UNIVERSIDAD DE CONCEPCIÓN

Centro de Investigación en Ingeniería Matemática ($\mathrm{CI}^{2} \mathrm{MA}$)

Exponential and the lack of exponential stability in
transmission problems with localized Kelvin-Voigt dissipation
Margareth Alves, Jaime Muñoz-Rivera,
Mauricio Sepúlveda, Octavio Vera
PREPRINT 2012-26

SERIE DE PRE-PUBLICACIONES

Exponential and the lack of exponential stability in transmission problems with localized Kelvin-Voigt dissipation

Margareth Alves* Jaime Muñoz Rivera ${ }^{\dagger}$ Mauricio Sepúlveda ${ }^{\ddagger}$ Octavio Vera Villagrán§

Abstract

In this paper we consider the transmission problem of a material composed by three components, one of them is a Kelvin-Voigt viscoelastic material, the second is an elastic material (no dissipation) and the third is an elastic material inserted with a frictional damping mechanism. The main result of this paper is that the rate of decay will depend of the position of each component. When the viscoelastic component is not in the middle of the material, then there exists exponential stability of the solution. Instead, when the viscoelastic part is in the middle of the material, then there is not exponential stability. In this case we show that the decay is polynomial as $1 / t^{2}$. Moreover we show that the rate of decay is optimal over the domain of the infinitesimal generator. Finally using a second order scheme that ensures the decay of energy (Newmark- β method), we give some numerical examples which demonstrate these asymptotic behavior.

1 Introduction

The wave equation with localized frictional damping was studied by several authors and by now it is very well known that the semigroup defined by this equation is exponentially stable no matter the size nor the location of the subinterval where the damping mechanism is effective. See for example $[6,7,8,11,14,15,16,20]$ to quote such a few.
K. Liu and Z. Liu in [10] proved a similar result to the Euler Bernoulli beam equation with localized Kelvin-Voigt damping. That is to say, no matter the size nor the position of the damping mechanism is effective, the semigroup defined by the solution of the model is

[^0]always exponentially stable. Under the light of this result one can arrive to the conclusion that the semigroup defined by the solution of the wave equations with localized KelvinVoigt damping is also exponentially stable. This is clearly not true as proved in [10]. That is localized Kelvin-Voigt damping does not produce exponential stability.

In this paper we consider the transmission problem with localized viscoelasticity of KelvinVoigt type. Here we consider a beam composed by three different components, one of them is of viscoelastic type, the other is only an elastic part and finally the third component of elastic type with a frictional damping mechanism. The main result of this paper is that the position of this component (optimal design) plays an important role in the study of the stabilization. For example if we consider a beam of the forms given below

EVF Model

The longitudinal displacement ν is divided into two parts

$$
\nu=\left\{\begin{array}{lll}
u(x) & \text { if } & x \in] 0, l_{0}[\\
v(x) & \text { if } & x \in] l_{0}, l_{1}[\\
w(x) & \text { if } & x \in] l_{1}, l[
\end{array}\right.
$$

where each component u, v and w, represents the displacement of the first, second and third component of the beam, respectively. There exist six possible combinations of the material. Two possibilities occur when the elastic part is at the center of the material. Other two possibilities when the viscous part is in the middle of the beam, and finally when the elastic part with frictional mechanics is at the center of the beam. Performing the change of varible $s=l-x$ this six posibilitites can be reduced to three. We refer to each model as VEF, EVF and EFV. The VEF model is given by

$$
\left.\begin{array}{rl}
\rho_{1} u_{t t}-\kappa_{1} u_{x x}-\kappa_{0} u_{x x t} & =0 \\
\text { in }] 0, l_{0}[\times] 0, \infty[, \\
\rho_{2} v_{t t}-\kappa_{2} v_{x x} & =0 \tag{1.3}\\
\text { in }] l_{0}, l_{1}[\times] 0, \infty[, \\
\rho_{3} w_{t t}-\kappa_{3} w_{x x}+\gamma w_{t} & =0
\end{array} \text { in }\right] l_{1}, l[\times] 0, \infty[., ~
$$

where $\kappa_{0}, \kappa_{1}, \kappa_{2}$ and κ_{3} are elastic positive constants, and ρ_{1}, ρ_{2} stands for the mass density functions. The transmission conditions are given by

$$
\begin{gather*}
u\left(l_{0}, t\right)=v\left(l_{0}, t\right), \quad \kappa_{1} u_{x}\left(l_{0}, t\right)+\kappa_{0} u_{x t}\left(l_{0}, t\right)=\kappa_{2} v_{x}\left(l_{0}, t\right), \quad t \geqslant 0, \tag{1.4}\\
v\left(l_{1}, t\right)=w\left(l_{1}, t\right), \quad \kappa_{2} v_{x}\left(l_{0}, t\right)=\kappa_{3} w_{x}\left(l_{0}, t\right), \quad t \geqslant 0 \tag{1.5}
\end{gather*}
$$

The boundary conditions

$$
\begin{equation*}
u(0, t)=0, \quad w(l, t)=0, \quad t \geqslant 0 \tag{1.6}
\end{equation*}
$$

and the initial data

$$
\begin{align*}
& \left.u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) \quad \text { in }\right] 0, l_{0}[\\
& \left.v(x, 0)=v_{0}(x), \quad v_{t}(x, 0)=v_{1}(x) \quad \text { in }\right] l_{0}, l_{1}[\tag{1.7}\\
& \left.w(x, 0)=w_{0}(x), \quad w_{t}(x, 0)=w_{1}(x) \quad \text { in }\right] l_{1}, l[.
\end{align*}
$$

Instead, the EVF model is given by

$$
\begin{align*}
& \rho_{1} u_{t t}-\kappa_{1} u_{x x}=0 \tag{1.8}\\
&\text { in }] 0, l_{0}[\times] 0, \infty[, \tag{1.9}\\
& \rho_{2} v_{t t}-\kappa_{2} v_{x x}-\kappa_{0} v_{x x t}=0 \tag{1.10}\\
&\text { in }] l_{0}, l_{1}[\times] 0, \infty[, \\
& \rho_{3} w_{t t}-\kappa_{3} w_{x x}+\gamma w_{t}=0 \\
&\text { in }] l_{1}, l[\times] 0, \infty[.
\end{align*}
$$

The transmission conditions are given by

$$
\begin{align*}
& u\left(l_{0}, t\right)=v\left(l_{0}, t\right), \quad \kappa_{1} u_{x}\left(l_{0}, t\right)=\kappa_{2} v_{x}\left(l_{0}, t\right)+\kappa_{0} v_{x t}\left(l_{0}, t\right), \quad t \geqslant 0, \tag{1.11}\\
& v\left(l_{1}, t\right)=w\left(l_{1}, t\right), \quad \kappa_{2} v_{x}\left(l_{1}, t\right)+\kappa_{0} v_{x t}\left(l_{1}, t\right)=\kappa_{3} w_{x}\left(l_{1}, t\right), \quad t \geqslant 0, \tag{1.12}
\end{align*}
$$

with the same boundary condition and initial data (1.6)-(1.7). Finally, we consider the EFV model

$$
\begin{align*}
& \left.\rho_{1} u_{t t}-\kappa_{1} u_{x x}=0 \quad \text { in } \quad\right] 0, l_{0}[\times] 0, \infty[\text {, } \tag{1.13}\\
& \left.\rho_{2} v_{t t}-\kappa_{2} v_{x x}+\gamma v_{t}=0 \quad \text { in }\right] l_{0}, l_{1}[\times] 0, \infty[, \tag{1.14}\\
& \left.\rho_{3} v_{t t}-\kappa_{3} w_{x x}-\kappa_{0} w_{x x t}=0 \quad \text { in }\right] l_{1}, l[\times] 0, \infty[. \tag{1.15}
\end{align*}
$$

The transmission conditions are given by

$$
\begin{gather*}
u\left(l_{0}, t\right)=v\left(l_{0}, t\right), \quad \kappa_{1} u_{x}\left(l_{0}, t\right)=\kappa_{2} v_{x}\left(l_{0}, t\right), \quad t \geqslant 0, \tag{1.16}\\
v\left(l_{1}, t\right)=w\left(l_{1}, t\right), \quad \kappa_{2} v_{x}\left(l_{1}, t\right)=\kappa_{3} w_{x}\left(l_{1}, t\right)+\kappa_{0} w_{x t}\left(l_{1}, t\right) \quad t \geqslant 0, \tag{1.17}
\end{gather*}
$$

with the same boundary condition and initial data (1.6)-(1.7).
The main result of this paper is to show that the solutions of the above models are exponentially stable if and only if the viscous part is not at the center of the beam. Otherwise, the model is not exponentially stable. In this later case we will show that the solution decays to zero polynomially as t^{-2}. Moreover we prove that the rate of decay is optimal.

Our main tool to prove the exponential stability and the lack of exponential stability is a result due to Prüss [19]

Theorem 1.1 Let $(\mathcal{S}(t))_{t \geqslant 0}$ be a C_{0}-semigroup on a Hilbert space \mathcal{H} generated by \mathcal{A}. Then the semigroup is exponentially stable is and only if

$$
i \mathbb{R} \subset \varrho(\mathcal{A}), \quad \text { and } \quad\left\|(i \lambda I-\mathcal{A})^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leqslant C, \quad \forall \lambda \in \mathbb{R}
$$

To show the polynomial decay and the optimality we use a result due to Borichev and Tomilov [5].

Theorem 1.2 Let $(\mathcal{S}(t))_{t \geqslant 0}$ be a bounded C_{0}-semigroup on a Hilbert space \mathcal{H} with generator \mathcal{A} such that $i \mathbb{R} \subset \varrho(\mathcal{A})$. Then

$$
\frac{1}{|\lambda|^{\alpha}}\left\|(i \lambda I-\mathcal{A})^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leqslant C, \quad \forall \lambda \in \mathbb{R} \quad \Leftrightarrow \quad\left\|\mathcal{S}(t) \mathcal{A}^{-1}\right\|_{\mathcal{D}(\mathcal{A})} \leqslant \frac{C}{t^{1 / \alpha}}
$$

The remaining part of this paper is organized as follows. In Section 2 we show that the corresponding models are well possed. In Section 3 we show that the corresponding semigroup is exponentially stable provided that the viscous component is not in the middle of the beam. In Section 4 we consider the case when the viscous component is in the middle of the beam and we prove that there is a lack of exponential stability. Finally, in Section 5 we prove that when the system is not exponentially stable then the semigroup decays polynomially to zero as t^{-2}. Moreover we show that the rate of decay is optimal for any initial data belonging to $\mathcal{D}(\mathcal{A})$.

2 The Semigroup approach

The aim of this section is to prove the existence and uniqueness of solutions of the VEF problem. Let us denote by

$$
\begin{array}{r}
\mathbb{H}^{m}=H^{m}\left(0, l_{0}\right) \times H^{m}\left(l_{0}, l_{1}\right) \times H^{m}\left(l_{1}, l\right), \quad \mathbb{L}^{2}=L^{2}\left(0, l_{0}\right) \times L^{2}\left(l_{0}, l_{1}\right) \times L^{2}\left(l_{1}, l\right) \\
\mathbb{H}_{l}^{1}=\left\{(u, v, w) \in \mathbb{H}^{1}: \quad u(0)=w(l)=0, \quad u\left(l_{0}\right)=v\left(l_{0}\right), \quad v\left(l_{1}\right)=w\left(l_{1}\right)\right\} .
\end{array}
$$

Under the above conditions we have that the phase space is given by

$$
\mathcal{H}=\mathbb{H}_{l}^{1} \times \mathbb{L}^{2}
$$

Denoting by

$$
Z_{i}=\left(u_{i}, v_{i}, w_{i}, U_{i}, V_{i}, W_{i}\right)
$$

where $i=1,2$. Note that this space equipped with the inner product

$$
\begin{aligned}
\left\langle Z_{1}, Z_{2}\right\rangle_{\mathcal{H}}= & \int_{0}^{l_{0}}\left(\rho_{1} U_{1} \bar{U}_{2}+\kappa_{1} u_{1, x} \bar{u}_{2, x}\right) d x+\int_{l_{0}}^{l_{1}}\left(\rho_{2} V_{1} \bar{V}_{2}+\kappa_{2} v_{1, x} \bar{v}_{2, x}\right) d x \\
& +\int_{l_{1}}^{l}\left(\rho_{3} W_{1} \bar{W}_{2}+\kappa_{3} w_{1, x} \bar{w}_{2, x}\right) d x
\end{aligned}
$$

is a Hilbert space. We also consider the linear operator $\mathcal{A}_{i}: \mathcal{D}\left(\mathcal{A}_{i}\right) \subset \mathcal{H} \rightarrow \mathcal{H}$ for $i=1,2,3$. Denoting by $\Phi=(u, v, w, U, V, W)^{t}$, we define

$$
\mathcal{A}_{1} \Phi=\left(\begin{array}{c}
U \\
V \\
W \\
\frac{1}{\rho_{1}}\left(\kappa_{1} u_{x x}+\kappa_{0} U_{x x}\right) \\
\frac{\kappa_{2}}{\rho_{2}} v_{x x} \\
\frac{\kappa_{3}}{\rho_{3}} w_{x x}-\frac{\gamma}{\rho_{3}} W
\end{array}\right), \quad \mathcal{A}_{2} \Phi=\left(\begin{array}{c}
U \\
V \\
W \\
\frac{\kappa_{1}}{\rho_{1}} u_{x x} \\
\frac{1}{\rho_{2}}\left(\kappa_{2} v_{x x}+\kappa_{0} V_{x x}\right) \\
\frac{\kappa_{3}}{\rho_{3}} w_{x x}-\frac{\gamma}{\rho_{3}} W
\end{array}\right),
$$

$$
\mathcal{A}_{3} \Phi=\left(\begin{array}{c}
U \\
V \\
W \\
\frac{\kappa_{1}}{\rho_{1}} u_{x x} \\
\frac{\kappa_{2}}{\rho_{2}} v_{x x}-\frac{\gamma}{\rho_{2}} V \\
\frac{1}{\rho_{3}}\left(\kappa_{3} w_{x x}+\kappa_{0} W_{x x}\right)
\end{array}\right),
$$

whose domain $\mathcal{D}\left(\mathcal{A}_{i}\right)$ is given by

$$
\begin{gather*}
\mathcal{D}\left(\mathcal{A}_{1}\right)=\left\{\Phi \in \mathcal{H}:(U, V, W) \in \mathbb{H}_{l}^{1}, \quad\left(\kappa_{1} u+\kappa_{0} \eta, v, w\right) \in \mathbb{H}^{2},\right. \tag{2.1}\\
\left.\kappa_{1} u_{x}\left(l_{0}\right)+\kappa_{0} \eta_{x}\left(l_{0}\right)=\kappa_{2} v_{x}\left(l_{0}\right), \quad \kappa_{2} v_{x}\left(l_{1}\right)=\kappa_{3} w_{x}\left(l_{1}\right)\right\} \tag{2.2}\\
\mathcal{D}\left(\mathcal{A}_{2}\right)=\left\{\Phi \in \mathcal{H}:(U, V, W) \in \mathbb{H}_{l}^{1}, \quad\left(u, \kappa_{2} v+\kappa_{0} V, w\right) \in \mathbb{H}^{2},\right. \tag{2.3}\\
\left.\kappa_{1} u_{x}\left(l_{0}\right)=\kappa_{2} v_{x}\left(l_{0}\right)+\kappa_{0} V_{x}\left(l_{0}\right), \quad \kappa_{2} v_{x}\left(l_{1}\right)+\kappa_{0} V\left(l_{1}\right)=\kappa_{3} w_{x}\left(l_{1}\right)\right\} . \tag{2.4}\\
\mathcal{D}\left(\mathcal{A}_{3}\right)=\left\{\Phi \in \mathcal{H}:(U, V, W) \in \mathbb{H}_{l}^{1}, \quad\left(u, v, \kappa_{3} w+\kappa_{0} W\right) \in \mathbb{H}^{2},\right. \tag{2.5}\\
\left.\kappa_{1} u_{x}\left(l_{0}\right)=\kappa_{2} v_{x}\left(l_{0}\right), \quad \kappa_{2} v_{x}\left(l_{1}\right)=\kappa_{3} w_{x}\left(l_{1}\right)+\kappa_{0} W_{x}\left(l_{1}\right)\right\} . \tag{2.6}
\end{gather*}
$$

Using $u_{t}=U, v_{t}=V$, and $w_{t}=W$, the system (1.1)-(1.7), (1.8)-(1.12) and (1.13)-(1.16), can be reduced to the following abstract initial value problem for a first-order evolution equation

$$
\frac{d}{d t} \Phi(t)=\mathcal{A} \Phi(t), \quad \Phi(0)=\Phi_{0}, \quad \forall t>0
$$

with $\Phi(t)=\left(u, v, w, u_{t}, v_{t}, w_{t}\right)^{T}$ and $\Phi_{0}=\left(u_{0}, v_{0}, w_{0}, u_{1}, v_{1}, w_{1}\right)^{T}$. Next, we show that the operator \mathcal{A} generates a C_{0}-semigroup of contractions over \mathcal{H}.

Proposition 2.1 The operator \mathcal{A} generates a $C_{0}-\operatorname{semigroup}\left(\mathcal{S}_{\mathcal{A}}(t)\right)_{t \geqslant 0}$ of contractions on the space \mathcal{H}.

Proof. We will show that \mathcal{A} is a dissipative operator and that $0 \in \varrho(\mathcal{A})$, the resolvent set of \mathcal{A}. Then our conclusion will follow using the well known Lumer-Phillips theorem (see [18]). We observe that if $\Phi \in \mathcal{D}\left(\mathcal{A}_{1}\right)$, then

$$
\begin{aligned}
\left\langle\mathcal{A}_{1} \Phi, \Phi\right\rangle_{\mathcal{H}}= & \kappa_{1} \int_{0}^{l_{0}} U_{x} \bar{u}_{x} d x+\kappa_{2} \int_{l_{0}}^{l_{1}} V_{x} \bar{v}_{x} d x+\kappa_{3} \int_{l_{1}}^{l} W_{x} \bar{w}_{x} d x \\
& +\int_{0}^{l_{0}}\left(\kappa_{1} u+\kappa_{0} U\right)_{x x} \bar{U} d x+\kappa_{2} \int_{l_{0}}^{l_{1}} v_{x x} \bar{V} d x+\int_{l_{1}}^{l}\left(\kappa_{3} w_{x x}-\gamma W\right) \bar{W} d x .
\end{aligned}
$$

Integrating by parts and performing straightforward calculations we obtain

$$
\begin{equation*}
\operatorname{Re}\left\langle\mathcal{A}_{1} \Phi, \Phi\right\rangle_{\mathcal{H}}=-\kappa_{0} \int_{0}^{l_{0}}\left|U_{x}\right|^{2} d x-\gamma \int_{l_{1}}^{l}|W|^{2} d x \tag{2.7}
\end{equation*}
$$

Similarly we have that

$$
\begin{align*}
\operatorname{Re}\left\langle\mathcal{A}_{2} \Phi, \Phi\right\rangle_{\mathcal{H}} & =-\kappa_{0} \int_{l_{0}}^{l_{1}}\left|V_{x}\right|^{2} d x-\gamma \int_{l_{1}}^{l}|W|^{2} d x \tag{2.8}\\
\operatorname{Re}\left\langle\mathcal{A}_{3} \Phi, \Phi\right\rangle_{\mathcal{H}} & =-\gamma \int_{l_{0}}^{l_{1}}|V|^{2} d x-\kappa_{0} \int_{l_{1}}^{l}\left|W_{x}\right|^{2} d x \tag{2.9}
\end{align*}
$$

Hence, \mathcal{A}_{i} is a dissipative operator. To show that $0 \in \varrho\left(\mathcal{A}_{i}\right)$ let us take $F \in \mathcal{H}$. We will show that there exists a unique Φ in $\mathcal{D}\left(\mathcal{A}_{i}\right)$ such that $\mathcal{A}_{i} \Phi=F$, that is,

$$
\begin{align*}
-U & =f_{1} \tag{2.10}\\
-\kappa_{1} u_{x x}-\kappa_{2} U_{x x} & =\rho_{1} f_{2} \tag{2.11}\\
-V & =f_{3} \tag{2.12}\\
-\kappa_{2} v_{x x} & =\rho_{2} f_{4} \tag{2.13}\\
-W & =f_{5} \tag{2.14}\\
-\kappa_{3} w_{x x}+\gamma W & =\rho_{3} f_{6} \tag{2.15}
\end{align*}
$$

Substituting (2.10) into (2.11) and (2.14) into (2.15) yields

$$
\begin{align*}
-\kappa_{1} u_{x x} & =\rho_{1} f_{2}+\kappa_{2} f_{1, x x} \tag{2.16}\\
-\kappa_{3} v_{x x} & =\rho_{2} f_{4} \tag{2.17}\\
-\kappa_{4} w_{x x} & =\rho_{3} f_{6}+\gamma f_{5} \tag{2.18}
\end{align*}
$$

verifying

$$
\begin{gather*}
u\left(l_{0}\right)=v\left(l_{0}\right), \quad \kappa_{1} u_{x}\left(l_{0}\right)-\kappa_{0} f_{1, x}\left(l_{0}\right)=\kappa_{2} v_{x}\left(l_{0}\right) . \tag{2.19}\\
v\left(l_{1}\right)=w\left(l_{1}\right), \quad \kappa_{3} v_{x}\left(l_{1}\right)=\kappa_{4} w_{x}\left(l_{1}\right) \tag{2.20}
\end{gather*}
$$

with the following boundary conditions.

$$
\begin{equation*}
u(0)=0, \quad w(l)=0, \quad t \geqslant 0 \tag{2.21}
\end{equation*}
$$

A standard procedure shows that the transmission problem (2.10)-(2.21) is well posed. Therefore, we conclude that $0 \in \varrho\left(\mathcal{A}_{i}\right)$.

From Proposition 2.1 we can state the following result ([18])

Theorem 2.2 For any $\Phi_{0} \in \mathcal{H}$ there exists a unique solution $\Phi(t)=\left(u, v, w, u_{t}, v_{t}, w_{t}\right)$ of the VEF, EVF and EFV models satisfying

$$
\left(u, v, w, u_{t}, v_{t}, w_{t}\right) \in C\left(\left[0, \infty\left[: \mathbb{H}_{l}^{1} \times \mathbb{L}^{2}\right)\right.\right.
$$

If $\Phi_{0} \in \mathcal{D}\left(\mathcal{A}_{i}\right)$, then

$$
\left(u, v, w, u_{t}, v_{t}, w_{t}\right) \in C^{1}\left(\left[0, \infty\left[: \mathbb{H}_{l}^{1} \times \mathbb{L}^{2}\right) \cap C\left(\left[0, \infty\left[: \mathcal{D}\left(\mathcal{A}_{i}\right)\right) .\right.\right.\right.\right.
$$

3 The exponential stability

In this section we prove that the exponential stability of the semigroup associated to the transmission problem provided that the viscous part is not in the middle of the beam. This means that the VEF, EFV, VFE, FEV models, are exponentially stable. Since the proofs are similar we only consider in this section the VEF case. The corresponding resolvent equations are given by

$$
\begin{equation*}
i \lambda \Phi-\mathcal{A}_{1} \Phi=F \tag{3.1}
\end{equation*}
$$

and in terms of its components are given by

$$
\begin{align*}
i \lambda u-U & \left.=f_{1} \text { in }\right] 0, l_{0}[, \tag{3.2}\\
i \lambda \rho_{1} U-\kappa_{1} u_{x x}-\kappa_{0} U_{x x} & \left.=\rho_{1} f_{2} \text { in }\right] 0, l_{0}[, \tag{3.3}\\
i \lambda v-V & \left.=f_{3} \text { in }\right] l_{0}, l_{1}[, \tag{3.4}\\
i \lambda \rho_{2} V-\kappa_{2} v_{x x} & \left.=\rho_{2} f_{4} \text { in }\right] l_{0}, l_{1}[, \tag{3.5}\\
i \lambda w-W & \left.=f_{5} \text { in }\right] l_{1}, l[, \tag{3.6}\\
i \lambda \rho_{3} W-\kappa_{3} w_{x x}+\gamma W & \left.=\rho_{3} f_{6} \text { in }\right] l_{1}, l[, \tag{3.7}
\end{align*}
$$

with the following, transmission condition,

$$
\begin{gather*}
u\left(l_{0}\right)=v\left(l_{0}\right), \quad \kappa_{1} u_{x}\left(l_{0}\right)+\kappa_{0} U_{x}\left(l_{0}\right)=\kappa_{2} v_{x}\left(l_{0}\right) . \tag{3.8}\\
v\left(l_{1}\right)=w\left(l_{1}\right), \quad \kappa_{2} v_{x}\left(l_{1}\right)=\kappa_{3} w_{x}\left(l_{1}\right) \tag{3.9}
\end{gather*}
$$

and boundary condition

$$
\begin{equation*}
u(0)=0, \quad w(l)=0 \tag{3.10}
\end{equation*}
$$

Note that the model is dissipative, multiplying equation (3.1) by Φ and using (2.7) we have that

$$
\begin{equation*}
\kappa_{0} \int_{0}^{l_{0}}\left|U_{x}\right|^{2} d x+\gamma \int_{l_{1}}^{l}|W|^{2} d x \leqslant\|\Phi\|\|F\| \tag{3.11}
\end{equation*}
$$

The following Lemma will play an important role in what follows.
Lemma 3.1 Any strong solution of the system

$$
\left.\begin{array}{rl}
i \lambda \psi-\Psi & =f_{1}
\end{array} \text { in }\right] a, b[,,
$$

verifies

$$
\begin{align*}
\left|\psi_{x}(a)\right|^{2}+ & |\Psi(a)|^{2}+\left|\psi_{x}(b)\right|^{2}+|\Psi(b)|^{2} \leqslant C \int_{l_{0}}^{l_{1}}\left(|\Psi|^{2}+\left|\psi_{x}\right|^{2}\right) d x+C\|Z\|\|F\| . \tag{3.14}\\
& \int_{l_{0}}^{l_{1}}\left(|\Psi|^{2}+\left|\psi_{x}\right|^{2}\right) d x \leqslant C\left(\left|\psi_{x}(a)\right|^{2}+|\Psi(a)|^{2}\right)+C\|Z\|\|F\| . \tag{3.15}\\
& \int_{l_{0}}^{l_{1}}\left(|\Psi|^{2}+\left|\psi_{x}\right|^{2}\right) d x \leqslant C\left(\left|\psi_{x}(b)\right|^{2}+|\Psi(b)|^{2}\right)+C\|Z\|\|F\|, \tag{3.16}
\end{align*}
$$

where $Z=(\psi, \Psi)$ and $F=\left(f_{1}, f_{2}\right)$.
Proof. Multiplying equation (3.13) by $\left(x-\frac{a+b}{2}\right) \bar{\psi}_{x}$, taking real part, using integration by parts and using equation (3.12) our conclusion follows. To get inequalities (3.15) and (3.16) we multiply the equation (3.13) by $(x-b) \bar{\psi}_{x}$ and $(x-a) \bar{\psi}_{x}$ respectively.

Theorem 3.2 The semigroup associated to the transmission problem decays exponentially as time goes to infinity provided that the viscous component is not in the middle of the beam.

Proof. Note that \mathcal{A} is a closed operator, such that $D(\mathcal{A})$ has compact embedding over the phase space \mathcal{H}. Therefore the spectrum set of \mathcal{A} denoted as $\sigma(\mathcal{A})$, consist only of eigenvalues. Thus, to prove that the imaginary axes is contained in the resovent set of \mathcal{A} it is enough to prove that there is not imaginary eigenvalues. To see that let us reasoning by contradiction. Let us suppose that there exists an imaginary eigen value $i \lambda$, with $\lambda \in \mathbb{R}$ such that $i \lambda \Phi-\mathcal{A} \Phi=0$. Using relation (3.11) for $F=0$ we get $W=U=0$ which implies that $u=w=0$. From (3.4)-(3.5) we have that

$$
-\lambda^{2} \rho_{2} v-\kappa_{2} v_{x x}=0
$$

Satisfying

$$
v\left(l_{0}\right)=v\left(l_{1}\right)=0, \quad v_{x}\left(l_{0}\right)=v_{x}\left(l_{1}\right)=0
$$

Bacause $u=w=0$. Considering the above problem as an initial value problem (at $x=l_{0}$ or $x=l_{1}$) we conclude that $v=0$. Therefore we get that $\Phi=0$. This is contradictory, therefore is not possible that there exists imaginary eigenvalues. Thus, $i \mathbb{R} \subset \varrho(\mathcal{A})$.

Finally, let us prove that the resolvent operator is uniformly bounded over the imaginary axes. Multiplying equation (3.7) by \bar{w} we get

$$
i \lambda \rho_{3} \int_{l_{1}}^{l} W \bar{w} d x-\kappa_{3} \int_{l_{1}}^{l} w_{x x} \bar{w} d x+\gamma \int_{l_{1}}^{l} W \bar{w} d x=\rho_{3} \int_{l_{1}}^{l} f_{6} \bar{w} d x
$$

It follows that

$$
\begin{align*}
\kappa_{3} \int_{l_{1}}^{l}\left|w_{x}\right|^{2} d x & \leqslant \operatorname{Re} \kappa_{3} w_{x}\left(l_{1}\right) \bar{w}\left(l_{1}\right)+\rho_{3} \int_{l_{1}}^{l}|W|^{2} d x+\gamma \operatorname{Re} \int_{l_{1}}^{l} W \bar{w} d x+\rho_{3} \operatorname{Re} \int_{l_{1}}^{l} f_{6} \bar{w} d x \\
& \leqslant \kappa_{3} \operatorname{Re} w_{x}\left(l_{1}\right) \bar{w}\left(l_{1}\right)+C \int_{l_{1}}^{l}|W|^{2} d x+C\|\Phi\|\|F\| \tag{3.17}
\end{align*}
$$

Note that

$$
w_{x}\left(l_{1}\right) \bar{w}\left(l_{1}\right)=-\frac{1}{i \lambda} w_{x}\left(l_{1}\right) \overline{i \lambda w}\left(l_{1}\right)=-\frac{1}{i \lambda} w_{x}\left(l_{1}\right)\left[\overline{W\left(l_{1}\right)+f_{1}\left(l_{1}\right)}\right] .
$$

Using Lemma 3.1 we get

$$
\begin{aligned}
\left|w_{x}\left(l_{1}\right) \bar{w}\left(l_{1}\right)\right| & \leqslant \frac{1}{|\lambda|}\left|w_{x}\left(l_{1}\right)\right|\left|W\left(l_{1}\right)\right|+\frac{1}{|\lambda|}\left|w_{x}\left(l_{1}\right) f_{1}\left(l_{1}\right)\right| \\
& \leqslant \frac{C}{|\lambda|} \int_{l_{1}}^{l}\left(\left|w_{x}\right|^{2}+|W|^{2}\right) d x+\frac{C}{|\lambda|}\|\Phi\|\|F\| .
\end{aligned}
$$

Substitution of this inequality into (3.17) yields

$$
\kappa_{3} \int_{l_{1}}^{l}\left|w_{x}\right|^{2} d x \leqslant C \int_{l_{1}}^{l}|W|^{2} d x+C\|\Phi\|\|F\|,
$$

provided λ is large enough. From inequality (3.11) we get

$$
\kappa_{3} \int_{l_{1}}^{l}\left|w_{x}\right|^{2} d x \leqslant C\|\Phi\|\|F\|
$$

which implies

$$
\int_{l_{1}}^{l}\left(|W|^{2}+\left|w_{x}\right|^{2}\right) d x \leqslant C\|\Phi\|\|F\|
$$

Using inequality (3.16) from Lemma 3.1 to v we get

$$
\int_{l_{0}}^{l_{1}}\left(|V|^{2}+\left|v_{x}\right|^{2}\right) d x \leqslant C\left(\left|V\left(l_{1}\right)\right|^{2}+\left|v_{x}\left(l_{1}\right)\right|^{2}\right)+C\|\Phi\|\|F\| .
$$

From the transmission conditions we get

$$
\int_{l_{0}}^{l_{1}}\left(|V|^{2}+\left|v_{x}\right|^{2}\right) d x \leqslant C\left(\left|W\left(l_{1}\right)\right|^{2}+\left|w_{x}\left(l_{1}\right)\right|^{2}\right)+C\|\Phi\|\|F\| .
$$

Using Lemma 3.1 once more we get

$$
\int_{l_{0}}^{l_{1}}\left(|V|^{2}+\left|v_{x}\right|^{2}\right) d x \leqslant C\|\Phi\|\|F\|
$$

Multiplying equations (3.3), (3.5), (3.7) by $\bar{u}, \bar{v}, \bar{w}$ and summing up the product result and using the transmission conditions we get

$$
\begin{aligned}
& \kappa_{1} \int_{0}^{l_{0}}\left|u_{x}\right|^{2} d x+\kappa_{2} \int_{l_{0}}^{l_{1}}\left|v_{x}\right|^{2} d x+\kappa_{3} \int_{l_{1}}^{l}\left|w_{x}\right|^{2} d x \\
& \quad \leqslant C \int_{0}^{l_{0}}\left|U_{x}\right|^{2} d x+C \int_{l_{0}}^{l_{1}}|V|^{2} d x+C \int_{l_{1}}^{l}|W|^{2} d x+C\|\Phi\|\|F\| \\
& \quad \leqslant C\|\Phi\|\|F\| .
\end{aligned}
$$

From the above inequalities we get

$$
\|\Phi\|^{2} \leqslant C\|\Phi\|\|F\|
$$

which implies the exponential decay.

4 The lack of exponential stability EVF, FVE

In this section we show that the semigroup associated to the EVF, FVE models are not exponentially stable. Since the FVE model, can be obtained from EVF by making the change of variable $\sigma=l-x$, it is enough to show the result to the EVF model. In fact, the resolvent system associated to model EVF is given by

$$
\begin{equation*}
i \lambda \Phi-\mathcal{A}_{2} \Phi=F, \tag{4.1}
\end{equation*}
$$

which in terms of its components is given by

$$
\begin{align*}
i \lambda u-U & =f_{1} \tag{4.2}\\
i \lambda \rho_{1} U-\kappa_{1} u_{x x} & =\rho_{1} f_{2} \tag{4.3}\\
i \lambda v-V & =f_{3} \tag{4.4}\\
i \lambda \rho_{2} V-\kappa_{2} v_{x x}-\kappa_{0} V_{x x} & =\rho_{2} f_{4} \tag{4.5}\\
i \lambda w-W & =f_{5} \tag{4.6}\\
i \lambda \rho_{3} W-\kappa_{3} w_{x x}+\gamma W & =\rho_{3} f_{6} \tag{4.7}
\end{align*}
$$

with transmission condition

$$
\begin{gather*}
u\left(l_{0}\right)=v\left(l_{0}\right), \quad \kappa_{1} u_{x}\left(l_{0}\right)=\kappa_{2} v_{x}\left(l_{0}\right)+\kappa_{0} V_{x}\left(l_{0}\right), \tag{4.8}\\
v\left(l_{1}\right)=w\left(l_{1}\right), \quad \kappa_{2} v_{x}\left(l_{1}\right)+\kappa_{0} V_{x}\left(l_{1}\right)=\kappa_{3} w_{x}\left(l_{1}\right) \tag{4.9}
\end{gather*}
$$

and boundary condition.

$$
\begin{equation*}
u(0)=0, \quad w(l)=0 . \tag{4.10}
\end{equation*}
$$

Here we will show that the EVF partial viscoelastic model is not exponentially stable. To do this we will consider the functions

$$
f_{1}=f_{3}=f_{4}=f_{5}=f_{6}=0, \quad \rho_{2} f_{2}=q .
$$

Therefore, the system (4.2)-(4.7) can be written as

$$
\begin{aligned}
-\lambda^{2} \rho_{1} u-\kappa_{1} u_{x x} & =q \\
-\lambda^{2} \rho_{2} v-\kappa_{2} v_{x x}-i \kappa_{0} \lambda v_{x x} & =0 \\
-\lambda^{2} \rho_{3} w-\kappa_{3} w_{x x}+i \gamma \lambda w & =0
\end{aligned}
$$

Rewriting the system

$$
\begin{aligned}
u_{x x}+\alpha^{2} u & =-q \\
v_{x x}+\beta^{2} v & =0 \\
w_{x x}+\sigma^{2} w & =0,
\end{aligned}
$$

where

$$
\alpha^{2}=\frac{\rho_{1}}{\kappa_{1}} \lambda^{2}, \quad \beta^{2}=\frac{\rho_{2}}{\kappa_{2}+i \lambda \kappa_{0}} \lambda^{2}, \quad \sigma^{2}=\frac{\rho_{3} \lambda^{2}-i \lambda \gamma}{\kappa_{3}} .
$$

Note that

$$
\begin{gathered}
u(x)=u\left(l_{0}\right) \frac{\sin (\alpha x)}{\sin \left(\alpha l_{0}\right)}+\frac{\sin (\alpha x)}{\alpha \sin \left(\alpha l_{0}\right)} \int_{0}^{l_{0}} q(s) \sin \left(\alpha\left(l_{0}-s\right)\right) d s-\frac{1}{\alpha} \int_{0}^{x} q(s) \sin (\alpha(x-s)) d s \\
v(x)=u\left(l_{0}\right) \frac{\sinh (\beta x)}{\sinh \left(\beta l_{0}\right)}-\left(u\left(l_{0}\right) \frac{\sinh \left(\beta l_{1}\right)}{\sinh \left(\beta l_{0}\right)}-v\left(l_{1}\right)\right) \frac{\sinh \left(\beta\left(x-l_{0}\right)\right)}{\sinh \left(\beta\left(l_{1}-l_{0}\right)\right)} \\
w(x)=v\left(l_{1}\right) \frac{\sinh (\sigma(x-l))}{\sinh \left(\sigma\left(l_{1}-l\right)\right)}
\end{gathered}
$$

Using the transmission condition $\left(\kappa_{2}+i \lambda \kappa_{0}\right) v_{x}\left(l_{1}\right)=\kappa_{3} w_{x}\left(l_{1}\right)$ we get

$$
\begin{aligned}
& \beta u\left(l_{0}\right) \frac{\cosh \left(\beta l_{1}\right)}{\sinh \left(\beta l_{0}\right)}-\beta\left(u\left(l_{0}\right) \frac{\sinh \left(\beta l_{1}\right)}{\sinh \left(\beta l_{0}\right)}-v\left(l_{1}\right)\right) \operatorname{coth}\left(\beta\left(l_{1}-l_{0}\right)\right) \\
= & v\left(l_{1}\right) \frac{\kappa_{3} \sigma}{\kappa_{2}+i \lambda \kappa_{0}} \operatorname{coth}\left(\sigma\left(l_{1}-l_{0}\right)\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \beta u\left(l_{0}\right) \frac{\cosh \left(\beta l_{1}\right)-\sinh \left(\beta l_{1}\right) \operatorname{coth}\left(\beta\left(l_{1}-l_{0}\right)\right)}{\sinh \left(\beta l_{0}\right)} \\
= & v\left(l_{1}\right)\left[\frac{\kappa_{3} \sigma \operatorname{coth}\left(\sigma\left(l_{1}-l_{0}\right)\right)}{\kappa_{2}+i \lambda \kappa_{0}}-\beta \operatorname{coth}\left(\beta\left(l_{1}-l_{0}\right)\right)\right] .
\end{aligned}
$$

From where it follows that

$$
\begin{gathered}
-\frac{\beta u\left(l_{0}\right)}{\sinh \left(\beta\left(l_{1}-l_{0}\right)\right)}=v\left(l_{1}\right)\left[\frac{\kappa_{3} \sigma \operatorname{coth}\left(\sigma\left(l_{1}-l_{0}\right)\right)}{\kappa_{2}+i \lambda \kappa_{0}}-\beta \operatorname{coth}\left(\beta\left(l_{1}-l_{0}\right)\right)\right] . \\
u\left(l_{0}\right)=h(\lambda) v\left(l_{1}\right),
\end{gathered}
$$

where

$$
h(\lambda)=-\left[\frac{\kappa_{3} \sigma \operatorname{coth}\left(\sigma\left(l_{1}-l_{0}\right)\right)}{\beta\left(\kappa_{2}+i \lambda \kappa_{0}\right)}-\operatorname{coth}\left(\beta\left(l_{1}-l_{0}\right)\right)\right] \sinh \left(\beta\left(l_{1}-l_{0}\right)\right) .
$$

Note that

$$
\frac{1}{|h(\lambda)|} \approx \frac{c_{0}}{\left|\sinh \left(\beta\left(l_{1}-l_{0}\right)\right)\right|} \rightarrow \infty
$$

as $|\beta| \rightarrow \infty$, and $c_{0}>0$. Using $\kappa_{1} u_{x}\left(l_{0}\right)=\kappa_{2} v_{x}\left(l_{0}\right)+i \kappa_{0} \lambda v_{x}\left(l_{0}\right)$ we get

$$
\begin{aligned}
& \kappa_{1} \alpha u\left(l_{0}\right) \frac{\cos \left(\alpha l_{0}\right)}{\sin \left(\alpha l_{0}\right)}+\kappa_{1} \frac{\cos \left(\alpha l_{0}\right)}{\sin \left(\alpha l_{0}\right)} \int_{0}^{l_{0}} q(s) \sin \left(\alpha\left(l_{0}-s\right)\right) d s \\
& \quad-\kappa_{1} \int_{0}^{l_{0}} q(s) \cos \left(\alpha\left(l_{0}-s\right)\right) d s=\beta\left(\kappa_{2}+i \kappa_{0} \lambda\right) u\left(l_{0}\right) \frac{\cosh \left(\beta l_{0}\right)}{\sinh \left(\beta l_{0}\right)} \\
& \quad-\left(u\left(l_{0}\right) \frac{\sinh \left(\beta l_{1}\right)}{\sinh \left(\beta l_{0}\right)}-v\left(l_{1}\right)\right) \frac{\beta\left(\kappa_{2}+i \kappa_{0} \lambda\right)}{\sinh \left(\beta\left(l_{1}-l_{0}\right)\right)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& u\left(l_{0}\right)\left[\beta\left(\kappa_{2}+i \kappa_{0} \lambda\right) \sin \left(\alpha l_{0}\right) \operatorname{coth}\left(\beta l_{0}\right)-\kappa_{1} \alpha \cos \left(\alpha l_{0}\right)+j(\beta)\right] \\
& =\kappa_{1} \cos \left(\alpha l_{0}\right) \int_{0}^{l_{0}} q(s) \sin \left(\alpha\left(l_{0}-s\right)\right) d s-\sin \left(\alpha l_{0}\right) \kappa_{1} \int_{0}^{l_{0}} q(s) \cos \left(\alpha\left(l_{0}-s\right)\right) d s \\
& =-\kappa_{1} \int_{0}^{l_{0}} q(s) \sin (\alpha s) d s .
\end{aligned}
$$

Let us take

$$
\alpha l_{0}=2 n \pi+\frac{1}{\sqrt{n}}, \quad q(s)=\sin (\alpha s) .
$$

So we have that

$$
\alpha l_{0} \approx \frac{2}{l \pi} n, \quad \sin \left(\alpha l_{0}\right) \approx \frac{1}{\sqrt{n}}, \quad \alpha \sin \left(\alpha l_{0}\right) \approx c_{0}, \quad \tanh (\alpha l) \approx 1
$$

as $n \rightarrow \infty$ and $0 \neq c_{0} \in \mathbb{C}$. This implies that

$$
\frac{\kappa_{1}}{\beta\left(\kappa_{2}+i \kappa_{0} \lambda\right) \sin \left(\alpha l_{0}\right) \operatorname{coth}\left(\beta l_{0}\right)-\kappa_{1} \alpha \cos \left(\alpha l_{0}\right)+j(\beta)} \approx \frac{c_{1}}{\lambda} .
$$

This implies that

$$
u\left(l_{0}\right)=\frac{c_{2}}{\lambda} .
$$

For $0 \neq c_{2} \in \mathbb{C}$. Note that the expression

$$
\begin{aligned}
\beta v(x)= & \beta u(0) \frac{\sin \left(\alpha\left(l_{0}-x\right)\right)}{\sin \left(\alpha l_{0}\right)}-\frac{\sin (\alpha x)}{\sin \left(\alpha l_{0}\right)} \int_{0}^{l} q(s) \sin \left(\alpha\left(l_{0}-s\right)\right) d s \\
& +\int_{0}^{x} q(s) \sin (\alpha(x-s)) d s
\end{aligned}
$$

can be written as

$$
\begin{aligned}
\beta v(x)= & \left(c_{2} \frac{\sin \left(\alpha\left(l_{0}-x\right)\right)}{\sin \left(\alpha l_{0}\right)}-\frac{\sin (\alpha x)}{\sin \left(\alpha l_{0}\right)}\right) \int_{0}^{l} q(s) \sin \left(\alpha\left(l_{0}-s\right)\right) d s \\
& +\underbrace{\int_{0}^{x} q(s) \sin (\alpha(x-s)) d s}_{:=Q(x)} .
\end{aligned}
$$

Then

$$
\beta v(x)=\left[c_{2} \cos (\alpha x)-\left(c_{2} \cos \left(\alpha l_{0}\right)+1\right) \frac{\sin (\alpha x)}{\sin (\alpha l)}\right] Q(l)+Q(x) .
$$

Taking $q(s)=\sin (\beta s)$ and squaring and integrating we have

$$
\begin{align*}
Q(x) & =\int_{0}^{x}\left(\sin (\alpha s) \sin (\alpha x) \cos (\alpha s)-\sin ^{2}(\alpha s) \cos (\alpha x)\right) d s \\
& =\sin (\alpha x) \int_{0}^{x} \sin (\alpha s) \cos (\alpha s) d s-\cos (\alpha x) \int_{0}^{x} \sin ^{2}(\alpha s) d s \\
& =-\frac{\sin ^{3}(\alpha x)}{2 \alpha l_{0}}-\cos (\alpha x) \int_{0}^{x} \sin ^{2}(\alpha x) d s \\
& =-\frac{\sin ^{3}(\alpha x)}{2 \alpha l_{0}}-\frac{x \cos (\alpha x)}{2}+\frac{\cos (\alpha x) \sin (2 \alpha x)}{2 \alpha} \tag{4.11}
\end{align*}
$$

Therefore

$$
Q(l)=-\frac{\pi}{n^{5 / 2}}-\frac{l \cos \alpha}{2}+\frac{\cos \left(\alpha l_{0}\right)}{n^{3 / 2}} \approx-\frac{l}{2} .
$$

Note that

$$
\begin{equation*}
\int_{0}^{l}|Q(s)|^{2} d s \geqslant \int_{0}^{l} \frac{x^{2} \cos ^{2}(\alpha x)}{8} d x-\frac{c}{\alpha^{2}} \geqslant \frac{l^{3}}{48}-\frac{c}{|\alpha|} . \tag{4.12}
\end{equation*}
$$

Finally,

$$
\begin{align*}
& \int_{0}^{l}\left|c_{2} \cos (\alpha x)-\left(c_{2} \cos \left(\alpha l_{0}\right)+1\right) \frac{\sin (\alpha x)}{\sin (\alpha l)}\right|^{2} d s \\
& \quad \geqslant \frac{\left|c_{2} \cos \left(\alpha l_{0}\right)+1\right|}{2 \sin ^{2}\left(\alpha l_{0}\right)} \int_{0}^{l} \sin ^{2}(\alpha x) d x-c_{0} \\
& \quad \approx c_{1} n-c_{0} \tag{4.13}
\end{align*}
$$

Inserting inequalities (4.12) and (4.13) into (4.11) we get that there exists a positive constant C such that

$$
\int_{0}^{l}|\alpha v(x)|^{2} d x \geqslant-C+C n
$$

for large n, that is

$$
\frac{1}{n} \int_{0}^{l}|\alpha v(x)|^{2} d x \geqslant C_{0}
$$

In particular, we have that

$$
\|\Phi\|^{2} \geqslant \int_{0}^{l}|\alpha v(x)|^{2}
$$

If the rate of decay can be improved then we have that $\frac{1}{n^{1-\epsilon}}\|U\|^{2}$ must be bounded. But

$$
\begin{equation*}
\frac{1}{n^{1-\epsilon}}\|\Phi\|^{2} \geqslant \int_{0}^{l}|\beta v(x)|^{2} \geqslant C_{0} n^{\epsilon} \tag{4.14}
\end{equation*}
$$

from where our conclusion follows

5 Polynomial decay and Optimality

Here we prove that the solutions of the EVF model decays polynomially as t^{-2}. Moreover we will show that the rate of decay is optimal.

Theorem 5.1 The solution of the EVF model decays polynomially as t^{-2}. Moreover the rate of decay is optimal over $\mathcal{D}(\mathcal{A})$ and

$$
\begin{equation*}
\|\Phi(t)\| \leqslant \frac{c_{k}}{t^{2 k}}\left\|\Phi_{0}\right\|_{\mathcal{D}\left(\mathcal{A}^{k}\right)} . \tag{5.1}
\end{equation*}
$$

Proof. Using the same arguments as in the prove of Theorem 3.2 we can show that $i \mathbb{R} \subset \varrho(\mathcal{A})$.

Let us prove that the resolvent operator is uniformly bounded by $C|\lambda|^{1 / 2}$ over the imaginary axes. Multiplying equation (4.1) by Φ and using (2.8) we get

$$
\begin{equation*}
\kappa_{0} \int_{l_{0}}^{l_{1}}\left|V_{x}\right|^{2} d x+\gamma \int_{l_{1}}^{l}|W|^{2} d x=\operatorname{Re}(F, \Phi)_{\mathcal{H}} \tag{5.2}
\end{equation*}
$$

From (4.2) we have

$$
|\lambda|\|V\|_{-1} \leqslant C\left\|v_{x}\right\|+C\left\|V_{x}\right\|+C\|F\|_{\mathcal{H}} \leqslant C\|\Phi\|_{\mathcal{H}}^{1 / 2}\|F\|_{\mathcal{H}}^{1 / 2}+C\|F\|_{\mathcal{H}} .
$$

Using interpolation and inequality (5.2) we get

$$
\begin{align*}
\|V\|_{L^{2}}^{2} & \leqslant C\|V\|_{-1}\|V\|_{1} \leqslant \frac{C}{|\lambda|}\left[\|\Phi\|_{\mathcal{H}}^{1 / 2}\|F\|_{\mathcal{H}}^{1 / 2}+\|F\|_{\mathcal{H}}\right]\|V\|_{1} \\
& \leqslant \frac{C}{|\lambda|}\left[\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}}+\|\Phi\|_{\mathcal{H}}^{1 / 2}\|F\|_{\mathcal{H}}^{3 / 2}\right] \tag{5.3}
\end{align*}
$$

Multiplying equation (4.5) by $\left(x-l_{0}\right)\left(\overline{\kappa_{2} v_{x}+\kappa_{3} V_{x}}\right)$ and taking real part we have

$$
\begin{aligned}
& \operatorname{Re} i \lambda \int_{l_{0}}^{l_{1}} \eta\left(x-l_{0}\right)\left(\overline{\kappa_{2} v_{x}+\kappa_{3} V_{x}}\right) d x-\frac{1}{2} \int_{l_{0}}^{l_{1}}\left(x-l_{0}\right) \frac{d}{d x}\left|\kappa_{2} v_{x}+\kappa_{3} V_{x}\right|^{2} d x \\
= & \rho_{1} R e \int_{l_{0}}^{l_{1}} f_{3}\left(x-l_{0}\right)\left(\overline{\kappa_{2} v_{x}+\kappa_{3} V_{x}}\right) .
\end{aligned}
$$

Using (4.4), we note that

$$
\begin{aligned}
\kappa_{1} \operatorname{Re} i \lambda \int_{l_{0}}^{l_{1}} V\left(x-l_{0}\right) \bar{v}_{x} d x= & -\frac{\left(l_{1}-l_{0}\right)}{2} \kappa_{2}|V(0)|^{2}+\frac{1}{2} \kappa_{2} \int_{l_{0}}^{l_{1}}|V|^{2} d x \\
& -\kappa_{2} \int_{l_{0}}^{l_{1}}\left(x-l_{0}\right) V \bar{f} d x .
\end{aligned}
$$

We denote the functional

$$
I_{u}=\frac{1}{2}\left[\rho_{2}|V(0)|^{2}+\left|\kappa_{2} v_{x}(0)+\kappa_{3} V_{x}(0)\right|^{2}\right] .
$$

It follows that

$$
\begin{aligned}
I_{u}= & \rho_{2} \operatorname{Re} i \lambda \int_{l_{0}}^{l_{1}}\left(x-l_{0}\right) V \bar{V}_{x} d x+\frac{1}{2} \rho_{1} \int_{l_{0}}^{l_{1}}|V|^{2} d x+\frac{1}{2} \int_{l_{0}}^{l_{1}}\left|\kappa_{2} v_{x}+\kappa_{3} V_{x}\right|^{2} d x \\
& -\rho_{2} \operatorname{Re} \int_{l_{0}}^{l_{1}} f_{3}\left(x-l_{0}\right)\left(\overline{\kappa_{2} v_{x}+\kappa_{2} V_{x}}\right) d x-\rho_{2} \int_{l_{0}}^{l_{1}}\left(x-l_{0}\right) V \bar{f} d x \\
\leqslant & C \int_{l_{0}}^{l_{1}}\left(|\lambda|\left|V_{x}\right||V|+V_{x}^{2}+v_{x}^{2}\right) d x+C\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}} \\
\leqslant & C|\lambda|^{1 / 2} \int_{l_{0}}^{l_{1}}\left|V_{x}\right|\left(|\lambda|^{1 / 2}|V|\right) d x+C\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}} .
\end{aligned}
$$

Using (5.3) we get

$$
\begin{equation*}
I_{u} \leqslant C|\lambda|^{1 / 2}\left(\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}}+\|\Phi\|_{\mathcal{H}}^{3 / 4}\|F\|_{\mathcal{H}}^{5 / 4}\right), \tag{5.4}
\end{equation*}
$$

for λ large enough. On the other hand, multiplying equation (4.3) by $\left(x-l_{0}\right) \bar{u}_{x}$ we get

$$
i \lambda \rho_{1} \int_{0}^{l_{0}} U\left(x-l_{0}\right) \bar{u}_{x} d x-\kappa_{3} \int_{0}^{l_{0}} u_{x x}\left(x-l_{0}\right) \bar{u}_{x} d x=\rho_{2} \int_{0}^{l_{0}}\left(x-l_{0}\right) f_{2} \bar{u}_{x} d x .
$$

Taking real part and using (4.2) we obtain

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{l_{0}}\left(\rho_{1}|U|^{2}+\kappa_{1}\left|u_{x}\right|^{2}\right) d x= & \frac{1}{2} \rho_{1} l_{0}\left(\left|U\left(l_{0}\right)\right|^{2}+\frac{\kappa_{1}}{\rho_{1}}\left|u_{x}\left(l_{0}\right)\right|^{2}\right)+\rho_{1} R e \int_{0}^{l_{0}}\left(x-l_{0}\right) f_{2} \bar{u}_{x} d x \\
& +\rho_{1} \operatorname{Re} \int_{0}^{l_{0}}\left(x-l_{0}\right) U \overline{f_{1 x}} d x
\end{aligned}
$$

Using (1.3), and performing straightforward estimates it follows that

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{l_{0}}\left(\rho_{1}|U|^{2}+\kappa_{1}\left|u_{x}\right|^{2}\right) d x & \leqslant \frac{1}{2} \rho_{2} L\left(\left|U\left(l_{0}\right)\right|^{2}+\frac{\kappa_{1}}{\rho_{2}}\left|u_{x}\left(l_{0}\right)\right|^{2}\right)+C\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}} \\
& \leqslant C\left[\left.V\left(l_{0}\right)\right|^{2}+\left|\kappa_{1} u_{x}\left(l_{0}\right)+\kappa_{2} V_{x}\left(l_{0}\right)\right|^{2}\right]+C\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}}
\end{aligned}
$$

Using inequality (5.4) we get

$$
\int_{0}^{l_{0}}\left(|U|^{2}+\left|u_{x}\right|^{2}\right) d x \leqslant C|\lambda|^{1 / 2}\left(\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}}+\|\Phi\|_{\mathcal{H}}^{3 / 4}\|F\|_{\mathcal{H}}^{5 / 4}\right)
$$

Multiplying (4.3), (4.5) and (4.7) by \bar{u}, \bar{v} and \bar{w} respectively, using (4.2), (4.4) and (4.6) we get that

$$
\begin{aligned}
& \kappa_{1} \int_{0}^{l_{0}}\left|u_{x}\right|^{2} d x+\kappa_{2} \int_{l_{0}}^{l_{1}}\left|v_{x}\right|^{2} d x+\kappa_{4} \int_{l_{1}}^{l}\left|w_{x}\right|^{2} d x \\
& \quad \leqslant C \int_{0}^{l_{0}}|U|^{2} d x+C \int_{l_{0}}^{l_{1}}|V|^{2} d x+C \int_{l_{1}}^{l}|W|^{2} d x+C\|\Phi\|\|F\|
\end{aligned}
$$

From (5.3)-(5.4) we conclude that

$$
\|\Phi\|_{\mathcal{H}}^{2} \leqslant C|\lambda|^{1 / 2}\left(\|\Phi\|_{\mathcal{H}}\|F\|_{\mathcal{H}}+\|\Phi\|_{\mathcal{H}}^{3 / 4}\|F\|_{\mathcal{H}}^{5 / 4}\right) .
$$

Thus

$$
\|\Phi\|_{\mathcal{H}} \leqslant C|\lambda|^{1 / 2}\|F\|_{\mathcal{H}}
$$

for λ large enough. Therefore, from Theorem 1.2 we get

$$
\|\Phi(t)\| \leqslant \frac{c_{k}}{t^{2 k}}\left\|\Phi_{0}\right\|_{\mathcal{D}\left(\mathcal{A}^{k}\right)}
$$

Inequality (5.1) follows by using a standard semigroup procedure. Finally, to prove the optimality we will use inequality (4.14). In fact, if the rate of decay can be improved for example as

$$
\|\Phi(t)\| \leqslant \frac{c_{k}}{t^{2 /(1-2 \epsilon)}}\left\|\Phi_{0}\right\|_{\mathcal{D}(\mathcal{A})}
$$

for $\epsilon>0$ small enough, then we have that the expression

$$
\frac{1}{|\lambda|^{1-\epsilon}}\|\Phi\|^{2}
$$

must be bounded, but from (4.14) and from the fact that $|\lambda| \approx c_{1} n$ we get

$$
\frac{1}{|\lambda|^{1-\epsilon}}\|\Phi\|^{2} \geqslant \int_{l_{0}}^{l_{1}}|\alpha v(x)|^{2} d x \geqslant C_{0} n^{\epsilon} \rightarrow \infty
$$

Bust this is a contradiction, so we have that the rate of decay can not be improved.

6 Numerical approximations

Here we will verify numerically the polynomial and exponential rate of decay obtained in the previous sections. It is important to note that any numerical approximation is a finite-dimensional simplification of the original problem. Thus, any numerical method used, decay exponentially for large enough times, and this because of its restrictive nature of the finite dimensional space approach.
Denoting by \mathcal{E} the energy

$$
\begin{aligned}
\mathcal{E}(t)= & \frac{1}{2}\left[\rho_{1} \int_{0}^{l_{0}} u_{t}^{2} d x+\rho_{2} \int_{l_{0}}^{l_{1}} v_{t}^{2} d x+\rho_{3} \int_{l_{1}}^{l} w_{t}^{2} d x\right. \\
& \left.+\kappa_{1} \int_{0}^{l_{0}} u_{x}^{2} d x+\kappa_{2} \int_{l_{0}}^{l_{1}} v_{x}^{2} d x+\kappa_{3} \int_{l_{1}}^{l} w_{x}^{2} d x\right],
\end{aligned}
$$

and denoting by $\mathcal{E}_{\mathbf{V E F}}, \mathcal{E}_{\mathbf{E V F}}, \mathcal{E}_{\mathbf{E F V}}$ the energy for the three respective cases VEF, EVF and EFV, it is not difficult to see that the energy decays for all the cases. More precisely,

$$
\begin{align*}
\frac{d}{d t} \mathcal{E}_{\mathbf{V E F}}(t) & =-\kappa_{0} \int_{0}^{l_{0}} u_{x t}^{2} d x-\gamma \int_{l_{1}}^{l} w_{t}^{2} d x \tag{6.1}\\
\frac{d}{d t} \mathcal{E}_{\mathbf{E V F}}(t) & =-\kappa_{0} \int_{l_{0}}^{l_{1}} v_{x t}^{2} d x-\gamma \int_{l_{1}}^{l} w_{t}^{2} d x \tag{6.2}\\
\frac{d}{d t} \mathcal{E}_{\mathbf{E F V}}(t) & =-\kappa_{0} \int_{l_{1}}^{l} w_{x t}^{2} d x-\gamma \int_{l_{0}}^{l_{1}} v_{t}^{2} d x \tag{6.3}
\end{align*}
$$

In this regard, we have a robust numerical method of high order which in turn ensures a natural way (without additional artificial viscosity for example) the decay of energy with the same terms prescribed in identity (6.1).

6.1 Linear equation of Motion

First, we approximate the displacement vector $[u, v, w]^{\top}$ in space using finite elements $P 2$. For that, we consider the variational problem

$$
\begin{array}{r}
\rho_{1} \int_{0}^{l_{0}} u_{t t} \varphi_{1} d x+\rho_{2} \int_{l_{0}}^{l_{1}} v_{t t} \varphi_{2} d x+\rho_{3} \int_{l_{1}}^{l} w_{t t} \varphi_{3} d x \\
+\kappa_{1} \int_{0}^{l_{0}} u_{x} \varphi_{1, x} d x+\kappa_{2} \int_{l_{0}}^{l_{1}} v_{x} \varphi_{2, x} d x+\kappa_{3} \int_{l_{1}}^{l} w_{x} \varphi_{2, x} d x \\
=\mathcal{R}\left(u, v, w ; \varphi_{1}, \varphi_{2}, \varphi_{3}\right) \tag{6.4}
\end{array}
$$

for all $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in V=\left\{\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{1, x}, \varphi_{2, x}, \varphi_{3, x}\right) \in \mathcal{D}\left(\mathcal{A}_{i}\right)\right\}$ for $i=1,2$ and 3, defined in (2.2)-(2.6), and where \mathcal{R} take the values $\mathcal{R}_{\mathrm{VEF}}, \mathcal{R}_{\mathbf{E V F}}, \mathcal{R}_{\mathrm{EFV}}$, for the different cases, respectively, given by

$$
\begin{align*}
& \mathcal{R}_{\mathrm{VEF}}\left(u, v, w ; \varphi_{1}, \varphi_{2}, \varphi_{3}\right)=-\kappa_{0} \int_{0}^{l_{0}} u_{x t}^{2} \varphi_{1, x} d x-\gamma \int_{l_{1}}^{l} w_{t}^{2} \varphi_{3} d x \tag{6.5}\\
& \mathcal{R}_{\mathrm{EVF}}\left(u, v, w ; \varphi_{1}, \varphi_{2}, \varphi_{3}\right)=-\kappa_{0} \int_{l_{0}}^{l_{1}} v_{x t}^{2} \varphi_{2, x} d x-\gamma \int_{l_{1}}^{l} w_{t}^{2} \varphi_{3} d x \tag{6.6}\\
& \mathcal{R}_{\mathrm{EFV}}\left(u, v, w ; \varphi_{1}, \varphi_{2}, \varphi_{3}\right)=-\kappa_{0} \int_{l_{1}}^{l} w_{x t}^{2} \varphi_{3, x} d x-\gamma \int_{l_{0}}^{l_{1}} v_{t}^{2} \varphi_{2} d x \tag{6.7}
\end{align*}
$$

The variational problem (6.4) have a unique solution in the same sense of Theorem 2.2, which we approach by two-degree piecewise polynomial basis functions (see [1, 2, 3, 4]). Then, we choose J_{1} values of x in the interval $\left(0, l_{0}\right), J_{2}$ values of x in the interval $\left(l_{0}, l_{1}\right)$,
and J_{3} values of x in the interval $\left(l_{1}, l\right)$, with a total of $J=J_{1}+J_{2}+J_{3}-1$ nodes for the unknowns. That is,

$$
0=x_{0}<x_{1}<\ldots<x_{n_{1}}=l_{0}<x_{n_{1}+1}<\ldots<x_{n_{2}}=l_{1}<x_{n_{2}+1}<\ldots<x_{n_{3}}=l .
$$

We obtain a vector $\left[\mathbf{u}_{\delta}(t), \mathbf{v}_{\delta}(t), \mathbf{w}_{\delta}(t)\right]^{\top}$ approximation of $[u, v, w]^{\top}$ in $\mathbb{R}^{J} \times \mathbb{R}^{J} \times \mathbb{R}^{J}$. Additionally, let us define $\left[\mathbf{U}_{\delta}(t), \mathbf{V}_{\delta}(t), \mathbf{W}_{\delta}(t)\right]^{\top}$ the approximation of the velocity $[U, V, W]^{\top}$, where $\mathbf{U}_{\delta}(t)=\dot{\mathbf{u}}_{\delta}(t), \mathbf{V}_{\delta}(t)=\dot{\mathbf{v}}_{\delta}(t)$ and $\mathbf{W}_{\delta}(t)=\dot{\mathbf{w}}_{\delta}(t)$. Using the boundary and transmission condition, we easily obtain the linear equation of motion

$$
\mathbf{M}\left[\begin{array}{c}
\dot{\mathbf{U}}_{h} \\
\dot{\mathbf{V}}_{h} \\
\dot{\mathbf{W}}_{h}
\end{array}\right]+\frac{1}{\delta x^{2}} \mathbf{C}_{\text {visc }}\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{V}_{h} \\
\mathbf{W}_{h}
\end{array}\right]+\mathbf{C}_{\text {frict }}\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{V}_{h} \\
\mathbf{W}_{h}
\end{array}\right]+\frac{1}{\delta x^{2}} \mathbf{K}\left[\begin{array}{c}
\mathbf{u}_{h} \\
\mathbf{v}_{h} \\
\mathbf{w}_{h}
\end{array}\right]=\mathbf{0},(6.8)
$$

where $\mathbf{M}, \mathbf{C}_{\text {visc }}, \mathbf{C}_{\text {frict }}$ and \mathbf{K} are the mass, viscoelastic damping, frictional damping and stiffness matrices of the system in $\mathcal{M}_{3 J}(\mathbb{R})$. We remark, that the matrices $\mathbf{C}_{\text {visc }}$ and $\mathrm{C}_{\text {frict }}$, have several null rows depending of each one of the tree cases. For instance, for the VEF case, the matrix $\mathbf{C}_{\text {visc }}$ have only the first J rows nonzero, and the matrix $\mathbf{C}_{\text {frict }}$ have only the last J rows nonzero.

6.2 Time discretization

Regarding now to the time discretization, it is desirable that the algorithm has at least second-order accuracy too, and because the spatial discretization used in structural dynamics often leads to inclusion of high-frequency modes in the model, it is also desirable to have unconditional stability. The method consists of updating the displacement, velocity and acceleration vectors at current time $t^{n}=n \delta t$ to the time $t^{n+1}=(n+1) \delta t$, a small time interval δt later. The Newmark algorithm [17] is based on a set of two relations expressing the forward displacement $\left[\mathbf{u}_{\delta}^{n+1}, \mathbf{v}_{\delta}^{n+1}, \mathbf{w}_{\delta}^{n+1}\right]^{\top}$ and velocity $\left[\mathbf{U}_{\delta}^{n+1}, \mathbf{V}_{\delta}^{n+1}, \mathbf{W}_{\delta}^{n+1}\right]^{\top}$ in terms
of their current values and the forward and current values of the acceleration,

$$
\begin{align*}
\mathbf{U}_{\delta}^{n+1} & =\mathbf{U}_{\delta}^{n}+(1-\gamma) \delta t \dot{\mathbf{U}}_{\delta}^{n}+\gamma \delta t \dot{\mathbf{U}}_{\delta}^{n+1} \tag{6.9}\\
\mathbf{u}_{\delta}^{n+1} & =\mathbf{u}_{\delta}^{n}+\left(\frac{1}{2}-\beta\right) \delta t^{2} \dot{\mathbf{U}}_{\delta}^{n}+\beta \delta t^{2} \dot{\mathbf{U}}_{\delta}^{n+1} \tag{6.10}\\
\mathbf{V}_{\delta}^{n+1} & =\mathbf{V}_{\delta}^{n}+(1-\gamma) \delta t \dot{\mathbf{V}}_{\delta}^{n}+\gamma \delta t \dot{\mathbf{V}}_{\delta}^{n+1} \tag{6.11}\\
\mathbf{v}_{\delta}^{n+1} & =\mathbf{v}_{\delta}^{n}+\left(\frac{1}{2}-\beta\right) \delta t^{2} \dot{\mathbf{V}}_{\delta}^{n}+\beta \delta t^{2} \dot{\mathbf{V}}_{\delta}^{n+1} \tag{6.12}\\
\mathbf{W}_{\delta}^{n+1} & =\mathbf{W}_{\delta}^{n}+(1-\gamma) \delta t \dot{\mathbf{W}}_{\delta}^{n}+\gamma \delta t \dot{\mathbf{W}}_{\delta}^{n+1} \tag{6.13}\\
\mathbf{w}_{\delta}^{n+1} & =\mathbf{w}_{\delta}^{n}+\left(\frac{1}{2}-\beta\right) \delta t^{2} \dot{\mathbf{W}}_{\delta}^{n}+\beta \delta t^{2} \dot{\mathbf{W}}_{\delta}^{n+1} \tag{6.14}
\end{align*}
$$

where β and γ are parameters of the methods that will be fixed later. Replacing (6.9)(6.14) in the equation of motion (6.8), we obtain

$$
\begin{align*}
\left(\delta x^{2} \mathbf{M}+\gamma \delta t \mathbf{C}+\beta \delta t^{2} \mathbf{K}\right) & {\left[\begin{array}{c}
\dot{\mathbf{U}}_{\delta}^{n+1} \\
\dot{\mathbf{V}}_{\delta}^{n+1} \\
\dot{\mathbf{W}}_{\delta}^{n+1}
\end{array}\right]=-\mathbf{C}_{\text {visc }}\left(\left[\begin{array}{c}
\mathbf{U}_{\delta}^{n} \\
\mathbf{V}_{\delta}^{n} \\
\mathbf{W}_{\delta}^{n}
\end{array}\right]+(1-\gamma) \delta t\left[\begin{array}{c}
\dot{\mathbf{U}}_{\delta}^{n} \\
\dot{\mathbf{V}}_{\delta}^{n} \\
\dot{\mathbf{W}}_{\delta}^{n}
\end{array}\right]\right) } \\
- & \delta x^{2} \mathbf{C}_{\text {frict }}\left(\left[\begin{array}{c}
\mathbf{U}_{\delta}^{n} \\
\mathbf{V}_{\delta}^{n} \\
\mathbf{W}_{\delta}^{n}
\end{array}\right]+(1-\gamma) \delta t\left[\begin{array}{c}
\dot{\mathbf{U}}_{\delta}^{n} \\
\dot{\mathbf{V}}_{\delta}^{n} \\
\dot{\mathbf{W}}_{\delta}^{n}
\end{array}\right]\right) \\
& -\mathbf{K}\left(\left[\begin{array}{c}
\mathbf{u}_{\delta}^{n} \\
\mathbf{v}_{\delta}^{n} \\
\mathbf{w}_{\delta}^{n}
\end{array}\right]+\delta t\left[\begin{array}{c}
\mathbf{U}_{\delta}^{n} \\
\mathbf{V}_{\delta}^{n} \\
\mathbf{W}_{\delta}^{n}
\end{array}\right]+\left(\frac{1}{2}-\beta\right) \delta t^{2}\left[\begin{array}{c}
\dot{\mathbf{U}}_{\delta}^{n} \\
\dot{\mathbf{V}}_{\delta}^{n} \\
\dot{\mathbf{W}} \\
\dot{W}
\end{array}\right]\right) \tag{6.15}
\end{align*}
$$

The acceleration $\left[\dot{\mathbf{U}}_{\delta}^{n+1}, \dot{\mathbf{V}}_{\delta}^{n+1}, \dot{\mathbf{W}}_{\delta}^{n+1}\right]^{\top}$ is found from (6.15). On the other hand, the velocity $\left[\mathbf{U}_{\delta}^{n+1}, \mathbf{V}_{\delta}^{n+1}, \mathbf{W}_{\delta}^{n+1}\right]^{\top}$ follow from (6.9), (6.11) and (6.13), respectively. Finally, the displacement $\left[\mathbf{u}_{\delta}^{n+1}, \mathbf{v}_{\delta}^{n+1}, \mathbf{w}_{\delta}^{n+1}\right]^{\top}$ follow from (6.10), eqref405 and (6.14), respectively by simple vector operations.

6.3 Energy balance of the Newmark algorithm

We define the discrete energy as

$$
\mathcal{E}_{\delta}^{n}:=\frac{1}{2}\left[\mathbf{U}_{\delta}^{\top}, \mathbf{V}_{\delta}^{\top}, \mathbf{W}_{\delta}^{\top}\right] \mathbf{M}\left[\begin{array}{c}
\mathbf{U}_{\delta} \\
\mathbf{V}_{\delta} \\
\mathbf{W}_{\delta}
\end{array}\right]+\frac{1}{2 \delta x^{2}}\left[\mathbf{u}_{\delta}^{\top}, \mathbf{v}_{\delta}^{\top}, \mathbf{w}_{\delta}^{\top}\right] \mathbf{K}\left[\begin{array}{c}
\mathbf{u}_{\delta} \\
\mathbf{v}_{\delta} \\
\mathbf{w}_{\delta}
\end{array}\right]
$$

which is an approximation of that defined in (6.1) for the continuous case. The increment of this energy can be expressed in terms of mean values and increments of the displacement
and velocity by the following identity:

$$
\begin{aligned}
\mathcal{E}_{\delta}^{n+1}-\mathcal{E}_{\delta}^{n} & =\left[\frac{1}{2}\left[\mathbf{U}_{\delta}^{\top}, \mathbf{V}_{\delta}^{\top}, \mathbf{W}_{\delta}^{\top}\right] \mathbf{M}\left[\begin{array}{c}
\mathbf{U}_{\delta} \\
\mathbf{V}_{\delta} \\
\mathbf{W}_{\delta}
\end{array}\right]+\frac{1}{2 \delta x^{2}}\left[\mathbf{u}_{\delta}^{\top}, \mathbf{v}_{\delta}^{\top}, \mathbf{w}_{\delta}^{\top}\right] \mathbf{K}\left[\begin{array}{c}
\mathbf{u}_{\delta} \\
\mathbf{v}_{\delta} \\
\mathbf{w}_{\delta}
\end{array}\right]\right]_{n}^{n+1} \\
& =\left[\begin{array}{c}
\mathbf{U}_{\delta}^{n+\frac{1}{2}} \\
\mathbf{V}_{\delta}^{n+\frac{1}{2}} \\
\mathbf{W}_{\delta}^{n+\frac{1}{2}}
\end{array}\right]^{\top} \mathbf{M}\left[\begin{array}{c}
\Delta \mathbf{U}_{\delta} \\
\Delta \mathbf{V}_{\delta} \\
\Delta \mathbf{W}_{\delta}
\end{array}\right]+\frac{1}{\delta x^{2}}\left[\begin{array}{c}
\mathbf{u}_{\delta}^{n+\frac{1}{2}} \\
\mathbf{v}_{\delta}^{n+\frac{1}{2}} \\
\mathbf{w}_{\delta}^{n+\frac{1}{2}}
\end{array}\right]^{\top} \mathbf{K}\left[\begin{array}{c}
\Delta \mathbf{u}_{\delta} \\
\Delta \mathbf{v}_{\delta} \\
\Delta \mathbf{w}_{\delta}
\end{array}\right]
\end{aligned}
$$

where $\mathbf{u}^{n+\frac{1}{2}}=\frac{\mathbf{u}^{n+1}+\mathbf{u}^{n}}{2}$ and $\Delta \mathbf{u}=\mathbf{u}^{n+1}-\mathbf{u}^{n}$. Now, in order to derive the required energy estimates, we rely on calculations and notations similar to S. Krenk [9] to finally obtain

$$
\begin{aligned}
& {\left[\frac{1}{2}\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{V}_{h} \\
\mathbf{W}_{h}
\end{array}\right]^{\top} \mathbf{M}_{*}\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{V}_{h} \\
\mathbf{W}_{h}
\end{array}\right]\right.} \\
& \left.+\frac{1}{2 \delta x^{2}}\left[\begin{array}{c}
\mathbf{u}_{h} \\
\mathbf{v}_{h} \\
\mathbf{w}_{h}
\end{array}\right]^{\top} \mathbf{K}\left[\begin{array}{c}
\mathbf{u}_{h} \\
\mathbf{v}_{h} \\
\mathbf{w}_{h}
\end{array}\right]+\left(\beta-\frac{1}{2} \gamma\right) \frac{\delta t^{2}}{2}\left[\begin{array}{c}
\dot{\mathbf{U}}_{h} \\
\dot{\mathbf{V}}_{h} \\
\dot{\mathbf{W}}_{h}
\end{array}\right]^{\top} \mathbf{M}_{*}\left[\begin{array}{c}
\dot{\mathbf{U}}_{h} \\
\dot{\mathbf{V}}_{h} \\
\dot{\mathbf{W}}_{h}
\end{array}\right]\right]_{n}^{n+1} \\
& =\left(\gamma-\frac{1}{2}\right)\left\{\frac{1}{\delta x^{2}}\left[\begin{array}{c}
\Delta \mathbf{u}_{h} \\
\Delta \mathbf{v}_{h} \\
\Delta \mathbf{w}_{h}
\end{array}\right]^{\top} \mathbf{K}\left[\begin{array}{c}
\Delta \mathbf{u}_{h} \\
\Delta \mathbf{v}_{h} \\
\Delta \mathbf{w}_{h}
\end{array}\right]+\left(\beta-\frac{1}{2} \gamma\right) \delta t^{2}\left[\begin{array}{c}
\Delta \dot{\mathbf{U}}_{h} \\
\Delta \dot{\mathbf{V}}_{h} \\
\Delta \dot{\mathbf{W}}_{h}
\end{array}\right]^{\top} \mathbf{M}_{*}\left[\begin{array}{c}
\Delta \dot{\mathbf{U}}_{h} \\
\Delta \dot{\mathbf{V}}_{h} \\
\Delta \dot{\mathbf{W}}_{h}
\end{array}\right]\right\} \\
& -\frac{\delta t}{2 \delta x^{2}}\left\{\delta t^{-2}\left[\begin{array}{c}
\Delta \mathbf{u}_{h} \\
\Delta \mathbf{v}_{h} \\
\Delta \mathbf{w}_{h}
\end{array}\right]^{\top} \mathbf{C}_{\text {visc }}\left[\begin{array}{c}
\Delta \mathbf{u}_{h} \\
\Delta \mathbf{v}_{h} \\
\Delta \mathbf{w}_{h}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{U}_{h}^{n+\frac{1}{2}} \\
\mathbf{V}_{h}^{n+\frac{1}{2}} \\
\mathbf{W}_{h}^{n+\frac{1}{2}}
\end{array}\right]^{\top} \mathbf{C}_{\text {visc }}\left[\begin{array}{c}
\mathbf{U}_{h}^{n+\frac{1}{2}} \\
\mathbf{V}_{h}^{n+\frac{1}{2}} \\
\mathbf{W}_{h}^{n+\frac{1}{2}}
\end{array}\right]\right\} \\
& +\frac{\delta t^{3}}{2 \delta x^{2}}\left(\beta-\frac{1}{2} \gamma\right)^{2}\left[\begin{array}{c}
\Delta \dot{\mathbf{U}}_{h} \\
\Delta \dot{\mathbf{V}}_{h} \\
\Delta \dot{\mathbf{W}}_{h}
\end{array}\right]^{\top} \mathbf{C}_{v i s c}\left[\begin{array}{c}
\Delta \dot{\mathbf{U}}_{h} \\
\Delta \dot{\mathbf{V}}_{h} \\
\Delta \dot{\mathbf{W}}_{h}
\end{array}\right] \\
& -\frac{\delta t}{2}\left\{\delta t^{-2}\left[\begin{array}{c}
\Delta \mathbf{u}_{h} \\
\Delta \mathbf{v}_{h} \\
\Delta \mathbf{w}_{h}
\end{array}\right]^{\top} \mathbf{C}_{\text {frict }}\left[\begin{array}{c}
\Delta \mathbf{u}_{h} \\
\Delta \mathbf{v}_{h} \\
\Delta \mathbf{w}_{h}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{U}_{h}^{n+\frac{1}{2}} \\
\mathbf{V}_{h}^{n+\frac{1}{2}} \\
\mathbf{W}_{h}^{n+\frac{1}{2}}
\end{array}\right]^{\top} \mathbf{C}_{\text {frict }}\left[\begin{array}{c}
\mathbf{U}_{h}^{n+\frac{1}{2}} \\
\mathbf{V}_{h}^{n+\frac{1}{2}} \\
\mathbf{W}_{h}^{n+\frac{1}{2}}
\end{array}\right]\right\} \\
& +\frac{\delta t^{3}}{2}\left(\beta-\frac{1}{2} \gamma\right)^{2}\left[\begin{array}{c}
\Delta \dot{\mathbf{U}}_{h} \\
\Delta \dot{\mathbf{V}}_{h} \\
\Delta \dot{\mathbf{W}}_{h}
\end{array}\right]^{\top} \mathbf{C}_{\text {frict }}\left[\begin{array}{c}
\Delta \dot{\mathbf{U}}_{h} \\
\Delta \dot{\mathbf{V}}_{h} \\
\Delta \dot{\mathbf{W}}_{h}
\end{array}\right]
\end{aligned}
$$

where $\mathbf{M}_{*}=\mathbf{M}+\left(\gamma-\frac{1}{2}\right) \delta t\left(\frac{1}{\delta x^{2}} \mathbf{C}_{v i s c}+\mathbf{C}_{\text {frict }}\right)$. Then, we choose $\gamma=\frac{1}{2}$ and $\beta=\frac{\gamma}{2}$, reducing the above expression to

$$
\begin{align*}
& {\left[\frac{1}{2}\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{V}_{h} \\
\mathbf{W}_{h}
\end{array}\right]^{\top} \mathbf{M}\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{V}_{h} \\
\mathbf{W}_{h}
\end{array}\right]+\frac{1}{2 \delta x^{2}}\left[\begin{array}{c}
\mathbf{u}_{h} \\
\mathbf{v}_{h} \\
\mathbf{w}_{h}
\end{array}\right]^{\top} \mathbf{K}\left[\begin{array}{c}
\mathbf{u}_{h} \\
\mathbf{v}_{h} \\
\mathbf{w}_{h}
\end{array}\right]\right]_{n}^{n+1}} \\
& =- \\
& -\frac{\delta t}{2 \delta x^{2}}\left\{\left[\begin{array}{c}
\frac{\Delta \mathbf{u}_{h}}{\delta t} \\
\frac{\Delta \mathbf{v}_{h}}{\delta t} \\
\frac{\Delta \mathbf{w}_{h}}{\delta t}
\end{array}\right]^{\top} \mathbf{C}_{\text {visc }}\left[\begin{array}{c}
\frac{\Delta \mathbf{u}_{h}}{\delta t} \\
\frac{\Delta \mathbf{v}_{h}}{\delta \delta} \\
\frac{\Delta \mathbf{w}_{h}}{\delta t}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{U}_{h}^{n+\frac{1}{2}} \\
\mathbf{V}_{h}^{n+\frac{1}{2}} \\
\mathbf{W}_{h}^{n+\frac{1}{2}}
\end{array}\right]^{\top} \mathbf{C}_{\text {visc }}\left[\begin{array}{c}
\mathbf{U}_{h}^{n+\frac{1}{2}} \\
\mathbf{V}_{h}^{n+\frac{1}{2}} \\
\mathbf{W}_{h}^{n+\frac{1}{2}}
\end{array}\right]\right\} \\
& \tag{6.16}\\
& \\
& \leqslant
\end{align*}
$$

Figure 1: Initial conditions u_{0}, v_{0} and w_{0}.

Remark 6.1 The identity (6.16) corresponds to the discrete version of (6.1)-(6.3). More precisely, the matrices of $R^{3 J}, \mathbf{C}_{\text {frict }}$ and $\mathbf{C}_{\text {visc }}$ have only J nonzero rows, and depending on the distribution of these rows, is that the right term of (6.16) coincide with each one of the three cases VEF, EVF and EFV which correspond to (6.1), (6.2) and (6.3), respectively. Thus, for example, in the case of the Viscoelastic-Elastic-Frictional model VEF, it follows that

$$
\mathbf{C}_{\text {visc }}=\left(\begin{array}{ccc}
\kappa_{0} \widetilde{\mathbf{C}}_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mathbf{C}_{\text {frict }}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \gamma \widetilde{\mathbf{C}}_{2}
\end{array}\right)
$$

and then, the identity (6.16) can be rewrite as

$$
\begin{aligned}
\mathcal{E}_{\delta}^{n+1}-\mathcal{E}_{\delta}^{n}= & -\frac{\delta t}{2 \delta x^{2}} \kappa_{0}\left\{\frac{\Delta \mathbf{u}_{h}^{\top}}{\delta t} \widetilde{\mathbf{C}}_{1} \frac{\Delta \mathbf{u}_{h}}{\delta t}+\mathbf{U}_{h}^{n+\frac{1}{2}, \top} \widetilde{\mathbf{C}}_{1} \mathbf{U}_{h}^{n+\frac{1}{2}}\right\} \\
& -\frac{\delta t}{2} \gamma\left\{\frac{\Delta \mathbf{w}_{h}^{\top}}{\delta t} \widetilde{\mathbf{C}}_{2} \frac{\Delta \mathbf{w}_{h}}{\delta t}+\mathbf{W}_{h}^{n+\frac{1}{2}, \top} \widetilde{\mathbf{C}}_{2} \mathbf{W}_{h}^{n+\frac{1}{2}}\right\},
\end{aligned}
$$

which corresponds well to a discretization of (6.1) consistent with the definition of energy. With this, we expect the rate of decay of energy in the discrete case is an accurate reflection of what happens in the continuous case.

Figure 2: Viscoelastic-Elastic-Frictional (VEF) model (top), and Elastic-FrictionalViscoelastic (EFV) model (bottom), simulation for $t \in(15,1000000)$. Exponential Decay, when the frictional part is isolated of the viscoelastic part.

6.4 Numerical Example

Now we present an example with one initial condition in $\mathcal{D}(A)$ for the three cases to illustrate graphically the polynomial and exponential energy decay.

6.4.1 Example 1. Initial conditions with different smoothness

Let us suppose here that $l=3$ and $T=1000000$. We will study the asymptotic behavior for a family of initial conditions of the form

$$
\left[\begin{array}{lll}
u_{0} & v_{0} & w_{0}
\end{array}\right]= \begin{cases}\left(x-\frac{1}{2}\right)\left|x-\frac{1}{2}\right|+\frac{1}{4} & \text { if } x \in(0,1) \tag{6.17}\\
\left(x-\frac{3}{2}\right)\left|x-\frac{3}{2}\right|+\frac{3}{4} & \text { if } x \in(1,2) \\
2 x^{2}+9 x-9 & \text { if } x \in(2,3) \\
0 & \text { otherwise }\end{cases}
$$

Figure 3: Elastic-Viscoelastic-Frictional (EVF) model, simulation for $t \in(15,1000000)$. Polinomial Decay, when the viscoelastic part is in the middle and in contact with the fractional part.
at rest, that is $U_{0}=V_{0}=W_{0}=0$ (see Figure 1). We suppose additionally that $\kappa_{1}=$ $\kappa_{2}=\kappa_{3}=1, \kappa_{0}=10000, \gamma=100$. Note that the initial condition verifies be on $\mathcal{D}(\mathcal{A})$, and meets the minimum requirements of regularity for it. The discretization is given by $J=300$ and $N=10^{6}$, that is $\delta x=L / J=0.01$ and $\delta t=T / N=1$. Figure 2 shows the evolutionary behavior of cases, Viscoelastic-Elastic-Frictional (VEF) model (top), and Elastic-Frictional-Viscoelastic (EFV) model (bottom). In both cases, the energy decays exponentially, and correspond to the cases where the viscoelastic part is isolated from the frictional part. Both for the VEF model, as well as for the EFV model, both for the deformations u, v, w (on the left), as well as for the deformation velocities U, V, W, the viscoelastic and frictional part of these four cases, practically immediately fell to zero. On the other hand, the purely elastic, decays more slowly. Still, the total energy decays exponentially (see Figure 4). In both cases, we plot from the time $t=15$, in order to improve the visual on the asymptotic behavior (which is the interest in short), and removing the initial behavior while important because it determines the rest, on the other hand, it changes the scale of the global behavior. In Figure 3, the viscoelastic part is on the middle, isolating the elastic part of the frictional part. That is, it correspnds to the Elastic-Viscoelastic-Frictional (EVF) model. While both the frictional, as the viscoelastic have a behavior called dissipative, the mere fact that the frictional part is isolated from the elastic, makes the latter not stabilize quickly enough in the case of VEF model or EFV model, and it decays only polynomial, which is what was shown in theory in the

Figure 4: Energy decays for the three cases VEF, EVF and EFV. Left: plot of the energies; Right: zoom of the plot on log-log scale.
previous section, and currently checks in this figure.
Finally, in Figure 4, we plot the decay of the energies. Here, we see clearly the difference between EFV and VEF cases (whose decay is exponential) v/s EVF case (whose decay is polynomial). On the graph on the left, the energy is plotted directly, and clearly the EVF case seen well above the other two. The graph on the right is a zoom of the same graph but in log-log scale. In this zoom, shows an asymptotic behavior of the EVF case near a straight a line, which is interpreted in a log-log scale, as polynomial behaviour, instead the VEF and VEF cases decay much faster than just straight (exponential)

Acknowledgements

The third author thanks the support of Fondecyt project 1110540, CONICYT project Anillo ACT1118 (ANANUM), and Basal, CMM, Universidad de Chile. The fourth author thanks the support of Fondecyt project 1121120. This research was partially supported by PROSUL Project (Chamada II): Sistemas dinâmicos Controle e Aplicaçöes. Processo: CNPq 490577/2008-3.

References

[1] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
[2] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer, 1991.
[3] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[4] P. Clement, Approximation by finite element functions using local regularization, RAIRO Anal. Numer. R-2 (1975), 77-84.
[5] A. Borichev and Y. Tomilov. Optimal polynomial decay of functions and operator semigroups. Mathematische Annalen. Vol. 347. 2(2009)455-478.
[6] G. Chen, S.A. Fulling, F.J. Narcowich and S. Sun. Exponential decay of the energy of evolution equation with locally distributed damping. SIAM Journal of Applied Mathematics Vol. 51. 1(1991)266-301.
[7] V. Komornik and E. Zuazua. A direct method for the boundary stabilization of the wave equation. Journal of Computational and Applied Mathematics. Vol. 69. 1(1990)33-54.
[8] V. Komornik. Rapid boundary stabilization of the wave equation. SIAM Journal on Control and Optimization. Vol. 29. 1(1991)197-208.
[9] S. Krenk. Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Engrg. 195 (2006) .
[10] K. Liu and Z. Liu. Exponential decay of the energy of the Euler Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAM Journal of Control and Optimization Vol. 36. 3(1998)1086-1098.
[11] W. Liu and G. Williams. The exponential stability of the problem of transmission of the wave equation. Bulletin of the Australian Mathematical Society. Vol. 57. 2(1998)305-327.
[12] Z. Liu and B. Rao. Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew Math. Phys. 56(2005)630-644.
[13] Z. Liu and S. Zheng. Semigroups associated with dissipative systems. In CRC Reseach Notes in Mathematics 398. Chapman \& Hall. (1999).
[14] Ho. Lop Fat. Exact controllability of the one-dimensional wave equation with locally distributed control. SIAM Journal on Control and Optimization. Vol. 28. 3(1990)733748.
[15] M. Nakao. Decay of solutions of the wave equation with a local degenerate dissipation. Israel Journal of Mathematics. Vol. 95. 1(1996)25-42.
[16] M. Nakao. Decay of solutions of the wave equation with a local nonlinear dissipation. Mathematische Annalen Vol. 305. 1(1996)403-417.
[17] N.M. Newmark. A method of computation for structural dynamics. J. Engrg. Mech. Div., ASCE 85 (1959).
[18] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag(1983). New York.
[19] J. Prüss. On the spectrum of C_{0}-semigroups. Trans. AMS. 284(1984)847-857.
[20] R. Quintanilla. Exponential decay in mixtures with localized dissipative term. Applied Mathematical Letters (To appear) Vol. , ()(2006)0-0.
[21] M. Renardy. On the type of certain C_{0}-semigroups. Journal of Differential and Integral Equations. Vol. 18. 1(1993)1299-1309.

Centro de Investigación en Ingeniería Matemática ($\mathrm{Cl}^{2} \mathrm{MA}$)

PRE-PUBLICACIONES 2012

2012-15 Rodolfo Araya, Christopher Harder, Diego Paredes, Frederic Valentin: Multiscale hybrid-mixed method
2012-16 Alfredo Bermúdez, Bibiana López-Rodríguez, Rodolfo Rodríguez, Pilar Salgado: An eddy current problem in terms of a time-primitive of the electric field with non-local source conditions
2012-17 Gabriel N. Gatica, Antonio Marquez, Walter Rudolph: A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems
2012-18 Raimund Bürger, Enrique D. Fernández Nieto, El Hadji Koné, Tomás Morales De Luna: A multilayer shallow water system for polydisperse sedimentation
2012-19 Fabián Flores-Bazán, Giandomenico Mastroeni: Strong duality in cone constrained nonconvex optimization: a general approach with applications to nonconvex variational problems
2012-20 Alfredo Bermúdez, Dolores Gómez, Rodolfo Rodríguez, Pilar Salgado, Pablo Venegas: Numerical solution of a transient non-linear axisymmetric eddy current model with non-local boundary conditions
2012-21 Raimund Bürger, Pep Mulet, Luis M. Villada: Implicit-explicit methods for diffusively corrected multi-species kinematic flow models
2012-22 Raimund Bürger, Stefan Diehl: Convexity-preserving flux identification for scalar conservation laws modelling sedimentation
2012-23 Raimund Bürger, Ilja Kröker, Christian Rohde: A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifierthickener unit
2012-24 Felipe Lepe, David Mora, Rodolfo Rodríguez: Locking-free finite element method for a bending moment formulation of Timoshenko beams
2012-25 Raimund Bürger, Pep Mulet, Luis M. Villada: A diffusively corrected multiclass Lighthill-Whitham-Richards traffic model with anticipation lengths and reaction times
2012-26 Margareth Alves, Jaime Muñoz-Rivera, Mauricio Sepúlveda, Octavio VErA: Exponential and the lack of exponential stability in transmission problems with localized Kelvin-Voigt dissipation

Para obtener copias de las Pre-Publicaciones, escribir o llamar a: Director, Centro de Investigación en Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile, Tel.: 41-2661324, o bien, visitar la página web del centro: http://www.ci2ma.udec.cl

[^0]: *DM. Universidade Federal de Viçosa. Viçosa, Brasil, e-mail: malves@ufv.br
 ${ }^{\dagger}$ LNCC, Petrópolis. RJ. Brazil, e-mail: rivera@lncc.br
 ${ }^{\ddagger} \mathrm{CI}^{2}$ MA and DIM, Universidad de Concepción, Chile, e-mail: mauricio@ing-mat.udec.cl
 ${ }^{\S}$ DM. Universidad del Bío-Bío. Concepción. Chile, e-mail: overa@ubiobio.cl

