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VIBRATION PROBLEM ∗
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Abstract. This paper deals with a two-dimensional fluid-solid vibration problem arising from
nuclear engineering: the vibration of elastically mounted tubes immersed in a cavity filled with fluid.
A convenient variational formulation of this problem, valid for compressible and incompressible fluids,
is introduced. An hp finite element method is used for its discretization, which leads to a well posed
matrix eigenvalue problem. Optimal order a priori error estimates are proved for eigenfunctions and
eigenvalues. Then, local a posteriori error indicators are defined and its efficiency and reliability are
studied. An adaptive scheme driven by these indicators is proposed and numerically tested.
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1. Introduction. The aim of this paper is to introduce and analyze a convenient
variational formulation of a fluid-solid vibration problem and an hp finite element
adaptive scheme to solve it.

The need of computing the vibration modes of coupled systems involving interac-
tion between fluids and solids arises in many engineering problems. A large amount of
work has been devoted to this subject during the last decades; we refer, for instance,
to the monographs [4, 10], where computer methods and further references are also
given. We focus our attention on one of these problems arising from nuclear engineer-
ing ([11, 12]): computing the vibration modes of tubes immersed in a fluid contained
in a rigid cavity.

Several models for this problem, which differ from each other on the assumptions
on the fluid, have been thoroughly studied in [4]. We consider a homogeneous fluid for
which we assume its reference density is constant as well as other usual simplifications
for this kind of problems: the viscous effects are not relevant and the velocities are
small enough for the convective effects to be neglected. Regarding the tubes, they are
assumed to be perfectly rigid, but elastically mounted. Being the tubes parallel, the
problem can be posed in a less expensive two-dimensional (2D) framework.

We propose a variational formulation of the problem, which allows for compress-
ible as well as incompressible fluids (it corresponds to what is called in [4] the Laplace
and the Helmholtz models, respectively). An important advantage of the proposed
formulation is that it leads (after discretization) to a well-posed symmetric matrix
generalized eigenvalue problem, which can be safely solved with standard software.

For the discretization we choose an hp finite element method. We show that the
resulting discrete problem is well posed and prove spectral approximation properties.
In particular, we obtain optimal-order a priori error estimates including a double order
of convergence for the eigenvalues.
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To improve the efficiency of the numerical method, we propose an adaptive scheme
based on the hp adaptive strategy from [9]. To drive this scheme, we introduce a
posteriori error indicators of residual type, which can be computed locally (and, hence,
at low computer cost) from the approximate eigenpair. We analyze the equivalence of
the resulting a posteriori estimator with the energy norm of the error. In particular,
we prove reliability and efficiency estimates up to higher order terms, the latter with
a constant which depends on the polynomial degree of the element. (To the best of
the authors’ knowledge, simultaneous reliability and efficiency estimates of the energy
norm of the error, both with constants independent of the polynomial degree, have not
been proved yet for any a posteriori error estimator for hp finite element methods.)

A similar hp adaptive scheme has been recently introduced in [1] for another
variational formulation of the same problem valid only for an incompressible fluid. A
detailed bibliographic discussion on this topic can be found in this reference; see also
the monographs [5, 8].

The outline of the paper is as follows. In section 2, we recall the fluid-structure
vibration problem in the case of a compressible fluid and introduce the proposed vari-
ational formulation. The hp finite element method is introduced in section 3 and a
priori error estimates are proved. These results are extended to an incompressible
fluid in section 4. The a posteriori error estimator is introduced in section 5, where
reliability and efficiency estimates are proved. Section 6 deals with a couple of imple-
mentation issues: the matrix form of the eigenvalue problem and the algorithm of the
adaptive scheme. Finally, in section 7, we show how to deal with multiple eigenvalues
arising from the symmetry of the problem and report the results of a numerical test
which exhibits the performance of the adaptive scheme.

2. The spectral problem. We consider K elastically mounted parallel rigid
tubes immersed in a compressible fluid within a rigid cavity. The problem is to
determine the free vibration modes of the coupled system.

Under reasonable assumptions (see [4]), this problem can be posed in 2D, a planar
transverse section of the cavity being its domain. Only rigid motions of the tubes are
allowed. Tube number i is modeled as a harmonic oscillator with stiffness ki and mass
mi. The fluid is modeled as a potential flow with density ρ0 and sound speed c.

We denote by Ω the bounded 2D domain occupied by the fluid, Γ0 its outer
boundary, and Γi the interface between tube number i and the fluid (see Figure 2.1).
We assume that Ω is a Lipschitz domain with a piecewise smooth boundary (a finite
number of angles θ ∈ (0, 2π) are allowed). Finally, n denotes the unit outer normal
to the boundary of Ω.

We write the coupled problem in terms of a fluid velocity potential and the ve-
locities of all rigid tubes. According to [4], the problem of computing the vibration
modes of the coupled system reads:

(2.1)







−∆u =
ω2

c2
u in Ω,

∂u

∂n
= 0 on Γ0,

∂u

∂n
= si · n on Γi, i = 1, . . . ,K,

(
ki −miω

2
)
si = ω2ρ0

∫

Γi

un on Γi, i = 1, . . . ,K,

where ω > 0 is the vibration frequency, u is the amplitude of the fluid velocity
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Fig. 2.1. Sketch of the two-dimensional domain

potential and si the amplitude of the velocity of tube number i (i = 1, . . . ,K).
This problem has been studied in [4], where a spectral characterization was ob-

tained and a unitary operator method (cf. [6]) was proposed for its numerical solution.
(Notice that si are used to denote different quantities in [4] and herein; in fact, si
in [4] corresponds to c2 times si herein.) Since our aim is to solve this problem di-
rectly by means of a finite element method, our next step is to obtain a convenient
alternative variational formulation.

First notice that the velocity potential amplitude u is completely determined
by the equations in (2.1) (and not only determined up to an additive constant, as
usual). In fact, it follows immediately from the divergence theorem that any solution
of this problem with ω > 0 satisfies

∫

Ω
u = 0. We introduce the spaces L2

0(Ω) :=
{
ψ ∈ L2(Ω) :

∫

Ω
ψ = 0

}
, endowed with the standard L2-norm, and V := H1(Ω) ∩

L2
0(Ω). The seminorm | · |H1(Ω) defines a norm on V equivalent to the H1(Ω)-norm.

To obtain a variational form of problem (2.1), we multiply the first equation by
a test function in V , integrate by parts, and use the third equation to write

(2.2)

∫

Ω

∇u · ∇v =
ω2

c2

∫

Ω

uv +

K∑

i=1

si ·
(∫

Γi

vn

)

∀v ∈ V .

Then, we rewrite the fourth equation as follows:

(2.3) si = ω2

(
ρ0
ki

∫

Γi

un+
mi

ki
si

)

, i = 1, . . . ,K.

By substituting (2.3) into (2.2), we are lead to

∫

Ω

∇u · ∇v = ω2

{

1

c2

∫

Ω

uv +
K∑

i=1

ρ0
ki

[(∫

Γi

un

)

·
(∫

Γi

vn

)

+
mi

ki
si ·

(∫

Γi

vn

)]}

.

The final step is to write (2.3) in a convenient weak form to obtain a final symmetric
problem:

K∑

i=1

mi

ρ0
si · ti = ω2

K∑

i=1

[
mi

ki

(∫

Γi

un

)

· ti +
m2

i

ρ0ki
si · ti

]

∀t :=





t1...
tK



 ∈ R
2K .
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Thus, after some elementary algebraic manipulation, we obtain the following varia-
tional form of problem (2.1):

Find ω > 0 and non-vanishing (u, s) ∈ V × R
2K such that

(2.4) a((u, s), (v, t)) = ω2 b((u, s), (v, t)) ∀(v, t) ∈ V × R
2K ,

where a and b are the bilinear forms defined as follows:

a((u, s), (v, t)) :=

∫

Ω

∇u · ∇v +
K∑

i=1

mi

ρ0
si · ti,(2.5)

b((u, s), (v, t)) :=
1

c2

∫

Ω

uv +

K∑

i=1

ρ0
ki

(∫

Γi

un+
mi

ρ0
si

)

·
(∫

Γi

vn+
mi

ρ0
ti

)

.(2.6)

Both bilinear forms are symmetric, continuous, and elliptic on X := V × R
2K . (Let

us remark that, because of the symmetry, it makes sense to pose the spectral problem
in terms of real eigenvalues and eigenfunctions.) We endow X with the norm ‖ · ‖a
induced by the inner product a(·, ·). We also denote by ‖ · ‖b the norm on X induced
by b(·, ·).

Remark 2.1. Each solution of (2.4) satisfies also this equation for all test func-
tions (v, t) ∈ H1(Ω) × R

2K . This follows from the facts that H1(Ω) = V ⊕ R and
that, for v constant, a((u, s), (v,0)) = 0 and b((u, s), (v,0)) = 0, the latter because
∫

Ω
u = 0 for u ∈ V .
Notice that problem (2.4) is clearly equivalent to (2.2)–(2.3). The previous remark

allows us to show that the variational spectral problem (2.4) is also equivalent to (2.1).
The aim of this paper is to introduce and analyze an hp finite element method to

numerically solve problem (2.4). For the analysis, we will apply the classical spectral
approximation theory from [2]. With this purpose, we introduce the corresponding
solution operator T : X → X defined for each (f, q) ∈ X by T (f, q) := (w, r),
where (w, r) ∈ X is the unique solution of the associated source problem

a((w, r), (v, t)) = b((f, q), (v, t)) ∀(v, t) ∈ V × R
2K .

It is immediate to show that the unique solution of this problem also satisfies

∫

Ω

∇w · ∇v =
1

c2

∫

Ω

fv +
K∑

i=1

(
ρ0
ki

∫

Γi

fn+
mi

ki
qi

)

·
(∫

Γi

vn

)

∀v ∈ V

and

(2.7) ri =
ρ0
ki

∫

Γi

fn+
mi

ki
qi, i = 1, . . . ,K.

Moreover, by substituting (2.7) into the previous equation, we obtain

(2.8)

∫

Ω

∇w · ∇v =
1

c2

∫

Ω

fv +

K∑

i=1

ri ·
(∫

Γi

vn

)

∀v ∈ V .

Hence, because of a standard a priori estimate for the Neumann problem (see [7]), we
know that there exists r > 0 such that w ∈ H1+r(Ω) and

‖w‖H1+r(Ω) ≤ C

[

1

c2
‖f‖2L2(Ω) +

K∑

i=1

‖ri · n‖2L2(Γi)

]1/2

.
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On the other hand, from (2.7),

(2.9) ‖ri · n‖2L2(Γi)
≤ C

(

‖f‖2H1(Ω) + |qi|2
)

, i = 1, . . . K,

so that, because of Poincaré inequality,

(2.10) ‖w‖H1+r(Ω) ≤ C ‖(f, q)‖a .

Consequently, T is a compact operator. Moreover, because of the symmetry of a
and b, T is self-adjoint with respect to any of these inner products. Thus its spectrum
reduces to a sequence of finite-multiplicity eigenvalues converging to 0, the eigenval-
ues being positive because of the ellipticity of both bilinear forms. It is clear that the
non-zero eigenvalues of T are the reciprocals of the eigenvalues of problem (2.4) and
the corresponding eigenfrequencies coincide. This yields a thorough spectral charac-
terization of problem (2.1) because of the equivalence between both problems. Let
us remark that such characterization was also obtained in [4] by means of a slightly
different associated operator.

In the following section, we will analyze a finite element method to solve problem
(2.4). For the analysis, we will restrict our attention to a polygonal domain Ω, which,
subsequently, necessarily has reentrant angles. In such a case, the a priori error
estimate (2.10) can be improved as follows: w ∈ H1+r(Ω) for all r < π

θ , where θ is
the largest reentrant angle of Ω, and

(2.11) ‖w‖H1+r(Ω) ≤ C

[

1

c2
‖f‖2L2(Ω) +

K∑

i=1

|Γi| |ri|2
]1/2

≤ C ‖(f, q)‖a .

For the first inequality above, we have used that ri · n is constant on each straight
segment γ of Γi and, consequently, ‖ri · n‖2H1/2(γ) = ‖ri · n‖2L2(γ) ≤ |ri|2 |γ|. For the
second inequality we have used again (2.9).

3. The hp finite element method. In what follows, we introduce an hp finite
element method to compute the solutions to problem (2.4). Let {Th} be a regular
family of triangular meshes in Ω. Parameter h stands for the mesh-size; namely,
h := maxT∈Th

hT , with hT being the length of the largest edge of the triangle T .
We associate with each element T ∈ Th a (maximal) polynomial degree pT ∈ N.

We assume that the polynomial degrees of neighboring elements are comparable, i.e.,
there exists a constant γ > 0 such that

(3.1) γ−1pT ≤ pT ′ ≤ γpT ∀T, T ′ ∈ Th with T ∩ T ′ 6= ∅.

We denote by p := {pT }T∈Th
the family of polynomial degrees for each triangle.

Throughout the paper, we will denote by C a generic positive constant, not nec-
essarily the same at each occurrence, which may depend on the mesh and the degree
of the polynomials only through the shape ratio of the triangles and the parameter γ,
respectively.

We define the finite element space as follows:

V
p

h := W
p

h ∩ L2
0(Ω), with W

p

h :=
{
v ∈ H1(Ω) : v|T ∈ PpT

∀T ∈ Th

}
,

where PpT
denotes the set of polynomials of degree at most pT . Notice that the

definition of V
p

h allows for different polynomial degrees on each edge of any triangle.
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Therefore, the space {v|T : v ∈ V
p

h } does not necessarily contain all the polynomials
of degree pT . However, there exists p′T ≤ pT such that

(3.2) Pp′

T
⊂ {v|T : v ∈ V

p

h } ⊂ PpT
and pT /p

′
T ≤ γ,

the latter because of assumption (3.1).
By using these finite elements, we obtain the following discretization of prob-

lem (2.4):
Find ωh > 0 and a non-vanishing (uh, sh) ∈ V

p
h × R

2K such that

(3.3) a((uh, sh), (vh, t)) = ω2
h b((uh, sh), (vh, t)) ∀(vh, t) ∈ V

p

h × R
2K .

Since the bilinear forms a and b are symmetric and elliptic in V × R
2K and

V
p

h ⊂ V , this is a well posed generalized eigenvalue problem with N + 2K positive
eigenvalues, where N := dim(V p

h ). (See section 6.1 below for a matrix description of
this problem.)

Remark 3.1. Since W
p

h = V
p

h ⊕ R, the arguments used in Remark 2.1 allow us
to show that (3.3) holds for all test functions (vh, t) ∈ W

p

h × R
2K , too.

By testing this equation separately with (vh,0), vh ∈ Vh, and (0, t), t ∈ R
2K , we

obtain the following discrete analogues to (2.2)–(2.3), which are actually equivalent
to problem (3.3):

∫

Ω

∇uh · ∇vh =
ω2
h

c2

∫

Ω

uhvh +

K∑

i=1

shi ·
(∫

Γi

vhn

)

∀vh ∈ Vh.(3.4)

shi = ω2
h

(
ρ0
ki

∫

Γi

uhn+
mi

ki
shi

)

, i = 1, . . . ,K.(3.5)

Our first goal is to prove that the solutions of the discrete eigenvalue problem (3.3)
converge to those of the spectral problem (2.4). With this aim, we introduce the
corresponding solution operator Th : X → X defined for each (f, q) ∈ X by
Th(f, q) := (wh, rh), where (wh, rh) ∈ V

p

h × R
2K is the unique solution of the as-

sociated source problem

a((wh, rh), (vh, t)) = b((f, q), (vh, t)) ∀(vh, t) ∈ V
p

h × R
2K .

As in the case of the continuous problem, (wh, rh) is uniquely determined by the
following two equations:

∫

Ω

∇wh · ∇vh =
1

c2

∫

Ω

fvh +

K∑

i=1

(
ρ0
ki

∫

Γi

fn+
mi

ki
qi

)

·
(∫

Γi

vhn

)

∀vh ∈ V
p

h

and

(3.6) rhi =
ρ0
ki

∫

Γi

fn+
mi

ki
qi, i = 1, . . . ,K.

Once more, by substituting (3.6) into the previous equation, we can write

(3.7)

∫

Ω

∇wh · ∇vh =
1

c2

∫

Ω

fvh +

K∑

i=1

rhi ·
(∫

Γi

vhn

)

∀vh ∈ V
p

h .
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The following result implies the convergence in norm of Th to T as maxT∈Th

hT

pT

goes to zero, which will be the main tool to prove spectral convergence.
Lemma 3.2. For all r < π

θ , there exists a positive constant C (which depends on
r) such that, for all (f, q) ∈ X ,

‖T (f, q)− Th(f, q)‖a ≤ C

(

max
T∈Th

hT
pT

)r

‖(f, q)‖a .

Proof. Let (f, q) ∈ X . From (2.7) and (3.6) we have that rh = r. Hence

‖T (f, q)− Th(f, q)‖a = |w − wh|H1(Ω) .

Now, from (2.8) and (3.7), Cea’s Lemma implies that

|w − wh|H1(Ω) ≤ |w − (Πp

hw − cw)|H1(Ω)
= |w −Πp

hw|H1(Ω)
,

where Πp

hw denotes the W
p

h -Lagrange interpolant of w (which is well defined be-
cause w ∈ H1+r(Ω), with r > 0) and cw := 1

|Ω|
∫

Ω
Πp

hw is the constant such that

(Πp

hw − cw) ∈ V
p

h .
In its turn, by using standard hp error estimates (see, for instance, [3]) we obtain

|w −Πp

hw|
2

H1(Ω)
≤ C

∑

T∈Th

(
hT
p′T

)2r

‖w‖2H1+r(T ) ,

where p′T is as defined in (3.2). Thus, the result follows from the above expressions
and (2.11).

As a consequence of the classical spectral approximation theory (see [2]) we know
that the eigenvalues and eigenspaces of problem (3.3) converge to those of prob-
lem (2.4) as maxT∈Th

hT

pT
→ 0. From now on, for simplicity, we restrict our attention

to a simple eigenvalue ω2 of problem (2.4) with corresponding eigenfunction (u, s)
normalized in ‖ · ‖b norm. In such a case, if ω2 is the j-th eigenvalue of problem (2.4),
then the j-th eigenvalue of problem (3.3), which we denote ω2

h, is the one which
converges to ω2. Moreover, the corresponding eigenfunction (uh, sh) can be chosen
also normalized in ‖ · ‖b norm and such that (uh, sh) converges to (u, s). In the fol-
lowing theorem we prove a priori error estimates for the approximation of both, the
eigenvalue and the eigenfunction.

Theorem 3.3. For all r < π
θ , there exist positive constants C and κ such that,

if maxT∈Th

hT

pT
< κ, then

‖(u, s)− (uh, sh)‖a ≤ C

(

max
T∈Th

hT
pT

)r

,(3.8)

‖(u, s)− (uh, sh)‖b ≤ C

(

max
T∈Th

hT
pT

)r

‖(u, s)− (uh, sh)‖a ,(3.9)

∣
∣ω2 − ω2

h

∣
∣ ≤ C ‖(u, s)− (uh, sh)‖2a .(3.10)

Proof. The estimate (3.8) is a direct consequence of Lemma 3.2 and the classical
spectral approximation theory (see [2]).
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To prove (3.9), we resort to a duality argument. Let Pp

h be the H1(Ω)-elliptic
projection onto V

p

h defined for any z ∈ V by

(3.11) Pp

h z ∈ V
p

h :

∫

Ω

∇ (Pp

h z − z) · ∇vh = 0 ∀vh ∈ V
p

h .

Hence, it is immediate to check that (Pp

h u, s) is the orthogonal projection of (u, s)
onto V

p

h × R
2K in the inner product a(·, ·); namely,

a((Pp

h u, s)− (u, s), (vh, t)) = 0 ∀(vh, t) ∈ V
p

h × R
2K .

Consequently, we can apply Lemma 6.4-3 from [13] and we have

‖(u, s)− (uh, sh)‖b ≤ C ‖(u, s)− (Pp

h u, s)‖b(3.12)

= C

[
∫

Ω

1

c2
|u− Pp

h u|
2
+

K∑

i=1

ρ0
ki

∣
∣
∣
∣

∫

Γi

(u− Pp

h u)n

∣
∣
∣
∣

2
]1/2

.

Now, let ϕ ∈ V be such that

(3.13)

∫

Ω

∇ϕ · ∇ψ =
1

c2

∫

Ω

(u− Pp

h u)ψ +

K∑

i=1

ρ0
ki

[∫

Γi

(u− Pp

h u)n

]

·
(∫

Γi

ψn

)

for all ψ ∈ V . The same arguments leading to the first inequality in (2.11) allow us
to conclude that ϕ ∈ H1+r(Ω) and

(3.14) ‖ϕ‖H1+r(Ω) ≤ C

[

1

c2

∫

Ω

|u− Pp

h u|
2
+

K∑

i=1

ρ0
ki

∣
∣
∣
∣

∫

Γi

(u− Pp

h u)n

∣
∣
∣
∣

2
]1/2

.

Taking ψ = u− Pp

h u in (3.13) and using (3.11), we obtain

1

c2
‖u− Pp

h u‖
2

L2(Ω)
+

K∑

i=1

ρ0
ki

∣
∣
∣
∣

∫

Γi

(u− Pp

h u)n

∣
∣
∣
∣

2

(3.15)

=

∫

Ω

∇ϕ · ∇ (u− Pp

h u) =

∫

Ω

∇ [ϕ− (Πp

hϕ− cϕ)] · ∇ (u− Pp

h u)

≤ |ϕ−Πp

hϕ|H1(Ω)
|u− Pp

h u|H1(Ω)
,

where, as above, Πp

hϕ denotes the W
p

h -Lagrange interpolant of ϕ and the constant
cϕ := 1

|Ω|
∫

Ω
Πp

hϕ is such that (Πp

hϕ− cϕ) ∈ V
p

h . Then, using once more standard hp

error estimates (cf. [3]), we have

(3.16) |ϕ−Πp

hϕ|H1(Ω)
≤ C

(

max
T∈Th

hT
pT

)r

‖ϕ‖H1+r(Ω) .

Thus, (3.9) follows from (3.12), (3.15), (3.16), (3.14), and the inequality

|u− Pp

h (u)|H1(Ω)
≤ |u− uh|H1(Ω) ≤ ‖(u, s)− (uh, sh)‖a ,

which in its turn holds because Pp

h is the H1(Ω)-projector onto V
p

h .
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Finally (3.10) follows from (3.9) and the well known identity (see, for instance,
[2, Lemma 9.1])

ω2
h − ω2 = ‖(uh, sh)− (u, s)‖2a − ω2 ‖(uh, sh)− (u, s)‖2b .

Thus we conclude the proof.
Remark 3.4. Actually, instead of (3.9), we have proved that

‖(u, s)− (uh, sh)‖b ≤ C

(

max
T∈Th

hT
pT

)r

|u− uh|H1(Ω) .

This will be used for the a posteriori analysis below.
As a by-product of the second error estimate of Theorem 3.3, in what follows we

derive a double order of convergence for the approximation of the velocities of the
tubes, which are typically the physical quantities of interest in the applications.

Corollary 3.5. For all r < π
θ , there exist positive constants C and κ, such

that, if maxT∈Th

hT

pT
< κ, then

|si − shi| ≤ C

(

max
T∈Th

hT
pT

)r

‖(u, s)− (uh, sh)‖a , i = 1, . . . ,K.

Proof. Subtracting (3.5) from (2.3), we have

si − shi =
(
ω2 − ω2

h

)
(
ρ0
ki

∫

Γi

un+
mi

ki
si

)

+ ω2
h

[
ρ0
ki

∫

Γi

(u− uh)n+
mi

ki
(si − shi)

]

,

for i = 1, . . . ,K. To estimate the first term on the right-hand side above we use
(3.10), whereas for the second one we use the definition of ‖ · ‖b to write

∣
∣
∣
∣

ρ0
ki

∫

Γi

(u− uh)n+
mi

ki
(si − shi)

∣
∣
∣
∣
≤ ρ

1/2
0

k
1/2
i

‖(u, s)− (uh, sh)‖b .

Thus, we conclude the proof by using (3.9).

4. The case of an incompressible fluid. When the fluid is modeled as per-
fectly incompressible, the first equation in (2.1) has to be substituted by

∆u = 0 in Ω.

This equation can be seen as the limit of the corresponding one in (2.1) as the sound
speed c goes to infinity. In such a case, most of the analysis of the previous sections
remains valid. In fact, in general, it is enough to delete all the terms multiplied by
1
c2 . In what follows we will discuss those parts of the analysis that must be changed
for an incompressible fluid.

First, the condition
∫

Ω
u = 0 is lost for an incompressible fluid. Indeed, in this

case, the velocity potential u is determined only up to an additive constant. Therefore,
we can still enforce the zero-mean constraint and, consequently, we can use the spaces
L2
0(Ω) and V := H1(Ω) ∩ L2

0(Ω) for the analysis.
Secondly, the bilinear form

(4.1) b((u, s), (v, t)) :=

K∑

i=1

ρ0
ki

(∫

Γi

un+
mi

ρ0
si

)

·
(∫

Γi

vn+
mi

ρ0
ti

)

,
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which results from dropping out the term multiplied by 1
c2 in (2.6), is no longer elliptic

on X . Consequently, ‖ · ‖b is a seminorm rather than a norm in this case.
This fact does not affect the spectral characterization of T , since, anyway, the

operator is still compact and self-adjoint with respect to the inner product a(·, ·).
What changes significantly is the distribution of its spectrum. In fact, now T is an
operator with finite rank 2K, as can be easily seen from the equations analogous to
(2.7) and (2.8); namely, T (f, q) = (w, r), with

ri =
ρ0
ki

∫

Γi

fn+
mi

ki
qi, i = 1, . . . ,K,

and

∫

Ω

∇w · ∇v =

K∑

i=1

ri ·
(∫

Γi

vn

)

∀v ∈ V .

Therefore, 0 is an infinite-multiplicity eigenvalue of T and the rest of the spectrum
consists of 2K positive eigenvalues (counted according to their respective multiplici-
ties).

The discretization of the corresponding problem follows the same lines as that for
a compressible fluid. The analysis is also much the same and Lemma 3.2, Theorem 3.3
and Corollary 3.5 all hold true. The only difference in the proofs arise in that of the
estimate (3.9) from Theorem 3.3. In fact, since for an incompressible fluid the bilinear
form b is not elliptic on X , we cannot use Lemma 6.4-3 from [13] to prove the first
inequality from (3.12). We avoid this drawback by using a variant of that lemma valid
for non negative bilinear forms, which was proved in [1] (cf. Lemma 3.2 therein). The
rest of the proof runs identically.

On the other hand, let us remark that, in most cases, all the inequalities from the
previous sections hold with constants C that are independent of the sound speed c,
as far as c ∈ [c0,+∞), with c0 > 0. The only possible exception happens only in an
extremely rare case, that we discuss in what follows.

Let us recall first something that was shown in [4]: the lowest 2K vibration
frequencies of the problem with a compressible fluid converge to those of the problem
with an incompressible fluid, as the sound speed c goes to infinity (all the other
vibration frequencies in the case of a compressible fluid diverge to +∞).

On the other hand, the constants in the estimates of Theorem 3.3 depend on the
distance of the eigenvalue 1

ω2 of T to the rest of the spectrum of this operator (see
[2, 13]). In the case that a multiple eigenvalue of the operator for an incompressible
fluid were the limit of several simple eigenvalues of the corresponding operator for a
compressible fluid, this distance would go to zero as c → +∞. Thus, in principle, in
such a case, the constants in the estimates of Theorem 3.3 could blow up as c goes to
infinity.

However, typically, multiple eigenvalues occur only because of some symmetry
of the domain. In such a case the multiplicities of the operators corresponding to
compressible and incompressible fluids are usually the same. In principle, Theorem 3.3
does not apply to this case, since it does not cover multiple eigenvalues. However, in
practice, it is standard to take advantage of that symmetry to reformulate the problem
in a reduced domain in which the eigenvalue to be computed is simple. This is what
we have actually done in the numerical experiments reported in section 7 below.

Anyway, for the analogous to Theorem 3.3 to hold with constants independent
of the sound speed, we must add a hypothesis to this theorem (and subsequently to
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Corollary 3.5, since it follows from this theorem) to rule out the possibility of simple
eigenvalues of the compressible problem converging to a multiple eigenvalue of the
incompressible one. Thus, we are lead to the following result:

Theorem 4.1. Let ω2 be a simple eigenvalue of problem (2.4) with b defined by
(2.6) (compressible fluid), which converges to a simple eigenvalue of the same problem
but with b defined by (4.1) (incompressible fluid) as c → +∞. For all r < π

θ , there

exist positive constants C, κ, and c0, such that, if maxT∈Th

hT

pT
< κ and c ≥ co, then

‖(u, s)− (uh, sh)‖a ≤ C

(

max
T∈Th

hT
pT

)r

,

‖(u, s)− (uh, sh)‖b ≤ C

(

max
T∈Th

hT
pT

)r

‖(u, s)− (uh, sh)‖a ,
∣
∣ω2 − ω2

h

∣
∣ ≤ C ‖(u, s)− (uh, sh)‖2a ,

|si − shi| ≤ C

(

max
T∈Th

hT
pT

)r

‖(u, s)− (uh, sh)‖a , i = 1, . . . ,K,

all the estimates with constants C independent of c.
The relevance of this theorem is that it shows that the proposed hp finite element

method can be safely used for nearly incompressible fluids (i.e., c very large), since
the error estimates do not deteriorate as the sound speed c becomes larger.

5. A posteriori error estimator. For an efficient use of an hp finite element
method, an adaptive scheme is typically needed. Such a scheme is based on a posteriori
error indicators and a strategy to decide at each step whether to perform h- or p-
refinement. In this section we derive a residual type a posteriori error estimator and
prove that it is equivalent to the error of the computed eigenfunction up to higher
order terms.

The aim of the adaptive scheme is to obtain meshes more refined around the
singular points of the eigenfunction, accordingly to the strength of the respective
singularities. As will be shown in the numerical test of section 7 below, different
eigenfunctions do not necessarily have the same singularity strength at the same
points, and this happens even for linearly independent eigenfunctions of a same mul-
tiple eigenvalue. Since for multiple eigenvalues, in general, it is not possible to single
out numerical approximations of a particular eigenfunction, the adaptive scheme we
are going to introduce will be useful only for simple eigenvalues. However, we show
in section 7.1 below how it can be applied to multiple eigenvalues arising from the
symmetry of the problem, which is the most usual case in practice.

Let (ω, u, s) and (ωh, uh, sh) be solutions of problems (2.4) and (3.3), respectively.
We assume that ω2 is a simple eigenvalue of problem (2.4), that ω2

h is the (also simple)
eigenvalue of problem (3.3) which converges to ω2 as maxT∈Th

hT

pT
→ 0, and that (u, s)

and (uh, sh) are chosen normalized in norm ‖ · ‖b and such that the estimates from
Theorem 3.3 and Corollary 3.5 hold true.

We denote by eu := u− uh and es := s− sh the respective errors. We will derive
an a posteriori estimator of these errors measured in ‖ · ‖a. The main reason for this
choice is that this is the natural (energy) norm of this problem, which makes the
computations that follow simpler. Moreover, controlling this norm,

‖(eu, es)‖a =

[

‖∇u−∇uh‖2L2(Ω) +

K∑

i=1

mi

ρ0
|si − shi|2

]1/2

,
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allows keeping control on the two quantities that are typically of interest in applica-
tions: the computed fluid velocity amplitude, ∇uh, and the tubes velocity amplitudes,
shi. However, let us remark that, according to Corollary 3.5, the latter are of higher
order than the former, so that the most relevant error measure is ‖∇eu‖L2(Ω).

We introduce some notation that will be used in the definition and analysis of
the error estimator. For any T ∈ Th let ET denote the set of edges of T and E :=
⋃

T∈Th
ET . We decompose E in disjoint sets EΓi

:= {ℓ ∈ E : ℓ ⊂ Γi}, 0 ≤ i ≤ K, and

EΩ := E \⋃K
i=0 EΓi

.
For each ℓ ∈ EΩ we choose a unit normal vector nℓ and denote the two triangles

sharing this edge Tin and Tout, with nℓ pointing outwards Tin. For vh ∈ Vh we set
[[
∂vh
∂n

]]

ℓ

:= ∇
(
vh|Tout

)
· nℓ −∇

(
vh|Tin

)
· nℓ,

which corresponds to the jump of the normal derivative of vh across the edge ℓ. Note
that this value is independent of the chosen direction of the normal vector nℓ.

The first step for the a posteriori error analysis in spectral problems is to write
down a property which plays the role of Galerkin orthogonality in source problems.
With this aim, we use equations (2.4) and (3.3) with a discrete test function (vh, t) ∈
W

p

h × R
2K (notice that this can be done because of Remarks 2.1 and 3.1). Thus, we

obtain

(5.1) a((eu, es), (vh, t)) = ω2 b((u, s), (vh, t))− ω2
h b((uh, sh), (vh, t)).

On the other hand, for any test function (v, t) ∈ V × R
2K , from (2.4) we have

a((eu, es), (v, t)) =
[
ω2 b((u, s), (v, t))− ω2

h b((uh, sh), (v, t))
]

(5.2)

+
[
ω2
h b((uh, sh), (v, t))− a((uh, sh), (v, t))

]
.

As will be shown below, the first expression between brackets will lead to a higher
order term. So, we focus on the second one. This vanishes for (0, t) ∈ V

p

h × R
2K

because of (3.3). Thus, we have

ω2
h b((uh, sh), (v, t))− a((uh, sh), (v, t))

= ω2
h b((uh, sh), (v,0))− a((uh, sh), (v,0))

=
∑

T∈Th

∫

T

(

∆uh +
ω2
h

c2
uh

)

v +
1

2

∑

ℓ∈EΩ

∫

ℓ

[[
∂uh
∂n

]]

ℓ

v

−
∑

ℓ∈EΓ0

∫

ℓ

∂uh
∂n

v −
K∑

i=1

∑

ℓ∈EΓi

∫

ℓ

(
∂uh
∂n

− shi · n
)

v,

where we have used (2.6), integration by parts, and (3.5). The right-hand side above
can be written in terms of residuals of problem (2.1). In fact, for each ℓ ∈ E , we
define the edge residual

Jℓ :=







1

2

[[
∂uh
∂n

]]

ℓ

, if ℓ ∈ EΩ,

−∂uh
∂n

, if ℓ ∈ EΓ0
,

−
(
∂uh
∂n

− shi · n
)

, if ℓ ∈ EΓi
, i = 1, . . . ,K,
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and, for each T ∈ Th, the volumetric residual

RT := ∆ (uh|T ) +
ω2
h

c2
uh|T .

Using these residuals in (5.2), we obtain the error equation of the problem:

a((eu, es), (v, t)) =
[
ω2 b((u, s), (v, t))− ω2

h b((uh, sh), (v, t))
]

(5.3)

+
∑

T∈Th

(
∫

T

RT v +
∑

ℓ∈ET

∫

ℓ

Jℓv

)

∀(v, t) ∈ V × R
2K .

Next step will be to apply this equation to (v,0), with v = eu − Iph eu, where I
p

h

denotes an hp Clément interpolation operator in W
p

h , which was defined in [9]. The
following error estimate, which can be easily proved by using the results from this
reference, hold for this interpolation:

(5.4)
∑

T∈Th

[

p2T
h2T

‖eu − Iph eu‖
2

L2(T )
+
∑

ℓ∈ET

pℓ
|ℓ| ‖eu − Iph eu‖

2

L2(ℓ)

]

≤ C |eu|2H1(Ω) ,

where pℓ := max {pT : ET ∋ ℓ}.
Taking (v, t) = (eu−Iph eu,0) as test function in (5.3) and using (5.1) with (vh, t) =

(Iph eu, es), some algebraic manipulations allow us to write

‖(eu, es)‖2a = a((eu, es) (eu − Iph eu,0)) + a((eu, es), (I
p

h eu, es))(5.5)

=
[
ω2 b((u, s), (eu, es))− ω2

h b((uh, sh), (eu, es))
]

+
∑

T∈Th

[
∫

T

RT (eu − Iph eu) +
∑

ℓ∈ET

∫

ℓ

Jℓ (eu − Iph eu)

]

.

To estimate the first term on the right-hand side above, we recall that ‖(u, s)‖b =
‖(uh, sh)‖b = 1, to write

[
ω2 b((u, s), (eu, es))− ω2

h b((uh, sh), (eu, es))
]

(5.6)

= ω2 ‖(u, s)‖2b −
(
ω2 + ω2

h

)
b((u, s), (uh, sh)) + ω2

h ‖(uh, sh)‖2b
=
(
ω2 + ω2

h

)
−
(
ω2 + ω2

h

)
b((u, s), (uh, sh))

=
ω2 + ω2

h

2
‖(u, s)− (uh, sh)‖2b ≤ C

(

max
T∈Th

hT
pT

)2r

|eu|2H1(Ω) ,

where we have used Remark 3.4 for the last inequality. Notice that, since |eu|H1(Ω) ≤
‖(eu, es)‖a, this shows that this is a higher order term in (5.5).

To estimate the second term on the right-hand side of (5.5), we use Cauchy-
Schwarz inequality and (5.4) to write

(5.7)
∑

T∈Th

[
∫

T

RT (eu − Iph eu) +
∑

ℓ∈ET

∫

ℓ

Jℓ (eu − Iph eu)

]

≤ C

{
∑

T∈Th

[

h2T
p2T

‖RT ‖2L2(T ) +
∑

ℓ∈ET

|ℓ|
pℓ

‖Jℓ‖2L2(ℓ)

]}1/2

|eu|H1(Ω) .
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This suggests us to define the local error indicators

(5.8) η2T :=
h2T
p2T

‖RT ‖2L2(T ) +
∑

ℓ∈ET

|ℓ|
pℓ

‖Jℓ‖2L2(ℓ) , T ∈ Th,

(recall that pℓ := max {pT : ET ∋ ℓ}) and the corresponding global error estimator

(5.9) η2Ω :=
∑

T∈Th

η2T .

Thus, from (5.5)–(5.9), we conclude the following result.
Theorem 5.1. There exists a positive constant C such that

‖(eu, es)‖a ≤ C

[

ηΩ +

(

max
T∈Th

hT
pT

)2r

|eu|H1(Ω)

]

.

Since the term
(
maxT∈Th

hT

pT

)2r |eu|H1(Ω) is clearly asymptotically negligible with
respect to the left-hand side of this estimate, we conclude that the error of the method
‖(eu, es)‖a is bounded above by the global estimator ηΩ up to a higher order term and
a multiplicative constant. In other words, ηΩ is an asymptotically reliable a posteriori
error estimate.

In order to guarantee that the error indicator is efficient to guide an adaptive
refinement scheme, in what follows we will prove that ηT is bounded by the H1-norm
of the error in a neighborhood of T , up to some additional terms which will be shown
to be (globally) asymptotically negligible.

With this end, the first step is to prove upper estimates for all the residuals
appearing in the definition of the error indicators ηT (cf. (5.8)). The following two
lemmas provide such estimates for the volumetric and edge residuals, respectively.

Lemma 5.2. There exists a positive constant C such that

hT
pT

‖RT ‖L2(T ) ≤ CpT |eu|H1(T ) +
hT
c2
∥
∥ω2u− ω2

huh
∥
∥
L2(T )

.

Lemma 5.3. For all δ > 0, there exists a positive constant Cδ such that, if
ℓ ∈ EΩ ∪ EΓ0

, then

|ℓ|1/2

p
1/2
ℓ

‖Jℓ‖L2(ℓ) ≤ Cδ

[

p1+δ
ℓ |eu|H1(ωℓ)

+
pδℓ |ℓ|
c2

∥
∥ω2u− ω2

huh
∥
∥
L2(ωℓ)

]

and, if ℓ ∈ EΓi
, 1 ≤ i ≤ K, then

|ℓ|1/2

p
1/2
ℓ

‖Jℓ‖L2(ℓ) ≤ Cδ

[

p1+δ
ℓ |eu|H1(ωℓ)

+
pδℓ |ℓ|
c2

∥
∥ω2u− ω2

huh
∥
∥
L2(ωℓ)

+ pδℓ |ℓ| |si − shi|
]

,

where ωℓ :=
⋃ {T ∈ Th : ℓ ∈ ET }.

We do not include the proofs of these two lemmas since they are similar to those
of Lemmas 4.1 and 4.2 from [1], respectively. They are based on using the error
equation (5.3) with test functions of the form (v,0), for different convenient bubble
functions v.

Now we are in a position to prove the following upper estimate for ηT .
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Theorem 5.4. For all δ > 0, there exists a positive constant Cδ such that for all
T ∈ Th, if T has only inner edges (i.e., edges ℓ ∈ EΩ), then

(5.10) ηT ≤ Cδp
1+δ
T

[

|eu|H1(ωT ) +
hT
pT c2

∥
∥ω2u− ω2

huh
∥
∥
L2(ωT )

]

and, if T has an edge lying on Γi, i = 1, . . . ,K, then

(5.11) ηT ≤ Cδp
1+δ
T

[

|eu|H1(ωT ) +
hT
pT c2

∥
∥ω2u− ω2

huh
∥
∥
L2(ωT )

+
hT
pT

|si − shi|
]

,

where ωT :=
⋃ {T ′ : T and T ′ share an edge}.

Proof. It is an immediate consequence of Lemmas 5.2 and 5.3 and the assump-
tion (3.1).

The estimates of this theorem have two drawbacks. The first one is that the
‘constants’ Cδp

1+δ
T obviously depend on the polynomial degree pT . The second one

is that the right-hand sides include additional terms hT

pT c2 ‖ω2u − ω2
huh‖L2(ωT ) and

hT

pT
|si − shi| that should be negligible for (5.10) and (5.11) to be actual efficiency

estimates. We will address the first drawback at the end of this section. Regarding
the second one, what we can prove is that the global estimator ηΩ defined from ηT
(cf. (5.9)) satisfies an efficiency estimate up to higher order terms. In fact, from
Lemmas 5.2 and 5.3, for all δ > 0 we have the following global lower error estimate:

(5.12) ηΩ ≤ Cδ (maxp)
1+δ (‖(eu, es)‖2a + h.o.t.

)1/2
,

where

h.o.t. :=
∑

T∈Th

h2T
p2T c

2

∥
∥ω2u− ω2

huh
∥
∥
2

L2(T )
+

K∑

i=1

∑

ℓ∈EΓi

|ℓ|2
p2ℓ

|si − sih|2

≤
(

max
T∈Th

hT
pT

)2
[

ω2

c2
‖u− uh‖2L2(Ω) +

∣
∣ω2 − ω2

h

∣
∣

c2
‖uh‖2L2(Ω)

]

+
2

min p

(

max
T∈Th

hT
pT

) K∑

i=1

|Γi| |si − sih|2 .

Hence, from (3.9), (3.10), and the fact that ‖(uh, sh)‖b = 1, we have

h.o.t. ≤ C

[(

max
T∈Th

hT
pT

)2+2r

‖(eu, es)‖2a +
(

max
T∈Th

hT
pT

)2

‖(eu, es)‖4a

+

(

max
T∈Th

hT
pT

)1+2r

‖(eu, es)‖2a

]

,

which is clearly a higher order term as compared with ‖(eu, es)‖2a.
On the other hand, as mentioned above, the efficiency estimate (5.12) is subopti-

mal in that the equivalence constant depends on the polynomial degree. In contrast to
the case of h-refinement, it seems to be an open question whether uniform reliability
and efficiency can be achieved for an hp a posteriori estimator. In fact, to the best of
the authors’ knowledge, proofs of upper and lower bounds for the energy norm of the
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error, both independent of the polynomial degree p, have not been reported yet for
any hp finite element method. Nevertheless, according to the experiments reported
in section 7, this seems to be just a theoretical issue. Indeed, the degrees achieved in
the experiments are not that large, so that the factor p1+δ can be considered bounded
for practical purposes.

6. Implementation issues. In this section we analyze some aspects concerning
the computer solution of the discrete problem. In particular, we give a matrix de-
scription of the algebraic eigenvalue problem to be solved and an adaptive refinement
strategy based on the error indicators ηT .

6.1. The matrix eigenvalue problem. To write problem (3.3) in matrix form,

we introduce the finite element nodal basis {ϕh,i}Ni=1 of W
p

h corresponding to the set

of nodes N := {Pi}Ni=1 of this space (i.e., ϕh,i(Pj) = δij , i, j = 1, . . . , N). Let
uh :=

(
uh(Pi)

)
∈ R

N be the vector of nodal components. Then, (3.3) leads to

(6.1)

(
K∆ 0

0 K22

)

︸ ︷︷ ︸

K

(
uh

sh

)

= ω2
h

(
1
c2M∆ +MΓ M12

M t
12 M22

)

︸ ︷︷ ︸

M

(
uh

sh

)

,

where sh ∈ R
2K is as in (3.3),

K∆ :=

(∫

Ω

∇ϕh,i · ∇ϕh,j

)

and M∆ :=

(∫

Ω

ϕh,iϕh,j

)

∈ R
N×N

are the standard stiffness and mass matrices, respectively, of the Laplace operator,
and K22,M22 ∈ R

2K×2K are the diagonal matrices defined as follows:

K22 :=
1

ρ0
diag (m1,m1, . . . ,mK ,mK) , M22 :=

1

ρ0
diag

(
m2

1

k1
,
m2

1

k1
, · · · , m

2
K

kK
,
m2

K

kK

)

.

To define MΓ and M12, we previously introduce the auxiliary matrices

Bj :=

(∫

Γj

ϕh,1n · · ·
∫

Γj

ϕh,Nn

)

∈ R
2×N , j = 1, . . . ,K.

Then,

MΓ :=

K∑

j=1

ρ0
kj

Bt
jBj ∈ R

N×N and M12 :=
(m1

k1
Bt

1 . . .
mK

kK
Bt

K

)

∈ R
N×2K .

Notice that (6.1) corresponds to an eigenvalue problem posed on W
p

h and that
the constraint

∫

Ω
uh = 0 in the definition of V

p

h is not imposed. However, we show in
what follows that there is no need of imposing it.

The symmetric matrix K is only positive semidefinite and

kerK =
〈
v0
h

〉
, where v0

h =

(
u0
h

0

)

, with u0
h :=





1...
1



 ∈ R
N .

In its turn, since b is actually elliptic on the whole space W
p

h , we have that the
symmetric matrix M is positive definite. Therefore, (6.1) is a well posed generalized
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eigenvalue problem, which has v0
h as an eigenvector corresponding to the eigenvalue

ω2
h = 0. All the other eigenvectors (uh, sh) of problem (6.1) are M-orthogonal to

v0
h. This together with the facts that MΓu

0
h = 0 and M t

12u
0
h = 0 (which can be

readily verified) lead to
∫

Ω
uh = ut

hM∆u
0
h = 0. Therefore, all the eigenvectors of

problem (6.1), except for v0
h, correspond to the eigenfunctions (uh, sh) ∈ V

p

h × R
2K

of problem (3.3).

In the incompressible case, the term 1
c2M∆ does not appear in (6.1). Thus, the

matrix M is no longer positive definite and v0
h ∈ kerM, too (because of MΓu

0
h = 0

and M t
12u

0
h = 0). So, now (6.1) is not a well posed generalized eigenvalue problem.

To obtain a well posed problem, a zero mean constraint was also assumed in this
case for the analysis (cf. section 4). Alternatively, problem (3.3) can be posed in
(W p

h /R) × R
2K instead of V

p

h × R
2K . In such a case, since the vector of nodal

components of functions in W
p

h /R lies in R
N/
〈
u0
h

〉
, it is only necessary to fix any

linear constraint not satisfied by v0
h. This is easily accomplished in practice by fixing

one arbitrary nodal value of uh to zero, which leads to a positive definite left-hand
matrix and, then, to a well posed problem.

6.2. Adaptive refinement strategy. We propose an adaptive scheme based
on the error indicators ηT , an average strategy to mark the elements to be refined,
and a variant of the approach from [9] to decide whether to proceed with an h- or
a p-refinement. A similar scheme has been introduced in [1] for another formulation
of a particular case of problem (2.1) (incompressible fluid and the same parameters
and geometry for all tubes). We report in Table 6.1 the resulting algorithm and refer
to [1] and [9] for more details and the justification of each step of the marking and
refinement procedure.

Table 6.1

Adaptive scheme algorithm

η
pred

T := 0 ∀T in the initial mesh.
Iterate:

SOLVE (6.1);
COMPUTE ηT by means of (5.8),
η2
M := 1

#Th

∑

T∈Th
η2
T ;

MARK & REFINE as follows:
If η2

T ≥ θη2
M then

if η2
T ≥

(

η
pred

T

)2

then

subdivide T into 4 triangles Tj , 1 ≤ j ≤ 4,
longest edge strategy to maintain mesh conformity,
pTj := pT ,
(

η
pred

T j

)2

:= γh

(

|Tj |
|T |

)pT+1

η2
T ,

else
pT := pT + 1,
(

η
pred

T

)2

:= γpη
2
T ,

end
else

(

η
pred

T

)2

:= γn

(

η
pred

T

)2

,

end
until a stopping criterion is satisfied.
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The algorithm in Table 6.1 relies on four positive parameters, θ, γh, γp, and γn
that can be fixed by the user. We refer once more to [1, 9] for further details.

7. A numerical test. The adaptive scheme analyzed in the previous sections
has been designed with the goal of yielding optimal meshes for the computation of
vibration modes corresponding to simple eigenvalues. However, in practice, it is very
usual to have to deal with problems which have multiple eigenvalues because of the
symmetry of the domain. This is the reason why we have chosen one such problem
to show how the methodology described above can be used to solve it efficiently, too.

7.1. Exploiting the symmetry to deal with multiple eigenvalues. To
illustrate the behavior of the adaptive scheme, we have applied it to compute the
lowest-frequency vibration modes of the coupled system sketched in Figure 7.1. It
consists of a square tube with side length 0.005

√
2m centered in a quadrilateral fluid-

filled cavity of side length 0.02m, as shown in Figure 7.1 (left).

0.005 0.01−0.005

0.01

0.005

−0.005

−0.01

−0.01

y

x

Ω

Γ

y

σ2

xσ1

γ

Q

Fig. 7.1. Symmetric domain (left) and right-top quarter of the domain (right).

For the fluid, we have used physical parameters of water: ρ0 = 1000 kg/m3 and
c = 1493m/s. For the tube we have used the parameters m = 0.22 kg/m and k =
27800N/m2, which have been taken from [12].

The two lowest-frequency vibration modes correspond to a unique eigenvalue of
multiplicity two. A particular basis for the corresponding eigenspace can be chosen
so that the tube moves in the vertical direction (“North-South”) for one of the basis
eigenmodes and in the horizontal direction (“East-West”) for the other one. Accord-
ingly, the velocity potential u satisfies different symmetry conditions for each of these
two vibration modes. For that in which the tube moves North-South, u is symmetric
with respect to the y-axis and antisymmetric with respect to the x-axis. The converse
holds for the vibration mode in which the tube moves East-West.

Since the treatment of each of these two vibration modes is essentially identical,
we have chosen for our test one of them: the mode involving North-South motion of
the tube. In such a case, the tube velocity takes the form

(7.1) s :=

(
0
s

)

, s ∈ R.

The symmetry of the problem leads us to consider a reduced problem posed on a
quarter of the domain. We have chosen the right-top quarter Q shown in Figure 7.1
(right); in what follows we use the notation introduced in this figure. According to the
assumed motion of the tube, the fluid velocity potential has to satisfy the additional
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boundary conditions

u = 0 on σ1 and
∂u

∂n
= 0 on σ2.

Let us remark that, in principle, the assumed symmetry only implies that the fluid
velocity ∇u has to be orthogonal to σ1, which in its turn implies that σ1 has to be
part of a level curve of u. However, since

∫

Ω
u = 0, necessarily u has to vanish on σ1.

Reducing problem (2.1) to the domain Q is not quite straightforward because
of the non-local character of the term

∫

Γ
un. To derive the correct problem on Q,

we write the variational formulation (2.4) in terms of quantities restricted to this
domain. In particular, for u and v being symmetric with respect to the y-axis and
antisymmetric with respect to the x-axis, we have the following relations:

∫

Ω

∇u · ∇v = 4

∫

Q

∇u · ∇v,
∫

Ω

uv = 4

∫

Q

uv,

∫

Γ

un =

(
0

4
∫

γ
un2

)

,

∫

Γ

vn =

(
0

4
∫

γ
vn2

)

.

Therefore, using these relations, (7.1), and the analogue for the test function, t =

(

0
t

)

,

we are lead to the following problem:
Find ω > 0 and non-vanishing (u, s) ∈ H1

σ1
(Q)× R such that

(7.2) 4

∫

Q

∇u·∇v+m

ρ0
st = ω2

[
4

c2

∫

Q

uv +
ρ0
k

(

4

∫

γ

un2 +
m

ρ0
s

)(

4

∫

γ

vn2 +
m

ρ0
t

)]

for all (v, t) ∈ H1
σ1
(Q)× R, where H1

σ1
(Q) :=

{
v ∈ H1(Q) : v|σ1

= 0
}
.

The theoretical framework developed in the previous sections extends readily to
this problem.

7.2. Numerical results. The uniform coarse mesh shown in Figure 7.2 (left)
has been used to initiate the adaptive process with quadratic finite elements in all
triangles. The color palette used in this and all forthcoming meshes indicates the
polynomial degree of each element.

Fig. 7.2. Domain and initial mesh (left) and refined mesh at step 25 for the lowest-frequency
vibration mode with North-South motion of the tube (right)
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Although we actually solve the problem in a quarter of the domain, for an easier
visualization we show the corresponding results in the whole domain. In particular,
Figure 7.2 (right) shows the resulting refined mesh at step 25.

In this test, the fluid domain has reentrant angles at the vertices of the tube.
Because of this, the computed eigenfunction is singular at these four points. However,
the singularity strength at the Northern-Southern vertices differ from that at the
Eastern-Western ones. The behavior of the adaptive scheme in the neighborhood of
the two different singularities can be appreciated from Figures 7.3 and 7.4.

Fig. 7.3. Lowest-frequency vibration mode with North-South motion of the tube. Successive
zooms at the Eastern vertex of the refined mesh at step 25.

These figures show sequences of zooms of the mesh at step 25 around two different
singular points: the Eastern (Figure 7.3) and the Northern (Figure 7.4) vertices of the
tube. The last zoom in Figure 7.3 enlarges the mesh 107 times, while the last zoom
in Figure 7.4 enlarges it only 104 times. Therefore, we observe from these figures that
the smallest elements near the Eastern vertex are approximately 1000 times smaller
than those around the Northern vertex. This indicates that, in this case, the strongest
singularities appear at the Eastern-Western vertices of the square. Moreover, in both
cases, we observe the typical hp adaptive behavior: the closer to the singularity, the
more dominant the h-refinement is. In particular there is no p-refinement at all in the
elements nearest the strongest singularity.

It is known (see, for instance, [3]) that a proper combination of h- and p-refinement
allows obtaining an exponential rate of convergence in terms of a fractional power of
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Fig. 7.4. Lowest-frequency vibration mode with North-South motion of the tube. Successive
zooms at the Northern vertex of the refined mesh at step 25.

the number N of degrees of freedom in the finite element mesh. We use the same
vibration mode as above to investigate this rate of convergence. Figure 7.5 (left)
shows a plot of log ηΩ versus 3

√
N , which allows us to observe that the estimated error

ηΩ behaves asymptotically as follows:

ηΩ ≈ κ1e
−α

3
√
N .
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     κ2 = 1.125 x 105
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Fig. 7.5. Lowest-frequency vibration mode with North-South motion of the tube. Error curves:
ηΩ (logarithm scale) versus 3

√

N (left) and ω2
h
− ω2 (logarithm scale) versus 3

√

N(right).

No analytical solution is available in this case to check whether the actual error
also attains an exponential rate of convergence. To provide some numerical evidence
of such a behavior, we have estimated the error of the computed eigenvalues by using
as ‘exact’ a more accurate approximation obtained by an extrapolation procedure. To
do this, we have used the fact that the computed eigenvalues are expected to converge
with double order and we have determined the parameters ω2, κ2, and α in the model

ω2
h ≈ ω2 + κ2 e

−2α
3
√
N ,

by means of a weighted least-squares fitting. The weights have been chosen so that
the more accurate the computed values ωh (i.e., the larger the number of degrees
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of freedom of the used mesh), the more significant the role in the fitting. Since we

found that the residuals of these meshes are approximately proportional to e−2α
3
√
N ,

we have chosen the weights equal to e4α
3
√
N . Thus, we have obtained a fitted value

ω2 = 92928.70795816 which we have used to plot log(ω2
h − ω2) versus 3

√
N . This

plot is shown in Figure 7.5 (right), where a linear dependence can be clearly seen for
sufficiently large values of N .

The computed values of α in both fittings are quite close: α = 0.5827 in the
former and α = 0.5813 in the latter. This excellent agreement provides a sound
numerical evidence of the fact that the error estimate behaves asymptotically as the
actual error. Such convergence behavior is coherent with the theoretically expected
exponential decay of the error with respect to the number of degree of freedom. In

fact, the estimated convergence rated e−α
3
√
N is typical for the hp version of the finite

element method for source elliptic problems with piecewise analytical data in the
presence of corner singularities (cf. [3]). Let us remark that this convergence rate
does not agree with what was reported in a previous paper [1], where an improved

rate eα
√
N seemed to be observed for another formulation applied to a similar test.

We report in Table 7.1 the ten lowest vibration frequencies of this test problem.
Each of them has been computed by means of a particular execution of the adaptive
scheme and a subsequent least squares fitting as described above. In all cases, we have
used formulations reduced to a quarter of the domain analogous to (7.2), which result
from taking advantage of the different symmetry conditions of each corresponding
eigenfunction.

Table 7.1

Lowest vibration frequencies

Mode f (Hz)

1 48.51712761
2 48.51712761
3 32810.71079
4 32810.71079
5 49255.90150
6 71587.34925
7 82786.44265
8 82786.44265
9 85852.07346
10 105947.55960

We observe in Table 7.1 a significant gap between the first (double) vibration
frequency and the rest of the spectrum. The two lowest-frequency vibration modes
(which are the most relevant in practice) correspond to vibrations of the tube modified
by the presence of the fluid, which behaves as almost incompressible. This eigenfre-
quency depend strongly on the coefficients k and m of the tube and only very slightly
on those of the fluid, ρ0 and c. In this case, the fluid motion is induced as response
to the movement of the tube. All the other eigenfrequencies of this test correspond
to acoustic vibration modes of the fluid; they are almost proportional to the sound
speed c and depend only slightly of the physical parameters of the tube. In this case,
it is the tube which moves as a consequence of the difference of pressure exerted by
the fluid on its walls. Figures 7.6 and 7.7 show the velocity fields of the fluid and the
tube for the four lowest-frequency vibration modes. Each of these figures shows two
linearly independent eigenmodes corresponding to a double eigenvalue (see Table 7.1).
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Notice the symmetry of the velocity fields at left and right of each figure.

Fig. 7.6. Velocity fields of the lowest-frequency vibration modes with North-South (left) and
East-West (right) motion of the tube.

Fig. 7.7. Velocity fields of the second lowest-frequency vibration modes.

On the other hand, as shown in section 4, the numerical method is also applicable
to perfectly incompressible fluids. To test the adaptive scheme in this case, we have
used the same problem but with “incompressible water”; namely, a fluid with the
same density as water, ρ0 = 1000 kg/m3, but sound speed c = ∞. In this case,
there is only one (double) eigenfrequency, since all the acoustic modes blow up as
c goes to ∞. The computed vibration frequency is f∞ = 48, 51713814Hz. This
value agrees with that obtained in [1] with an alternative formulation valid only for
incompressible fluids applied to the same test problem. Notice how close is f∞ to the
first vibration frequencies reported in Table 7.1. This justifies modeling in this case
the fluid as incompressible. On the contrary, the presence of the fluid in the model
plays a significant role, as can be seen from the fact that the vibration frequency of

the tube in absence of fluid is significantly larger: f∅ := 1
2π

√
k
m = 56.57586324Hz.



24 C. PADRA, R. RODRÍGUEZ, AND M. SCHEBLE
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