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Abstract

Measurement error models constitute a wide class of models, that include linear and nonlinear
regression models. They are very useful to model many real life phenomena, particularly in
the medical and biological areas. The great advantage of these models is that, in some sense,
they can be represented as mixed effects models, allowing to us the implementation of well-
known techniques, like the EM-algorithm for the parameter estimation. In this paper, we
consider a class of multivariate measurement error models where the observed response and/or
covariate are not fully observed, i.e., the observations are subject to certain threshold values
below or above which the measurements are not quantifiable. Consequently, these observations
are considered censored. We assume a Student-t distribution for the unobserved true values
of the mismeasured covariate and the error term of the model, providing a robust alternative
for parameter estimation. Our approach relies on a likelihood-based inference using the EM-
algorithm. The proposed method is illustrated through simulation studies and the analysis of
a real dataset.

Keywords: Censored responses; EM algorithm; Measurement error models; Student- t
distribution.

1. Introduction

Measurement error – hereafter ME – models (also known as error-in-variables models) are
defined as regression models where the covariates cannot be measured/observed directly, or are
measured with a substantial error. From a practical point of view, such models are very useful
because they take into account some notions of randomness inherent to the covariates. For
example, in AIDS studies, linear and nonlinear mixed effects models are typically considered
to study the relationship between the viral load (HIV-1 RNA) measures and CD4 (T-cells)
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cell count. However, as pointed out by many authors (see for instance Wu, 2010; Bandyopad-
hyay et al., 2015, and many others), this covariate is measured (in general) with substantial
error. This is because, in most HIV clinical trials, cell counts are measured periodically with a
substantial amount of variability.

A wide variety of proposals exist in the statistical literature trying to deal with the presence
of ME in multivariate data. For example, Carrol et al. (1997) proposed a generalized linear
mixed ME model and Buonaccorsi et al. (2000) (see also Dumitrescu, 2010) studied estimation
of the variance components in a linear mixed effect model with ME in a time varying covariate.
Zhang et al. (2011) introduced a multivariate ME model including the presence of zero inflation.
Recently, Abarin et al. (2014) proposed a method of moments for the parameter estimation in
the linear mixed effect with ME model. Moreover, Cabral et al. (2014) studied a multivariate
ME model using finite mixtures of skew Student-t distributions. A comprehensive review of
ME models can be found in the books of Fuller (1987), Cheng & Van Ness (1999), Carroll et al.
(2006) and Buonaccorsi (2010).

Although many models for multivariate data consider the existence of mismeasured covari-
ates, many of them do not consider censored observations or detection limits for the response
variable. This aspect is relevant, since in many studies the observed response is subject to maxi-
mum/minimum detection limits. For that reason, clearly there is a need for a new methodology
that takes into account censored responses in multivariate data and mismeasured covariates at
the same time. We propose an approach where the random observational errors and the un-
observed latent variable are jointly modeled by a Student-t distribution, which has heavier
tails than the normal one. Besides this, our estimation approach relies on an exact EM-type
algorithm, providing explicit expressions for the E and M steps, obtaining as byproduct the
asymptotic covariance of the maximum likelihood estimates. To illustrate the applicability of
the method, we analyze a real dataset consisting of measurements of the testicular volume of
42 adolescents using five different techniques.

The paper is organized as follows. Section 2 presents some results about the multivariate
Student-t distribution, focusing on its truncated version. Section 3 proposes the ME model
for censored multivariate responses under the Student-t distribution. Sections 4 and 5 present
the likelihood-based estimation and standard errors of the parameter estimates in the proposed
model via an EM-type algorithm, respectively. Section 6 presents the results of simulation
studies conducted to examine the performance of the proposed method with respect to the
asymptotic properties of the ML estimates, and the consequences of the inappropriateness of
the normality assumption. The analysis of a real dataset is presented in Section 7.

2. The multivariate Student-t distribution and truncated related ones

We say that the random vector Y : p× 1 has a Student-t distribution with location vector
µ, dispersion matrix Σ and ν degrees of freedom, when its probability density function (pdf)
is given by

tp(y|µ,Σ, ν) =
Γ(p+ν

2
)

Γ(ν
2
)πp/2

ν−p/2|Σ|−1/2
(

1 +
dΣ(y,µ)

ν

)−(p+ν)/2
, (1)

where Γ(·) is the standard gamma function and

dΣ(y,µ) = (y − µ)>Σ−1(y − µ),
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is the Mahalanobis distance. The cumulative distribution function (cdf) of Y is denoted by
Tp(· | µ,Σ, ν). If ν > 1, µ is the mean of Y, and if ν > 2, ν(ν−2)−1Σ is its covariance matrix.
We use the notation Y ∼ tp(µ,Σ, ν).

It is possible to show that Y admits the stochastic representation

Y = µ+ U−1/2Z, Z ∼ Np(0,Σ), U ∼ Gamma(ν/2, ν/2), (2)

where Z and U are independent, and Gamma(a, b) denotes the gamma distribution with mean
a/b. As ν tends to infinity, U converges to one with probability one and Y is approximately
distributed as a Np(µ,Σ) distribution. From this representation we can easily deduce that an
affine transformation AY + b has a tq(Aµ + b,AΣA>, ν) distribution, where A is a q × p
matrix and b is a q−dimensional vector. For a reference with extensive material regarding the
multivariate Student-t distribution, see Kotz & Nadarajah (2004).

The following result shows that the Student-t family of distributions is closed under marginal-
ization and conditioning. The proof can be found in Matos et al. (2013, Proposition 1).

Proposition 1. Let Y ∼ tp(µ,Σ, ν). Consider the partition Y = (Y>1 ,Y
>
2 )>, with Y1 : p1×1

and Y2 : p2× 1. Accordingly, consider the partitions µ = (µ>1 ,µ
>
2 )> and Σ = (Σij), i, j = 1, 2.

Then

(i) Y1 ∼ tp1(µ1,Σ11, ν),

(ii) Y2|Y1 = y1 ∼ tp2(µ2.1, Σ̃22.1, ν + p1),

where

µ2.1 = µ2 + Σ21Σ
−1
11 (y1 − µ1), Σ̃22.1 =

ν + dΣ11(y1,µ1)

ν + p1
Σ22.1, and

Σ22.1 = Σ22 −Σ21Σ
−1
11 Σ12.

Let Y ∼ tp(µ,Σ, ν) and D be a Borel set in Rp. We say that the random vector Z has a
truncated Student-t distribution on D when Z has the same distribution as Y|(Y ∈ D). In this
case, the pdf of Z is given by

Ttp(z|µ,Σ, ν;D) =
tp(z|µ,Σ, ν)

P (Y ∈ D)
ID(z),

where ID(·) is the indicator function of D, that is, ID(z) = 1 if z ∈ D and ID(z) = 0 otherwise.
We use the notation Z ∼ Ttp(µ,Σ, ν;D). If D has the form

D = {(x1, . . . , xp) ∈ Rp; x1 ≤ d1, . . . , xp ≤ dp}, (3)

then we use the notation (Y ∈ D) = (Y ≤ d), where d = (d1, . . . , dp)
>. In this case, P (Y ≤

d) = Tp(d|µ,Σ, ν). Notice that we can have di = +∞, i = 1, . . . , p.
The following propositions are crucial to obtain the expectations in the E step of the EM

type algorithm, which will be used to compute maximum likelihood estimates of the parameters
in the model proposed in this work. Proofs can be found in Matos et al. (2013, Propositions
2 and 3). We will use the notations Z(0) = 1, Z(1) = Z and Z(2) = ZZ>.
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Proposition 2. Let Z ∼ Ttp(µ,Σ, ν;D), where D is as in (3). Then, for k = 0, 1, 2,

E

[(
ν + p

ν + dΣ(Z,µ)

)r
Z(k)

]
= cp(ν, r)

Tp(d|µ,Σ∗, ν + 2r)

Tp(d|µ,Σ, ν)
E[Y(k)], (4)

where ν + 2r > 0 and

Y ∼ Ttp(µ,Σ
∗, ν + 2r;D), (5)

Σ∗ =
ν

ν + 2r
Σ,

cp(ν, r) =

(
ν + p

ν

)r (
Γ((p+ ν)/2)Γ((ν + 2r)/2)

Γ(ν/2)Γ((p+ ν + 2r)/2)

)
.

Observe that the computation of the expectation on the left side of (4) is reduced to the
computation of the moments of the truncated Student-t distribution in (5). These moments
are available in closed form in Ho et al. (2012) and the implementations were done using the
R package TTmoment(), available on CRAN.

Proposition 3. Let Z ∼ Ttp(µ,Σ, ν;D), where D is as in (3). Consider the partition Z =
(Z>1 ,Z

>
2 )>, with Z1 : p1×1 and Z2 : p2×1. Accordingly, consider the partitions µ = (µ>1 ,µ

>
2 )>

and Σ = (Σij), i, j = 1, 2. Then ,

E

[(
ν + p

ν + dΣ(Z,µ)

)r
Z

(k)
2

∣∣Z1 = z1

]
=

hp(p1, ν, r)

(ν + dΣ11(z1,µ1))
r

× Tp2(d2|µ2.1, Σ̃
∗
22.1, ν + p1 + 2r)

Tp2(d2|µ2.1, Σ̃22.1, ν + p1)
E[Y(k)],

where ν + p1 + 2r > 0, d2 = (dp1+1, . . . , dp)
>,

Y ∼ Ttp2(µ2.1, Σ̃
∗
22.1, ν + p1 + 2r;D2),

D2 = {(xp1+1, . . . , xp) ∈ Rp2 ; xp1+1 ≤ dp1+1, . . . , xp ≤ dp},

Σ̃
∗
22.1 =

ν + dΣ11(z1,µ1)

ν + p1 + 2r
Σ22.1,

hp(p1, ν, r) = (ν + p)r
(

Γ((p+ ν)/2)Γ((p1 + ν + 2r)/2)

Γ((p1 + ν)/2)Γ((p+ ν + 2r)/2)

)
,

µ2.1, Σ22.1 and Σ̃22.1 are given in Proposition 1.

3. Model specification

Let Yi = (Yi1, . . . , Yir)
> be the vector of responses for the ith experimental unit, where

Yij is the jth observed response of unit i (for i = 1, . . . , n and j = 1, . . . , r). Let Xi be the
ith observed value of the covariate and xi be the unobserved (true) covariate value for unit i.
Following Barnett (1969), the multivariate ME model is formulated as

Xi = xi + ξi (6)
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and
Yi = α+ βxi + ei, (7)

where ei = (ei1, . . . , eir)
> is a vector of measurement errors, α = (α1, . . . , αr)

> and β =
(β1, . . . , βr)

> are vectors with regression parameters. Let εi = (ξi, e
>
i )> and Zi = (Xi,Y

>
i )> =

(Zi1, . . . , Zip)
>. Then, equations (6) and (7) imply

Zi = a + bxi + εi = a + Bri, i = 1, . . . , n, (8)

where a = (0,α>)> and b = (1,β>)> are p×1 vectors, with p = r+1, B = [b; Ip] is a p×(p+1)
matrix and ri = (xi, ε

>
i )>. Thus, from equation (8), the distribution of Zi becomes specified

once the distribution of ri is specified. Usually, a normality assumption is made, such that

ri
iid∼ N1+p

((
µx
0p

)
,

(
σ2
x 0>p

0p Ω

))
, i = 1, . . . , n, (9)

where 0p = (0, . . . , 0)> : p×1, Ω = diag(ω2
1, . . . , ω

2
p) and

iid∼ denotes independent and identically

distributed random vectors. Marginally, we have that xi
iid∼ N(µx, σ

2) and εi
iid∼ Nr(0,Ω) are

independent for all i = 1, . . . , n. For more details see, for example, Fuller (1987, Sec. 4.1).
In order to obtain robust estimation of the parameters in the model, we propose to replace

assumption (9) by

ri =

[
xi
εi

]
iid∼ t1+p

((
µx
0p

)
,

(
σ2
x 0>p

0p Ω

)
, ν

)
, i = 1, . . . , n. (10)

By (2), this formulation implies[
xi
εi

]
| Ui = ui ∼ N1+p

((
µx
0p

)
, u−1i

(
σ2
x 0>p

0p Ω

))
,

Ui ∼ Gamma
(ν

2
,
ν

2

)
,

for i = 1, . . . , n. Consequently,

xi | Ui = ui
ind∼ N(µx, u

−1
i σ2

x) and, (11)

εi | Ui = ui
ind∼ Np(0p, u

−1
i Ω). (12)

Besides this, εi and xi have Student-t marginal distributions, with εi ∼ tp(0,Ω, ν) and xi ∼
t(µx, σ

2
x, ν).

Since for each i, εi and xi are indexed by the same scale mixing factor Ui, they are not
independent in general. The independence corresponds to the case where Ui = 1 (normal case).
However, conditional on Ui, εi and xi are independent for each i = 1, . . . , n, which implies
that εi and xi are not correlated, since Cov(εi, xi) = E[εixi|Ui] = 0. By (8), Zi is an affine
transformation of ri. Thus, its distribution is given by

Zi ∼ tp(µz,Σz, ν), i = 1, . . . , n, (13)
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where
µz = a + bµx and Σz = σ2

xbb> + Ω. (14)

As mentioned earlier, our model considers censored observations. Following Matos et al.
(2013), we consider the case in which the response Zij is not fully observed for all i, j. What
we truly observe, for each i = 1, . . . , n, is the random vector Vi = (Vi1, . . . , Vip)

>, such that
Vij = max{Zij, κij}, where κij is a censoring level, that is,

Vij =

{
Zij if Zij > κij
κij if Zij ≤ κij.

(15)

The model defined by Equations (6), (7) along with (10) and (15) is named the Student-t
Censored Measurement Error Model – hereafter t-MEC model.

3.1. The likelihood function

In this section we present the likelihood function, which will be used in the model selection
computations to compare fitted models.

First, let us partition Zi into the observed and censored components, namely, Zi = vec(Zo
i ,Z

c
i),

where Zo
i : po × 1 corresponds to the former case, Zc

i : pc × 1 corresponds to the latter and
vec(·) denotes the function which stacks vectors or matrices of the same number of columns.
Accordingly, let us consider Vi = vec(Vo

i ,V
c
i ) and, recalling that Zi ∼ tp(µz,Σz, ν), see (13),

µz = vec(µoz,µ
c
z) and Σz =

(Σoo

z Σoc

z

Σco

z Σcc

z

)
. κci is the vector with the corresponding censoring levels

for Zc
i . By Proposition 1, we have

Zo
i ∼ tpo(µ

o
z,Σ

oo
z , ν) and Zc

i |Zo
i = zoi ,∼ tpc(µ

co
z ,S

co
z , ν + po), (16)

where

µcoz = µcz + Σco
z (Σoo

z )−1(zoi − µoz), (17)

Scoz =

(
ν + dΣooz (zoi ,µ

o
z)

ν + po

)
Σcc.o
z , (18)

Σcc.o
z = Σcc

z −Σco
z Σoo−1

z Σoc
z . (19)

The observed sample for the experimental unit i is {zoi ,κci}. The associated likelihood is

Li(θ) = P (Vc
i = κci |Zo

i = zoi )f(zoi ),

where f(·) is the marginal density of Zo
i . But Vc

i = κci if and only if Zc
i ≤ κci . By (16), we

obtain
Li(θ) = Tpc(κ

c
i |µcoz ,Scoz , ν + po)tpo(z

o
i |µoz,Σoo

z , ν).

The log-likelihood associated with the whole sample is

`(θ) =
n∑
i=1

logLi(θ). (20)
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4. The ECM algorithm

In this section, we describe how the t-MEC model can be fitted by using the ECM algorithm
(Meng & Rubin, 1993). This algorithm considers a simple modification of the traditional EM
algorithm initially proposed by Dempster et al. (1977) and is an efficient tool to obtain the
maximum likelihood estimates under a missing data framework.

The t-MEC model can be formulated in a flexible hierarchical representation that is useful
for theoretical derivations. It is easily obtained through Equations (8), (11) and (12) and is
given by

Zi | xi, Ui = ui
ind∼ Np(a + bxi, u

−1
i Ω), (21)

xi | Ui = ui
ind∼ N(µx, u

−1
i σ2

x), (22)

Ui
iid∼ Gamma (ν/2, ν/2) , i = 1, . . . , n. (23)

Following the suggestions of Lange et al. (1989) and Lucas (1997), who pointed out difficul-
ties in estimating ν due to problems of unbounded and local maxima in the likelihood function,
we consider the value of ν to be known.

Now, we enunciate two important results that will be useful in the E step of the EM
algorithm.

Proposition 4. Consider the hierarchical representation of the t-MEC model given in (21)–
(23). Then,

xi|Ui = ui,Zi = zi ∼ N

(
µx + σ2

xb
′Ω−1(zi − a)

1 + σ2
xb
′Ω−1b

,
σ2
x

ui(1 + σ2
xb
′Ω−1b)

)
.

The proof follows directly from the relation f(xi|ui, zi) ∝ f(zi|xi, ui)f(xi|ui), where f(·)
denotes a generic pdf.

Proposition 5. For the t-MEC model,

E(Ui|Zi = zi) =
p+ ν

dΣz(zi,µz) + ν
.

To prove this result, recall that Zi ∼ tp(µz,Σz, ν), which implies Zi|Ui = ui ∼ Np(µz, u
−1
i Σz)

and Ui ∼ Gamma(ν/2, ν/2) – see (2). Using the relation f(ui|zi) ∝ f(zi|ui)f(ui), we can prove
that Ui|Zi = zi ∼ Gamma

(
p+ν
2
, 1
2

(dΣz(zi,µz) + ν)
)
, and the result follows.

4.1. The E Step

Let Z = (Z>1 , . . . ,Z
>
n )>, x = (x1, . . . , xn)> and u = (u1, . . . , un)>. Let θ be the vector with

all the parameters in the model. Apart from constants which do not depend on θ, the complete
log-likelihood associated with the complete data Zc = {Z,x,u} is given by

`c(θ|Zc) = −n
2

p∑
i=1

logω2
j −

1

2

n∑
i=1

ui(Zi − a− bxi)
>Ω−1(Zi − a− bxi)

− n

2
log σ2

x −
1

2σ2
x

n∑
i=1

ui(xi − µx)2.
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Suppose that at the kth stage of the algorithm we obtain an estimate θ̂
(k)

of θ. The E step
consists of the computation of the conditional expectation

Q(θ|θ̂
(k)

) = E
θ̂
(k) [`c(θ|Zc)|V] ,

where E
θ̂

(k) means that the expectation is being affected using θ̂
(k)

as the true parameter value

and V = (V>1 , . . . ,V
>
n )>. The M step consists of maximizing Q(·|θ̂

(k)
) in θ. To do so, first

observe that the function Q(·|θ̂
(k)

) can be decomposed into

Q
(
θ|θ̂

(k)
)

= Q1

(
α,β,ω|θ̂

(k)
)

+Q2

(
µx, σ

2
x|θ̂

(k)
)
, (24)

where ω = (ω2
1, . . . , ω

2
p)
>,

Q1

(
α,β,ω|θ̂

(k)
)

=

E
θ̂
(k)

[
−n

2

p∑
i=1

logω2
j −

1

2

n∑
i=1

ui(Zi − a− bxi)
>Ω−1(Zi − a− bxi)|V

]
and (25)

Q2

(
µx, σ

2
x|θ̂

(k)
)

= E
θ̂
(k)

[
−n

2
log σ2

x − 1
2σ2
x

∑n
i=1 ui(xi − µx)2|V,

]
.

Given this decomposition, we can reduce the problem to the maximization of two independent

functions, searching for critical points of Q1(·|θ̂
(k)

) and Q2(·|θ̂
(k)

) separately. Expanding the

expressions of Q1(·|θ̂
(k)

) and Q2(·|θ̂
(k)

) and taking expectations, it follows that

Q1

(
α,β,ω|θ̂

(k)
)

= −n
2

p∑
i=1

logω2
j −

1

2

{
n∑
i=1

(
tr{Ω−1ûz2

i } − 2a>Ω−1ûzi

−2ûxziΩ
−1b + a>Ω−1aûi + 2a>Ω−1bûxi + b>Ω−1bûx2i

)}
,

Q2(µx, σ
2
x|θ̂

(k)
) = −n

2
log σ2

x −
1

2σ2
x

{
n∑
i=1

(
ûx2i − 2µxûxi + µ2

xûi

)}
,

where tr(·) denotes the trace of a matrix,

ûz2
i = E[UiZiZ

>
i |Vi], ûzi = E[UiZi|Vi],

ûi = E[Ui|Vi], ûxzi = E[UixiZ
>
i |Vi],

ûxi = E[Uixi|Vi], ûx2i = E[Uix
2
i |Vi],

and we have omitted the subscript θ̂
(k)

to simplify the notation. To obtain expressions for
these expectations, we will use a result from probability theory called the tower property of
conditional expectation: if X andY are arbitrary random vectors and f(·) is a measurable
function, then E[E(X|Y)|f(Y)] = E[X|f(Y)]. For a proof, see Ash (2000, Theorem 5.5.10).
Now, observe that, by (15), Vi is a function of Zi. Then, by this property, we can write

ûz2
i = E{E[UiZiZ

>
i |Zi]|Vi]}, ûzi = E{E[UiZi|Zi]|Vi]}, and ûi = E{E[Ui|Zi]|Vi}. (26)
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Proposition 5 gives the conditional expectation E[Ui|Zi] and, from this result and formulas

(26) we obtain the following expressions for ûi, ûzi and ûz2
i (as we will see soon, all expectations

involved in the E step are written as functions of these), considering three different cases:

(i) Individual i does not have censored components. In this case, Vi = Zi – see Equation
(15). Thus,

ûi =
p+ ν

dΣz(Zi,µz) + ν
, ûzi =

p+ ν

dΣz(Zi,µz) + ν
Zi, and ûz2

i =
p+ ν

dΣz(Zi,µz) + ν
ZiZ

>
i .

(ii) Individual i has only censored components. By Equation (15), this fact occurs if and only
if Zi ≤ κi, where κi is the vector with the censoring levels for individual i. Thus,

ûi = E{E[Ui|Zi]|Zi ≤ κi} = E

[
p+ ν

dΣz(Zi,µz) + ν

∣∣Zi ≤ κi
]
.

By (13) and the definition of a truncated Student-t distribution, we have that Zi|(Zi ≤
κi) ∼ Ttp(µz,Σz, ν;Di), where Di is like in (3) with d = κi. Using r = 1 and k = 0 in
Proposition 2, we get

ûi =
Tp(κi|µz,Σ∗z, ν + 2r)

Tp(κi|µz,Σz, ν)
,

where Σ∗z = (ν/(ν + 2))Σz. Using r = 1 and k = 1 in Proposition 2, we obtain

ûzi =
Tp(κi|µz,Σ∗z, ν + 2r)

Tp(κi|µz,Σz, ν)
E[Yi],

where Yi ∼ Ttp(µz,Σ
∗
z, ν + 2;Di). Finally, r = 1 and k = 2 in Proposition 2 imply

ûz2
i =

Tp(κi|µz,Σ∗z, ν + 2r)

Tp(κi|µz,Σz, ν)
E[YiY

>
i ].

(iii) Individual i has censored and uncensored components. As we commented before in Section
3.1, in this case, we decompose the vector Vi into two subvectors, Zo

i and κci , correspond-
ing to the uncensored observations and the censoring levels, respectively. Accordingly, we
partition the vetor Zi as Zi = vec(Zo

i ,Z
c
i). The components are censored if and only if

Zc
i ≤ κci . Thus,

ûi = E{E[Ui|Zi]|Zo
i = zoi ,Z

c
i ≤ κci} = E

[
p+ ν

dΣz(Zi,µz) + ν

∣∣Zo
i = zoi ,Z

c
i ≤ κci

]
.

In this case, we have that Zi|(Zc
i ≤ κci) ∼ Ttp(µz,Σz, ν;Dc

i), with

Dc
i = {(x1, . . . , xp) ∈ Rp; xi ≤ κci , i ∈ C}, (27)

where C is the set of indices for the censored components – consequently, we make di =
+∞ for i /∈ C in (3). Thus, ûi can be calculated using Proposition 3, with Zo

i and Zc
i

playing the role of Z1 and Z2, respectively, taking r = 1 and k = 0. Then, we get

ûi =
po + ν

ν + dΣooz (zoi ,µ
o
z)

Tpc(κ
c
i |µcoz , S̃coz , ν + po + 2)

Tpc(κci |µcoz ,Scoz , ν + po)
,

9



where po and pc are the dimensions of the vectors Zo
i e Zc

i , respectively, ν + po + 2 > 0,

S̃coz =
ν + dΣooz (zoi ,µ

o
z)

ν + po + 2
Σcc.o
z ,

µoz, Scoz and Σcc.o
z are given in (17), (18) and (19), respectively. Regarding ûzi, we have

that

ûzi = E

[
p+ ν

dΣz(Zi,µz) + ν
vec(Zo

i ,Z
c
i)
∣∣Zo

i = zoi ,Z
c
i ≤ κci

]
= vec

(
E

[
p+ ν

dΣz(Zi,µz) + ν
zoi
∣∣Zo

i = zoi ,Z
c
i ≤ κci

]
,E

[
p+ ν

dΣz(Zi,µz) + ν
Zc
i

∣∣Zo
i = zoi ,Z

c
i ≤ κci

])
= vec(ûiz

o
i ,E[Yi]),

where
Yi ∼ Ttpc(µ

co
z , S̃

co
z , ν + po + 2;Dc

i). (28)

Finally, to compute ûz2
i , observe that

ûz2
i = E

[
p+ ν

dΣz(Zi,µz) + ν

(
Zo
iZ

o>
i Zo

iZ
c>
i

Zc
iZ

o>
i Zc

iZ
c>
i

) ∣∣Zo
i = zoi ,Z

c
i ≤ κci

]
=

(
ûiz

o
iz
o>
i ûiz

o
iE[Yi]

>

ûiE[Yi]z
o>
i ûiE[YiY

>
i ]

)
,

where Yi is as in (28).

Regarding the remaining expectations, we have

E[xiUi|Vi = vi] =

∫∫
xiuiπ(xi, ui|vi) dxi dui

=

∫
xiπ(xi|ui,vi) dxi

∫
uiπ(ui|vi)dui

= E[xi|Ui = ui,Vi = vi]E[Ui|Vi = vi]. (29)

By the tower property, we have

E[xi|Ui,Vi] = E[E(xi|Ui,Zi)|Ui,Vi].

Consequently,

ûxi = E[xiUi|Vi] = E

[
µx + σ2

xb
′Ω−1(Zi − a)

1 + σ2
xb
′Ω−1b

|Ui,Vi

]
E[Ui|Vi]

=
µxE[Ui|Vi] + σ2

xb
′Ω−1E[Zi|Ui,Vi]E[Ui|Vi]− aE[Ui|Vi]

1 + σ2
xb
′Ω−1b

=
µxûi + σ2

xb
′Ω−1ûzi − σ2

xb
′Ω−1aûi

1 + σ2
xb
′Ω−1b

(30)

= µxûi +ϕ(ûzi − µzûi),

10



where

ϕ =
σ2
xb
>Ω−1

1 + σ2
xb
>Ω−1b

(31)

and the equality in (30) is obtained by proving that E[Zi|Ui,Vi]E[Ui|Vi] = E[UiZi|Vi] ≡ ûzi,
which can be done following the same paths that led to (29), replacing xi with Zi.

In a similar fashion, we get

ûx2i = Λ + µ2
xûi + 2ϕ [ûzi − µzûi] +ϕ

[
ûz2

i − ûziµ
>
z − µzûzi

> + µzµ
>
z ûi

]
ϕ>, and

ûxzi = µxûzi +ϕ
[
ûz2

i − µzûzi

]
,

with

Λ =
σ2
x

1 + σ2
xb
>Ω−1b

. (32)

4.2. The CM Step

Given the current estimate θ = θ̂
(k)

at the kth stage, the CM-step of the ECM algorithm
(Meng & Rubin, 1993) consists of the conditional maximization of the Q function given in (24).
More precisely, ECM replaces each M-step of the EM algorithm of Dempster et al. (1977) by a
sequence of S conditional maximization steps, called CM-steps, each of which maximizes the Q
function over θ but with some vector function of θ, (g1(θ), . . . , gS(θ)) say, fixed at its previous

value. In our case, for example, we first maximize conditionally the function Q1

(
α,β,ω|θ̂

(k)
)

in (25) over α fixing the values β = β̂
(k)

and ω = ω̂(k). Then we maximize Q1

(
α,β,ω|θ̂

(k)
)

over β fixing the values α = α̂(k+1) and ω = ω̂(k) and so on. We get the following closed
expressions:

α̂(k+1) = z(k)
u − x(k)u β̂

(k)
,

β̂
(k+1)

=
nû(k)

∑n
i=1 ûxzi

?(k) −
∑n

i=1 ûzi
?(k)∑n

i=1 ûxi
(k)

nû(k)
∑n

i=1 ûx
2
i

(k)
−
(∑n

i=1 ûxi
(k)
)2 ,

ω̂2
1

(k+1)
=

1

n

n∑
i=1

(ûz2
i

(k)

11 − 2ûxzi
(k)
1 + ûx2i

(k)
),

ω̂2
j+1

(k+1)
=

1

n

n∑
i=1

(
ûz2

i

(k)

(j+1)(j+1) + ûi
(k)α̂

2(k+1)
j + ûx2i

(k)
β̂
2(k+1)
j + 2ûxi

(k)α̂
(k+1)
j β̂

(k+1)
j

−2ûxzi
(k)
(j+1)β̂

(k+1)
j − 2ûzi

(k)
(j+1)α̂

(k+1)
j

)
, j = 1, . . . , r,

µ̂(k+1)
x = x(k)u ,

σ̂2
x

(k+1)
=

1

n

n∑
i=1

(ûx2i
(k)
− 2ûxi

(k)µ̂(k+1)
x + ûxi

(k)µ̂2(k+1)
x ),

11



where z(k)
u =

∑n
i=1 ûzi

?(k)∑n
i=1 û

(k)
i

, x(k)u =

∑n
i=1 ûx

(k)
i∑n

i=1 û
(k)
i

and û(k) =
1

n

n∑
i=1

û
(k)
i , with ûzi

?(k) = (ûzi2, . . . , ûzip)
>

and ûxzi
?(k) = (ûxzi2, . . . , ûxzip)

>.

4.3. Imputation of censored components

Let Z
(c)
i be the true (partially or completely unobserved) response vector for the censored

components of the ith unit. We define a predictor for Z
(c)
i as

Z̃
(c)
i = E[Zi|Vi = vi].

We have the following particular cases:

1. If unit i has only censored components then, if we make r = 0 and k = 1 in Proposition
2, we get

Z̃
(c)
i = E[Yi], with Yi ∼ Ttp(µ̂z, Σ̂z, ν;Di),

µ̂z and Σ̂z are the EM estimates of µz and Σz, respectively, and Di is as in (3) with
d = κi, where κi is the vector with censoring levels for unit i.

2. Unit i has uncensored and censored components. In this case, we partition the vector Zi

as Zi = vec(Zo
i ,Z

c
i). Components are censored if and only if Zc

i ≤ κci , such that

Z̃
(c)
i = E[vec(Zo

i ,Z
c
i)|Zo

i = zoi ,Z
c
i ≤ κci ] = vec(zoi , ŷ

c
i ),

where, by Proposition 3 with r = 0 and k = 1,

ŷci = E[Yi], with Yi ∼ Ttpc(µ
co
z ,S

co
z , ν + po;Dc

i), (33)

where µcoz and Scoz are given in (17) and (18), respectively, and Dc
i is given in (27).

4.4. Estimation of xi

Following Lin & Lee (2006), Ho et al. (2012) and recently Castro et al. (2015), we consider
the conditional mean to estimate the unobserved latent covariate. Using the tower property
and Proposition 4, we have that an estimator for xi can be obtained through

x̂i = E[xi|Vi] = E[E(xi|Ui,Zi)|Vi]

= E

[
µx + σ2

xb
′Ω−1(Zi − a)

1 + σ2
xb
′Ω−1b

∣∣Vi

]
= µx +ϕ(Ẑi − a− bµx), (34)

where ϕ is given in (31) and Ẑi = E[Zi|Vi]. Observe that, if individual i does not have censored

components, then Ẑi is the first moment of a tp(µz,Σz, ν) distribution. If all its components are
censored, then E[Zi|Vi] = E[Zi|Zi ≤ κi], which can be computed using Proposition 2 with r = 0
and k = 1. Finally, if it has censored and uncensored components, then E[Zi|Vi] = vec(Zo

i , ŷ
c
i ),

see (33). The parameter values in (34) must be replaced with the respective EM estimates.
Moreover, the conditional covariance matrix of xi given Vi is

Var[xi|Vi] = E[x2i |Vi]− (E[xi|Vi])
2.

12



By the tower property and Proposition 4, we have

E[x2i |Vi] = E{E[E(x2i |Ui,Zi)|Zi]|Vi}

= E

{
E

[
σ2
x

Ui(1 + σ2
xb
′Ω−1b)

|Zi

] ∣∣Vi

}
+ E

[(
µx + σ2

xb
′Ω−1(Zi − a)

1 + σ2
xb
′Ω−1b

)2 ∣∣Vi

]
.

It is easy to show that E[U−1i |Zi] = (dΣz(Zi,µz) + ν)/(p + ν − 2) – recall that Ui|Zi = zi ∼
Gamma

(
p+ν
2
, 1
2

(dΣz(zi,µz) + ν)
)
, see the result after Proposition 5. After some lengthy alge-

bra, we can prove that

Var[xi|Vi] = ΛE

[
dΣz(Zi,µz) + ν

p+ ν − 2

∣∣Vi

]
+ Λ2b′Ω−1Var[Zi

∣∣Vi]Ω
−1b, (35)

where Λ is given in (32) and

Var[Zi

∣∣Vi] = E[ZiZ
>
i

∣∣Vi]− E[Zi

∣∣Vi]E[Zi

∣∣Vi]
>.

If individual i has only uncensored components, then expression (35) can be computed
using the moments of the tp(µz,Σz, ν) distribution using Proposition 2: it is enough to make
d1 = · · · = dp = +∞, r = 1 and k = 0 to obtain the first expectation in (35) and r = 0,
k = 1 (k = 2) to obtain the other one. If the components are all censored, we again use
Proposition 2, but now considering the moments of a Ttp(µ,Σ, ν;Di) distribution. Finally, if
there are censored and uncensored components, then the expectations can be computed through
Proposition 3, using the partition Zi = vec(Zo

i ,Z
c
i). Besides this, the parameter values in (35)

must be replaced with the respective EM estimates.

5. The observed information matrix

Under some general regularity conditions, we follow Lin (2010) to provide an information-
based method to obtain the asymptotic covariance of ML estimates of the t-MEC model’s
parameters. As defined by Meilijson (1989), the empirical information matrix can be computed
as

Ie(θ|Z) =
n∑
i=1

s(Zi | θ)s>(Zi | θ)− 1

n
S(Zi | θ)S>(Zi | θ),

where S(Zi | θ) =
∑n

i=1 s(Zi | θ) and s(Zi | θ) is the empirical score function for the ith unit.
According to Louis (1982) it is possible to relate the score function of the incomplete data
log-likelihood with the conditional expectation of the complete data log-likelihood function.
Therefore, the individual score can be determined as

s(Zi | θ) =
∂ log f(Zi | θ)

∂θ
= E

[
∂`ic(θ | Zc

i)

∂θ
| Vi,Ci,θ

]
, (36)

where `ic(θ | Zc
i) is the complete data log-likelihood formed from the single observation Zi, i =

1, . . . , n. Using the EM estimates θ̂, S(Zi | θ̂) = 0, and then (36) is given by

Ie(θ̂ | Z) =
n∑
i=1

ŝiŝ
>
i , (37)
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where ŝi = (ŝi,α, ŝi,β, ŝi,ω, ŝi,µx , ŝi,σ2
x
)> is a 3p-dimensional vector, with components given by

ŝi,α = (ŝi,α1 , . . . , ŝi,αr)
> = I(p)Ω̂

−1
(ûzi − ûiâ− ûxib̂),

ŝ
i,β = (ŝi,β1 , . . . , ŝi,βr)

> = I(p)Ω̂
−1

(ûxzi − ûxiâ− ûx2i b̂),

ŝi,ω = (ŝi,ω2
1
, . . . , ŝi,ω2

p
)> = −1

2
Ω̂
−1

1p +
1

2
Ω̂
−2
diag(âi),

ŝi,µx = =
1

σ̂2
x

(ûxi − ûiµ̂x),

ŝi,σ2
x

= = − 1

2σ̂2
x

+
1

2σ̂4
x

(ûx2i − 2ûxiµ̂x + ûiµ̂
2
x),

with I(p) = [0, Ip−1](p−1)×p, 1p = (1, . . . , 1)>p×1 and âi = ûz2
i − 2ûziâ

> − 2ûxzib̂
> + 2ûxiâb̂> +

ûiââ> + ûx2i b̂b̂>.

6. Simulation studies

In order to study the performance of our proposed method, we present three simulation
studies. The first one shows the asymptotic behavior of the EM estimates for the proposed
model. The second one investigates the consequences on parameter inference when the normal-
ity assumption is inappropriate. Finally, the third one is designed to investigate the effect of
including the censoring component in the model.

6.1. Asymptotic properties

In this simulation study, we analyze the absolute bias (BIAS) and mean square error (MSE)
of the regression coefficient estimates obtained from the t-MEC model for six different sample
sizes n, namely 50, 100, 200, 300, 400 and 600. These measures are defined by

BIASk =
1

M

M∑
j=1

|θ̂
(j)

k − θk| and MSEk =
1

M

M∑
j=1

(
θ̂
(j)

k − θk
)2
, (38)

where θ̂
(j)

k is the EM estimate of the parameter θk, k = 1, . . . , 3p, for the j-th sample. The key
idea of this simulation is to provide empirical evidence about consistency of the EM estimators
under the proposed t-MEC model. For each sample size, we generate M = 100 datasets with
10% censoring proportion. Using the ECM algorithm, the absolute bias and mean squared error
for each parameter over the 100 datasets were computed. The parameter setup (see Section 3),
is

α = (3, 2, 1, 2)>, β = (1.5, 1, 1.5, 1)>, µx = 4, σ2
x = 2 and Ω = diag(0.5, 0.5, 0.5, 0.5, 0.5).

(39)
The degrees of freedom were fixed at the value ν = 5.

The results are presented in Figure 1. From this figure we can see that the MSE tends to
zero as the sample size increases. Similar results were obtained after the analysis of the absolute
bias (BIAS) as can be seen from Figure 4 in the Appendix. As expected, the proposed ECM
algorithm provides ML estimates with good asymptotic properties for the t-MEC model.
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Figure 1: Simulation study 6.1. MSE of parameter estimates under the t-MEC model considering 10% censoring.

6.2. Parameter inference

In this study we investigate the consequences on parameter inference when the normality
assumption is inappropriate, as well the ability of some model choice criteria (AIC and BIC)
to select the correct model. In addition, we study the effect of different censoring proportions
on the EM estimates. For this purpose, we consider a heavy-tail distribution for the random
errors. In this context, we generate M = 100 datasets coming from a slash distribution with
parameter ν = 1.5 and censoring proportions 0%, 10%, 20% and 30%. The slash distribution
arises when we change the distribution of U in (2) to U ∼ Beta(ν, 1), with pdf f(u|ν) = νuν−1,
u ∈ (0, 1), and ν > 0. See Wang & Genton (2006) for details. The parameter values are set as
in the previous experimental study.

For each simulated dataset we fitted the t-MEC (with ν = 5 degrees of freedom) and
the N-MEC models. The model selection criteria AIC and BIC as well as the estimates of
the model parameters were recorded at each simulation. Summary statistics such as the Monte
Carlo mean estimate (MC mean), coverage probability (MC CP) and the approximate standard
error obtained through the information-based method (IM SE), discussed in Section 5, for the
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Table 1: Simulation study 6.2. Summary statistics based on 100 simulated samples from the slash distribution
for different levels of censoring (0%, 10%, 20%, 30%).

Simulated data

Censoring Fit α1 α2 α3 α4 β1 β2 β3 β4 µx σ2
x

0% Normal MC Mean 3.096 2.457 1.274 2.238 1.482 0.933 1.466 0.988 3.463 212.602
IM SE 0.332 0.243 0.343 0.302 0.038 0.029 0.045 0.038 4.783 0.002
MC CP 100% 24% 97% 100% 100% 24% 100% 100% 100%

Student-t MC Mean 2.712 1.853 0.964 1.894 1.542 1.022 1.521 1.022 4.586 9.299
IM SE 0.375 0.245 0.331 0.258 0.066 0.044 0.060 0.046 0.404 0.022
MC CP 100% 100% 100% 100% 100% 100% 100% 100% 79%

10% Normal MC Mean 2.440 1.570 0.887 1.701 1.608 1.097 1.535 1.090 4.797 31.343
IM SE 0.345 0.328 0.456 0.405 0.044 0.051 0.072 0.062 0.847 0.010
MC CP 43% 61% 100% 61% 71% 68% 100% 100% 100%

Student-t MC Mean 2.612 1.626 0.880 1.849 1.565 1.069 1.540 1.031 4.539 7.927
IM SE 0.415 0.312 0.397 0.294 0.073 0.058 0.072 0.053 0.351 0.026
MC CP 100% 100% 100% 100% 100% 100% 100% 100% 75%

20% Normal MC Mean 2.435 1.539 0.905 1.600 1.610 1.103 1.533 1.103 4.754 32.254
IM SE 0.415 0.417 0.532 0.492 0.051 0.063 0.081 0.076 0.832 0.010
MC CP 55% 61% 100% 61% 83% 85% 100% 98% 100%

Student-t MC Mean 2.506 1.605 0.816 1.783 1.580 1.073 1.549 1.041 4.576 7.599
IM SE 0.503 0.399 0.494 0.357 0.084 0.070 0.084 0.061 0.350 0.027
MC CP 99% 100% 100% 100% 100% 100% 100% 100% 64%

30% Normal MC Mean 2.511 1.490 0.999 1.532 1.608 1.112 1.528 1.114 4.703 32.890
IM SE 0.521 0.543 0.662 0.606 0.061 0.077 0.096 0.093 0.841 0.011
MC CP 61% 61% 100% 61% 87% 89% 100% 88% 100%

Student-t MC Mean 2.522 1.578 0.864 1.840 1.580 1.080 1.545 1.034 4.554 7.211
IM SE 0.622 0.506 0.641 0.433 0.096 0.082 0.099 0.069 0.352 0.029
MC CP 100% 100% 100% 100% 100% 99% 100% 100% 84%

parameter estimates are presented in Table 1.
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Figure 2: Simulation study 6.2. MSE of β, α, µx, σ2
x estimates under normal and Student-t models for different

levels of censoring (0%, 10%, 20%, 30%).

From these results we can observe that for all considered levels of censoring, the t-MEC
model is chosen as the correct model. Under the t-MEC model, the MC CP for α and β are
stable, but the MC CP of µx is lower than the nominal level (95%). In general, the MC CP
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values are higher than those obtained under the normal model. Figure 2 shows the MSE for
some parameter estimates (the biases are presented in Figure 6 in the Appendix). Note that,
the MSE under the t-MEC model is lower than the obtained under the normal, for different
levels of censoring.

Regarding the model choice, the t-MEC model was chosen as the best by the two criteria
for all samples.

6.3. Censored model

In this section, the main goal is to study the effect of taking into account censored data on
the parameter estimates. We generated M = 100 samples from the t-MEC model with ν = 5,
setting the censoring level at 20%. The other parameter values are set as in (39). For each
dataset, we fitted two models: in case 1 we use a naive model, where censored responses are
not taken into account. In case 2 we fit a t-MEC model.
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Figure 3: Simulation study 6.3. Boxplots of the parameter estimates. Dotted lines indicate the true parameter
value.

Figure 3 shows the box plots corresponding to each parameter estimate considering the
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M = 100 datasets. Note that, the estimates in Case 2 are, in general, more precise than those
obtained in Case 1. It is also possible to note that, in case 2, the variability observed in the
estimations is smaller than in case 1, except for some dispersion parameters. We point out that
it is important to consider the effect of censoring in data modeling, avoiding ad-hoc methods.

7. Analysis of case studies

We illustrate the proposed method with a dataset from Chipkevitch et al. (1996). The
data consist of measurements of the testicular volume of 42 adolescents by using five different
techniques: ultrasound (US), graphical method proposed by the authors (I), dimensional mea-
surement (II), Prader orchidometer (III), and ring orchidometer (IV). The ultrasound approach
was assumed to be the reference measurement device. Galea-Rojas et al. (2002) analyzed the
same dataset by fitting the usual normal ME model and recommended considering a data trans-
formation in order to obtain normality. Lachos et al. (2010) also analyzed this dataset with the
aim of providing a better fit, attempting to avoid possibly unnecessary data transformation.
In fact, they considered a joint model of the latent variable and observational errors by using
the scale mixtures of skew-normal (SMSN) class of distributions. They also showed evidence
of the heavy-tailed behavior of the data (see also Cabral et al., 2014).

Table 2: Chipkevitch data. Testicular volume data (in ml).

Methods Methods

i US I II III IV i US I II III IV

1 5.0 7.5 5.9 8.0 9.0 22 16.5 10.0 15.3 15.0 15.0
2 5.7 5.0 4.8 6.0 10.0 23 4.5 4.4 (3.5) 4.4 (3.9) 6.0 7.0
3 7.4 5.0 6.8 9.0 12.0 24 5.6 5.0 4.5 4.5 6.0
4 4.4 (2.6) 4.4 (3.5) 4.4 (3.1) 4.4 (4.0) 4.4 (4.0) 25 11.0 7.5 9.7 9.0 11.0
5 5.7 5.0 5.0 6.0 7.0 26 9.2 10.0 11.3 12.0 13.5
6 6.1 5.0 4.4 (4.4) 7.0 8.0 27 8.5 7.5 8.8 12.0 12.0
7 6.2 5.0 6.0 8.0 9.0 28 5.4 5.0 6.1 8.0 8.0
8 10.4 10.0 8.8 10.0 10.0 29 6.7 7.5 7.2 10.0 8.0
9 9.1 7.5 7.9 10.0 11.0 30 5.3 5.0 5.9 8.0 10.0
10 14.8 10.0 13.0 12.0 15.0 31 20.0 20.0 16.3 25.0 22.5
11 16.4 12.5 10.3 17.5 17.5 32 18.8 15.0 16.3 20.0 25.0
12 9.6 7.5 8.2 10.0 11.0 33 13.9 12.5 12.2 15.0 17.5
13 15.7 15.0 19.8 20.0 20.0 34 9.4 10.0 10.3 12.0 13.5
14 4.4 (3.0) 4.4 (2.0) 4.4 (2.0) 4.4 (3.0) 4.4 (4.0) 35 9.1 7.5 10.8 12.0 12.0
15 16.4 15.0 17.3 20.0 20.0 36 14.1 15.0 13.0 13.5 15.0
16 17.6 15.0 17.3 20.0 22.5 37 9.3 10.0 8.4 10.0 10.0
17 10.0 7.5 7.9 12.0 12.0 38 20.9 20.0 22.1 25.0 25.0
18 4.4 (4.1) 4.4 (3.5) 4.4 (4.4) 4.4 (4.0) 6.0 39 11.5 10.0 10.6 15.0 13.5
19 12.7 10.0 11.4 12.0 12.0 40 9.7 10.0 9.7 11.0 12.0
20 4.4 (2.7) 4.4 (3.5) 4.4 (4.1) 4.4 (2.5) 6.0 41 13.7 12.5 11.6 17.5 15.0
21 10.2 10.0 11.1 12.0 13.5 42 8.9 10.0 8.1 12.0 12.0

To apply our method to this dataset, we censored (randomly) 10% (21 observations) of the
data. As a consequence, the detection limit κij was fixed at 4.4 for all i and j. Table 2 shows
the testicular volume data with the true value in parentheses for the censored observations. We
fitted the t-MEC (with ν = 6) and N-MEC models. The EM estimates for the parameters of
the two model, as well as their corresponding standard errors (SE) obtained via the empirical
information matrix are reported in Table 3. This table shows that the estimates of β, α, ω for
the t-MEC and N-MEC models are close. However, the standard errors (SE) of the t-MEC are
smaller than those of the N-MEC model, indicating that the our robust model seem to produce
more precise estimates.

Table 4 compares the fit of the two models using the model selection criteria (AIC and BIC)
discussed in Subsection 6.2. Note that, as expected, the t-MEC model outperform the normal
one.

18



Table 3: Chipkevitch data. ML and SE for parameter estimates.

t-MEC N-MEC

Estimate SE Estimate SE

α1 -0.0510 1.1501 -0.0584 1.0995
α2 -0.6674 0.9077 -0.4205 1.2257
α3 0.2815 0.9361 0.1172 0.9931
α4 1.9037 0.9853 1.8075 1.0288
β1 0.9067 0.1166 0.8959 0.0997
β2 1.0214 0.0809 0.9792 0.0848
β3 1.1400 0.1017 1.1371 0.0951
β4 1.0645 0.1038 1.0619 0.0954
µx 9.1089 0.8979 9.9222 1.0681
σ2
x 18.4174 0.0168 25.0263 0.0124
ω1 1.1068 0.6503 1.4442 0.8227
ω2 1.1179 0.4447 1.4313 0.5369
ω3 1.1339 0.3945 1.9156 0.6718
ω4 0.9437 0.4708 1.1390 0.5460
ω5 1.1536 0.4261 1.5493 0.5580

Table 4: Chipkevitch data. Model comparison criteria.

t-MEC N-MEC

Log-likelihood -398.4389 -401.4635
AIC 826.8777 832.9269
BIC 877.0843 883.1336

8. Conclusions

In this paper, we introduce the multivariate ME model with censored responses based on
the Student-t distribution, the so-called t-MEC model. This model considers the possibility of
censoring in the surrogate covariate and the response. Moreover, we assume that the latent
unobserved covariate and random observational errors follow a multivariate Student-t distri-
bution, which provides a robust alternative to the usual Gaussian model. For the parameter
estimation, an ECM algorithm based on some statistical properties of the multivariate trun-
cated Student-t distribution is developed to obtain ML estimates. Some simulation studies
revealed that our proposed method generates less biased estimates of model parameters than
the case when the censoring scheme is not taken into account. Moreover, we showed that the
use of the Student-t distribution generates better results than the normal one, in the context
of the censored ME models.

Of course, further extensions of the current work are possible. For example, the proposed
method can be naturally extended by considering the family of scale mixtures of normal (SMN)
and skew-normal (SMSN) distributions. An efficient estimation procedure to obtain ML es-
timates of model parameters can be implemented by using a stochastic approximation of the
traditional EM (SAEM) algorithm. Other extensions include, a Bayesian treatment via Markov
chain Monte Carlo (MCMC) sampling methods in the context of SMN-MEC and SMSN-MEC
models (Lachos et al., 2010).

19



Acknowledgements

L. A. Matos acknowledges support from FAPESP-Brazil (Grants 11/22063-9 and 15/05385-
3). L.M. Castro was partially supported by CONICYT-Chile through BASAL project CMM,
Universidad de Chile and Grant FONDECYT 1130233 from the Chilean government. The
research of V. H. Lachos was partially supported by CNPq-Brazil (Grant 305054/2011-2) and
FAPESP-Brazil (Grant 2014/02938-9). The research of Celso R. B. Cabral was supported
by CNPq (via BPPesq and Universal Project 2014), and FAPEAM (via Universal Amazonas
Project).

References

Abarin, T., Li, H., Wang, L. & Briollais, L. (2014). On method of moments estimation in linear
mixed effects models with measurement error on covariates and response with application to
a longitudinal study gene-environment interaction. Statistics in Biosciences , 6, 1–18.

Ash, R. B. (2000). Probability and Measure Theory . Academic Press, San Diego.

Bandyopadhyay, D., Castro, L. M., Lachos, V. H. & Pinheiro, H. (2015). Robust joint nonlinear
mixed-effects models and diagnostics for censored HIV viral loads with CD4 measurement
error. Journal of Agricultural, Biological and Environmental Statistics , 20, 121–139.

Barnett, V. D. (1969). Simultaneous pairwise linear structural relationships. Biometrics , 25,
129–142.

Buonaccorsi, J. (2010). Measurement Error: Models, Methods and Applications . Chapman &
Hall/CRC, Boca Raton.

Buonaccorsi, J., Demidenko, E. & Tosteson, T. (2000). Estimation in longitudinal random
effects models with measurement error. Statistica Sinica, 10, 885–903.

Cabral, C. R. B., Lachos, V. H. & Borelli, C. (2014). Multivariate measurement error models
using finite mixtures of skew-Student t distributions. Journal of Multivariate Analysis , 124,
179–198.

Carrol, R. J., Lin, X. & Wang, N. (1997). Generalized linear mixed measurement error models.
In Modellling Longitudinal and Spatially Correlated Data, volume 122 of Lecture Notes in
Statistics , pages 321–330. Springer–Verlag.

Carroll, R. J., Ruppert, D., Stefanski, L. A. & Crainiceanu, C. M. (2006). Mesurement Error
in Nonlinear Models . Chapman & Hall/CRC, Boca Raton, second edition.

Castro, L., Costa, D. R., Prates, M. O. & Lachos, V. H. (2015). Likelihood-based inference
for Tobit confirmatory factor analysis using the multivariatet distribution. Statistics and
Computing . DOI 10.1007/s11222-014-9502-0.

Cheng, C. L. & Van Ness, J. W. (1999). Statistical Regression with Measurement Error . Arnold,
London.

20



Chipkevitch, E., Nishimura, R. T., Tu, D. G. S. & Galea-Rojas, M. (1996). Clinical measure-
ment of testicular volume in adolescents: Comparison of the reliability of 5 methods. The
Journal of Urology , 156, 2050–2053.

Dempster, A., Laird, N. & Rubin, D. (1977). Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, Series B,, 39, 1–38.

Dumitrescu, L. (2010). Estimation for a longitudinal linear model with measurement errors.
Electronic Journal of Statistics , 4, 486–524.

Fuller, W. A. (1987). Measurement Error Models . John Wiley and Sons, New York.

Galea-Rojas, M., Bolfarine, H. & de Castro, M. (2002). Local influence in comparative calibra-
tion models. Biometrical journal , 44, 59–81.

Ho, H. J., Lin, T. I., Chen, H. Y. & Wang, W. L. (2012). Some results on the truncated
multivariate t distribution. Journal of Statistical Planning and Inference, 142, 25–40.

Kotz, S. & Nadarajah, S. (2004). Multivariate t Distributions and Their Applications . Cam-
bridge University Press, Cambridge.

Lachos, V. H., Labra, F. V., Bolfarine, H. & Ghosh, P. (2010). Multivariate measurement error
models based on scale mixtures of the skew–normal distribution. Statistics , 44, 541–556.

Lange, K. L., Little, R. J. A. & Taylor, J. M. G. (1989). Robust statistical modeling using t
distribution. Journal of the American Statistical Association, 84, 881–896.

Lin, T. I. (2010). Robust mixture modeling using multivariate skew t distributions. Statistics
and Computing , 20, 343–356.

Lin, T. I. & Lee, J. C. (2006). A robust approach to t linear mixed models applied to multiple
sclerosis data. Statistics in Medicine, 25, 1397–1412.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.
Journal of the Royal Statistical Society, Series B , 44, 226–233.

Lucas, A. (1997). Robustness of the Student-t based M-estimator. Communications in
Statistics-Theory and Methods , 26, 1165–1182.

Matos, L. A., Prates, M. O., Chen, M. H. & Lachos, V. H. (2013). Likelihood-based inference for
mixed-effects models with censored response using the multivariate-t distribution. Statistica
Sinica, 23, 1323–1342.

Meilijson, I. (1989). A fast improvement to the EM algorithm on its own terms. Journal of the
Royal Statistical Society, Series B , pages 127–138.

Meng, X. & Rubin, D. (1993). Maximum likelihood estimation via the ECM algorithm: a
general framework. Biometrika, 80, 267–278.

Wang, J. & Genton, M. G. (2006). The multivariate skew-slash distribution. Journal of
Statistical Planning and Inference, 136, 209–220.

21



Wu, L. (2010). Mixed Effects Models for Complex Data. Chapman & Hall/CRC, Boca Raton,
FL.

Zhang, S., Midthune, D., Guenther, P. M., Krebs-Smith, S. M., Kipnis, V., Dodd, K. W.,
Buckman, D. W., Tooze, J. A., Freedman, L. & Carroll, R. J. (2011). A new multivariate
measurement error model with zero-inflated dietary data, and its application to dietary
assessment. The Annals of Applied Statistics , 5, 1456–1487.

22



Appendix
0

.0
2

0
.0

3
0

.0
4

0
.0

5
0

.0
6

0
.0

7
0

.0
8

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

β1

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

β2

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

β3

0
.0

1
0

.0
2

0
.0

3
0

.0
4

0
.0

5

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

β4

0
.1

0
.2

0
.3

0
.4

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

µx

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

α1

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

α2

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

α3

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5
Samples Sizes (n)

b
ia

s
50 100 200 300 400 600

α4

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

σx
2

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0
0

.1
2

0
.1

4
0

.1
6

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

ω1
2

0
.0

5
0

.1
0

0
.1

5

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

ω2
2

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

ω3
2

0
.0

8
0

.1
0

0
.1

2
0

.1
4

0
.1

6
0

.1
8

0
.2

0

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

ω4
2

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0
0

.1
2

Samples Sizes (n)

b
ia

s

50 100 200 300 400 600

ω5
2

Figure 4: Simulation 6.1. Bias of parameter estimates under the t-MEC model considering 10% of censoring.
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Figure 5: Simulation 6.2. MSE of parameter estimates under the t-MEC model considering 10% of censoring.
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Figure 6: Simulation 6.2 Bias of parameter estimates under the t-MEC model considering different levels of
censoring .
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