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Abstract

In this paper we introduce and analyze two new fully-mixed variational formulations for the cou-
pling of fluid flow with porous media flow. Flows are governed by the Stokes and Darcy equations,
respectively, and the corresponding transmission conditions are given by mass conservation, bal-
ance of normal forces, and the Beavers-Joseph-Saffman law. We first extend recent related results
involving a pseudostress/velocity-based formulation in the fluid, and consider a fully-mixed formu-
lation in which the main unknowns are given now by the stress, the vorticity, and the velocity, all
them in the fluid, together with the velocity and the pressure in the porous medium. The afore-
mentioned formulation is then partially augmented by introducing the Galerkin least-squares type
terms arising from the constitutive and equilibrium equations of the Stokes equation, and from the
relation defining the vorticity in terms of the free fluid velocity. These three terms are multiplied
by stabilization parameters that are chosen in such a way that the resulting continuous formulation
becomes well-posed. The classical Babuska-Brezzi theory is applied to provide sufficient conditions
for the well-posedness of the continuous and discrete formulations of both approaches. Next, we
derive a reliable and efficient residual-based a posteriori error estimator for the augmented mixed
finite element scheme. The proof of reliability makes use of the global inf-sup condition, Helmholtz
decomposition, and local approximation properties of the Clément interpolant and Raviart-Thomas
operator. In turn, inverse inequalities, the localization technique based on element-bubble and edge-
bubble functions, and known results from previous works, are the main tools to prove the efficiency
of the estimator. Finally, several numerical results illustrating the good performance of both meth-
ods, confirming the aforementioned properties of the estimator, and showing the behaviour of the
associated adaptive algorithm, are provided.
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1 Introduction

The derivation of suitable numerical methods for the coupling of fluid flow (modelled by the Stokes
equation) with porous media flow (modelled by the Darcy equation), has been increasing lately (see
e.g., [9% 16, 18, 19, 20, 211, 24, [34], 37, 41}, 42, [45, 146, [48], 50], and the references therein). The above list
includes porous media with cracks, and the incorporation of other linear and nonlinear equations in
the coupled problem, such as Brinkman and Forchheimer. The relevance that this model has gained
through the last years, and the reason why the numerical analysis community has been putting so
much effort in developing more accurate and efficient methods for solving this problem, is due to its
applicability in different areas of interest, such as chemical and petroleum engineering, hydrology, and
environmental sciences, to name a few.

The first fully-mixed finite element method for the 2D Stokes-Darcy coupled problem has been
introduced and analyzed recently in [35]. This approach allows the introduction of further unknowns
of physical interest as well as the utilization of the same family of finite element subspaces in both
media, without requiring any stabilization term. Moreover, it considers dual-mixed formulations in
both domains, which yields the pseudostress and the velocity in the fluid, together with the velocity
and the pressure in the porous medium, as the main unknowns. The pressure and the gradient of the
velocity in the fluid can then be computed through a very simple post-process of the above unknowns,
in which no numerical differentiation is applied, and hence no further sources of error arise. In addition,
due to the mixed structure utilized, the transmission conditions become essential, and hence they have
to be imposed weakly, which leads to the incorporation of two additional unknowns to the system,
namely the traces of the Darcy pressure and the Stokes velocity on the coupling interface . These
new unknowns are also variables of importance from a physical point of view. Then, the well known
Fredholm and Babuska-Brezzi theories are applied to prove the unique solvability of the resulting
continuous formulation and to derive sufficient conditions on the finite element subspaces ensuring
that the associated Galerkin scheme becomes well-posed. Among the several different ways in which
the equations and unknowns can be ordered, it is chosen the one yielding a doubly mixed structure for
which the inf-sup conditions of the off-diagonal bilinear forms follow straightforwardly. Moreover, the
arguments of the continuous analysis can be easily adapted to the discrete case. In particular, a feasible
choice of subspaces is given by Raviart-Thomas elements of lowest order and piecewise constants for
the velocities and pressures, respectively, in both domains, together with continuous piecewise linear
elements for the additional unknowns on the interface.

Furthermore, complementing the approach provided in [35], a reliable and efficient residual-based
a posteriori error estimator for the fully-mixed finite element method proposed in [35] has been in-
troduced and analyzed in [36]. The proof of reliability makes use of the global inf-sup condition,
Helmholtz decompositions in both media, and local approximation properties of the Clément inter-
polant and Raviart-Thomas operator. On the other hand, inverse inequalities, the localization tech-
nique based on element-bubble and edge-bubble functions, and known results from previous works,
are the main tools for proving the efficiency of the estimator.

On the other hand, it is well known that when Neumann-type boundary conditions are imposed for
the Stokes problem, like slip boundary conditions, the non-standard pseudostress-velocity formulation
has no longer a physical meaning, and therefore a stress-velocity formulation has to be utilized instead.
The latter yields a symmetry requirement for the stress tensor, which constitutes the main drawback
of this kind of formulations. In fact, the difficulty in deriving and using finite element subspaces of
symmetric tensors in the Stokes and Lamé systems is already well known (see, e.g. [3] and [12]).
In order to circumvent these disadvantages, one can proceed as in [I], and impose the symmetry of



the stress in a weak sense through the introduction of a suitable Lagrange multiplier (rotation in
elasticity and vorticity in fluid mechanics), which, in the case of the Stokes system, leads to a stress-
vorticity-velocity formulation. Among the different approaches for approximating the unknowns of the
corresponding formulation for the Lamé system, we mention in particular the family of finite elements
subspaces presented in [47], which includes the classical PEERS element from [I], and a modification
of the BD Mj, spaces (see [10, 11, 12]). In turn, the hypotheses on the discrete subspaces are relaxed in
[26] through the introduction of a new augmented mixed formulation for linear elasticity, which allows
the utilization of a RTy—P;—Fy approximation for the respective three unknowns. The approach in
[26], which can be easily adapted to the Stokes system (see [22], [23]), is based on the introduction
of the Galerkin least-squares type terms arising from the constitutive and equilibrium equations, and
from the relation connecting the rotation with the displacement.

Now, going back to our coupled problem, we recall that, because of the transmission conditions
imposed on the coupling boundary, the constitutive equation of the Stokes law, defining the Stokes-
Darcy coupled system, is originally written in terms of the stress tensor (see e.g. [7, 19, [42] [40]),
which is certainly more realistic from a physical point of view. Motivated by this fact, in the present
work we first generalize the results developed in [35] and [36] and analyze a fully-mixed variational
formulation for the original coupled problem, where the main unknowns are given by the stress,
the vorticity and the velocity in the fluid, together with the velocity and the pressure in the porous
medium. As in [35], we apply the Babuska-Brezzi theory to prove the unique solvability of the resulting
continuous formulation and to derive sufficient conditions on the finite element subspaces ensuring
that the associated Galerkin scheme becomes well-posed. Next, in order to have more flexibility in
the choice of the discrete subspaces, we enrich the equations in the fluid with redundant Galerkin-
type terms arising from the constitutive and equilibrium equations of the Stokes system, and from
the relation connecting the vorticity with the velocity, all them multiplied by suitable stabilization
parameters, so that an augmented mixed-FEM for the coupled problem is obtained. We then combine
the results in [35] and [26] to prove existence and uniqueness of solution of the resulting augmented
scheme, and to derive sufficient conditions on the finite element subspaces ensuring that the associated
Galerkin scheme becomes well-posed. In addition, following the approaches in [6] and [36], we develop
a reliable and efficient residual-based a posteriori error estimator for the augmented formulation. The
proof of reliability makes use of a global inf-sup condition, Helmholtz decompositions in both media,
and local approximation properties of the Clément interpolant and Raviart—Thomas operator. In
turn, for the efficiency of the estimator we use inverse inequalities, the localization technique based
on element-bubble and edge-bubble functions, and known results from previous works.

The rest of this paper is organized as follows. In Section [2] we present the main aspects of the
continuous problem, which includes the geometry and the coupled model. Then, in Section [ we
introduce and analyze the fully-mixed variational formulation. More precisely, we show the unique
solvability of the continuous scheme and derive suitable hypotheses on the discrete subspaces ensuring
that the associated Galerkin scheme becomes well-posed. In addition, we provide concrete examples of
finite element spaces in 2D and 3D satisfying the corresponding hypotheses on the discrete subspaces.
Next, in Section d] we deal with the augmented mixed approach. We analyze the existence and
uniqueness of solution of the continuous formulation, and derive suitable hypotheses on the discrete
subspaces, less demanding than those introduced in Section [3, ensuring the well-posedness of the
associated Galerkin scheme. Then we provide suitable choices of finite element spaces in 2D and 3D
for the augmented mixed formulation. In Section [ we derive the residual-based a posteriori error
estimator for the aforementioned scheme in 2D, and prove its reliability and efficiency. Finally, several
numerical results illustrating the good performance of the methods, confirming the properties of the



estimator, and showing the capability of the associated adaptive algorithm to localize the singularities
of the solution, are reported in Section [l

We end this section with some notations to be used below. In what follows we utilize the standard
terminology for Sobolev spaces. In addition, if O is a domain, I' is a closed Lipschitz curve, and r € R,
we define

H'(0) := [H"(O)", H'(0) := [H"(O)™", and H'(T) := [H"(D)]".

However, for r = 0 we usually write L2(O), L?(0), and L*(T') instead of H°(O), H°(O), and H(T),
respectively. The corresponding norms are denoted by || - [|,0 (for H"(O), H"(O), and H"(O)) and
|| - |lrr (for H™(I') and H"(I")). Also, the Hilbert space

H(div;0) := {w cL?(0): divwe L2(O)} )

is standard in the realm of mixed problems (see, e.g. [12]). The space of matrix valued functions whose
rows belong to H(div; O) will be denoted H(div; ©). The Hilbert norms of H(div; O) and H(div; O)
are denoted by || - |laiv;0 and || - ||div;0, respectively. On the other hand, the following symbol for the
L?(T") and L2(T") inner products

(€N :=/F£A VE A ELAD), (&N = /FE-A VE A eLA(T)

will also be employed for their respective extensions as the duality products H~'/2(T') x H'/?(T") and
H-'/2(I') x H/?(T"). Hereafter, given a non-negative integer k and a subset S of R™, P;(S) stands
for the space of polynomials defined on S of degree < k. The vector and tensor versions of Pg(.S),
denoted by Py (S) and Pk (S), respectively, which are defined component-wise by P (.S), might also be
required. Finally, we employ 0 as a generic null vector, and use C, with or without subscripts, bars,
tildes or hats, to mean generic positive constants independent of the discretization parameters, which
may take different values at different places.

2 The coupled problem

In order to describe the geometry of the problem, we let 2g and Qp be bounded and simply connected
polyhedral domains in R™, n € {2,3}, such that 9Qg N 9Qp = X # 0 and Qg N Qp = 0. Then, we
let T's := 0Qs\X, I'p := 90p\Y, and denote by n the unit normal vector on the boundaries, which
is chosen pointing outward from g U X U Qp and Qg (and hence inward to Qp when seen on ¥). On
Y. we also consider unit tangent vectors, which are given by t = t; when n = 2 (see Figure 2.1l below)
and by {t1,t2}, when n = 3.

The model consists of two separate groups of equations and a set of coupling terms. In g, the
governing equations are those of the Stokes problem, which are written in the following velocity-
pressure-stress formulation:

os = —psl + 2ve(ug) in Qg, dives + fs = 0 in Qg,
(2.1)
divug = 0 in Qg, us =0 on Iy,



Figure 2.1: Sketch of a 2D geometry where our Stokes—Darcy model is considered.

where v > 0 is the viscosity of the fluid, ug is the fluid velocity, pg is the pressure, og is the stress
tensor, I is the n x n identity matrix, fg is a known source term, div is the usual divergence operator
div acting row-wise on each tensor, and

(Vus + (Vug)®)

N =

e(ug) =

is the strain tensor (or symmetric part of the velocity gradient). Now, introducing the vorticity (or
skew—symmetric part of the velocity gradient) vg = 3(Vug —(Vug)®) as a further unknown, and using
that tr (Vug) = divug = 0 in Qg, and the relation Vug — vg = e(ug) in Qg, we observe that the
equations in (ZJ]) can be rewritten equivalently as

%Ug:VuS—'ys in Qg, dives + fs = 0 in g, 22)
o =0o§ in Qg, psz—%tras in Qg, us = 0 on Ty,
n
where tr stands for the usual trace of tensors, that is, tr 7 := Z Ti, and
i=1
4= 7 — %(tr 7)1,

is the deviatoric part of tensor 7. On the other hand, in Qp we consider the following Darcy model:

uD:—KVpD in QD, diVllD:fD in QD,
(2.3)
uD-n:0 on FD,

where up and pp denote the velocity and pressure, respectively, and the source term fp is such that

/b = 0. The matrix valued function K, describing the permeability of Q)p divided by the viscosity
Qp
v, satisfies K* = K, and has L°°(lp) components. Also, we assume that there exists Cx > 0 such
that

w-K(2)w > Ci|lwl?, (2.4)

for almost all x € Qp, and for all w € R”.



Finally, the transmission conditions on 3 are given by

us'n = up-n on X,

= (2.5)
O'Sn—l-Zﬂ'l (ug-t;))t; = —ppn on X,
=1

where {71, ...,m,—1} is a set of positive frictional constants, which are determined experimentally.

3 The fully-mixed approach

The purpose of this section is to generalize the results provided in [35], introducing and analyzing
a new fully-mixed variational formulation, together with its corresponding Galerkin scheme, for the
coupled system given by the set of equations (2.2)), (2.3) and (2.5). As already remarked in Section [T,
the main novelty with respect to the approach in [35] is the utilization now of e(ug) instead of Vug in
the definition of the stress tensor og (cf. (2I])). We study the well-posedness of both, the continuous
and discrete problems, and introduce feasible choices of finite element spaces for the 2D and 3D cases.

3.1 The continuous formulation

In this section, we proceed analogously to [35] and introduce a mixed formulation for the coupled
problem. To do this, let us first introduce further notations and definitions. In what follows, given
* € {S,D}, we denote

(u,0), = /u (,v), = /*u-v, (0,7)s = /*a:r,

n
where o : 7 = tr(or) = Z 0i;7i7. In addition, we let L4 (€s) be the subspace of skew—

skew
ij=1
symmetric tensors of L2(g), that is

Liew(Qs) = {n € L*(Qs) : m + 1" = 0} .

Furthermore, we need to introduce the space

Hr, (div;Qp) = {v e H(div;Qp): v-n=0 on Ip},

1/2 1/2 /510
and the space of traces Hy,"(X) := [ H," (X)]", where
H1/2 o . 1 —
29y = {v|g. ve HY(Qg), v=0 on rs}.

Observe that, if Eyg: HY/?(X) — L?(99s), is the extension operator defined by

Ens(¥) = { Voon o e e B,

then, the space H30/2(Z) can be defined equivalently as

Hy*(2) = {v € B2(2):  Eos(v) € H2(09%) },



endowed with the norm |[9[[1/2005 = [[E0,s(¥)[l1/2,00s- The dual space of Héé2(2) is denoted by
—1/2
Hyy (%),
Now, to proceed with the derivation of our mixed problem, let us now define two additional un-
knowns on the coupling boundary

@ = —ug € HY*(X), and A :=pp € H/2(Y). (3.1)

Notice that, in principle, the spaces for ug and pp do not allow enough regularity for the traces ¢
and A to exist. However, solutions of ([2.2) and (Z3) have these unknowns in H(Qs) and H!(Qp),
respectively.

In this way, to derive the weak formulation of the coupled system (22)—(23)—(2Z3]), we test the first
equations of (2.2)) and (23] with arbitrary 7g € H(div;Qg) and vp € Hrpp (div;Qp), respectively,
integrate by parts, utilize the identity Ug tTg = Ug : Tg, and impose weakly the remaining equations,
to obtain the variational problem: Find (s, up,vg, ¢, A) € H(div;Qs) x Hry, (div; Qp) x L (2g) %
H}/?(%) x HY2(L) and (ug,pp) € L2(Qg) x L2(Qp), such that:

1 )
— (0§, 7)s + (divTs,ug)s + (rsn,@)s + (5, 7s)s = 0

2v
(K~'up,vp)p — (div vp,pp)p — (vp-m,A)x =0
(dives,vs)s = —(fs, vs)s
(divup,gp)p = (fp,90)D (32)
(s:mg)s =0

(- n,&y + (up-n &y =0
(US Il,’l,b>2 + (11b - n, )‘> - <90711b> = 07

for all (15, vp, s, ¥, €) € H(div; Q) x Hpy, (div; QD)xlgkCW(QS)xH1/2( 2)x HY/2() and (vs, qp) €
L2(Qg) x L*(Qp), where

¢¢w—zm (p 1,9 -ty (3.3)
Observe that the symmetry of og is imposed Weakly by the fifth equation in (3.2).

Next, analogously to the proof of [35, Lemma 3.5], it is easy to see that ([8.2]) has a one dimensional
kernel {(—1,0,0,0,1), (0,1)}. Then, we avoid the non-uniqueness of (3.2) by requiring from now on
that pp € L3(Qp), where

L3(Qp) = {q € L*(Qp): /QDQ = 0} :

On the other hand, for convenience of the subsequent analysis, we consider the decomposition
H(div; Qs) = Ho(div; Qgs) © Fo(Qs)], (3.4)

where

Hp(div; Qg) := {0' € H(div; Qg) : / tro = 0} ,
Qg

7



and redefine the stress tensor as og = og + pl, with the new unknowns og € Hy(div;{g) and
u € R.

In this way, the first and last equations of ([B.2]) are rewritten, equivalently as

%(Ugﬂ'g)s + (divrs,us)s + (Tsn, )y, + (75, Ts)s =0 V715 € Hy(div;Qs), (3.5)
p <Q0'Il,1>2 =0 \V/p € R, (36)
(OsnP)y + (W 0Ny — (@) + p (P nl)y =0 Vi e H'(X). (3.7

Now, it is quite clear that there are many different ways of ordering the variational system described
above, but in this section we proceed as in [35, Section 2.3|, and adopt one leading to a doubly-mixed
structure (also known as twofold saddle point operator equation). To this end, we group spaces,
unknowns, and test functions as follows:

XO = Ho(diV7QS) X HFD (d1V7QD) X IL‘gkew(gzs) X H(l](/)2(2) x Hl/z(z)’
My := L*(Qg) x L3(Qp) x R,
o = (os,up,vs,»,A) € Xo, u:= (us,pp,p) € Mo,

T = (7-87VD7T)S7¢7£) € X07 = (VS,(]D,,O) € MO’

<

where Xy and My are respectively endowed with the norms

I7llx == [[7sllaiv.0s + [[VDllaiv.op + [mslloes + [1¥ll1/2,002 + I€ll1/2,s
and
Ivllm = lIvsllos + llaplloon + 1pl-

Here, X and M denote the product spaces defined respectively as Xy and M, but considering the spaces
H(div; Qg), H(div; Qp) and L?(Qp), instead of Hy(div;Qs), Hry (div; Qp) and LE(Qp). Hence, the
variational system (B.2]) with the new equations ([B.3) — (87), reads: Find (o,u) € Xy x My such that

A(Q,I) + B(Ivg) = ]:(I) VT = (TS7VD7T)S7¢7£) € XOa

Blo.v) = G(v) Vv = (Vs,qn.p) € Mo, (3.9)
where
F(r) =0, G(v) = G((vs,qp,p)) := —(fs,vs)s — (fb,qp), (3.10)
and A and B are the bounded bilinear forms defined by
A(Q,I) = a((037uD)7(TS7VD)) + b((TS7VD)7(7S7QO7)‘)) (3 11)
+ b((@s, up), (05, %.€)) — (¥, 0, V). (15,9, €)) |
with 1
a((os,up), (s, vp)) == 27(05,7'%)8 + (K™ up, vp)p,
b((757VD)7(n871/’7§)) = (7-57778)5 + <TS n7¢>2 - <VD 'n7§>27 (3'12)
c((vs, 0, A); (Mg ¥, 8)) == (p, )tz + (p-n,)s — (P -n, Ny,
and

B(t,v) := (divTs,vg)s — (divvp,gp)p + p(¢-n,1)sx. (3.13)



3.2 Analysis of the continuous formulation

In this section we proceed similarly as in [35, Section 3] and use the classical Babuska-Brezzi theory
to show that ([3.9) is well-posed. To this end, we first collect some known results that will serve for
the forthcoming analysis. We begin by recalling that the following inequalities hold

”VD”?LQD > Ch HVD”ﬁiV,QD Vvp € H(diV;QD) such that div vp € P()(QD), (3.14)

and
Cs |7slg.as < 1T§15.0s + 1divTs|Gas ¥V 7s € Ho(div; Q). (3.15)

For (BI4) we refer to [35, Lemma 3.2], whereas [BI5) is proved in [2, Lemma 3.1] (see also [12
Chapter 1V]).

The following lemma will be employed in what follows. For its proof we refer to [35, Lemma 3.4]
(see also [29, Lemma 2.1] for a nonlinear version of it).

Lemma 3.1 Let (X,(-,-)x) and (Y, (-,-)y) be Hilbert spaces. Leta: X x X - R, b: X xY — R,
and c:Y XY — R be bounded bilinear forms, and let A : (X xY)x (X xY) — R be the global bilinear
form defined by

A((z,y), (z,w)) :=a(z, 2) + b(z,y) + b(z,w) — c(y, w) V(z,y), (z,w) € X xY .
Assume that

i) there exists @ > 0 such that a(z,z) > allz|% Vze€ X,

- b
ii) there exists f > 0 such that sup (z,y)
zexvo 7lx

> Bllyly VYyevy,

iii) ¢(y,y) > 0 VyeY.
Then, the linear operator induced by A, namely A : X XY — X xY defined by
<A(u7 U)7 (Zv w)>X><Y = A((’LL, U)v (Z7 w)) v (u7 U)7 (Zv ’LU) € X X K

s 1nvertible.

In the sequel, for the sake of simplicity, whenever a bilinear form A induces an invertible operator,
we will simply say that the bilinear form A is invertible.

We begin the analysis of ([8.9]) by proving the inf-sup condition associated to B.

Lemma 3.2 There exists § > 0 such that

sup B(t,v)

> Bllvllm Vv € M. (3.16)
7€X0\0 [fead]S




Proof. Analogously to the proof of [35, Lemma 3.6], we observe that the diagonal character of B (cf.
(B.13)) guarantees that (3.16) is equivalent to the following three independent inf-sup conditions:

(div Ts, vs)s

sup > Bslvslloos  Vvs € L*(Qg), (3.17)
T3 € Ho(div;Qs)\0 sl aiv,0s
(divvp, ¢p)p 2
sup ———"— > Bplleplloap Vgp € Ly(Qp), (3.18)

vp € Hry, (diviQp)\0 [vD Hdiv,QD

sup 4 <’¢ - n, 1>Z

Tl > Bulpl  VpER, (3.19)
peHy (N0 11711172005

with Bs, Bp, Bz > 0. First, given qp € L3(Qp), we define vp := Vz, where z € HL(Qp) is the
unique solution of the boundary value problem:

0
Az =¢qp in Qp, z=0 on X, 3_220 on Ip.
n

It follows that vp € Hrp(div;Qp) and divvp = g¢p, which yields the surjectivity of the operator
div : Hr,(div; Qp) — L&(Qp), which is (3I8). With similar arguments one can prove that div :
Ho(div; g) — L?(Qs) is also surjective, which is (3.17). Finally, we recall that the proof of the inf-sup

condition (BI9) relies on the existence of a fixed element v, € Héé2(2) such that (¢ - n, 1)y # 0.
For the construction of such function 1, we simply refer to [35], Section 3.2] or [37, Section 3.2]. O

Now, let V be the kernel of B, that is
V = {I € Xp: B(r,v) =0 Vv e MO}.
From the definition of B (cf. (B.13)), it is easy to see that V. = V; x Vj, where

Vy = Ho(div; Qg) x Hp, (div;Qp) and V, = L3, (Qs) x HE2(Z) x HY/2(%),

skew
with .
Hp(div; Qg) := {TS € Hy(div;Qg): divrg = O},
Hr, (div; Qp) = {VD € Hp,(div;Qp) :  divvp € Py(p) },
and

~1/2 1/2
a2 = {w e HA®): (i onl)y = o}.
The following lemma establishes the invertibility of A on V.
Lemma 3.3 The bilinear form A is invertible on V x V.

Proof. Due to the structure of A, in what follows we apply Lemma [B.I] that is, we verify that the
bilinear forms a, b and ¢ (cf. ([B.12)) satisfy the corresponding hypotheses i), ii) and iii) on V = V1 x V5.
First, according to the definition of V;, and utilizing inequalities (8.14]) and (3.13)), it is not difficult
to see that a satisfies i) (see [35, Lemma 3.7] for details). Next, due to the diagonal character of b, it
is easy to see that b verifies ii) on V; x Vs if and only if there exist ﬂ%, ﬂED > 0 such that

sup (Tsn, ) + (T3,Ms)s

- 75 las = 5%{“1/’\\1/2,00,2 + HnsHo,Qs} (3.20)
g € o (diviQs)\0 75l div,08
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V(T,S7'¢) € Lgkew(QS) X ﬁéé2(2)v and

sup <VD - n, £>2

> BR €111 /2,2 Ve e HY2(:). (3.21)

vp € Hr ) (diviQp)\0 IvD lldiv.0p
Then we observe that ([3.20) follows from a slight modification of [32, Lemma 4.3]. In addition, using
similar arguments utilized in [37, Lemma 3.3] one can obtain that the operator v.— v -n from
Hr, (div; Qp) to H~Y/2(X) is surjective, which yields (32I)). Finally, it is quite straightforward from
33)) and the definition of ¢ (cf. ([BI2)), that for each (ng, ¥, ) € Vo there holds

n—1
C((ns= 1/)7 5)7 (T'Sv ’(pa 5)) = Z Trl_l”’(p ' tl”(2)72 > 07 (322)
=1
which shows that ¢ verifies hypothesis iii), and the proof is concluded. O

We are now in position of establishing the main results of this section.

Theorem 3.4 For each pair (F,G) € X{, x M, there exists a unique (o,u) € X x My solution to
B9). In addition, there exists a constant C' > 0, independent of the solution, such that

I wlxxa < C{1Flx + Gl } -

Proof. It follows from Lemmata[3.21and B3] and a straightforward application of the classical Babuska-
Brezzi theory. O

Theorem 3.5 Let (o,u) € X x My be the unique solution of the variational formulation (3.9]) with
F and G given by BI0), and define ps := —%tr (6s). Then, us € H'(Qg), pp € H'(Qp), ¢ = —ug
on X, A =pp on X, and we have a solution of the system [2.2)), 23) and (2.1).

Proof. Tt basically follows by applying integration by parts backwardly in ([3.9), and using suitable
test functions. We omit further details. O

3.3 Galerkin scheme of the fully-mixed approach

In this section we introduce the Galerkin scheme of problem (B.9) and analyze its well-posedness by
establishing suitable assumptions on the discrete subspaces involved. We begin by selecting a set of
arbitrary discrete spaces, namely

H,(Q,) € H(diviQ), Ly() € L), =€ {S.D},
3.23
AS(S) € Hy (8), AR(S) € HY2(S), Sp(Qs) € L3, (0s). .

skew

11



Then, we define the subspaces:
Hy(Qg) = {7 € H(div;Qs) : c'r € Hy(Qs), Vece R},
Hp,0(2s) = Hp(Qs) N Ho(div; Qs),

Hh,FD(QD) = {Vh €eH,(2p): vp-m=0 on FD},

(3.24)
L (Qs) = [Ln(Qs)]",
Lyo(9Qp) := Lu(2p) N L§(2p)
AR(Z) = [ARE)]™
In this way, grouping global discrete subspaces and corresponding unknowns as follows:
Xp,0 = Hp,0(Qs) x Hp, rp (20) x Sp(Qs) x AR (Z) x AP (D), (3.25)

M0 := Lp(Q2s) X Lpo(2p) X R,

= (08, UD 1, Vs 1y P An) € Xpo, Wy, = (U p, PDAs n) € My,

we find that the discrete version of problem ([B.9) reads: Find (g, u;,) € Xp, 0 x My o such that

Algy, 1) + B(Ty,u,) = F(Ty) VT, = (TSh YD,k M8, Yho §1) € Xnyo,

3.26
B(ay,v,) = G(vy) Vvy, i= (VS,h @D,y ) € My ( )

Next, we proceed analogously to [35, Section 4] and establish general hypotheses on the finite
element subspaces ([3.23) and (3.24]), ensuring the well-posedness of ([3.26]). We begin by noticing that,
in order to have meaningful spaces Hj, o(§2s) and Ly, o(2p), we need to be able to eliminate multiples
of the identity matrix from Hy(2g) and constant polynomials from Ly (Q2p). This request is certainly
satisfied if we assume:

(H.O) [P()(Qs)]nxn g Hh(Qs) and P()(QD) g Lh(QD).
In particular, it follows that I € Hj(Qg) for all h, and hence there holds:

Hp(Qs) = Hpo(Q2s) ® Po(2s) 1. (3.27)

Now, using the same diagonal argument utilized in the proof of Lemma B.2] we observe that the
discrete inf-sup condition B holds if we assume:

H.1) There exist 53, 5]3 > 0, independent of h, and there exists ¥, € H/2(2 , such that
0 00

(div s, Vs n)s

sup > Bslvsullogs  Yvsn € Lu(Qs), (3.28)
TS,h EHh,o(Qs)\O HTS,h”div,QS
(div vp 4, qD,n)D <
sup > b |lgp,nllo.op Vap.n € Lpno(Qp), (3.29)

vp,n € Hp rp (20)\O ||VD7thiV79D

12



o € AS(X) Yh and (py-n,1)x #0. (3.30)

In particular, note that (3:30) implies the inf-sup condition

-n, 1
sup Ph <11bh n, >2

> By lpn]  Vpn € R. (3.31)
¥ e Anno  ¥nlli/2005

We now look at the discrete kernel of B, which is defined by
Vh = {Ih S Xh,O: B(Ih,zh) = O Vzh S Mh,O}-

In order to have a more explicit definition of V}, we introduce the following assumption:

(H.2) divH,(Qs) C Lip(Qg) and div Hy(Q2p) € Lp(Qp).
It follows from (H.2) and the definition of B (cf. (B.13)) that Vj, = V5 x Va5, where
Vip = Hyo(Qs) x Hyrp () and Vi, = Sp(Qs) x Ap(2) x AD(S),
with
Hh@(QS) = {Th € Hpo(Q) : divry, = O},
H,0,(Q0) i= { v € Hyurp(Q0): divva € Ro(Qp) |,

and
An(®) = {4 € AS®): (@, nl)s =0}

In addition, regarding the inf-sup condition of b on Vj, we also define the subspace

Hy(Q2g) = {Th € Hy(Qg) : divry, = 0}. (3.32)

Then, applying the same diagonal argument employed in the proof of Lemma B3] we deduce that b
satisfies the discrete inf-sup condition on Vj, if and only if the following hypothesis holds:

(H.3) There exist positive constants B%, BED, independent of h, such that

(Tsam,¥p)s + (TS Msp)s .
sup - ’ > B {”¢h”1/2,00,2 + ”ns,hHO,Qs}= (3.33)
Ts,h € H}L(Qs)\o ”TS,h Hdlvyﬂs
for all (ns ,,) € Su(Qs) x A(E), and
VD o 1, ~
sup Won &S S aoyen Lo e, € AP(E). (3.34)

vp,hn € Hp rp (20)\0 Vo kllaiv.en

13



In particular, given (ngp,%;,) € Sp(Qs) x Ai(E), we observe that ([3.33), and the fact that
<1/Jh -1, 1>Z = 07 lmply

(Tsp,¥p)s + (Tsh,Ms.n)s
sup

; , > C{lwnlpos + Insalbast,  (3:35)
7s,n € Hp,0(Q2s)\0 s nllaiv.s

which corresponds to the discrete version of (3.20).

The following theorem establishes the well-posedness of problem (3.:20) and the corresponding Céa
estimate.

Theorem 3.6 Assume that hypotheses (H.0), (H.1), (H.2), and (H.3) hold. Then, the Galerkin
scheme B26) has a unique solution (o, u;,) € Xp 0 x My 0, and there exists C > 0, independent of
h, such that

(@ w)lxara < Cr { IWFlll, o + 1100l }-

In addition, there exists Cy > 0, independent of h, such that

inf = v [l } (3.36)

lo —aullx + = wylls < Co{ _inf o~z % +
€Xh0 v, €My 0

ThEA&h,

where (o,u) € Xy x My is the unique solution of (3.9).

Proof. 1t follows by applying similar arguments to those utilized in Section We omit further
details.

O

3.4 Particular choices of discrete subspaces

We now specify concrete examples of finite element subspaces in 2D and 3D satisfying the hypotheses
introduced in the previous section. To this end, we let 77? and 77LD be respective triangulations of
the domains 25 and Qp, which are formed by shape-regular triangles (in R?) or tetrahedra (in R3) of
diameter hp, and assume that they match in ¥ so that ’77LS U 77? is a triangulation of Qg U ¥ U Qp.
We also let 3, be the partition of ¥ inherited from 7, (or 7,°). In addition, we let by be the element
bubble function defined as the unique polynomial in P,1(7T") vanishing on 97 with fT br = 1, and
denote by x := (21, ...,x,)" a generic vector of R"™. Then, for each T' € ’7;LS U ’7;LD we consider the local
Raviart—Thomas and bubble spaces of order 0, respectively, by

RT()(T) = P(](T) D P(](T)X,

and
P(T) (52, -9%) inR?,

B(](T) =
V x (bpPo(T)) in R3.

14



3.4.1 PEERS + Raviart Thomas in 2D

We define the discrete subspaces in ([3.23)) as follows:

Hy(Qg) = {Th € H(div;Qs): mlr € RTo(T) @ Bo(T) VT € 7;?}

H,(Qp) = {vh € H(div;Qp): valr € RTo(T) VT e 7;?}, .
() = {qh € L2 : qulr € Po(T) VT e Th} x € {S,D},

S1(@s) = {m €L, () My € OS2 and mylr € PUT) YT € T }.

We remark here that Hy(2g) x Lp(Q2g) x Sp(Qg), with Hp(Qg) and Ly (Qg) defined as in (3:24),
constitutes the classical PEERS space introduced in [I] for the mixed finite element approximation of
the linear elasticity problem with Dirichlet boundary condition (see, for instance [12] or [43]). In turn,
H;(Qp) x Lp(Q2p) is the Raviart-Thomas stable element of lowest order for the mixed formulation
of the Poisson problem (see, for instance [12, 28]). These facts are particularly important for the
rest of the analysis, since, as we will make it clear below, all the discrete inf-sup conditions that are
required in the hypotheses indicated in Section B3] either are already available in the literature or
can be derived from related results provided there. In addition, we recall from [35] 44] that the set
of normal traces of Hy, r,(2p) and Hy(Qg) on X, are defined by the subspaces of L2(X) and L?(X)
given, respectively, by

O (3) = {qsh 'S 5 R: gule € Role) Vedgee e zh}, (3.38)
B),(%) = Bp(E) x Pu(X). (3.39)

Next, in order to introduce the particular subspaces A%(X) and AP(X), we follow the simplest
approach suggested in [35] and [44]. To this end, we first assume, without loss of generality, that the
number of edges of XJ;, is even. Then, we let Y95 be the partition of X arising by joining pairs of adjacent
edges of ;. Note that, since ¥j, is inherited from the interior triangulations, it is automatically of
bounded variation (that is, the ratio of lengths of adjacent edges is bounded) and, therefore, so is 3op,.
Now, if the number of edges of ¥, is odd, we simply reduce it to the even case by joining any pair of
two adjacent elements, and then construct Yo from this reduced partition. In this way, denoting by
o and zy the extreme points of X, we define

AS(D) = {zph € CE): Ynle € Pi(e) Yee€ Son, Un(zo) = Ynlan) = o}, (3.40)

ARE) = {&n €C(®): &l €Pi(e) Yee T} (3.41)

In what follows, we verify that the discrete spaces X}, o and My, o, defined by the combination of

B24), 325), 3317, (3:40) and (B3.41)), satisfy hypotheses (H.0)—(H.3). We start by mentioning that

hypotheses (H.0) and (H.2) are straightforward from the definitions in (B37). In turn, it is well
known that the discrete inf-sup conditions (3.28) and ([3:29) hold (see for instance [I, Lemma 4.4] and

[12, Chapter IV], respectively). In addition, the existence of 1, € Héé2(2) satisfying (3.30) follows as
explained in [35, Section 2.5] or [37), Section 3.2]. These results yield assumption (H.1).
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Next, concerning hypothesis (H.3), we will see in the sequel that sufficient conditions for (3.34)
and ([B.33)) to hold true are the existence of positive constants C%, CED > 0, independent of h, such
that the following discrete inf-sup conditions are satisfied:

(Dn:En)s

sup —— 2= > OF [|Glhies V& € AP(D), (3.42)
b €2p (D) ||¢h||—1/2,2
¢r#0
and (b1 1)
) >
sup o ThE > OF %5 l1/2,00,5 Vb, € AN(T). (3.43)
¢h£<1;h(z:) &nll=1/2,00,5
70

We first refer to ([B.34). Indeed, utilizing the same arguments provided in [35, Lemma 5.2] it can
be proved, under the assumption of quasi-uniformity of the mesh around the interface 3, that there
exists a discrete stable lifting of the normal traces of Hy,