

k=0

and s0 (Sn),—o. . n 18 & (§7,) =0, y-Square integrable martingale. According to the Burkholder-Davis-
Gundy inequality we have

q

E (ki%f’_‘_’?n (SZ>2q> < CE ([s7,57]1) = O, (zn: (( (Tht1 nk)j>2> ,

’ k=0



where C; > 0 and 3/ stands for the j-th coordinate of the vector y. Applying Holder’s inequality yields

<i (i1 — 1) P (71 = ) (( Ok (Tk+1)77k)j)2/(7k+1 - Tk))

k=0

< (i: (Th41 — Tk)) 7 z": (Tht1 — T) (( Ok (Tk+1)77k)j)2q/(7'k+l —75)?
k=0 k=0

q

with 1/p+1/g = 1. Using ‘\/U/C Tha1 ‘ |6k (Tie+1)| we obtain

2q

Ok (Tht1)

q
(Tk+1 — Tk)q \le|

E (k max |sk|%) < (Td)""' ¢ kZ_oE (Tht1 — 7k) ’

1 Z” oy (1B ) 2
< (Td) o E | (Tht1 — ) |7 | :
0 Tk+1 — Tk

Hence (16) yields

.....

Using (17), (18) and (19), together with Holder’s inequality, we get

2 2
E <j_g}?§;g+l |Zj|2q) < K(T) <]E 20l + 14> (Thr — 7o) E( |2 q)) :

k=0

The discrete time Gronwall-Bellman lemma now leads to (10).
We proceed to show (11). Using Hélder’s inequality and (13) we obtain

2q

[ B+ 5)) s

n

Tn+1
< (Fapr — )2 / (1B 1 ()] + |00, (5)])* ds

n

< K(T)(Tny1 — T,L)Qq (1 + |zn|2q) )

By (16),
VEn ) e T )| Il
e R
< K (T) (14 [2al*) (uer = 72)" Il
Hence

E <] G (i) | /3) < K(T) (1+[20) (ras1 = 7) B (Inal**) -



This implies (11), because

Tn+1 2q
E (|zn+1 — 2 < 2%-1E ( (BY i (s) + b2 (s)) ds /gm>
+ 22q_1E (‘ Un 7—nJrl Tn /%‘rn) .
O
Lemma 4.2. Assume the hypothesis of Theorem 4.1. Let
Xn"rl = f (TTU Z") (Tn+1 - Tn) + ng (T”lﬂ ZTL) (an+1 - Wj’i) N
k=1
Then, for allm=0,...,N — 1, it is obtained that
IE (2041 = 20) /Fr) = E (X1, Fr )| < K (T) (i1 = )" (14 |2)), (20)

[ ((zas1 = 20) (21 = 20) T /B, ) = B (xot X001/ F,)

and

<K (s =) (14 [2) @)

‘E ((Zn+1 - Zn)g (Zn-i-l - Zn) (zn-i-l - Zn) /STn) (Xn+1Xn+1Xn+1/ng)

<K (T) (o1 —70)° (1 + |z ) : (22)

Proof. Since BY z, + b2 (7)) = f (7w, 2n),
o 0
Hn (Tn-l—l) —zn— f (Tna Zn) (Tn+1 - Tn) = / B ,Un JF by, (3) —f (Tna Zn)) ds

_ /+ (8) — 20) + B0 (5) — B0, () ds.

Using (9) and (13) we deduce that

[t (Tnt1) = 20 = f (s 20) (Tapr = 70| < K/ (Ittn (8) — 2n| + 5 — ) ds
Trnt1
< K/ / }Bgﬂn (r) + b2 (8)’drds+K(Tn+1 — 1)
< K(T) (s — 7P (14 [20). )

Since
|IE ((2n+1 - Zn)/%‘lm) —E (Xn+1/175’7'n)| = ‘,U/n (Tn+1) — Zn — f (Tna Zn) (TnJrl - Tn)l )
(23) yields (20).
From

m

E (Xn-i—lXI—q—l/STn) =f (Tn7 Zn) f (Tn7 Zn)T (Tn—i-l - Tn)Q + ng (Tna Zn)gk (Tn7 Zn)T (Tn-i-l - Tn)
k=1



we obtain

E (Xn+1XI+1/Sm) - Z gk (Tns 2n) (gk (Tns Zn))T (Tn+1 = Tn)
k=1

< K (T) (Ty1 — 1) (1 n |zn|2> . (24)

As in the proof of Lemma 4.1, we define &, (t) 1= o, () — i (t) i (£) " for any ¢ € [, 7npa]- Then

E ((Zn+1 — 2n) (Zng1 — Zn)T/grn) = (tn (Tnt1) = 2n) (fin (Tng1) — Zn)T +0n (Tny1) -

Since
G (Tnt1) = 0n (Ta1) = 202y — 2 (pn (Tag1) = 20) " = (i (Tas1) = 20) 2
= (kn (1) = 2n) (Hn (Tny1) — Zn)T )
applying (23) yields
‘E ((Zn+1 - Zn) (Zn+1 - Zn)—r/grn) —On (Tn-‘rl) + an;lr

+znf (Tna zn)T (Tn+1 - Tn) + f (Tna Zn) Z»I (TnJrl - Tn)

< K (T) (Tps1 — ) (1 + \zn|2> .

Using (12), (13) and (14), together with Hypothesis 1, we deduce that
L0 (8,00 (5)) = Lo (Tns 2020 )| < K (T) (s — 7) (1 i |Zn|2) 7
and so

|0n (Tt1) — Znz,) — Ly (Tn, znz;) (Tnt1 — Tn)‘ < / " |£n (s,0n(s)) — Ly (Tn,znz;{) | ds

n

< K(T) (Tap1 —m)° (1 n |zn\2) .

Therefore

E (201 = 20) Gasr = 20) | /8r,) = D0 0" (7ns20) (8" (s 20)) T (Pt = 72) (25)

k=1
2 2

< K(T) (1 =) (14 [zl

because .
Lo (Tnsznzy) = 2nf (Tarzn) |+ F (Tr2n) 2 + D 65 (70 20) 8 (Tas 20) |
k=1

Combining (24) with (25) we get (21).
A careful computation shows
E (Xfl+1Xn+1X1—lr+1/$Tn) = f(Tn, Zn)é I (Tns 2n) [ (Tns Zn)T (Trt1 — Tn)3 + f (T, Zn)e GnGrTL (Tng1 — Tn)2
‘, L
+f (Tus20) (GuGr) " (Tt = 70)” + (GuG) " f (Tay20) | (T =)



where G,, is the R¥™_matrix whose (i, j)-th element is the i-th entry of ¢/ (7, z,). Similarly,

E (201 = 20)" (st = 20) Gotr = 20)/Fr) = (i () = 20) G ()

+ (i (Tas1) = 20) G (Tg1)
+0n (Tn+1)"£ (i (Trg1) — Zn>T

+ (bn (Tng1) = 20)" (Bn (Tns1) = 20) (bn (Tng1) = 20)

The last two inequalities imply (22), which completes the proof. O

5 Numerical Simulations

In this section, numerical simulations are presented in order to illustrate the performance of Scheme
1. This involves the numerical calculation of known expressions for functionals of two SDEs: a bilinear
equation with random oscillatory dynamics, and a renowned nonlinear test equation. Padé method with
scaling and squaring strategy (see, e.g., [13]) was used to compute the exponential matrix in (7) and (8),
whereas the squared root of the matrix o, (Tn41) — tn (Tht1) 4] (Tny1) in (4) was computed by means
of the singular value decomposition (see, e.g., [5]). n¥ in (4) was set as a two-point distributed random
variable with probability P(n* = +1) =1/2 for all n = 0,.., N — 1 and k = 1,..,m. All simulations were
carried out in Matlab2014a.

Example 1. Bilinear SDE with random oscillatory dynamics.

0 1
-1 0

1

0 1 0
-1 0

dXt:Oé|: 0 1

}&ﬁ+m{ }xaw+m[ }&ﬁwv (26)

for all t € [0,12.5625], initial condition (X}, X3) = (1,2), and parameters a = 10, p1 = 0.1 and py = 2p;.

Since [ (1) 1 ] commutates with [ _01 (1) ], the solution of (26) is given by
?—p3)/2 o 0 0
t exp({ —a (p%—p%)/Q —p1 O t 0 po t (27)

(see, e.g., [1], p. 144). From Theorem 3 in [6], the mean m; and variance v; of X; are given by the
expressions

my = Xo + Lo exp(Ht)ug (28)

and
vec(vy) = Ly exp(Ht)ug — vec(mym] ), (29)

where the matrices L1, Lo, H and the vector ug are defined as
A 0 O vece(XoX])
H=]0 0 0 | e¢R¥3, up = 1 € R8,
0o 0 C r

Ly :[ I, 04 } c R4X8 and Lo :[ Ooxs 1o 0Oox1 ] € R2X8

10



with

P @9, o 0 a aX? 0
A= | 7% P 7 Y eptd o= | —a 0 —aX} | €R¥ and  r=|0 | €R®
I B 0 0 0 1
2 - 2
P1 «Q @ P

First, we compare the exact values (28)-(29) for the mean and variance of X; with their estimates

obtained via Monte Carlo simulations. For this purpose, M realizations X;{Z} of the exact solution and

;{L % of the Scheme 1 were computed on an uniform time partition 7,, = nA, with A =1/25, n=0,.., N,

and N = 804. Then, with the estimates

LM
Mr, = M § : Tn and M, = M Zn
i=1
for the mean, and
T, — — {i} {1 7 T {Z {iNT _ 5 &7
Uy, = E XX} — My, ml and U, = M, MI
for the variance, the errors
7[1]_|1_71| /\[1]_| 1_A1|
el =\|m, —m, and et =|m.. ™
7[2]_|2_—2| A[2]_|2_A2|
Cr, = Mz, Tn and Cr, = |Mr, Tn
7[3]_|11_711’ A[3]_|11_A11|
e = v — Uy and el = vt — vy
4] _ ’ 2,2 22 A[ | ~2.2
€rn = |Vr, Ur, and €r U‘rn U,
—[5] _ | 1,2 _71,2| /\[5 _ | , _A1,2|
el = |vg O and e = vt =

were evaluated. Here, for computing Xin}, the realization of the Wiener process (VVT1 , Wf) was simulated

as Wk = Z AWk and AWk VAN(0,1) for each k = 1,2, where N(0,1) is a Gaussian random
=
variable with zero mean and variance 1.
Figure 1 shows the exact values of m,, , v, versus their approximations M., ,v,, obtained from M =
216 simulations of Scheme 1. Observe that there is not visual difference among these values. Table 1

presents the errors ¢!l = max{@ﬁl} and el = max{é[Tll} of the estimated value of the mean and variance
n n
of (26) computed with different number of simulations M. As it was expected, these errors decrease as

the number of simulations M increases. It is well known that the error e of the sampling mean of the
Monte Carlo method decrease with the inverse of the square root of the number of simulations [11], i.e

1
e —

M

with v = 0.5. A roughly estimator ’yg] of v for the errors E[Tl] and e[”

the straight line fitted to the set of six points {(10g2 (M), logz(e[ﬂ{ (My))) : My, = 2% k =8,10,12,14, 16, 18}.

Table 2 shows the average

was computed as minus the slope of

A = Z ,y[l]

11



for each type of error and its corresponding standard deviation

1
m_ | _- ! ~lI)2
S N_lnzz:l(’yTn )'
5 T T
~ N TANNANNAY \ J
E“\f’/\\/vv’\\/{\vﬁuuuw[\f“'\/\v‘\f\/,\/’,\‘/\"

s I \
) 2 4 6 E 12 14

MNNNNNANNNY.

0 2 4 5 14

4 T T T T T T

Figure 1: Integration of Example 1. Exact values of my _,v;, and their approximations 7, ,7;, computed
via Monte Carlos with M = 2!¢ realizations of Scheme 1.

Results of Tables 1 and 2, together with Figure 1, indicate that the estimators for the mean and
variance of (26) obtained by means of the simulations of the exact solution (27) and Scheme 1 are quite
similar. This is an expected result since the first two moments of the linear SDEs and Scheme 1 are
"equal” (up to the precision of the floating-point arithmetic in the numerical computation of the involved
exponential and square root matrices).

In addition, let us compute the relative difference

8 () = masc {| (Y] — 3 /)

j

between the approximations

Al Zarctan<l+<(X )“)) and A — Zarctan (1+(( )“’))

of the nonlinear functionals h[Tll = E (arctan (14 (X! )?)), with [ = 1,2. Table 3 displays the values of
rll for different values of M. As it was also expected, rl!! goes to zero as the number of simulations M
increases. Furthermore, Table 3 shows that there is no significant difference between the estimates ob-
tained from sampling the exact solution X, and Scheme 1, even though E (arctan (1 + (X in )2)) involves

the computation of high order moments of X, .
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/M H 28 21() 212 214 216 218

el 10.10710 0.05228 0.04536 0.01508 0.00686 0.00275
e |l 0.10643 0.05025 0.04469 0.01433 0.00647 0.00304
eBl |l 0.43411 0.25916 0.18319 0.29184 0.07244 0.03181
e 1l 0.39102 0.29529 0.21413 0.29496 0.07726  0.02753
el |l 0.23859 0.14325 0.15463 0.16961 0.05187  0.02450
e 1 0.27037 0.02964 0.02101 0.02108 0.01487 0.00376
e 1| 0.27626 0.04147 0.02327 0.02227 0.01452  0.00347
el | 0.92465 0.35064 0.18339 0.15513 0.06024 0.02482
e | 0.89503 0.39518 0.17646 0.14678 0.05655 0.02346
el | 0.36642 0.24892 0.10664 0.08899 0.02785 0.01101

Table 1: Values of the errors é¥ and el versus number of simulations M in Example 1.

| & e e e gBl | gl gl g gl bl

~ 0.52 053 044 044 041|044 044 044 043 045
std || 0.16 0.16 0.20 0.20 0.21 | 0.18 0.19 0.21 0.21 0.20

Table 2: Average ¥ and standard deviation std of the estimators for the rate of convergency v = 1/2 of the
Monte Carlo simulations in Example 1.

/M H 28 210 212 214 216 218
A1 110.0522  0.0177 0.0105 0.0037 0.0016 0.0010
r 1 0.0534 0.0159 0.0106 0.0037 0.0014 0.0010

—I1 ~
Table 3: Relative error ¥l in the computation of the functionals hE_l and h.[rll with different number of simulations
M in Example 1.
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The above simulation results illustrate the feasibility of Scheme 1 for approximating functionals of
linear SDEs with multiplicative noise. At this point is worth to mention that, with the uniform time
partition consider here, the Euler scheme leads divergent results or computer overflows in the integration
of the equation (26).

Example 2. Nonautonomous nonlinear SDE [18].

Xl _X2 0 COS(Xt1+X152)
d |: Xt2 :| = |: Xlt :| dt + sin(X!+X2) thl + \/BH thQ, (30)
t t TVitt

with, initial condition (X}, X2) = (1,1) and t € [0,10]. For this equation, E($(X,)) = | Xy, |* +log(1 + 1),
with $(X) = | X|°.

45 —

o

o

0666000000004,
6060000000000000 ©9000600000
50000000 000

Figure 2: Integration of Example 2. Exact Value: solid line. Scheme 1: [0 with A = 0.5, + with A = 0.25,
x with A = 0.1. Euler with Romberg extrapolation: o with A = 0.05 and A =0.1

It is well-known from [18] that via Monte Carlo simulations: 1) both, the Euler and the Milstein
schemes with fixed stepsize A = 0.01 fail to approximate E(¢(X;)); and 2) the second order method
arising from Romberg’s extrapolation of the Euler scheme with stepsizes 0.02 and 0.01 gives a satisfactory
approximation to F (¢ (X3)), but fails when the stepsizes are 0.05 and 0.1. Similarly to the fourth figure
in [18], Figure 2 illustrates this last result for a Monte Carlo estimation with M = 10000 simulations.

Figure 2 also shows the computation of E(¢(X;)) via Monte Carlo method and Scheme 1, but on
uniform time partitions with stepsizes A = 0.5,0.25,0.1 and M = 10000 simulations. In addition, Table
4 provides the estimates € of the mean errors e = E(¢(zn)) — E(d(Xr)) resulting from the integration
of (30) via Scheme 1 with different stepsizes. For this, the simulated trajectories z}{\;’j}, i=1,...,K and
j=1,...,M, were are arranged into K = 100 batches of M = 10000 trajectories each for computing

kS we aehEele) e
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[ eA ] 1 [ 0.5 [ 0.25 [ 0.1 ]
Scheme 1 [ —2.2360 £0.0093 | —0.4512 + 0.0067 | —0.0868 & 0.0054 [ 0.0076 + 0.0053
Euler —2435.8 £1.7826 | —235.05 £0.2192 | —32.031 4 0.0361 | —5.7704 £ 0.0101

Table 4: Estimate € of the mean error E(¢(zn)) — F(¢(X7)) in the integration of (30) by means of Scheme 1
and the Euler scheme for different integration stepsizes A.

The 90% = 100(1 — a)% confidence interval of the Student’s ¢ distribution with K — 1 degrees for the
mean error is given by
[e — Ae, e+ Ael,

where
~ o2 ,\2 1 K .
Ae=t1_qK-1 }e, with o= 1 Z(ej —-9)2.
j=1

For comparison, the same estimate of the mean error for Euler scheme is also given in Table 4. This
illustrates again the better performance of the Scheme 1 introduced in this paper.

6 Conclusions

A weak Local Linearization scheme for stochastic differential equations with multiplicative noise was in-
troduced. The scheme preserves the first two moments of the solution of linear SDEs and the mean-square
stability that such solution may have. The order-1 of weak convergence was proved and the practical
performance of the scheme in the evaluation of functionals of linear and nonlinear SDEs was illustrated
with numerical simulations. The simulations also showed the significant higher accuracy of the introduced
scheme in comparison with the Euler scheme.
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