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Analysis of an augmented fully-mixed finite element method for
a three-dimensional fluid-solid interaction problem

Gabriel N. Gatica, Antonio Marquez,
Salim Meddahi

PREPRINT 2011-23

SERIE DE PRE-PUBLICACIONES





Analysis of an augmented fully-mixed finite element method

for a three-dimensional fluid-solid interaction problem∗

Gabriel N. Gatica†
, Antonio Márquez‡, Salim Meddahi§

Abstract

We introduce and analyze an augmented fully-mixed finite element method for a fluid-solid inter-
action problem in 3D. The media are governed by the acoustic and elastodynamic equations in
time-harmonic regime, and the transmission conditions are given by the equilibrium of forces and
the equality of the corresponding normal displacements. We first employ dual-mixed variational
formulations in both domains, which yields the Cauchy stress tensor and the rotation of the solid,
together with the gradient of the pressure of the fluid, as the preliminary unknowns. This approach
allows us to extend an idea from a recent own work in such a way that both transmission conditions
are incorporated now into the definitions of the continuous spaces, and therefore no unknowns on
the coupling boundary appear. As a consequence, the pressure of the fluid and the displacement of
the solid become explicit unknowns of the coupled problem, and hence two redundant variational
terms arising from the constitutive equations, both of them multiplied by stabilization parameters,
need to be added for well-posedness. In fact, we show that explicit choices of the above mentioned
parameters and a suitable decomposition of the spaces allow the application of the Babuška-Brezzi
theory and the Fredholm alternative for concluding the solvability of the resulting augmented for-
mulation. The unknowns of the fluid and the solid are then approximated by a conforming Galerkin
scheme defined in terms of Arnold-Falk-Winther and Lagrange finite element subspaces of order 1.
The analysis of the discrete method relies on a stable decomposition of the finite element spaces
and also on a classical result on projection methods for Fredholm operators of index zero. Finally,
numerical results illustrating the theory are also presented.
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1 Introduction

In this paper we focus again on the three-dimensional fluid-solid interaction problem studied recently
in [16] (see also [14] for the corresponding 2D version). More precisely, our physical model of interest
consists of a bounded elastic body (obstacle) Ωs in R3 with boundary Σ, subject to a volume force
F, that is fully surrounded by a fluid. Then, given an incident acoustic wave Pi upon Ωs, we are
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interested in determining both the response of the body and the scattered wave. We assume that
Pi and F exhibit a time-harmonic behaviour with frequency ω and amplitudes pi and f , respectively,
so that pi satisfies the Helmholtz equation in R3\Ωs. Hence, we may consider that this interaction
problem is posed in the frequency domain. In addition, in what follows we let σs : Ωs → C3×3,
u : Ωs → C3, and p : R3\Ωs → C be the amplitudes of the Cauchy stress tensor, the displacement
field, and the total (incident + scattered) pressure, respectively, where C stands for the set of complex
numbers.

The fluid is assumed to be perfect, compressible, and homogeneous, with density ρf and wave

number κf :=
ω

v0
, where v0 is the speed of sound in the linearized fluid, whereas the solid is supposed

to be isotropic and linearly elastic with density ρs and Lamé constants µ and λ. The latter means, in
particular, that the corresponding constitutive equation is given by Hooke’s law, that is

σs = λ tr ε(u) I + 2µ ε(u) in Ωs , (1.1)

where ε(u) := 1
2 (∇u+ (∇u)t) is the strain tensor of small deformations, ∇ is the gradient tensor, tr

denotes the matrix trace, t stands for the transpose of a matrix, and I is the identity matrix of C3×3.
Consequently, under the hypotheses of small oscillations, both in the solid and the fluid, the unknowns
σs, u, and p satisfy the elastodynamic and acoustic equations in time-harmonic regime, that is:

divσs + κ2s u = − f in Ωs ,

∆p + κ2f p = 0 in R3\Ωs ,

where the wave number κs of the solid is defined by
√
ρs ω, together with the transmission conditions:

σs ν = − pν on Σ ,

ρf ω
2 u · ν =

∂p

∂ν
on Σ ,

(1.2)

and the behaviour at infinity given by

p− pi = O(r−1) (1.3)

and
∂(p − pi)

∂r
− ı κf (p− pi) = o(r−1) , (1.4)

as r := ‖x‖ → +∞, uniformly for all directions
x

‖x‖ . Hereafter, div stands for the usual di-

vergence operator div acting on each row of the tensor, ‖x‖ is the euclidean norm of a vector
x := (x1, x2, x3)

t ∈ R3, and ν denotes the unit outward normal on Σ, that is pointing toward R3\Ωs.
The transmission conditions given in (1.2) constitute the equilibrium of forces and the equality of the
normal displacements of the solid and fluid, whereas the equation (1.4) is known as the Sommerfeld
radiation condition.

In the recent work [16] we introduce and analyze a new finite element method for the above
interaction problem. Actually, we initially proceed as in [14] and simplify a bit the original model by
assuming that the fluid occupies a bounded annular region Ωf . Hence, a Robin boundary condition
imitating the behavior of the scattered field at infinity is imposed on the exterior boundary of Ωf ,
which is located far from the obstacle. Then, we employ a dual-mixed formulation for plane elasticity
in the solid, in which the elastodynamic equation is used to eliminate the displacement unknown, and
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keep the usual primal method in the fluid region. The main novelty of our approach in [16] with
respect to [14] is the incorporation of the first equation of (1.2) into the definition of the product
space to which the pair (σs, p) belongs. In this way, we avoid the introduction of further unknowns
(Lagrange multipliers) on the boundary of the solid, which otherwise would yield later on a more
complicated discrete analysis and a more expensive Galerkin scheme. Indeed, the strategy involving a
Lagrange multiplier on the transmission boundary would require the use of two finite element meshes
satisfying a stability condition between their corresponding mesh sizes, which certainly constitutes a
very cumbersome restriction in 3D computations. Therefore, thanks to the availability of the new
stable mixed finite elements for 3D linear elasticity with weak symmetry (see, e.g. [3], [5], [10]),
the unknowns of the solid and the fluid are approximated in [16] by the corresponding components
of the Arnold-Falk-Winther (AFW) and Lagrange finite element subspaces of order 1, respectively.
The resulting AFW element, which involves the lowest polynomial degrees, consists of piecewise linear
approximations for the stress and piecewise constants functions for both the displacement and rotation
unknowns. Thus, because of the coincidence between the polynomial shape-functions approximating
σs ν and − pν, we are able to generate a conforming finite element subspace for (σs, p). In other words,
the equilibrium of forces on Σ is exactly satisfied at the discrete level, and hence a natural coupling
of the Lagrange and AFW elements of lowest order with respect to that transmission condition is
obtained.

The purpose of the present paper is to furtherly extend the approach from [16] by employing
now dual-mixed formulations in both media. This means that, besides σs, we now set the additional
unknown

σf := ∇p in R3\Ωs , (1.5)

so that the Helmholtz equation and the second condition in (1.2) are rewritten, respectively, as

divσf + κ2f p = 0 in R3\Ωs , (1.6)

and
σf · ν = ρf ω

2 u · ν on Σ . (1.7)

The main motivation for introducing σf and the resulting equation (1.6) lies on the eventual need of
obtaining direct and more accurate finite element approximations for the pressure gradient σf := ∇p
(instead of applying numerical differentiation, with the consequent loss of accuracy, to the approxima-
tion of p arising from the usual primal formulation). In particular, the above is required for solving
the inverse problem related to the Helmholtz equation, in which the boundary integral representation
of the far field pattern, a crucial variable in an associated iterative algorithm, depends not only on
the trace of p but also on the normal trace of σf (see, e.g. [11, Chapter 2, Theorem 2.5]). Certainly,
a H(div)-type approximation of σf is better suited for this purpose. Furthermore, the fact that the
second transmission condition on Σ is given now by (1.7) allows to incorporate it into the definition of
the space to which the pair (σf ,u) belongs, thus providing another advantage of utilizing a dual-mixed
approach in the fluid. In turn, since the pressure of the fluid and the displacement of the solid become
explicit unknowns of the coupled problem, two redundant variational equations taken from (1.1) and
(1.5), both of them multiplied by stabilization parameters, need to be added for the corresponding
solvability analysis. In this way, we arrive at what we call the augmented fully-mixed formulation
of our fluid-solid interaction problem. The rest of this work is organized as follows. In Section 2 we
redefine the fluid-solid interaction problem on a bounded domain of R3 (as in [14] and [16]), and derive
the associated continuous variational formulation. Then, in Section 3 we analyze the resulting saddle
point problem and provide sufficient conditions for its well-posedness. The corresponding Galerkin
scheme is studied in Section 4. Finally, numerical results illustrating the analysis are reported in
Section 5.
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We end this section with further notations to be used below. Since in the sequel we deal with
complex valued functions, we use the symbol ı for

√
−1, and denote by z and |z| the conjugate and

modulus, respectively, of each z ∈ C. Also, given τ := (τij), ζ := (ζij) ∈ C3×3, we define the
deviator tensor τ d := τ − 1

3 tr(τ ) I, the tensor product τ : ζ :=
∑3

i,j=1 τij ζij , and the conjugate
tensor τ := (τ ij). In turn, in what follows we utilize standard simplified terminology for Sobolev
spaces and norms. In particular, if O is a domain, S is a closed Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]3 , H
r(O) := [Hr(O)]3×3 , and Hr(S) := [Hr(S)]3 .

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S),
respectively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and H

r(O)) and
‖ · ‖r,S (for Hr(S) and Hr(S)). In general, given any Hilbert space H, we use H and H to denote
H3 and H3×3, respectively. In addition, we use 〈·, ·〉S to denote the usual duality pairings between
H−1/2(S) and H1/2(S), and between H−1/2(S) and H1/2(S). Furthermore, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : divw ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [8], [18]). The space of matrix valued functions whose
rows belong to H(div;O) will be denoted H(div;O). The Hilbert norms of H(div;O) and H(div;O)
are denoted by ‖ · ‖div;O and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then div τ ∈ L2(O).
Finally, we employ 0 to denote a generic null vector (including the null functional and operator), and
use C and c, with or without subscripts, bars, tildes or hats, to denote generic constants independent
of the discretization parameters, which may take different values at different places.

2 The continuous variational formulation

We begin by remarking, as a consequence of (1.3) and (1.4), that the outgoing waves are absorbed
by the far field. According to this fact, and in order to obtain a suitable simplification of our model
problem, we now proceed similarly as in [14] and [16] and introduce a sufficiently large polyhedral
surface Γ approximating a sphere centered at the origin, whose interior contains Ωs. Then, we define
Ωf as the annular region bounded by Σ and Γ, and consider, for simplicity, the Dirichlet boundary
condition:

p = pi on Γ .

Therefore, given f ∈ L2(Ωs) and pi ∈ H1/2(Γ), we are now interested in the following fluid-solid
interaction problem: Find σs ∈ H(div; Ωs), u ∈ H1(Ωs), σf ∈ H(div; Ωf ), and p ∈ H1(Ωf ), such
that there hold in the distributional sense:

σs = C ε(u) in Ωs ,

divσs + κ2s u = − f in Ωs ,

σf = ∇p in Ωf ,

divσf + κ2f p = 0 in Ωf ,

σs ν = − pν on Σ ,

σf · ν = ρf ω
2 u · ν on Σ ,

p = pi on Γ ,

(2.1)

where C is the elasticity operator given by Hooke’s law, that is

C ζ := λ tr(ζ) I + 2µ ζ ∀ ζ ∈ L
2(Ωs) . (2.2)
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It is clear from (2.2) that C is bounded and invertible and that the operator C−1 reduces to

C−1 ζ :=
1

2µ
ζ − λ

2µ (3λ + 2µ)
tr(ζ) I ∀ ζ ∈ L

2(Ωs) . (2.3)

In addition, the above identity and simple algebraic manipulations imply that
∫

Ωs

C−1 ζ : τ =
1

2µ

∫

Ωs

ζd : τ d +
1

3 (3λ+ 2µ)

∫

Ωs

tr(ζ) tr(τ ) ∀ ζ, τ ∈ L
2(Ωs) ,

which yields ∫

Ωs

C−1 ζ : ζ ≥ 1

2µ
‖ζd‖20,Ωs

∀ ζ ∈ L
2(Ωs) . (2.4)

This estimate will be useful for our analysis below in Sections 3 and 4.

In what follows we apply dual-mixed approaches in the solid Ωs and the fluid Ωf to derive the
fully-mixed variational formulation of (2.1). To this end, we first apply the usual procedure from
linear elasticity (see [1], [14] and [25]) and introduce the rotation

γ :=
1

2
(∇u− (∇u)t) ∈ L

2
asym(Ωs)

as a further unknown, where L2
asym(Ωs) denotes the space of asymmetric tensors with entries in L2(Ωs).

In this way, the constitutive equation can be rewritten in the form

C−1 σs = ε(u) = ∇u − γ ,

which, multiplying by a function τ s ∈ H(div; Ωs) and integrating by parts, yields

∫

Ωs

C−1 σs : τ s +

∫

Ωs

u · div τ s − 〈τ s ν,u〉Σ +

∫

Ωs

τ s : γ = 0 . (2.5)

Then, replacing from the elastodynamic equation in Ωs (cf. second equation of (2.1))

u = − 1

κ2s

(
f + divσs

)
,

we find that (2.5) becomes

∫

Ωs

C−1 σs : τ s − 1

κ2s

∫

Ωs

divσs · div τ s − 〈τ s ν,u〉Σ +

∫

Ωs

τ s : γ =
1

κ2s

∫

Ωs

f · div τ s . (2.6)

In turn, the symmetry of σs is imposed weakly through the relation
∫

Ωs

σs : η = 0 ∀η ∈ L
2
asym(Ωs) . (2.7)

On the other hand, proceeding similarly in the fluid region Ωf , that is multiplying the constitutive
equation σf = ∇p in Ωf by τ f ∈ H(div; Ωf ), integrating by parts, noting that the normal vector
points inward Ωf on Σ, using the Dirichlet boundary condition on Γ, and replacing from the Helmholtz
equation p = − 1

κ2

f

divσf in Ωf , we arrive at

∫

Ωf

σf · τ f − 1

κ2f

∫

Ωf

divσf div τ f + 〈τ f · ν, p〉Σ = 〈τ f · ν, pi〉Γ . (2.8)
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It remains to incorporate the transmission conditions on Σ (cf. fifth and sixth equations in (2.1))
into our continuous formulation. For this purpose, as already announced in Section 1, we now introduce
the closed subspaces of H(div; Ωs)×H1(Ωf ) and H(div; Ωf )×H1(Ωs), respectively, given by

X1 :=
{
τ̂ s := (τ s, q) ∈ H(div; Ωs)×H1(Ωf ) : τ s ν = − q ν on Σ

}

and
X2 :=

{
τ̂ f := (τ f ,v) ∈ H(div; Ωf )×H1(Ωs) : τ f · ν = ρf ω

2 v · ν on Σ
}
.

In this way, replacing τ s ν by − q ν in (2.6) for each τ̂ s := (τ s, q) ∈ X1, and τ f · ν by ρf ω
2 v · ν

in (2.8) for each τ̂ f := (τ f ,v) ∈ X2, the equations (2.6) and (2.8) become

∫

Ωs

C−1 σs : τ s − 1

κ2s

∫

Ωs

divσs · div τ s + 〈q ν,u〉Σ +

∫

Ωs

τ s : γ

=
1

κ2s

∫

Ωs

f · div τ s ∀ τ̂ s := (τ s, q) ∈ X1 ,

(2.9)

and ∫

Ωf

σf · τ f − 1

κ2f

∫

Ωf

divσf div τ f + ρf ω
2 〈pν,v〉Σ

= 〈τ f · ν, pi〉Γ ∀ τ̂ f := (τ f ,v) ∈ X2 ,

(2.10)

where the unknowns σ̂s := (σs, p) and σ̂f := (σf ,u) are now sought in X1 and X2, respectively.

It is important to remark at this point that, instead of replacing u and p by the expressions obtained
from the elastodynamic and Helmholtz equations, the usual dual-mixed method would simply test
these equations against v ∈ L2(Ωs) and q ∈ L2(Ωf ), respectively, obtaining

∫

Ωs

v · divσs + κ2s

∫

Ωs

u · v = −
∫

Ωs

f · v ,

and ∫

Ωf

q divσf + κ2f

∫

Ωf

p q = 0 .

However, it is easy to see, mainly because of the lack of coerciveness of the underlying operators, that
the resulting continuous formulation does not fit into the framework of any of the available theories
for proving well-posedness, and hence a different procedure must be adopted. To this respect, we
recall that the above mentioned replacement of u was sufficient for the corresponding analyses of the
elastodynamic equation in [14] and [16] since it basically allowed to remove this unknown. The same
would hold for the dual-mixed formulation of the Helmholtz equation if the pressure p were replaced
as indicated. Nevertheless, it is quite clear that the fully-mixed approach that we are applying to
the present fluid-solid interaction does not actually eliminate u and p (in spite of the above described
replacements), but on the contrary it does confirm their incorporation as explicit unknowns of the
coupled problem. According to this, and having in mind that u and p live in H1(Ωs) and H1(Ωf ),
respectively, we now make redundant use of the constitutive relations given by the first and third
equations in (2.1), and propose to enrich our variational formulation with the identities

−κ1

∫

Ωs

{
ε(u) − C−1 σs

}
: ε(v) = 0 ∀v ∈ H1(Ωs) , (2.11)
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and

−κ2

∫

Ωf

{
∇p − σf

}
· ∇q = 0 ∀ q ∈ H1(Ωf ) , (2.12)

where κ1 and κ2 are positive stabilization parameters to be chosen conveniently later on. In particular,
the reason for choosing minus signs multiplying (2.11) and (2.12) will become clear from the analysis
in Section 3.

Consequently, adding (2.7), (2.9), (2.10), (2.11), and (2.12), and defining the spaces

X := X1 × X2 and Y := L
2
asym(Ωs) ,

we arrive at the following augmented fully-mixed formulation of the fluid-solid interaction problem:
Find σ̂ := (σ̂s, σ̂f ) := ((σs, p), (σf ,u)) ∈ X and γ ∈ Y such that

A(σ̂, τ̂ ) + B(τ̂ ,γ) = F(τ̂ ) ∀ τ̂ := (τ̂ s, τ̂ f ) := ((τ s, q), (τ f ,v)) ∈ X ,

B(σ̂,η) = 0 ∀η ∈ Y ,
(2.13)

where F : X → C is the linear functional

F(τ̂ ) :=
1

κ2s

∫

Ωs

f · div τ s + 〈τ f · ν, pi〉Γ ∀ τ̂ ∈ X ,

and A : X× X → C, and B : X× Y → C are the bilinear forms defined by

A(ζ̂, τ̂ ) =

∫

Ωs

C−1 ζs : τ s − 1

κ2s

∫

Ωs

div ζs · div τ s + 〈q ν,u〉Σ

+

∫

Ωf

ζf · τ f − 1

κ2f

∫

Ωf

div ζf div τ f + ρf ω
2 〈r ν,v〉Σ

− κ1

∫

Ωs

{
ε(w) − C−1 ζs

}
: ε(v) − κ2

∫

Ωf

{
∇r − ζf

}
· ∇q

∀ ζ̂ := (ζ̂s, ζ̂f ) := ((ζs, r), (ζf ,w)) ∈ X , ∀ τ̂ := (τ̂ s, τ̂ f ) := ((τ s, q), (τ f ,v)) ∈ X ,

(2.14)

and

B(τ̂ ,η) :=

∫

Ωs

τ s : η ∀ (τ̂ ,η) ∈ X×Y . (2.15)

It is straightforward to see, applying the Cauchy-Schwarz inequality and the usual trace theorems
in H(div; Ωf ), H

1(Ωs) and H1(Ωf ), that F, A, and B are all bounded with constants depending on
ω, ρf , ρs, κf , κs, µ, κ1 and κ2, in the case of F and A, and constants independent of these parameters
in the case of B.

3 Analysis of the continuous variational formulation

In this section we proceed analogously as in [14] and [16], and employ suitable decompositions of X1

and X2 (and hence of X) to show that (2.13) becomes a compact perturbation of a well-posed problem.
For this purpose, we now need to introduce two projectors defined in terms of auxiliary boundary value
problems posed in Ωs and Ωf , respectively.
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3.1 The associated projectors

We begin by recalling from the analysis in [16, Section 4.1] the definition of the projector in Ωs. In
fact, let us first denote by RM(Ωs) the space of rigid body motions in Ωs, that is

RM(Ωs) :=
{
v : Ωs → C3 : v(x) = a+ b× x ∀x ∈ Ωs , a, b ∈ C3

}
,

and let M : L2(Ωs) → RM(Ωs) be the associated orthogonal projector. Then, given τ̂ s := (τ s, q) ∈ X1,
we consider the boundary value problem

σ̃s = C ε(ũ) in Ωs , div σ̃s = div τ s + r(τ̂ s) in Ωs ,

σ̃s ν = −qν on Σ , ũ ∈ (I −M)(L2(Ωs)) ,
(3.1)

where C ε(ũ) is defined according to (2.2) and r(τ̂ s) ∈ RM(Ωs) is characterized by

∫

Ωs

r(τ̂ s) ·w = −〈 qν,w 〉Σ −
∫

Ωs

div τ s ·w ∀w ∈ RM(Ωs).

Hereafter, I denotes also a generic identity operator. Note that r(τ̂ s) is just an auxiliary rigid
motion that is needed to guarantee the usual compatibility condition for the Neumann problem (3.1)
(cf. [7, Theorem 9.2.30]), and that the orthogonality condition on ũ is required for uniqueness. Indeed,
it is well known (see, e.g. [4, Section 11.7, Theorem 11.7] or [15, Section 3, Theorem 3.1]) that (3.1)
is well-posed. In addition, owing to the regularity result for the elasticity problem with Neumann
boundary conditions (see, e.g. [12]), we know that (σ̃s, ũ) ∈ H

ǫ(Ωs)×H1+ǫ(Ωs), for some ǫ > 0, and
there holds

‖σ̃s‖ǫ,Ωs + ‖ũ‖1+ǫ,Ωs ≤ C
{
‖div τ s‖0,Ωs + ‖q‖1,Ωf

}
. (3.2)

We now introduce the linear operators P1 : X1 → H(div; Ωs) and P1 : X1 → X1 defined by

P1(τ̂ s) := σ̃s and P1(τ̂ s) := (P1(τ̂ s), q) ∀ τ̂ s := (τ s, q) ∈ X1 , (3.3)

where σ̃s := C ε(ũ) and ũ is the unique solution of (3.1). It is clear from (3.1) that

P1(τ̂ s)
t = P1(τ̂ s) in Ωs , divP1(τ̂ s) = div τ s + r(τ̂ s) in Ωs , (3.4)

and
P1(τ̂ s)ν = −q ν on Σ , (3.5)

which confirms that P1(τ̂ s) belongs to X1. Then, the continuous dependence result for (3.1) gives

‖P1(τ̂ s)‖div;Ωs
≤ C

{
‖div τ s‖0,Ωs + ‖q‖1,Ωf

}
∀ τ̂ s := (τ s, q) ∈ X1 ,

which shows that P1 is bounded. Moreover, it is easy to see from (3.1), (3.3), (3.4), and (3.5) that P1

is actually a projector, and hence there holds

X1 = P1(X1) ⊕ (I−P1)(X1) . (3.6)

Finally, it is clear from (3.2) that P1(τ̂ s) ∈ H
ǫ(Ωs) and

‖P1(τ̂ s)‖ǫ,Ωs ≤ C
{
‖div τ s‖0,Ωs + ‖q‖1,Ωf

}
∀ τ̂ s := (τ s, q) ∈ X1 . (3.7)
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On the other hand, given τ̂ f := (τ f ,v) ∈ X2, we consider the boundary value problem

σ̃f = ∇p̃ in Ωf , div σ̃f = div τ f in Ωf ,

σ̃f · ν = ρf ω
2 v · ν on Σ , p̃ = 0 on Γ .

(3.8)

It is not difficult to see that (3.8) is well-posed. In addition, the classical regularity result for
the Poisson problem with mixed boundary conditions (see, e.g. [19], [20]) implies that (σ̃f , p̃) ∈
Hǫ(Ωf )×H1+ǫ(Ωf ), for some ǫ > 0 (which can be assumed to be the same of (3.2)), and that

‖σ̃f‖ǫ,Ωf
+ ‖p̃‖1+ǫ,Ωf

≤ C
{
‖div τ f‖0,Ωf

+ ‖v‖1,Ωs

}
. (3.9)

We now define the linear operators P2 : X2 → H(div; Ωf ) and P2 : X2 → X2 by

P2(τ̂ f ) := σ̃f and P2(τ̂ f ) := (P2(τ̂ f ),v) ∀ τ̂ f := (τ f ,v) ∈ X2 , (3.10)

where σ̃f := ∇p̃ and p̃ is the unique solution of (3.8). It follows that

divP2(τ̂ f ) = div τ f in Ωf and P2(τ̂ f ) · ν = ρf ω
2 v · ν on Σ , (3.11)

which confirms that P2(τ̂ f ) belongs to X2. In addition, thanks to the continuous dependence result
for (3.8), there holds

‖P2(τ̂ f )‖div;Ωf
≤ C

{
‖div τ f‖0,Ωf

+ ‖v‖1,Ωs

}
∀ τ̂ f := (τ f ,v) ∈ X2 ,

which shows that P2 is bounded. Furthermore, it is straightforward from (3.8), (3.10), and (3.11) that
P2 is a projector, and therefore

X2 = P2(X2) ⊕ (I−P2)(X2) . (3.12)

Also, it is clear from (3.9) that P2(τ̂ f ) ∈ Hǫ(Ωf ) and

‖P2(τ̂ f )‖ǫ,Ωf
≤ C

{
‖div τ f‖0,Ωf

+ ‖v‖1,Ωs

}
∀ τ̂ f := (τ f ,v) ∈ X2 . (3.13)

We now observe, according to (3.6) and (3.12), that the space X := X1 × X2 can be certainly
decomposed as

X = P(X) ⊕ (I−P)(X) , (3.14)

where P : X → X is the projector defined by

P(τ̂ ) := (P1(τ̂ s),P2(τ̂ f )) ∀ τ̂ := (τ̂ s, τ̂ f ) ∈ X . (3.15)

In order to show that our augmented fully-mixed formulation (2.13) is well-posed, we now employ
the stable decompositions (3.6) and (3.12) (equivalently (3.14)) to reformulate (2.13) in a more suitable
form.

3.2 Decomposition of the bilinear form A

Let us begin by introducing the bilinear forms As : X1 × X1 → C and Af : X2 × X2 → C given by

As(ζ̂s, τ̂ s) :=

∫

Ωs

C−1 ζs : τ s +
1

κ2s

∫

Ωs

div ζs · div τ s + κ2

∫

Ωf

{
∇r · ∇q + r q

}

∀ (ζ̂s, τ̂ s) := ((ζs, r), (τ s, q)) ∈ X1 × X1 ,

(3.16)
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and

Af (ζ̂f , τ̂ f ) :=

∫

Ωf

ζf : τ f +
1

κ2f

∫

Ωf

div ζf · div τ f + κ1

∫

Ωs

{
ε(w) : ε(v) + w · v

}

∀ (ζ̂f , τ̂ f ) := ((ζf ,w), (τ f ,v)) ∈ X2 × X2 ,

(3.17)

which are clearly bounded, symmetric, and positive semi-definite. Actually, it is established below in
Section 3.3 that they are positive definite (cf. Lemmata 3.3 and 3.4).

In what follows, we plan to utilize the decomposition (3.14) in (2.13) so that the unknown σ̂ :=
(σ̂s, σ̂f ) and the corresponding test function τ̂ := (τ̂ s, τ̂ f ), both in X, are replaced, respectively, by
the expressions

σ̂s = P1(σ̂s) + (I −P1)(σ̂s) = (P1(σ̂s), p) + (σs − P1(σ̂s),0) ,

σ̂f = P2(σ̂f ) + (I −P2)(σ̂f ) = (P2(σ̂f ),u) + (σf − P2(σ̂f ),0) ,
(3.18)

and
τ̂ s = P1(τ̂ s) + (I−P1)(τ̂ s) = (P1(τ̂ s), q) + (τ s − P1(τ̂ s),0) ,

τ̂ f = P2(τ̂ f ) + (I −P2)(τ̂ f ) = (P2(τ̂ f ),v) + (τ f − P2(τ̂ f ),0) .
(3.19)

To this respect, we now recall from (3.4) and (3.5) that for each τ̂ s := (τ s, q) ∈ X1 there hold
div (τ s − P1(τ̂ s)) = − r(τ̂ s) ∈ RM(Ωs), P1(τ̂ s) is symmetric, and P1(τ̂ s)ν = −q ν on Σ, whence,
noting also that ∇r(τ̂ s) ∈ Y, we find that

∫

Ωs

div (ζs − P1(ζ̂s)) · divP1(τ̂ s) = −
∫

Ωs

r(ζ̂s) · divP1(τ̂ s)

=

∫

Ωs

∇r(ζ̂s) : P1(τ̂ s) − 〈P1(τ̂ s)ν , r(ζ̂s) 〉Σ =

∫

Σ
r(ζ̂s) · ν q ∀ ζ̂s := (ζs, r) ∈ X1 .

(3.20)

Next, using the decomposition (3.14) and the identity (3.20), and adding and substracting suitable
terms, we find that the bilinear form A (cf. (2.14)) can be decomposed as

A(ζ̂, τ̂ ) = A0(ζ̂, τ̂ ) + K(ζ̂, τ̂ ) ,

∀ ζ̂ := (ζ̂s, ζ̂f ) := ((ζs, r), (ζf ,w)) ∈ X , ∀ τ̂ := (τ̂ s, τ̂ f ) := ((τ s, q), (τ f ,v)) ∈ X ,

where A0 : X×X → C and K : X× X → C are given by

A0(ζ̂, τ̂ ) = −As(P1(ζ̂s),P1(τ̂ s)) + As((I −P1)(ζ̂s), (I −P1)(τ̂ s))

−Af (P2(ζ̂f ),P2(τ̂ f )) + Af ((I −P2)(ζ̂f ), (I −P2)(τ̂ f ))

+κ1

∫

Ωs

C−1 ζs : ε(v) + κ2

∫

Ωf

ζf · ∇q ,

(3.21)

and
K(ζ̂, τ̂ ) = Ks(ζ̂s, τ̂ s) + Kf (ζ̂f , τ̂ f ) + 〈q ν,w〉Σ + ρf ω

2 〈r ν,v〉Σ , (3.22)
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with

Ks(ζ̂s, τ̂ s) := 2

∫

Ωs

C−1 P1(ζ̂s) : P1(τ̂ s) +

∫

Ωs

C−1 P1(ζ̂s) : (τ s − P1(τ̂ s))

+

∫

Ωs

C−1 (ζs − P1(ζ̂s)) : P1(τ̂ s) − 2

κ2s

∫

Ωs

r(ζ̂s) · r(τ̂ s)

− 1

κ2s

∫

Σ
r(τ̂ s) · r ν − 1

κ2s

∫

Σ
r(ζ̂s) · q ν + κ2

∫

Ωf

r q ,

(3.23)

and

Kf (ζ̂f , τ̂ f ) := 2

∫

Ωf

P2(ζ̂f ) · P2(τ̂ f ) +

∫

Ωf

P2(ζ̂f ) · (τ f − P2(τ̂ f ))

+

∫

Ωf

(ζf − P2(ζ̂f )) · P2(τ̂ f ) + κ1

∫

Ωs

w · v .
(3.24)

Note that, in spite of the symmetry of As and Af , and because of the last two terms defining A0 (cf.
(3.21)), this latter bilinear form is not symmetric. We also remark at this point that the minus signs
multiplying the stabilization parameters in the definition of A (cf. (2.14)) are needed for obtaining
the minus signs in front of the first and third terms in the resulting expression for A0 (cf. (3.21)). In
turn, these minus signs are required later on to show that A0 satisfy certain inf-sup conditions (see
(3.28) and the proof of Lemma 3.6 below).

We now let A0 : X → X, K : X → X, and B : X → Y be the linear and bounded operators induced
by the bilinear forms A0, K, and B, respectively. In addition, we let F ∈ X be the Riesz representant
of F. Hence, using these notations and taking into account the decompositions (3.18) and (3.19),
the augmented-fully-mixed variational formulation (2.13) can be rewritten as the following operator
equation: Find (σ̂,γ) ∈ X× Y such that

(
A0 B∗

B 0

) (
σ̂

γ

)
+

(
K 0
0 0

) (
σ̂

γ

)
=

(
F
0

)
. (3.25)

In the following section we show that the matrix operators on the left hand side of (3.25) become
invertible and compact, respectively. More precisely, since the one involving A0 and B shows a saddle
point structure, the well known Babuška-Brezzi theory will be applied for the respective analysis.

3.3 Application of the Babuška-Brezzi and Fredholm theories

We first recall from [16, Section 4.2] the ocurrence of the continuous inf-sup condition for the bilinear
form B, which is equivalent to the surjectivity of the operator B. To this respect, note from the
definition of B (cf. (2.15)) that

B(τ̂ ) :=
1

2

(
τ s − τ t

s

)
∀ τ̂ := (τ̂ s, τ̂ f ) := ((τ s, q), (τ f ,v)) ∈ X .

Lemma 3.1 There exists C1 > 0 such that

sup
τ̂∈X

τ̂ 6=0

|B(τ̂ ,η) |
‖τ̂‖X

≥ C1 ‖η‖Y ∀η ∈ Y .

Proof. See the proof of [16, Lemma 4.1].
2
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We now aim to establish that the operator induced by the restriction of A0 to V × V, where V

is the kernel of B, becomes bijective. The corresponding analysis is based on the series of technical
inequalities given in what follows.

We begin by introducing the decomposition

H(div; Ωs) = H0(div; Ωs) ⊕ CI ,

with

H0(div; Ωs) :=
{
τ s ∈ H(div; Ωs) :

∫

Ωs

tr τ s = 0
}
,

which means that for any τ s ∈ H(div; Ωs) there exist unique τ s,0 ∈ H0(div; Ωs) and d ∈ C given

by d :=
1

3 |Ωs|

∫

Ωs

tr τ s, where |Ωs| denotes the measure of Ωs, such that τ s = τ s,0 + d I . Then we

have the following result.

Lemma 3.2 There exists c1 > 0, depending only on Ωs, such that

‖τ d
s‖20,Ωs

+ ‖div τ s‖20,Ωs
≥ c1 ‖τ s,0‖20,Ωs

∀ τ s ∈ H(div; Ωs) . (3.26)

Proof. See [2, Lemma 3.1] or [8, Proposition 3.1, Chapter IV].
2

The already announced positive definiteness of the bilinear forms As and Af are shown now.

Lemma 3.3 There exists cs > 0 such that

As(τ̂ s, τ̂ s) ≥ cs ‖τ̂ s‖2X1
∀ τ̂ s ∈ X1 .

Proof. Given τ̂ s := (τ s, q) ∈ X1, we obtain directly from the definition of As (cf. (3.16)) that

As(τ̂ s, τ̂ s) =

∫

Ωs

C−1 τ s : τ s +
1

κ2s
‖div τ s‖20,Ωs

+ κ2 ‖q‖21,Ωf
,

which, applying inequalities (2.4) and (3.26) (cf. Lemma 3.2), gives,

As(τ̂ s, τ̂ s) ≥ C
{
‖τ s,0‖2div;Ωs

+ ‖q‖21,Ωf

}
,

where τ s = τ s,0 + d I, and C is a positive constant depending on µ, κs, c1 (cf. Lemma 3.2), and κ2.
Next, we proceed exactly as in the proof of [16, Lemma 4.3] (see also [13, Lemma 2.2]), and using that
τ s ν = − q ν on Σ, and that ‖τ s‖2div;Ωs

= ‖τ s,0‖2div;Ωs
+ 3 d2 |Ωs|, we easily find that

‖τ s‖2div;Ωs
≤ c

{
‖τ s,0‖2div;Ωs

+ ‖q‖21,Ωf

}
,

which, together with the previous inequality, finishes the proof.
2

Lemma 3.4 There exists cf > 0 such that

Af (τ̂ f , τ̂ f ) ≥ cf ‖τ̂ f‖2X2
∀ τ̂ f ∈ X2 .
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Proof. It follows straightforwardly from the definition of Af (cf. (3.17)) and the usual Korn inequality
(cf. [7, Theorem 9.2.16]). We omit further details.

2

A very basic inequality related to the inverse of the Hooke operator (cf. (2.3)) is provided next.

Lemma 3.5 There holds

‖C−1 ζ‖20,Ωs
≤ 1

2µ

∫

Ωs

C−1 ζ : ζ ∀ ζ ∈ L
2(Ωs) .

Proof. Given ζ ∈ L
2(Ωs), simple algebraic computations yield, using (2.3), that
∫

Ωs

C−1 ζ : ζ =
1

2µ
‖ζ‖20,Ωs

− λ

2µ (3λ + 2µ)
‖tr ζ‖20,Ωs

and

‖C−1 ζ‖20,Ωs
=

1

2µ

{
1

2µ
‖ζ‖20,Ωs

− λ

2µ (3λ+ 2µ)

(3λ+ 4µ)

(3λ+ 2µ)
‖tr ζ‖20,Ωs

}
.

Hence, the proofs follows directly from the fact that (3λ+4µ)
(3λ+2µ) > 1.

2

We are now in a position to prove the necessary estimates for concluding later on the inf-sup
conditions required by the Babuška-Brezzi theory for the bijectivity of the operator induced by A0|V×V.
To this end, we need to introduce the linear and bounded operator T := (I − 2P) : X → X, that is,
according to (3.15),

T(τ̂ ) :=
(
(I − 2P1)(τ̂ s), (I − 2P2)(τ̂ f )

)
∀ τ̂ := (τ̂ s, τ̂ f ) ∈ X . (3.27)

It is important to observe here, since P1 and P2 are projectors, that

Pi (I − 2Pi) = −Pi and (I − Pi) (I − 2Pi) = (I − Pi) ∀ i ∈ {1, 2} , (3.28)

or equivalently,
PT = −P and (I − P)T = (I − P) .

Lemma 3.6 Assume that the stabilization parameters κ1 and κ2 are chosen independently of λ and

such that 0 < κ1 < 2µ and 0 < κ2 < 1. Then, there exist C1, C2 > 0, depending only on µ,
cs, cf , κ1, and κ2, such that for each τ̂ ∈ X there hold

Re
{
A0(τ̂ ,T(τ̂ ))

}
≥ C1 ‖τ̂‖2X ∀ τ̂ ∈ X , (3.29)

and

Re
{
A0(T(τ̂ ), τ̂ )

}
≥ C2 ‖τ̂‖2X ∀ τ̂ ∈ X . (3.30)

Proof. Given τ̂ := (τ̂ s, τ̂ f ) := ((τ s, q), (τ f ,v)) ∈ X, we easily find from the definition of A0 (cf.
(3.21)), utilizing the identities given by (3.28), that

A0(τ̂ ,T(τ̂ )) = As(P1(τ̂ s),P1(τ̂ s)) + As((I−P1)(τ̂ s), (I −P1)(τ̂ s))

+Af (P2(τ̂ f ),P2(τ̂ f )) + Af ((I−P2)(τ̂ f ), (I −P2)(τ̂ f ))

−κ1

∫

Ωs

C−1 τ s : ε(v) − κ2

∫

Ωf

τ f · ∇q ,
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which, applying Cauchy-Schwarz’s inequality and the trivial estimate ab ≤ 1
2(a

2 + b2), gives

Re

{
A0(τ̂ ,T(τ̂ ))

}
≥ As(P1(τ̂ s),P1(τ̂ s)) + As((I −P1)(τ̂ s), (I −P1)(τ̂ s))

+ Af (P2(τ̂ f ),P2(τ̂ f )) + Af ((I−P2)(τ̂ f ), (I −P2)(τ̂ f ))

− κ1
2

‖C−1 τ s‖20,Ωs
− κ1

2
‖ε(v)‖20,Ωs

− κ2
2

‖τ f‖20,Ωf
− κ2

2
‖∇q‖20,Ωs

.

(3.31)

In turn, using the basic Lemma 3.5 we obtain

‖C−1 τ s‖20,Ωs
≤ 2

{
‖C−1 P1(τ̂ s)‖20,Ωs

+ ‖C−1 (τ s − P1(τ̂ s))‖20,Ωs

}

≤ 1

µ

{∫

Ωs

C−1 P1(τ̂ s) : P1(τ̂ s) +

∫

Ωs

C−1 (τ s − P1(τ̂ s)) : (τ s − P1(τ̂ s))

}
,

and it is clear that

‖τ f‖20,Ωf
≤ 2

{
‖P2(τ̂ f )‖20,Ωf

+ ‖(τ f − P2(τ̂ f ))‖20,Ωf

}
.

Then, replacing the last two inequalities back into (3.31), and having in mind the definitions of As

and Af (cf. (3.16), (3.17)), we arrive at

Re

{
A0(τ̂ ,T(τ̂ ))

}
≥

(
1− κ1

2µ

)∫

Ωs

C−1 P1(τ̂ s) : P1(τ̂ s) +
1

κ2s

∫

Ωs

divP1(τ̂ s) · divP1(τ̂ s)

+
κ2
2

‖∇q‖20,Ωf
+ κ2 ‖q‖20,Ωf

+

(
1− κ1

2µ

)∫

Ωs

C−1
(
τ s − P1(τ̂ s)

)
:
(
τ s − P1(τ̂ s)

)

+
1

κ2s

∫

Ωs

div
(
τ s − P1(τ̂ s)

)
· div

(
τ s − P1(τ̂ s)

)
+ (1− κ2)

∫

Ωf

P2(τ̂ f ) · P2(τ̂ f )

+
1

κ2f

∫

Ωf

divP2(τ̂ f ) divP2(τ̂ f ) +
κ1
2

‖ε(v)‖20,Ωs
+ κ1 ‖v‖20,Ωs

+ (1− κ2)

∫

Ωf

(
τ f − P2(τ̂ f )

)
·
(
τ f − P2(τ̂ f )

)
+

1

κ2f

∫

Ωf

div
(
τ f − P2(τ̂ f )

)
div

(
τ f − P2(τ̂ f )

)
,

from which we conclude, defining κ̃1 := 1− κ1
2µ

and κ̃2 := 1− κ2, that

Re

{
A0(τ̂ ,T(τ̂ ))

}
≥ min

{
κ̃1,

1

2

}
As(P1(τ̂ s),P1(τ̂ s)) + κ̃1 As((I −P1)(τ̂ s), (I −P1)(τ̂ s))

+ min
{
κ̃2,

1

2

}
Af (P2(τ̂ f ),P2(τ̂ f )) + κ̃2 Af ((I−P2)(τ̂ f ), (I −P2)(τ̂ f )) .

In this way, the above inequality together with Lemmas 3.3 and 3.4, and the stability of the
decomposition (3.14) imply the estimate (3.29).

For the proof of (3.30) we first observe, similarly to the derivation of (3.31), that

Re

{
A0(T(τ̂ ), τ̂ )

}
≥ As(P1(τ̂ s),P1(τ̂ s)) + As((I −P1)(τ̂ s), (I −P1)(τ̂ s))

+ Af (P2(τ̂ f ),P2(τ̂ f )) + Af ((I−P2)(τ̂ f ), (I −P2)(τ̂ f ))

− κ1
2

‖C−1
(
τ s − 2P1(τ̂ s)

)
‖20,Ωs

− κ1
2

‖ε(v)‖20,Ωs

− κ2
2

‖τ f − 2P2(τ̂ f )‖20,Ωf
− κ2

2
‖∇q‖20,Ωs

.
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The rest proceeds as before, by noting now that

‖C−1
(
τ s − 2P1(τ̂ s)

)
‖20,Ωs

≤ 2
{
‖C−1 (τ s − P1(τ̂ s))‖20,Ωs

+ ‖C−1 P1(τ̂ s)‖20,Ωs

}
,

and
‖τ f − 2P2(τ̂ f )‖20,Ωf

≤ 2
{
‖(τ f − P2(τ̂ f ))‖20,Ωf

+ ‖P2(τ̂ f )‖20,Ωf

}
,

and then using again the definitions of As and Af . We omit further details.
2

At this point we observe that the estimate (3.30) would certainly be a straightforward consequence
of (3.29) if the original bilinear form A (cf. (2.14)), and hence A0, were symmetric. While this could
have been possible by redefining A with the incorporation of extra terms in the identities (2.11)
and (2.12), we preferred to keep it in this way because the resulting Galerkin scheme becomes less
expensive.

Throughout the rest of the paper we assume that the stabilization parameters κ1 and κ2 are chosen
independently of λ and such that 0 < κ1 < 2µ and 0 < κ2 < 1.

We now let V be the kernel of B, that is V :=
{
τ̂ ∈ X : B(τ̂ ) = 0

}
, which, recalling that

B(τ̂ ) := 1
2

(
τ s − τ t

s

)
∀ τ̂ := (τ̂ s, τ̂ f ) = ((τ s, q), (τ f ,v)) ∈ X, becomes

V =
{
τ̂ ∈ X : τ t

s = τ s

}
.

The weak coercivity of A0 on V is established now.

Lemma 3.7 There exists α > 0 such that

sup
ζ̂∈V

ζ̂ 6=0

|A0(τ̂ , ζ̂) |
‖ζ̂‖X

≥ α ‖τ̂‖X ∀ τ̂ ∈ V . (3.32)

In addition, there holds

sup
ζ̂∈V

|A0(ζ̂, τ̂ ) | > 0 ∀ τ̂ ∈ V , τ̂ 6= 0 . (3.33)

Proof. Since P1(τ̂ s)
t = P1(τ̂ s) ∀ τ̂ := (τ̂ s, τ̂ f ) = ((τ s, q), (τ f ,v)) ∈ X, we find that P(τ̂ )

(cf. (3.15)), and hence T(τ̂ ), belong to V for each τ̂ ∈ V. In addition, it is clear from (3.29) that
T(τ̂ ) 6= 0 for each τ̂ ∈ X, τ̂ 6= 0. In particular, for each τ̂ ∈ V, τ̂ 6= 0, there holds

sup
ζ̂∈V

ζ̂ 6=0

|A0(τ̂ , ζ̂) |
‖ζ̂‖X

≥ |A0(τ̂ ,T(τ̂ )) |
‖T(τ̂ )‖X

≥ Re
{
A0(τ̂ ,T(τ̂ ))

}

‖T(τ̂ )‖X
,

which, applying (3.29), the boundedness of T, and the fact that ‖τ̂ ‖X = ‖τ̂‖X, yields (3.32) with
α = C1/‖T‖. Similarly, given τ̂ ∈ V, there holds

sup
ζ̂∈V

|A0(ζ̂, τ̂ ) | ≥ |A0(T(τ̂ ), τ̂ ) | ≥ Re
{
A0(T(τ̂ ), τ̂ )

}
,

which, together with (3.30), implies (3.33).
2

We now aim to show that the bilinear form K induces a compact operator K.
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Lemma 3.8 The operator K : X → X is compact.

Proof. We first observe that the last two terms defining K (cf. (3.22)), that is 〈q ν,w〉Σ and
ρf ω

2 〈r ν,v〉Σ, yield compact operators because of the compactness of the composition defined by the
following diagram

H1(Ωf )
continuous−→ H1/2(Σ)

compact−→ L2(Σ)
continuous−→ L2(Σ)

compact−→ H−1/2(Σ)
q −→ q|Σ −→ q|Σ −→ q ν −→ q ν

Next, because of the compact imbeddings H1(Ωf ) →֒ L2(Ωf ) and H1(Ωs) →֒ L2(Ωs), the last terms
defining Ks and Kf (cf. (3.23) and (3.24)), that is

∫
Ωf

r q and
∫
Ωs

w · v, induce compact operators,

as well. In addition, it is clear that the three terms containing rigid motions in the definition of
Ks yield a finite rank operator. It remains to check the compactness of the operators induced by
the terms involving P1 and P2 in the definitions of Ks and Kf . In fact, we recall from Section 3.1
(cf. (3.7) and (3.13)) that there exists ǫ > 0 such that P1(τ̂ s) ∈ H

ǫ(Ωs) and P2(τ̂ f ) ∈ Hǫ(Ωf )
for each τ̂ := (τ̂ s, τ̂ f ) ∈ X, which, thanks to the compact imbeddings H

ǫ(Ωs) →֒ L
2(Ωs) and

Hǫ(Ωf ) →֒ L2(Ωf ), imply the compactness of P1 : X1 → L
2(Ωs) and P2 : X2 → L2(Ωf ). It follows

that the adjoints P ∗
1 : L2(Ωs) → X1 and P ∗

2 : L2(Ωf ) → X2, and hence the operators P ∗
1 C−1 P1,

(I−P1)
∗ C−1 P1, P

∗
1 C−1 (I−P1), P

∗
2 P2, (I−P2)

∗ P2, and P ∗
2 (I−P2) are all compact, which completes

the proof.
2

The main result of this section is established next.

Theorem 3.1 Assume that the homogeneous problem associated to (2.13) has only the trivial solution.

Then, given f ∈ L2(Ωs) and pi ∈ H1/2(Γ), there exists a unique solution (σ̂,γ) ∈ X × Y to (2.13)
(equivalently (3.25)). In addition, there exists C > 0 such that

‖(σ̂,γ)‖X×Y ≤ C
{
‖f‖0,Ωs + ‖pi‖1/2,Γ

}
.

Proof. It follows straightforwardly from Lemma 3.1, Lemma 3.7, and the classical Babuška-Brezzi

theory, that

(
A0 B∗

B 0

)
is an isomorphism. In addition, it is clear from Lemma 3.8 that

(
K 0
0 0

)

is a compact operator. Consequently, the left hand side of (3.25) becomes a Fredholm operator of
index zero, which finishes the proof. 2

4 Analysis of the Galerkin scheme

In this section we introduce a Galerkin approximation of (2.13) and show, under the same assumption
of Theorem 3.1, that it is well-posed.

4.1 Preliminaries

We first let {Th}h>0 := {Ths
}hs>0 ∪ {Thf

}hf>0, where {Ths
}hs>0 and {Thf

}hf>0 are shape-regular
families of triangulations of the polyhedral regions Ω̄s and Ω̄f , respectively, by tetrahedrons T of
diameter hT with mesh sizes hs := max{hT : T ∈ Ths

}, hf := max{hT : T ∈ Thf
}, and

h := max{hs, hf}, and such that the vertices of {Ths
}hs>0 and {Thf

}hf>0 coincide on Σ. In what
follows, given an integer ℓ ≥ 0 and a subset S of R3, Pℓ(S) denotes the space of polynomials defined
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in S of total degree ≤ ℓ. In addition, following the same terminology described at the end of the
introduction, we denote Pℓ(S) := [Pℓ(S)]

3 and Pℓ(S) := [Pℓ(S)]
3×3. Then, we define

H
s
h :=

{
τ s,h ∈ H(div; Ωs) : τ s,h|T ∈ P1(T ) ∀T ∈ Ths

}
,

Hf
h :=

{
τ f,h ∈ H(div; Ωf ) : τ f,h|T ∈ P1(T ) ∀T ∈ Thf

}
,

W f
h :=

{
qh ∈ C(Ω̄f ) : qh|T ∈ P1(T ) ∀T ∈ Thf

}
,

Ws
h :=

{
vh ∈ C(Ω̄s) : vh|T ∈ P1(T ) ∀T ∈ Ths

}
,

and introduce the finite element subspaces of X1, X2, X, and Y, given, respectively, by

X1,h :=
{
τ̂ s,h = (τ s,h, qh) ∈ H

s
h ×W f

h : τ s,h ν = − qh ν on Σ
}
, (4.1)

X2,h :=
{
τ̂ f,h = (τ f,h,vh) ∈ Hf

h ×Ws
h : τ f,h · ν = ρf ω

2 vh · ν on Σ
}
, (4.2)

Xh := X1,h × X2,h ,

and
Yh :=

{
ηh ∈ Y : ηh|T ∈ P0(T ) ∀T ∈ Ths

}
.

In addition, the analysis below will also require the subspaces

Us
h :=

{
vh ∈ L2(Ωs) : vh|T ∈ P0(T ) ∀T ∈ Ths

}

and
Uf
h :=

{
vh ∈ L2(Ωf ) : vh|T ∈ P0(T ) ∀T ∈ Thf

}
.

We recall here that Hs
h×Us

h×Yh constitutes the lowest order mixed finite element approximation
of the linear elasticity problem introduced recently by Arnold, Falk and Winther (AFW) (see [5], [4]).

In turn, Hf
h × Uf

h is the lowest order mixed finite element approximation of the Poisson problem for
the Laplace equation, introduced by Brezzi, Douglas, Durán, and Fortin (BDDF) in 1987 (see [9]).
Furthermore, it is important to remark that, thanks to the natural matchings between the polynomial
degrees involved in the definitions of Hs

h and W f
h (resp. Hf

h and Ws
h), it is possible to incorporate

the transmission conditions exactly at the discrete level, which actually allows the introduction of the
conforming finite element subspaces X1,h and X2,h.

The Galerkin scheme associated to our continuous problem (2.13) is then defined as follows: Find
σ̂h := (σ̂s,h, σ̂f,h) := ((σs,h, ph), (σf,h,uh)) ∈ Xh and γh ∈ Yh such that

A(σ̂h, τ̂ h) + B(τ̂ h,γh) = F(τ̂h) ∀ τ̂h := (τ̂ s,h, τ̂ f,h) := ((τ s,h, qh), (τ f,h,vh)) ∈ Xh ,

B(σ̂h,ηh) = 0 ∀ηh ∈ Yh .
(4.3)

Before analyzing the well-posedness of (2.13), we collect next the approximation properties of the
finite element subspaces introduced above. They are all known, except the one of X1,h, which was
derived in our previous work [16], and the one of X2,h, which will be provided below.

4.2 Approximation properties of the subspaces

We begin with the subspaces Hs
h and Hf

h. Hence, given δ ∈ (0, 1], we let

Es
h : Hδ(Ωs) ∩ H(div; Ωs) → H

s
h and Ef

h : Hδ(Ωf ) ∩ H(div; Ωf ) → Hf
h
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be the usual interpolation operators (see [5], [8]), which, given τ s ∈ H
δ(Ωs) ∩ H(div; Ωs) and τ f ∈

Hδ(Ωf ) ∩H(div; Ωf ), are characterized by the identities

∫

F
Es
h(τ s)ν · q =

∫

F
τ s ν · q ∀ q ∈ P1(F ) , ∀ face F of Ths

, (4.4)

and ∫

F
Ef
h (τ f ) · ν q =

∫

F
τ f · ν q ∀ q ∈ P1(F ) , ∀ face F of Thf

. (4.5)

Moreover, the corresponding conmuting diagram properties yield

div(Es
h(τ s)) = Ps

h(div τ s) ∀ τ s ∈ H
δ(Ωs) ∩H(div; Ωs) , (4.6)

and
div(Ef

h (τ f )) = Pf
h (div τ f ) ∀ τ f ∈ Hδ(Ωf ) ∩H(div; Ωf ) , (4.7)

where Ps
h : L2(Ωs) → Us

h and Pf
h : L2(Ωf ) → Uf

h are the orthogonal projectors. In addition, it is easy
to show, using the well-known Bramble-Hilbert Lemma and the boundedness of the local interpolation
operators on the reference element T̂ (see, e.g. [21, equation (3.39)]), that there exist Cs, Cf > 0,
independent of h, such that for each τ s ∈ H

δ(Ωs)∩H(div; Ωs) and for each τ f ∈ Hδ(Ωf )∩H(div; Ωf ),
there hold

‖τ s − Es
h(τ s)‖0,T ≤ Cs h

δ
T

{
|τ s|δ,T + ‖div τ s‖0,T

}
∀T ∈ Ths

, (4.8)

and
‖τ f − Ef

h (τ f )‖0,T ≤ Cf h
δ
T

{
|τ f |δ,T + ‖div τ f‖0,T

}
∀T ∈ Thf

. (4.9)

We now let Πs
h : H1(Ωs) → Ws

h, Πf
h : H1(Ωf ) → W f

h , and Rh : L2(Ωs) → Yh be the corres-
ponding orthogonal projectors with respect to the natural norms of each space. Then, we have (see
[6], [8], [24]):

(APσs

h ) For each δ ∈ (0, 1] and for each τ s ∈ H
δ(Ωs), with div τ s ∈ Hδ(Ωs), there holds

‖τ s − Es
h(τ s)‖div;Ωs

≤ C hδ
{
‖τ s‖δ,Ωs

+ ‖div τ s‖δ,Ωs

}
.

(AP
σf

h ) For each δ ∈ (0, 1] and for each τ f ∈ Hδ(Ωf ), with div τ f ∈ Hδ(Ωf ), there holds

‖τ f − Ef
h (τ f )‖div;Ωf

≤ C hδ
{
‖τ f‖δ,Ωf

+ ‖div τ f‖δ,Ωf

}
.

(APp
h) For each t ∈ (1, 2] and for each q ∈ Ht(Ωf ), there holds

‖q −Πf
h(q)‖1,Ωf

≤ C ht−1 ‖q‖t,Ωf
.

(APu

h) For each t ∈ (1, 2] and for each v ∈ Ht(Ωs), there holds

‖v −Πs
h(v)‖1,Ωs ≤ C ht−1 ‖v‖t,Ωs .

(AP
γ
h ) For each t ∈ (0, 1] and for each η ∈ H

t(Ωs) ∩ L
2
asym(Ωs), there holds

‖η −Rh(η)‖0,Ωs ≤ C ht ‖η‖t,Ωs .
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(APs
h) For each t ∈ (0, 1] and for each v ∈ Ht(Ωs), there holds

‖v − Ps
h(v)‖0,Ωs ≤ C ht ‖v‖t,Ωs .

(APf
h) For each t ∈ (0, 1] and for each v ∈ Ht(Ωf ), there holds

‖v − Pf
h (v)‖0,Ωf

≤ C ht ‖v‖t,Ωf
.

Note here that (APσs

h ) is actually a straightforward consequence of (4.6), (4.8), and (APs
h). Simi-

larly, (AP
σf

h ) follows directly from (4.7), (4.9), and (APf
h).

We now provide the approximation properties of the coupled finite element subspaces X1,h (cf.
(4.1)) and X2,h (cf. (4.2)). To this end, we proceed as in [16] (see also [17, Section 5.2, Lemma 5.1])
and assume from now on that {Ths

}hs>0 and {Thf
}hf>0 are quasi-uniform around Σ. This means that

there exists an open neighborhood of Σ, say ΩΣ, with Lipschitz boundary, and such that the elements
of Ths

and Thf
intersecting that region are more or less of the same size. Equivalently, we define

TΣ,h :=
{
T ∈ Ths

∪ Thf
: T ∩ ΩΣ 6= ∅

}
,

and assume that there exists c > 0, independent of h, such that

max
T∈TΣ,h

hT ≤ c min
T∈TΣ,h

hT ∀h > 0 . (4.10)

Note that this assumption and the shape-regularity property of the meshes imply that Σh, the partition
on Σ inherited from Ths

(or from Thf
), is also quasi-uniform, which means that there exists C > 0,

independent of h, such that

hΣ := max
{
diam {F} : F face of Σh

}
≤ C min

{
diam {F} : F face of Σh

}
.

In addition, the quasi-uniformity of Σh guarantees the inverse inequality on Φh(Σ), the subspace of
L2(Σ) given by the piecewise polynomials of degree ≤ 1, that is, in particular,

‖φh‖0,Σ ≤ C h
−1/2
Σ ‖φh‖−1/2,Σ ∀φh ∈ Φh(Σ) . (4.11)

The approximation property of X1,h, whose proof makes use of the quasi-uniformity of {Ths
}hs>0

around Σ, the characterization (4.4), and the inverse inequality on Φh(Σ), was proved in [16, Lemma
5.1]. The corresponding result is stated as follows.

Lemma 4.1 Given ǫ ∈ (0, 1], define X1,ǫ :=
{
H(div; Ωs) ∩ H

ǫ(Ωs)
}
×H1+ǫ(Ωf ). Then, there exists

a linear operator I1,h : X1,ǫ −→ X1,h, such that for each τ̂ s = (τ s, q) ∈ X1 ∩ X1,ǫ there holds

‖τ̂ s − I1,h(τ̂ s)‖X1
≤ C

{
‖τ s − Es

h(τ s)‖div;Ωs
+ ‖q −Πf

h(q)‖1,Ωf

}
. (4.12)

In turn, the approximation property of X2,h follows the same lines and it is proved next.

Lemma 4.2 Given ǫ ∈ (0, 1], define X2,ǫ :=
{
H(div; Ωf ) ∩ Hǫ(Ωf )

}
×H1+ǫ(Ωs). Then, there exists

a linear operator I2,h : X2,ǫ −→ X2,h, such that for each τ̂ f = (τ f ,v) ∈ X2 ∩ X2,ǫ there holds

‖τ̂ f − I2,h(τ̂ f )‖X2
≤ C

{
‖τ f − Ef

h (τ f )‖div;Ωf
+ ‖v −Πs

h(v)‖1,Ωs

}
. (4.13)
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Proof. Let us first increase the region Ωf across the external surface Γ to a new annular region

Ω̃f with Lipschitz-continuous boundary ∂Ω̃f = Σ ∪ Γ̃. Then, given τ̂ f = (τ f ,v) ∈ X2,ǫ, we let

ϕ ∈ H1(Ω̃f ) be the unique solution (guaranteed by the Lax-Milgram Lemma) of the boundary value
problem with mixed boundary conditions:

∆ϕ = 0 in Ω̃f ,
∂ϕ

∂ν
= Ef

h (τ f ) · ν − ρf ω
2 Πs

h(v) · ν on Σ , ϕ = 0 on Γ̃ , (4.14)

whose corresponding continuous dependence result states that

‖ϕ‖
1,Ω̃f

≤ C ‖Ef
h (τ f ) · ν − ρf ω

2Πs
h(v) · ν‖−1/2,Σ . (4.15)

In addition, since the Neumann datum Ef
h (τ f )·ν−ρf ω

2Πs
h(v)·ν , being an element of Φh(Σ), belongs

to Hδ(Σ) for any δ ∈ [−1/2, 1/2), the classical regularity result for mixed boundary value problems
on polyhedral domains (see, e.g. [20]) implies that ϕ ∈ H5/4(Ω̃f ) and

‖ϕ‖
5/4,Ω̃f

≤ C ‖Ef
h (τ f ) · ν − ρf ω

2Πs
h(v) · ν‖−1/4,Σ . (4.16)

Furthermore, since Ωint
f := Ωf\ΩΣ is an interior region of Ω̃f , the interior elliptic regularity estimate

(see, e.g. [23, Theorem 4.16]) insures that

‖ϕ‖2,Ωint
f

≤ C ‖Ef
h (τ f ) · ν − ρf ω

2 Πs
h(v) · ν‖−1/2,Σ . (4.17)

We now let ζf := ∇ϕ in Ωf , whence ζf belongs to H1/4(Ωf ), and notice from (4.14) that

div ζf = 0 in Ωf , and ζf · ν = Ef
h (τ f ) · ν − ρf ω

2 Πs
h(v) · ν on Σ , (4.18)

which shows, in particular, that ζf ∈ H(div; Ωf ). According to the above, we now define

I2,h(τ̂ f ) := (Ef
h (τ f − ζf ),Π

s
h(v)) ∈ Hf

h ×Ws
h .

It follows, using the characterization (4.5) and the second identity in (4.18), similarly as in the proof

of [16, Lemma 5.1], that there holds Ef
h (τ f − ζf ) · ν = ρf ω

2Πs
h(v) · ν on Σ, which proves that

I2,h(τ̂ f ) belongs to X2,h.

We now assume additionally that τ̂ f = (τ f ,v) ∈ X2, which means that τ f · ν = ρf ω
2 v · ν on

Σ, and aim to prove (4.13). We first observe, applying the triangle inequality, that

‖τ̂ f − I2,h(τ̂ f )‖2X2
≤ 2 ‖τ f − Ef

h (τ f )‖2div;Ωf
+ 2 ‖Ef

h (ζf )‖20,Ωf
+ ‖v −Πs

h(v)‖21,Ωs
, (4.19)

where we have also used, thanks to (4.7) and (4.18), that div Ef
h (ζf ) = Pf

h (div ζf ) = 0 in Ωf . Next,

in order to estimate the remaining term ‖Ef
h (ζf )‖20,Ωf

, we now let

T f
Σ,h :=

{
T ∈ Thf

: T ∩ ΩΣ 6= ∅
}
, Ωf

Σ,h := ∪
{
T : T ∈ T f

Σ,h

}
, and Ωint

f,h := Ωf\Ωf
Σ,h .

It follows, using the stability of Ef
h in H1(Ωint

f,h ), the fact that ζf |Ωint
f,h

∈ H1(Ωint
f,h ), the inclusion

Ωint
f,h ⊆ Ωint

f , and the estimate (4.17), that

‖Ef
h (ζf )‖0,Ωf

≤ ‖Ef
h (ζf )‖0,Ωint

f,h
+ ‖Ef

h (ζf )‖0,Ωf
Σ,h

≤ C ‖ϕ‖2,Ωint
f

+ ‖Ef
h (ζf )‖0,Ωf

Σ,h

≤ C ‖Ef
h (τ f ) · ν − ρf ω

2 Πs
h(v) · ν‖−1/2,Σ + ‖Ef

h (ζf )‖0,Ωf
Σ,h

.

(4.20)
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Now, adding and substracting τ f · ν = ρf ω
2 v · ν on Σ, and applying the trace theorems in

H(div; Ωf ) and H1(Ωs), we find that

‖Ef
h (τ f ) · ν − ρf ω

2 Πs
h(v) · ν‖−1/2,Σ

≤ ‖
(
τ f − Ef

h (τ f )
)
· ν‖−1/2,Σ + ρf ω

2 ‖
(
v −Πs

h(v)
)
· ν‖−1/2,Σ

≤ C
{
‖τ f − Ef

h (τ f )‖div;Ωf
+ ‖v −Πs

h(v)‖1,Ωs

}
.

(4.21)

Finally, we estimate ‖Ef
h (ζf )‖0,Ωf

Σ,h

from (4.20). In fact, adding and substracting ζf = ∇ϕ in

Ωf
Σ,h ⊆ Ωf , noting that ‖ζf‖0,Ωf

Σ,h

≤ ‖ϕ‖1,Ωf
≤ ‖ϕ‖

1,Ω̃f
, and employing the estimates (4.15), (4.9)

(with δ = 1/4) and (4.16), the fact that div ζf = 0 in Ωf , the quasi-uniformity bound (4.10), and
the inverse inequality (4.11), we arrive at

‖Ef
h (ζf )‖20,Ωf

Σ,h

≤ C
{
‖ζf − Ef

h (ζf )‖20,Ωf
Σ,h

+ ‖ζf‖20,Ωf
Σ,h

}

≤ C
∑

T∈T
f
Σ,h

h
1/2
T ‖ϕ‖25/4,T + C ‖Ef

h (τ f ) · ν − ρf ω
2 Πs

h(v) · ν‖2−1/2,Σ

≤ C h
1/2
Σ ‖Ef

h (τ f ) · ν − ρf ω
2 Πs

h(v) · ν‖2−1/4,Σ + C ‖Ef
h (τ f ) · ν − ρf ω

2Πs
h(v) · ν‖2−1/2,Σ

≤ C ‖Ef
h (τ f ) · ν − ρf ω

2Πs
h(v) · ν‖2−1/2,Σ .

(4.22)

Consequently, (4.19), (4.20), (4.21), and (4.22) yield the estimate (4.13) and complete the proof.
2

4.3 A discrete approximation of P|Xh

In what follows we introduce uniformly bounded linear operators P1,h : X1,h → X1,h and P2,h :
X2,h → X2,h so that Ph(τ̂ h) := (P1,h(τ̂ s,h),P2,h(τ̂ f,s)) becomes a suitable discrete approximation of
P(τ̂ h) := (P1(τ̂ s,h),P2(τ̂ f,s)) for each τ̂ h := (τ̂ s,h, τ̂ f,h) ∈ Xh, and then estimate the corresponding
error ‖P(τ̂ h) − Ph(τ̂ h)‖X.

Indeed, given τ̂ h := (τ̂ s,h, τ̂ f,h) := ((τ s,h, qh), (τ f,h,vh)) ∈ X1,h × X2,h =: Xh, we first recall
from (3.3) and (3.1) that

P1(τ̂ s,h) := σ̃s and P1(τ̂ s,h) := (P1(τ̂ s,h), qh) , (4.23)

where σ̃s := C ε(ũ) and ũ is the unique solution of the problem

σ̃s = C ε(ũ) in Ωs , div σ̃s = div τ s,h + r(τ̂ s,h) in Ωs ,

σ̃s ν = −qh ν on Σ , ũ ∈ (I−M)(L2(Ωs)) .
(4.24)

In turn, we recall from (3.10) and (3.8) that

P2(τ̂ f,h) := σ̃f and P2(τ̂ f,h) := (P2(τ̂ f,h),vh) , (4.25)

where σ̃f := ∇p̃ and p̃ is the unique solution of the problem

σ̃f = ∇p̃ in Ωf , div σ̃f = div τ f,h in Ωf ,

σ̃f · ν = ρf ω
2 vh · ν on Σ , p̃ = 0 on Γ .

(4.26)
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Next, we let (σ̃s,h, ũh, γ̃h) ∈ H
s
h × (I−M)(Us

h)× Yh be the mixed finite element approximation
of the solution of (4.24), which was introduced and analyzed in [16, Section 5.2], and define

P1,h(τ̂ s,h) := σ̃s,h and P1,h(τ̂ s,h) := (P1,h(τ̂ s,h), qh) . (4.27)

In particular, we know from [16, Section 5.2, Theorem 5.1 and eq. (5.27)] that there hold

‖P1,h(τ̂ s,h)‖div;Ωs
≤ C

{
‖τ s,h‖div;Ωs

+ ‖qh‖1,Ωf

}
, (4.28)

P1,h(τ̂ s,h)ν = − qh ν on Σ and

∫

Ωs

P1,h(τ̂ s,h) : η̃h = 0 ∀ η̃h ∈ Yh . (4.29)

It is clear that (4.28) yields the uniform boundedness of P1,h, while the first equation of (4.29)
guarantees that P1,h(τ̂ s,h) belongs to X1,h. In addition, according to [16, Lemma 5.4], whose proof
makes use of the definition (4.23), the conmuting diagram identity (4.6), the approximation properties
(4.8), (APs

h), and (AP
γ
h ), and the regularity estimate for (4.24) (cf. (3.2), (3.7)), we have the following

error estimate.

Lemma 4.3 Let ǫ > 0 be the parameter defining the regularity of the solution of (4.24). Then, there

exists C > 0, independent of h, such that for each τ̂ s,h := (τ s,h, qh) ∈ X1,h there holds

‖P1(τ̂ s,h) − P1,h(τ̂ s,h)‖div;Ωs
≤ C hǫ

{
‖div τ s,h‖0,Ωs + ‖qh‖1,Ωf

}
. (4.30)

On the other hand, we know from (3.9) and (3.13) that P2(τ̂ f,h) belongs to Hǫ(Ωf ) and

‖P2(τ̂ f,h)‖ǫ,Ωf
≤ C

{
‖div τ f,h‖0,Ωf

+ ‖vh‖1,Ωs

}
, (4.31)

whence we can define

P2,h(τ̂ f,h) := Ef
h

(
P2(τ̂ f,h)

)
and P2,h(τ̂ f,h) := (P2,h(τ̂ f,h),vh) . (4.32)

It follows from (4.25) and (4.26) that

divP2(τ̂ f,h) = div τ f,h in Ωf and P2(τ̂ f,h) · ν = ρf ω
2 vh · ν on Σ .

Therefore, employing the conmuting diagram property (4.7) and the fact that div τ f,h is piecewise
constant, we deduce that

divP2,h(τ̂ f,h) = Pf
h

(
divP2(τ̂ f,h)

)
= Pf

h

(
div τ f,h

)
= div τ f,h = divP2(τ̂ f,h) . (4.33)

Furthermore, the uniform boundedness of Ef
h : Hǫ(Ωf ) ∩ H(div; Ωf ) → Hf

h (which follows from
(4.9) and (4.7)), the estimate (4.31), and the identity (4.33), imply that P2,h is uniformly bounded. In
addition, using the characterization property (4.5) and the fact that ρf ω

2 vh ·ν is piecewise polynomial

of degree 1, we easily find that Ef
h

(
P2(τ̂ f,h)

)
· ν = ρf ω

2 vh · ν on Σ, which proves that P2,h(τ̂ f,h)
belongs to X2,h. Moreover, we have the following error estimate.

Lemma 4.4 Let ǫ > 0 be the parameter defining the regularity of the solution of (4.26). Then, there

exists C > 0, independent of h, such that for each τ̂ f,h := (τ f,h,vh) ∈ X2,h there holds

‖P2(τ̂ f,h) − P2,h(τ̂ f,h)‖div;Ωf
≤ C hǫ

{
‖div τ f,h‖0,Ωf

+ ‖vh‖1,Ωs

}
. (4.34)
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Proof. We first observe, according to (4.32) and (4.33), that

‖P2(τ̂ f,h) − P2,h(τ̂ f,h)‖div;Ωf
= ‖P2(τ̂ f,h) − P2,h(τ̂ f,h)‖0,Ωf

= ‖(I− Ef
h )
(
P2(τ̂ f,h)

)
‖0,Ωf

.

Then, applying the approximation property (4.9) and the identity (4.33), we obtain

‖(I− Ef
h )
(
P2(τ̂ f,h)

)
‖20,Ωf

=
∑

T∈Thf

‖(I − Ef
h )
(
P2(τ̂ f,h)

)
‖20,T

≤ C
∑

T∈Thf

h2ǫT

{
|P2(τ̂ f,h)|2ǫ,T + ‖divP2(τ̂ f,h)‖20,T

}

≤ C h2ǫ
{
‖P2(τ̂ f,h)‖2ǫ,Ωf

+ ‖div τ f,h‖20,Ωf

}
,

which, together with the estimate (4.31), completes the proof.
2

We now formally let Ph : Xh −→ Xh be the discrete approximation of P|Xh
given by

Ph(τ̂ h) := (P1,h(τ̂ s,h),P2,h(τ̂ f,h)) ∀ τ̂h := (τ̂ s,h, τ̂ f,h) ∈ Xh ,

where P1,h and P2,h are defined by (4.27) and (4.32), respectively. Note that Ph is certainly uniformly
bounded, as well. Then, as a direct consequence of Lemmas 4.3 and 4.4, we obtain the following error
estimate.

Lemma 4.5 Let ǫ > 0 be the parameter defining the regularity of the solutions of (4.24) and (4.26).
Then, there exists C > 0, independent of h, such that for each τ̂h ∈ Xh there holds

‖P(τ̂ h) − Ph(τ̂ h)‖X ≤ C hǫ ‖τ̂ h‖X .

Proof. It follows straightforwardly from the estimates (4.30) and (4.34), and the fact that

‖div τ s,h‖0,Ωs + ‖qh‖1,Ωf
+ ‖div τ f,h‖0,Ωf

+ ‖vh‖1,Ωs ≤ ‖τ̂ h‖X

for each τ̂h := (τ̂ s,h, τ̂ f,h) := ((τ s,h, qh), (τ f,h,vh)) ∈ Xh.
2

4.4 Well-posedness of the discrete formulation

We now aim to show the well-posedness of the augmented fully-mixed finite element scheme (4.3).
For this purpose, as established by a classical result on projection methods for Fredholm operators of
index zero (see, e.g. Theorem 13.7 in [22]), it suffices to prove that the Galerkin scheme associated to

the isomorphism

(
A0 B∗

B 0

)
is well-posed. According to the above, in what follows we show that

the bilinear forms A0 and B (cf. (3.21), (2.15)) satisfy the corresponding inf-sup conditions on the
finite element subspace Xh × Yh.

We begin with the discrete analogue of Lemma 3.1, which was actually already proved in [16].

Lemma 4.6 There exists β > 0, independent of h, such that

sup
τ̂h ∈Xh

τ̂h 6=0

|B(τ̂ h,ηh) |
‖τ̂ h‖X

≥ β ‖ηh‖0,Ωs ∀ηh ∈ Yh .
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Proof. See [16, Lemma 5.5].
2

We now let Vh be the discrete kernel of B, that is

Vh := { τ̂ h := (τ̂ s,h, τ̂ f,h) = ((τ s,h, qh), (τ f,h,vh)) ∈ Xh : B(τ̂ h,ηh) = 0 ∀ηh ∈ Yh }

=
{
τ̂ h := (τ̂ s,h, τ̂ f,h) = ((τ s,h, qh), (τ f,h,vh)) ∈ Xh :

∫

Ωs

τ s,h : ηh = 0 ∀ηh ∈ Yh

}
.

Then, the discrete analogue of Lemma 3.7 is established as follows.

Lemma 4.7 There exist C, h0 > 0, independent of h, such that for each h ≤ h0 there holds

sup
ζ̂h∈Vh

ζ̂h 6=0

|A0(τ̂ h, ζ̂h) |
‖ζ̂h‖X

≥ C ‖τ̂ h‖X ∀ τ̂ h ∈ Vh . (4.35)

Proof. We first define Th := (I − 2Ph) : Xh → Xh, which constitutes a discrete approximation of
the operator T := (I − 2P) : X → X (cf. (3.27)), and observe, as a straightforward consequence of
Lemma 4.5, that

‖T(τ̂ h) − Th(τ̂ h)‖X ≤ C hǫ ‖τ̂ h‖X ∀ τ̂h ∈ Xh .

Then, adding and substracting T
(
τ̂h

)
, using the boundedness of A0, and applying the inequality

(3.29) (cf. Lemma 3.6), we find that for each τ̂h ∈ Xh there holds

∣∣∣Re
{
A0(τ̂ h,Th(τ̂ h))

} ∣∣∣ ≥
∣∣∣Re

{
A0(τ̂ h,T(τ̂ h)

} ∣∣∣ − C̃ hǫ ‖τ̂ h‖2X ≥
{
C1 − C̃ hǫ

}
‖τ̂ h‖2X ,

from which we deduce the existence of h0 > 0 such that
∣∣∣Re

{
A0(τ̂ h,Th(τ̂ h))

} ∣∣∣ ≥ c ‖τ̂ h‖2X ∀ τ̂h ∈ Xh , ∀h ≤ h0 . (4.36)

It is clear from this inequality that Th(τ̂ h) 6= 0 for each τ̂h 6= 0. In addition, it follows from the
second equation of (4.29) and the above characterization of Vh that Ph(τ̂ h), and hence Th(τ̂ h), belong
to Vh for each τ̂h ∈ Vh. Finally, it is easy to see that (4.36) and the uniform boundedness of Th

imply the discrete inf-sup condition (4.35).
2

We end this section with the well-posedness and convergence of our discrete scheme (4.3).

Theorem 4.1 Assume that the homogeneous problem associated to (2.13) has only the trivial solution.

Let h0 > 0 be the constant provided by Lemma 4.7. Then, there exists h1 ∈ ]0, h0] such that for each

h ≤ h1, the mixed finite element scheme (4.3) has a unique solution (σ̂h,γh) ∈ Xh × Yh, where

σ̂h := (σ̂s,h, σ̂f,h) := ((σs,h, ph), (σf,h,uh)). In addition, there exist C1, C2 > 0, independent of h,
such that for each h ≤ h1 there hold

‖(σ̂h,γh)‖X×Y ≤ C1 sup
τ̂h∈Xh

τ̂h 6=0

|F(τ̂ h)|
‖τ̂ h‖X

≤ C1

{
‖f‖0,Ωs + ‖pi‖1/2,Γ

}

and

‖(σ̂,γ) − (σ̂h,γh)‖X×Y ≤ C2 inf
(τ̂h,ηh)∈Xh×Yh

‖(σ̂,γ) − (τ̂ h,ηh)‖X×Y , (4.37)
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where σ̂ := (σ̂s, σ̂f ) := ((σs, p), (σf ,u)) ∈ X and γ ∈ Y constitute the unique solution of (2.13).
Furthermore, if there exists δ ∈ (0, 1] such that σs ∈ H

δ(Ωs), divσs ∈ Hδ(Ωs), p ∈ H1+δ(Ωf ),
σf ∈ Hδ(Ωf ), divσf ∈ Hδ(Ωf ), u ∈ H1+δ(Ωs), and γ ∈ H

δ(Ωs), then for each h ≤ h1 there holds

‖(σ̂,γ) − (σ̂h,γh)‖X×Y ≤ C3 h
δ
{
‖σs‖δ,Ωs

+ ‖divσs‖δ,Ωs
+ ‖p‖1+δ,Ωf

+ ‖σf‖δ,Ωf
+ ‖divσf‖δ,Ωf

+ ‖u‖1+δ,Ωs
+ ‖γ‖[Hδ(Ωs)]3×3

}
,

(4.38)

with a constant C3 > 0, independent of h.

Proof. Because of Lemmas 4.6 and 4.7, the proof of the first part is a straightforward application
of [22, Theorem 13.7]. In turn, the rate of convergence (4.38) follows directly from the Cea estimate
(4.37) and the approximation properties of X1,h (cf. Lemma 4.1), X2,h (cf. Lemma 4.2), and Yh

(cf. (AP
γ
h )). Note here that the corresponding inequalities (4.12) and (4.13) are furtherly estimated

thanks to (APσs

h ), (APp
h), (AP

σf

h ), and (APu

h). We omit additional details.
2

5 Numerical results

In this section we present two examples illustrating the performance of the augmented fully-mixed
finite element scheme (4.3) on a finite sequence of quasi-uniform triangulations of the domain. We
begin by introducing additional notations. The variable N stands for the number of degrees of freedom
defining the finite element subspaces Xh and Yh, and the individual and global errors are denoted by:

e(σs) := ‖σs − σs,h‖div;Ωs
, e(p) := ‖p − ph‖1,Ωf

, e(σf ) := ‖σf − σf,h‖div;Ωf
,

e(u) := ‖u− uh‖1,Ωs , e(γ) := ‖γ − γh‖0,Ωs , and

e(σ̂,γ) :=
{{

e(σs)
}2

+
{
e(p)

}2
+

{
e(σf )

}2
+

{
e(u)

}2
+

{
e(γ)

}2
}1/2

.

Also, we let r(σs), r(p), r(σf ), r(u), r(γ), and r(σ̂,γ) be the experimental rates of convergence given
by

r(σs) :=
log(e(σs)/e

′(σs))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
,

r(σf ) :=
log(e(σf )/e

′(σf ))

log(h/h′)
, r(u) :=

log(e(u)/e′(u))

log(h/h′)
,

r(γ) :=
log(e(γ)/e′(γ))

log(h/h′)
, and r(σ̂,γ) :=

log(e(σ̂,γ)/e′(σ̂,γ))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with corresponding errors e and e
′.

In Example 1 we consider the domains Ωs := ]0.25, 0.75[3 and Ωf := ]0, 1[3 \Ωs, and take the
parameters ω = v0 = 2, and ρs = ρf = λ = µ = 1, whence κf = 1 and κs = 2. Then, we choose the
data f and pi so that, with the above constants, the exact solution of (2.13) is determined by

u(x) =
1

4π r



 a(r)




1
0
0


 +

b(r)

r2




(x1 − 2)2

x2(x1 − 2)
x3(x1 − 2)






 ∀x := (x1, x2, x3)

t ∈ Ωs ,

and

p(x) =
1

r
exp(rι) ∀x := (x1, x2, x3)

t ∈ Ωf ,
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where

r =
√

(x1 − 2)2 + x22 + x23 ,

a(r) =

{
1 − 1

4r2
+

ι

2r

}
exp(2rι) − 1

3

{
− 3

4r2
+

√
3 ι

2r

}
exp

(
2rι√
3

)
,

and

b(r) =

{
3

4r2
− 1 − 3ι

2r

}
exp(2rι) − 1

3

{
9

4r2
− 1 − 3

√
3 ι

2r

}
exp

(
2rι√
3

)
.

Actually, u is the fundamental solution, centered at (2, 0, 0), of the elastodynamic equation, which
yields f = 0 in Ωs, and p is the fundamental solution, also centered at (2, 0, 0), of the Helmholtz
equation in Ωf . Next, in Example 2 we assume the same geometry, parameters, and solution u from
Example 1, but the exact pressure is replaced by a plane wave in the direction (−1, 0, 0)t, that is

p(x) = exp(−x1 ι) ∀x := (x1, x2, x3)
t ∈ Ωf .

We remark that in these academic examples with known solutions, the transmission conditions defining
the spaces X1 and X2 do not necessarily hold, and hence we simply replace them by the corresponding
jump relations that arise. These non-homogeneous jumps are then handled at the discrete level by
introducing suitable Lagrange multipliers in the computational implementation of (4.3).

In Tables 5.1 to 5.4 we present the convergence history of Examples 1 and 2 for a sequence of
quasi-uniform triangulations of the computational domain Ω̄s ∪ Ω̄f . We remark that the rate of
convergence O(h) predicted by Theorem 4.1 (when δ = 1) is attained for all the unknowns and in all
the cases presented. In particular, the use of different pairs of parameters satisfying the stabilization
conditions κ1 ∈ ]0, 2µ[ and κ2 ∈ ]0, 1[ confirms the robustness of the discrete scheme (4.3) with respect
to them. Finally, in Figures 5.1 to 5.4 we display real and imaginary parts of some components of the
approximate (with κ1 = µ/2 and κ2 = 0.75) and exact solutions, from which we notice that they do
not distinguish from each other. This confirms the accurateness of the proposed fully-mixed method.

h N e(σs) r(σs) e(p) r(p) e(σf ) r(σf )

1/4 3229 8.237E−03 − 9.268E−02 − 4.447E−02 −
1/8 25845 3.953E−03 1.059 4.879E−02 0.926 2.196E−02 1.018
1/12 86213 2.622E−03 1.013 3.292E−02 0.970 1.461E−02 1.005
1/16 203977 1.964E−03 1.004 2.481E−02 0.983 1.095E−02 1.003
1/20 390525 1.570E−03 1.002 1.990E−02 0.989 8.756E−03 1.002
1/24 684053 1.309E−03 1.001 1.660E−02 0.992 7.295E−03 1.001

h N e(u) r(u) e(γ) r(γ) e(σ̂,γ) r(σ̂,γ)

1/4 3229 1.329E−02 − 3.308E−03 − 1.040E−01 −
1/8 25845 4.929E−03 1.430 8.960E−04 1.884 5.388E−02 0.949
1/12 86213 2.937E−03 1.277 4.834E−04 1.522 3.624E−02 0.979
1/16 203977 2.068E−03 1.219 3.297E−04 1.331 2.727E−02 0.988
1/20 390525 1.597E−03 1.160 2.510E−04 1.223 2.185E−02 0.992
1/24 684053 1.306E−03 1.103 2.032E−04 1.158 1.823E−02 0.994

Table 5.1: Convergence history of example 1 with κ1 = µ and κ2 = 0.5
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h N e(σs) r(σs) e(p) r(p) e(σf ) r(σf )

1/4 3229 8.219E−03 − 9.675E−02 − 7.747E−02 −
1/8 25845 3.946E−03 1.059 4.888E−02 0.985 2.257E−02 1.779
1/12 86213 2.620E−03 1.010 3.294E−02 0.973 1.473E−02 1.053
1/16 203977 1.963E−03 1.003 2.482E−02 0.984 1.099E−02 1.017
1/20 390525 1.570E−03 1.001 1.990E−02 0.990 8.775E−03 1.009
1/24 684053 1.308E−03 1.000 1.660E−02 0.993 7.305E−03 1.005

h N e(u) r(u) e(γ) r(γ) e(σ̂,γ) r(σ̂,γ)

1/4 3229 9.089E−02 − 3.414E−03 − 1.540E−01 −
1/8 25845 9.760E−03 3.219 9.167E−04 1.897 5.486E−02 1.489
1/12 86213 4.417E−03 1.955 4.944E−04 1.523 3.645E−02 1.008
1/16 203977 2.722E−03 1.682 3.360E−04 1.343 2.735E−02 0.998
1/20 390525 1.940E−03 1.519 2.548E−04 1.239 2.189E−02 0.998
1/24 684053 1.506E−03 1.389 2.057E−04 1.175 1.825E−02 0.998

Table 5.2: Convergence history of example 1 with κ1 = µ/2 and κ2 = 0.75

h N e(σs) r(σs) e(p) r(p) e(σf ) r(σf )

1/4 3229 8.115E−03 − 6.535E−02 − 4.837E−02 −
1/8 25845 3.938E−03 1.043 3.338E−02 0.969 2.394E−02 1.015
1/12 86213 2.617E−03 1.008 2.238E−02 0.987 1.593E−02 1.004
1/16 203977 1.962E−03 1.002 1.682E−02 0.992 1.194E−02 1.002
1/20 390525 1.569E−03 1.000 1.347E−02 0.995 9.553E−03 1.001
1/24 684053 1.308E−03 0.999 1.123E−02 0.996 7.959E−03 1.001

h N e(u) r(u) e(γ) r(γ) e(σ̂,γ) r(σ̂,γ)

1/4 3229 1.231E−02 − 2.975E−03 − 8.268E−02 −
1/8 25845 4.557E−03 1.433 8.248E−04 1.851 4.153E−02 0.994
1/12 86213 2.799E−03 1.202 4.589E−04 1.446 2.774E−02 0.995
1/16 203977 2.008E−03 1.155 3.186E−04 1.268 2.082E−02 0.997
1/20 390525 1.567E−03 1.111 2.451E−04 1.175 1.666E−02 0.998
1/24 684053 1.290E−03 1.067 1.997E−04 1.123 1.389E−02 0.999

Table 5.3: Convergence history of example 2 with κ1 = µ and κ2 = 0.5

27



h N e(σs) r(σs) e(p) r(p) e(σf ) r(σf )

1/4 3229 8.099E−03 − 7.129E−02 − 8.104E−02 −
1/8 25845 3.934E−03 1.042 3.352E−02 1.089 2.451E−02 1.725
1/12 86213 2.616E−03 1.006 2.241E−02 0.993 1.605E−02 1.045
1/16 203977 1.961E−03 1.001 1.683E−02 0.995 1.198E−02 1.015
1/20 390525 1.569E−03 1.000 1.348E−02 0.996 9.571E−03 1.007
1/24 684053 1.308E−03 0.999 1.123E−02 0.997 7.969E−03 1.004

h N e(u) r(u) e(γ) r(γ) e(σ̂,γ) r(σ̂,γ)

1/4 3229 9.272E−02 − 2.911E−03 − 1.426E−01 −
1/8 25845 9.264E−03 3.323 8.359E−04 1.800 4.274E−02 1.738
1/12 86213 4.144E−03 1.984 4.645E−04 1.449 2.800E−02 1.043
1/16 203977 2.586E−03 1.639 3.214E−04 1.280 2.092E−02 1.013
1/20 390525 1.868E−03 1.457 2.466E−04 1.187 1.671E−02 1.006
1/24 684053 1.467E−03 1.328 2.006E−04 1.132 1.392E−02 1.004

Table 5.4: Convergence history of example 2 with κ1 = µ/2 and κ2 = 0.75
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Centro de Investigación en Ingenieŕıa Matemática, Universidad de Concepción, Chile, (2011).
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