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L. Beirão da Veiga · D. MoraA mimeti disretization of theReissner-Mindlin plate bending problem
Reeived: date / Revised: dateAbstrat We present a mimeti approximation of the Reissner-Mindlin platebending problem whih uses de�etions and rotations as disrete variables.The method applies to very general polygonal meshes, even with non math-ing or non onvex elements. We prove linear onvergene for the methoduniformly in the plate thikness.1 IntrodutionThe Mimeti Finite Di�erene (or MFD) method allows for the disretiza-tion of problems in partial di�erential equations using very general polygo-nal/polyhedral grids. The MFD sheme has been suessfully employed forsolving problems of ontinuum mehanis [40℄, eletromagnetis [35℄, gas dy-namis [24℄, and linear di�usion (see e.g. [36,41,37,14,15,34℄ and referenestherein).Reently, a new approah to the MFD method has been proposed in [21℄.Suh approah, whih interprets the MFD method as a generalization ofthe �nite element method, seems to be more �exible both for developing themethod and for the onvergene analysis. This last generation of MFD shouldbe more appropriately alled Mimeti Disretization (MD) methods, sinethe original �nite di�erene approah is abandoned. From the standpoint of�nite elements, the fundamental idea of the mimeti disretization shemeL. Beirão da VeigaDipartimento di Matematia "F. Enriques", Università degli Studi di Milano,Via Saldini 50, 20133 Milano, ItalyE-mail: loureno.beirao�unimi.itD. MoraDepartamento de Ingeniería Matemátia, Universidad de Conepión,Casilla 160-C, Conepión, ChileE-mail: david�ing-mat.ude.l



2 L. Beirão da Veiga, D. Morabeomes the following: the disrete variational problem is written diretlyin terms of the degrees of freedom and the underlying basis funtions arenot spei�ed expliitly. Clearly, the di�erential operators and bilinear formsappearing in the problem must be suitably disretized in suh a way thatertain stability and onsisteny properties are satis�ed. This approah allowsfor general polygonal/polyhedral meshes, even with non-mathing and non-onvex elements. Another remarkable fat is that the aforementioned formsan be pratially onstruted in a rather simple algebrai way.The ideas and onvergene analysis presented in [21℄ for the di�usionproblem has been further developed in [17,10,38,7℄. As previously mentioned,this analysis resulted also in new algebrai methods for building mass [23,22℄ and sti�ness [17℄ matries on arbitrary-shaped elements for the lineardi�usion problem. These algebrai methods have been developed also forhigher order MFD methods [13,33℄. A-posteriori error estimators have beenanalyzed in [6,12℄, while in [25,26℄ the authors introdued a post-proessingtehnique and generalized some previous results. Moreover, a mimeti dis-retization of the Stokes problem following this new approah was presentedin [8,11℄. Finally, the mimeti disretization method has been shown to sharestrong similarities also with the �nite volume method in [29℄, see also [28℄.The aim of the present paper is to develop a Mimeti Disretization ofthe Reissner-Mindlin plate bending problem. This problem has attrated alarge attention in the last deades both in the engineering and mathematialommunities, mainly due to the large appliability of the model and thestrong di�ulties hidden in its numerial approximation. Nowadays thereexists a large range of �nite element shemes for the Reissner-Mindlin platebending problem, the most famous and popular ones belonging without doubtto the Mixed Interpolation of Tensorial Components (MITC) lass of methods[4,2℄. The onvergene analysis of the MITC elements has been overed inseveral papers from di�erent points of view, see for instane [18,3,20,42,32,43,31,5,39℄.In the present paper, we propose a MD method whih applies to generalpolygonal (even non-onforming or non-onvex) meshes and whih takes thesteps from the MITC philosophy. The degrees of freedom for the (salar)displaement variable are one for eah mesh vertex, while for the (vetorial)rotation variable we adopt two degrees of freedom for eah vertex plus anadditional degree of freedom on eah edge. Under ertain assumptions on themesh, suh edge degrees of freedom an be dropped, leading to a methodwhih uses only vertex d.o.f.s. both for the displaements and rotations.Taking inspiration from the MITC approah, the proposed sheme adoptsa redution of the shear energy in order to avoid loking. As it happens inmimeti disretizations, all the redution and di�erential operators, bilinearforms and degrees of freedom must be de�ned arefully in order to orretlymimi the properties of the original problem.The paper is organized as follows. In Setion 2 we present the modelproblem. In Setion 3, after introduing the disrete spaes, operators andbilinear forms, we desribe the proposed method. In the rest of the paper wedevelop the error analysis. In order to do so, we take inspiration from theideas of [42,1,20,39℄ whih rewrite the disrete problem as a ombination of



A mimeti disretization for Reissner-Mindlin plates 3di�erent sub-problems via a disrete Helmholtz deomposition. We hoosesuh approah beause, although it is perhaps less diret than others, it hasthe advantage of unveiling the true struture of the problem. After introdu-ing the equivalent disrete problem in Setion 4, we derive the error analysisin Setion 5. In the main Theorem 1, we �nally prove the linear onvergeneof the method, uniformly in the thikness parameter t and under realistiregularity requirements for the solution.2 The Reissner-Mindlin plate bending problemHere and thereafter we use the following operator notation for any tensor�eld τ = (τij) i, j = 1, 2, any vetor �eld η = (ηi) i = 1, 2 and any salar�eld v:
div η := ∂1η1 + ∂2η2, rotη := ∂1η2 − ∂2η1, ∇v :=

(
∂1v
∂2v

)
,

curl v :=

(
∂2v
−∂1v

)
, div τ :=

(
∂1τ11 + ∂2τ12
∂1τ21 + ∂2τ22

)
, tr(τ ) :=

2∑

i=1

τii.Throughout the paper we will use standard notations for Sobolev spaes,norms and semi-norms. Moreover, we will denote with c and C, with orwithout subsripts, tildes, or hats a generi onstant independent of the meshparameter h and the plate thikness t, whih may take di�erent values indi�erent ourrenes.Consider an elasti plate of thikness t suh that 0 < t ≤ diam(Ω), withreferene on�guration Ω ×
(
− t

2 ,
t
2

)
, where Ω is a onvex polygonal domainof R2 oupied by the midsetion of the plate. The deformation of the plate isdesribed by means of the Reissner-Mindlin model in terms of the rotations

β = (β1, β2) of the �bers initially normal to the plate's midsurfae, the saledshear stresses γ = (γ1, γ2), and the transverse displaement w. Assumingthat the plate is lamped on its whole boundary ∂Ω, the following strongequations desribe the plate's response to onveniently saled transversalload g ∈ L2(Ω): �nd (β, w,γ) suh that




−div Cε(β) − γ = 0 in Ω,
− div γ = g in Ω,
γ = κt−2(∇w − β) in Ω,
β = 0, w = 0 on ∂Ω, (1)where the tensor of bending moduli

Cτ :=
E

12(1 − ν2)
((1 − ν)τ + νtr(τ )I) ,with E > 0 representing the Young modulus, 0 < ν < 1/2 being the Poissonratio for the material and I indiating the seond order identity tensor.



4 L. Beirão da Veiga, D. MoraLet the H1
0 (Ω)

2-ellipti bilinear form be given by
a(β,η) :=

∫

Ω

Cε(β) : ε(η) =

=
E

12(1 − ν2)

∫

Ω

[(1 − ν)ε(β) : ε(η) + ν div β div η] ,

(2)with ε = (εij)1≤i,j≤2 the standard strain tensor de�ned by εij(β) := 1
2 (∂iβj+

∂jβi), 1 ≤ i, j ≤ 2.Then, the variational formulation of problem (1) reads: Find (β, w,γ) ∈

H1
0 (Ω)

2
×H1

0 (Ω) × L2(Ω)
2 suh that

{
a(β,η) + (γ,∇v − η)0,Ω = (g, v)0,Ω ∀(η, v) ∈ H1

0 (Ω)
2
×H1

0 (Ω),

(∇w − β, δ)0,Ω − κ−1t2(γ, δ)0,Ω = 0 ∀δ ∈ L2(Ω)
2
,

(3)where κ := Ek/2(1 + ν) is the shear modulus with k a orretion fatorusually taken as 5/6 for lamped plates.Using the Helmholtz deomposition for the shear term [18℄
γ = ∇ψ + curl p, (4)with ψ ∈ H1

0 (Ω) and p ∈ H1(Ω) ∩ L2
0(Ω), the same deomposition for thetest funtion

δ = ∇ξ + curl q,and integrating by parts, we easily infer that problem (3) is equivalent to thefollowing: Find (ψ,β, p, w) ∈ H1
0 (Ω) × H1

0 (Ω)
2
× H1(Ω) ∩ L2

0(Ω) ×H1
0 (Ω)suh that






(∇ψ,∇v)0,Ω = (g, v)0,Ω ∀v ∈ H1
0 (Ω),

a(β,η) − (p, rotη)0,Ω = (∇ψ,η)0,Ω ∀η ∈ H1
0 (Ω)

2
,

−(rotβ, q)0,Ω − κ−1t2(curl p, curl q)0,Ω = 0 ∀q ∈ H1(Ω) ∩ L2
0(Ω),

(∇w,∇ξ)0,Ω = (β,∇ξ)0,Ω + κ−1t2(∇ψ,∇ξ)0,Ω ∀ξ ∈ H1
0 (Ω). (5)It an be easily heked that there is a unique solution for both variationalproblems onsidered above. In what follows we will make the following regu-larity assumption. The load term g ∈ L2(Ω), all omponents of the solution

(ψ,β, p, w) of (5) are in H2(Ω) and it holds
‖ψ‖2,Ω + ‖β‖2,Ω + ‖p‖1,Ω + t‖p‖2,Ω + ‖w‖2,Ω ≤ C‖g‖0,Ω, (6)with C independent of t.The above assumption is reasonable. We reall for instane the followingregularity result (see [1℄):Proposition 1 Let Ω be a onvex polygon or a smoothly bounded domain inthe plane. Then, for any t ∈ (0, diam(Ω)] and g ∈ L2(Ω), the ondition (6)is satis�ed.



A mimeti disretization for Reissner-Mindlin plates 53 A mimeti disretizationIn this setion we present a mimeti disretization method for the Reissner-Mindlin plate bending problem.3.1 Mesh notation and assumptionsLet Ωh be a partition of the omputational domain Ω into N (Ωh) polygons
E. We assume that this partition is onformal, i.e. intersetion of two di�erentelements E1 and E2 is either a few mesh points, or a few mesh edges (twoadjaent elements may share more than one edge) or empty. We allow Ωhto ontain non-onvex and degenerate elements. For eah polygon E, |E|denotes its area, hE denotes its diameter and

h := max
E∈Ωh

hE.We denote the set of mesh verties and edges by Vh and Eh, the set ofinternal verties and edges by V0
h and E0

h, the set of verties and edges of apartiular element E by VE
h and EE

h , and the set of boundary verties andedges by V∂
h and E∂

h , respetively. Moreover, we denote a generi mesh vertexby v, a generi edge by e and its length both by he and |e|.A �xed orientation is also set for the mesh Ωh, whih is re�eted by aunit normal vetor ne, e ∈ Eh, �xed one for all. Moreover, te denotes thetangent vetor de�ned as the antilokwise rotation of ne by 90◦.For every polygon E and edge e ∈ EE
h , we de�ne a unit normal vetor ne

Ethat points outside of E, and by te

E the tangent vetor as the antilokwiserotation of ne

E by 90◦.The mesh is assumed to satisfy the following shape regularity properties,whih have already been used in [17℄.There exist
− an integer number Ns, whih is independent of h;
− a real positive number ρ independent of h;
− a ompatible sub-deomposition Th of every Ωh into shape-regular trian-gles,suh that(H1) any polygon E ∈ Ωh admits a deomposition Th|E formed by less than
Ns triangles;(H2) any triangle T ∈ Th is shape-regular in the sense that the ratio betweenthe radius r of the insribed ball and the diameter hT is bounded frombelow by ρ:

0 < ρ ≤
r

hT
.From (H1), (H2) there an be easily derived several useful properties thatwe list below:



6 L. Beirão da Veiga, D. Mora(M1) the number of verties and edges of every polygon E of Ωh are uni-formly bounded from above by two integer numbers Nv and Ne, whihonly depend on Ns;(M2) there exists a real positive number σs, whih only depends on Ns and
ρ, suh that

he ≥ σshE and |E| ≥ σsh
2
E ,for every polygon E of every deomposition Ωh, for every edge e of E.(M3) there exists a onstant Ca, only dependent on ρ and Ns, suh that forevery polygon E, for every edge e of E and for every funtion ψ ∈ H1(E)there holds the trae inequality :

||ψ||20,e ≤ Ca

(
h−1

E ||ψ||20,E + hE |ψ|
2
1,E

)
.(M4) there exists a onstant C∗

app, whih is independent of h, suh that forevery E and for every funtion ψ ∈ H1(E) there exists a onstant ψ0 ∈ Rsuh that
||ψ − ψ0||0,E ≤ C∗

apphE |ψ|1,E .(M5) there exists a onstant Capp, whih is independent of h, suh that forevery E and for every funtion ψ ∈ H2(E) there holds the interpolationinequality
||ψ − ψ1||0,E + hE |ψ − ψ1|1,E ≤ Capph

2
E |ψ|2,E ,where ψ1 is the L2(E)-orthogonal projetion of ψ over the spae of linearpolynomials de�ned on E.Note that (M4) and (M5) follow, for instane, from the extended Bramble-Hilbert lemma of [30,16℄. We make also the following assumptions on thematerial data E, ν.(H3) The salar funtions E, ν are pieewise onstant with respet to themesh Ωh. Moreover, there exist two positive onstants C⋆ and C⋆ suhthat C⋆ < E < C⋆ on the whole domain.The above uniformity ondition on E is standard, while the pieewise on-stant ondition an be interpreted as an approximation of the data and isintrodued only for simpliity. In the general ase, it is su�ient to assumethat E and ν are (pieewise) W 1,∞ and to introdue an element-wise aver-aging in the data of the numerial sheme.3.2 Degrees of freedom and interpolation operatorsThe disretization of problem (3) requires to disretize the salar �eld ofdisplaement and the vetor �elds of rotations and shears. In order to do so,we introdue the degrees of freedom for the numerial solution in aordanewith the orrespondane

w, v ∈ H1
0 (Ω) → wh, vh ∈Wh,



A mimeti disretization for Reissner-Mindlin plates 7
β,η ∈ H1

0 (Ω)
2
→ βh,ηh ∈ Hh,

γ, δ ∈ L2(Ω)
2
→ γh, δh ∈ Γh,where Wh represents the linear spae of disrete displaement, Hh indiatesthe linear spae of disrete rotations and Γh is the linear spae of disreteshears.The disrete spae for transverse displaements Wh is de�ned as follows:a vetor vh ∈Wh onsists of a olletion of degrees of freedom

vh := {vv}
v∈V0

h
,one per internal mesh vertex, e.g. to every vertex v ∈ V0

h, we assoiate areal number vv. The salar vv represents the nodal value of the underlyingdisrete salar �eld of displaement. The number of unknowns is equal to thenumber of internal verties.The disrete spae for rotationsHh is de�ned as follows: a vetor ηh ∈ Hhis a olletion of degrees of freedom
ηh = {ηv}

v∈V0

h
∪ {ηe

E}E∈Ωh,e∈EE
h
∩E0

h
,i.e. we assign a vetor ηv ∈ R2 per eah vertex v ∈ V0

h, and, for every element
E in Ωh, one real number ηe

E ∈ R per eah edge e ∈ EE
h ∩ E0

h. We make thefollowing ontinuity assumption: for eah edge e shared by two element E1and E2, we have
ηe

E1
= −ηe

E2
,so that, in pratie, we have only one degree of freedom per edge. The vetor

ηv represents the nodal values of the underlying disrete vetor �eld of rota-tions, while the salar ηe

E represents a bubble-type orretion to the tangentvalue of the disrete rotations on edges. The number of unknowns is equalto twie the number of internal verties plus the number of internal edges.Finally, the spae for the disrete shear fore Γh is de�ned as follows: toevery element E in Ωh and every edge e ∈ EE
h ∩ E0

h, we assoiate a number
δe

E , i.e.
δh = {δe

E}E∈Ωh,e∈EE
h
∩E0

h
.We make the ontinuity assumption that for eah edge e shared by two ele-ment E1 and E2, we have

δe

E1
= −δe

E2
.The salar δe

E represents the average on edges of the disrete shears in thetangential diretion. The number, of unknowns is equal to the number ofinternal edges.
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Wh

Hh Γh

E E E

Fig. 1 Degrees of freedom for transverse displaements (left), rotations (enter)and shear fore (right).We now de�ne the following interpolation operators from the spaes ofsmooth enough funtions to the disrete spaesWh, Hh and Γh, respetively.For every funtion v ∈ C0(Ω̄) ∩H1
0 (Ω), we de�ne vI ∈Wh by

vvI := v(v) ∀v ∈ V0
h.For every funtion η ∈ [C0(Ω̄) ∩H1

0 (Ω)]2, we de�ne η
I
∈ Hh by

ηv

I
:= η(v) ∀v ∈ V0

h,

(ηI)
e

E :=
1

|e|

∫

e

η · te

E −
1

2
[ηv1

I
+ ηv2

I
] · te

E ∀E ∈ Ωh ∀e ∈ EE
h ∩ E0

h,where v1 and v2 are the verties of the edge e.For every funtion δ ∈ H0(rot;Ω) ∩ [Ls(Ω)]2, s > 2, we de�ne δII ∈ Γhby
(δII)eE :=

1

|e|

∫

e

δ · te

E ∀E ∈ Ωh ∀e ∈ EE
h ∩ E0

h.For all E ∈ Ωh in the sequel we will also make use of loal interpolationoperators vI,E ,ηI,E, δII,E, with values inWh|E , Hh|E , Γh|E respetively; suhoperators are simply the obvious restrition of the global ones to the element
E for funtions whih are su�iently regular on E.Remark 1 Although all the disrete degrees of freedom live only on the in-ternal verties and edges, in the sequel we will often (impliitly) onsiderits extension to the boundary verties and edges. In suh ase, the valuesassoiated to the degrees of freedom living on boundary verties and edgesmust always be onsidered zero.3.3 Disrete norms and operatorsWe endow the spae Wh with the following norm

||vh||
2
Wh

:=
∑

E∈Ωh

||vh||
2
Wh,E =

∑

E∈Ωh

|E|
∑

e∈EE
h

[
1

|e|
(vv2 − vv1)

]2
, (7)



A mimeti disretization for Reissner-Mindlin plates 9where v1 and v2 are the verties of e, oriented suh that te

E points from v1to v2.In the spae Hh, we onsider the norm
|||ηh|||

2
Hh

:=
∑

E∈Ωh

|||ηh|||
2
Hh,E =

∑

E∈Ωh

|E|
∑

e∈EE
h

(
1

|e|

(
||ηv1 − ηv2 || + |ηe

E |
))2

,(8)where v1 and v2 are the verties of the edge e, and || · || denotes the eulideannorm on vetors.In the spae Γh, we onsider the following norm
||δh||

2
Γh

:=
∑

E∈Ωh

||δh||
2
Γh,E =

∑

E∈Ωh

|E|
∑

e∈EE
h

|δe

E |
2. (9)The norms onWh andHh areH1(Ω) type disrete semi-norms, whih beomenorms due to the boundary onditions on the spaes. Indeed, the di�erenesappearing in both norms represent gradients on edges and the salings withrespet to hE are the orret ones to mimi an H1(E) loal semi-norm. Notethat for the edge degrees of freedom in Hh no di�erene is needed sine suhpart represents a bubble orretion. Finally, the norm for Γh is an L2(Ω)type disrete norm.In the sequel we will also use the following norm on Hh, whih is a

||ε(·)||0,Ω type disrete norm:
||ηh||

2
Hh

:=
∑

E∈Ωh

||ηh||
2
Hh,E =

∑

E∈Ωh

min
c∈R

|||ηh − c([−ȳ, x̄])I,E |||
2
Hh,E , (10)where (x̄, ȳ) are loal artesian oordinates on E whih are null on thebaryenter of E, so that the funtion [−ȳ, x̄] represents a (linearized) ro-tation around the baryenter. Moreover, we note that

||ηh||Hh,E ≤ |||ηh|||Hh,E ∀ηh ∈ Hh|E . (11)We now introdue the operator ∇h, de�ned from the set of nodal un-knowns Wh to the set of edge unknowns Γh as follows:
∇h : Wh → Γh

(∇hvh)eE :=
1

|e|
(vv2 − vv1) ∀E ∈ Ωh, ∀e ∈ EE

h ∩ E0
h, ∀vh ∈Wh,where v1 and v2 are the verties of e, oriented suh that te

E points from v1to v2.The operator ∇h represents a disrete gradient on Wh. It is immediateto hek that it holds
||vh||Wh

= ||∇hvh||Γh
. (12)We onsider also a redution operator, de�ned from the disrete spae ofrotations Hh to the set of edge unknowns Γh as follows:

Πh : Hh → Γh
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(Πhηh)eE := ηe

E +
1

2
[ηv1 + ηv2 ] · te

E ∀E ∈ Ωh, ∀e ∈ EE
h , ∀ηh ∈ Hh,where v1 and v2 are the verties of e, oriented suh that te

E points from v1to v2.3.4 Salar produts and bilinear formsWe equip the spae Γh with a suitable salar produt, de�ned as follows:
[γh, δh]Γh

:=
∑

E∈Ωh

[γh, δh]Γh,E, (13)where [·, ·]Γh,E is a disrete salar produt on the element E.Following [21℄, we introdue the following assumptions:(S1) There exist two positive onstants c1 and c2 independent of h suhthat, for every δh ∈ Γh and eah E ∈ Ωh, we have
c1||δh||

2
Γh,E ≤ [δh, δh]Γh,E ≤ c2||δh||

2
Γh,E . (14)(S2) For every element E, every salar linear funtion p1 on E and every

δh ∈ Γh, we have
[(curl p1)II, δh]Γh,E =

∫

E

p1(rotΓh
δh)E −

∑

e∈EE
h

δe

E

∫

e

p1 (15)where the operator (rotΓh
δh)E := 1

|E|

∑
e∈EE

h
δe

E |e| will be better detailedin Setion 4.The above salar produt mimis an L2 type salar produt on the underlyingspae, i.e.
[γh, δh]Γh,E ∼

∫

E

γ̃h · δ̃h,where, roughly speaking, γ̃h, δ̃h denote regular funtions living on E whih�extend the data� γh, δh inside the element. In this sense, property (S1) mim-is the oerivity of the salar produt and the orret saling with respet tothe element size, while property (S2) is a onsisteny ondition whih assertsthat the salar produt respets integration by parts when tested with the
curl of linear funtions.We denote with ah(·, ·) : Hh ×Hh → R the disretization of the bilinearform a(·, ·), de�ned as follows:

ah(βh,ηh) =
∑

E∈Ωh

aE
h (βh,ηh) ∀βh,ηh ∈ Hh, (16)where aE

h (·, ·) is a symmetri bilinear form on eah element E, mimiking
aE

h (βh,ηh) ∼

∫

E

Cε(β̃h) : ε(η̃h) .Similarly to the previous ase, we introdue two assumptions for the loalbilinear form aE
h (·, ·). The �rst one represents the oerivity (up to the kernel)and the orret saling of the loal forms.



A mimeti disretization for Reissner-Mindlin plates 11(S1a) there exist two positive onstants c̃1 and c̃2 independent of h suhthat, for every ηh ∈ Hh and eah E ∈ Ωh, we have
c̃1||ηh||

2
Hh,E ≤ aE

h (ηh,ηh) ≤ c̃2||ηh||
2
Hh,E . (17)In order to introdue the seond ondition, we observe beforehand that, usingan integration by parts,

∫

E

Cε(p1) : ε(η) =
∑

e∈EE
h

∫

e

(Cε(p1)ne

E) · η

=
∑

e∈EE
h

[(
Cε(p1)ne

E · ne

E

) ∫

e

η · ne

E +
(
Cε(p1)ne

E · te

E

) ∫

e

η · te

E

] (18)for all E ∈ Ωh, for all η ∈ [H1(E)]2 and for all linear vetor funtions p1.Substituting the two integrals in the last line of (18) with an integration rulebased on the available degrees of freedom gives our seond ondition(S2a) For every element E, every linear vetor funtion p1 on E, and every
ηh ∈ Hh, it holds

aE
h ((p1)I,ηh) =

∑

e∈EE
h

[
(Cε(p1)ne

E · ne

E)
( |e|

2
[ηv1 + ηv2 ] · ne

E

)

+ (Cε(p1)ne

E · te

E)
(
|e|ηe

E +
|e|

2
[ηv1 + ηv2 ] · te

E

)]
.

(19)The meaning of the above onsisteny ondition (S2a) is therefore that thedisrete bilinear form respets integration by parts when tested with linearfuntions.Remark 2 The salar produt and the bilinear form shown in this Setionan be easily built element by element in a simple algebrai way. The detailsof suh onstrution an be found in [23℄ for the salar produt (13) and in[8℄ for the bilinear form (16).3.5 The disrete methodFinally, we are able to de�ne the proposed mimeti disrete method forReissner-Mindlin plates. Let the loading term
(g, vh)h :=

∑

E∈Ωh

ḡ|E

kE∑

i=1

vviωi
E, (20)with v1, . . . , vkE

are the verties of E, ḡ|E := 1
|E|

∫
E
g, and ω1

E , . . . , ω
kE

E arepositive weights suh that ∑kE

i=1 ω
i
E = |E|. The loading term above is anapproximation of

(g, vh)h ∼

∫

Ω

gṽ,whih is exat for onstant funtions.Then, the initial disretization of problem (3) reads:



12 L. Beirão da Veiga, D. MoraMethod 1 Given g ∈ L2(Ω), �nd (βh, wh,γh) ∈ Hh ×Wh × Γh suh that
{
ah(βh,ηh) + [γh,∇hvh −Πhηh]Γh

= (g, vh)h ∀(ηh, vh) ∈ Hh ×Wh

[∇hwh −Πhβh, δh]Γh
− κ−1t2[γh, δh]Γh

= 0 ∀δh ∈ Γh,It is immediate to hek that the Method 1 is equivalent to the following one:Method 2 Given g ∈ L2(Ω), �nd (βh, wh) ∈ Hh ×Wh suh that
ah(βh,ηh) +

κ

t2
[∇hwh −Πhβh,∇hvh −Πhηh]Γh

= (g, vh)hfor all (ηh, vh) ∈ Hh ×Wh. The Method 2 is positive de�nite, see the obser-vations below, and it involves less variables. Therefore, it is in general moresuitable for pratial implementation.Due to assumptions (S1) and (S1a) the bilinear form appearing in Method2 is learly semi-positive de�nite on Wh ×Hh. Moreover, again due to (S1),(S1a) and the boundary onditions on Wh, Hh, it is easy to hek that if
ah(ηh,ηh) +

κ

t2
[∇hvh −Πhηh,∇hvh −Πhηh]Γh

= 0then ηh and vh are null. Therefore, Method 2 is positive de�nite and has aunique solution for all h and t > 0. For ease of exposition, the uniform stabil-ity of the Method with respet to h, t will be left as an impliit onsequeneof the error analysis that follows.4 A Disrete Helmholtz deompositionAs in the ontinuous ase, we will write an equivalent formulation of Method1 based on a disrete Helmholtz deomposition. With this aim, we de�ne anauxiliary disrete spae Qh de�ned as follows: every disrete salar qh ∈ Qhonsists of one degree of freedom per eah element E in Ωh, e.g. to everyelement E, we assoiate a real number qE ,
qh = {qE}E∈Ωh

,satisfying the additional onstraint that
∑

E∈Ωh

qE |E| = 0. (21)The number of unknowns is equal to the number of elements minus one. Forall E ∈ Ωh, qE an be interpreted as the (onstant) value on E of a globalfuntion q̃h ∈ L2
0(Ω).We de�ne the following interpolation operator in Qh: for every funtion

q ∈ L2
0(Ω), we de�ne qπ ∈ Qh by

(qπ)E :=
1

|E|

∫

E

q ∀E ∈ Ωh.It is immediate to hek that qπ satis�es ondition (21).



A mimeti disretization for Reissner-Mindlin plates 13The spae Qh is endowed with the L2(Ω) type salar produt
[ph, qh]Qh

:=
∑

E∈Ωh

|E| pEqE ∀ph, qh ∈ Qh, (22)and with the norm
||qh||

2
Qh

:= [qh, qh]Qh
.We now observe that, for all E ∈ Ωh and for all su�iently regular funtions

δ, it holds
1

|E|

∫

E

rotδ =
1

|E|

∑

e∈EE
h

∫

e

δ · te

E .Consistently, we introdue the following operators whih represent a disrete
“ rot ” operator from Γh to Qh and from Hh to Qh, respetively

rotΓh
: Γh → Qh

(rotΓh
δh)E :=

1

|E|

∑

e∈EE
h

δe

E |e|, (23)and
rotHh

: Hh → Qh

(rotHh
ηh)E :=

1

|E|

∑

e∈EE
h

(
ηe

E +
1

2
[ηv1 + ηv2 ] · te

E

)
|e|, (24)where v1 and v2 are the verties of e, oriented suh that te

E points from v1to v2.Using (23) and (24) it is easy to hek the following ommutative diagramproperties hold
rotΓh

(δII) = (rot δ)π , (25)
rotHh

(η
I
) = (rotη)π , (26)for all δ ∈ H0(rot;Ω)∩ [Ls(Ω)]2, s > 2 and η ∈ [C0(Ω̄)∩H1

0 (Ω)]2. Moreover,we note that the operator rotΓh
satis�es rotΓh

∇hvh = 0 for all vh ∈ Wh. Infat,
(rotΓh

∇hvh)E =
1

|E|

∑

e∈EE
h

(∇hvh)eE |e| =
1

|E|

∑

e∈EE
h

(vv2 − vv1 ) = 0, (27)sine v1 and v2 are by de�nition the verties of the edge e oriented suh that
te

E points from v1 to v2. Furthermore, the following identity is easy to hek
rotHh

ηh = rotΓh
(Πhηh) ∀ηh ∈ Hh. (28)Using the de�nition above, we de�ne a disretization of the “ curl ” oper-ator as the adjoint to the disrete rotΓh

operator with respet to the salarprodut (13) and (22), i.e.
curlh : Qh → Γh

[δh, curlh qh]Γh
= [qh, rotΓh

δh]Qh
∀qh ∈ Qh, ∀δh ∈ Γh. (29)We have the following disrete Helmholtz deomposition.



14 L. Beirão da Veiga, D. MoraLemma 1 For every δh ∈ Γh there exists a unique (ξh, qh) ∈Wh ×Qh suhthat
δh = ∇hξh + curlh qh. (30)Proof. Let δh ∈ Γh. In order to prove the lemma, we need to show theexistene of (ξh, qh,αh) ∈Wh ×Qh × Γh suh that

δh = ∇hξh + αh,

[αh, rh]Γh
= [rotΓh

rh, qh]Qh
∀rh ∈ Γh.

(31)Note that, applying the operator rotΓh
to both sides of (31)1 and realling(27), we get that the funtion αh must satisfy rotΓh

(αh−δh) = 0. Combinedwith (31)2, this is equivalent to solve the following problem: Find (αh, qh) ∈
Γh ×Qh suh that

[αh, rh]Γh
− [qh, rotΓh

rh]Qh
= 0 ∀rh ∈ Γh,

[rotΓh
αh, dh]Qh

= [rotΓh
δh, dh]Qh

∀dh ∈ Qh.
(32)This is a well posed problem as a onsequene of the results in [21℄ forthe di�usion problem in mixed form, simply hanging DIVd to rotΓh
and�rotating the �elds 90◦�. Therefore, there exists a unique ouple (αh, qh) ∈

Γh ×Qh whih satis�es the two equations in (32).As already mentioned, due to (32)1 αh satis�es (31)2, while, due to (32)2,it holds rotΓh
(αh − δh) = 0. Therefore, what is left to prove is that for all

rh ∈ Γh with rotΓh
rh = 0, it exists a unique vh ∈ Wh suh that ∇hvh = rh.We will show this natural result rather brie�y. Given any two nodes v1 and

v2 of the mesh, we all γ(v1, v2) a path from v1 to v2 made along (oriented)edges of the mesh, in suh a way that eah edge is never repeated. It isimmediate to hek that this an always be done, sine all the verties areonneted along edges. Then, given rh ∈ Γh, we de�ne vh ∈ Wh in thefollowing way: We hoose a node v0 on the boundary and set vv0 = 0. Forany other node v of the mesh, we de�ne
vv =

∑

e∈γ(v0,v)

|e|reE(tγ
e
· te

E) , (33)where tγ
e
is the tangent along eah edge e oriented as the path. Note that, in(33), the element E that appears in reE an be hosen as any one among thetwo elements that share the edge e (without hanging the result).In order to prove that the above onstrution is well de�ned, we mustshow that the value vv does not depend on the partiular path hosen. It iseasy to hek that this is equivalent to show that for any (oriented) irularpath without repetition of edges γ(v, v), v vertex of Ωh, it holds

∑

e∈γ(v,v)

|e|reE(tγ
e
· te

E) = 0 . (34)This an be proved by indution. Any irular path γ(v, v) as desribed aboveorresponds to the (oriented) boundary of a onneted set of n elements,
n ∈ N. Aordingly, in the following we will write that a path is of lass n



A mimeti disretization for Reissner-Mindlin plates 15if it �surrounds� n elements. If the path is of lass n = 1, then γ(v, v) is theboundary of a single element E and, realling that rotΓh
rh = 0, we get

∑

e∈γ(v,v)

|e|reE(tγ
e
· te

E) = ±
∑

e∈EE
h

|e|reE = 0 . (35)Now, Assuming that equation (34) is true for any path of lass n. Then, it iseasy to show that any irular path γ(v, v) of lass n+ 1 without repetitionof edges an be splitted as the sum of two irular paths without repeti-tions, respetively of lass n and lass 1. Therefore, the result follows by theindution hypothesis and (35). Therefore, vh in (33) is well de�ned.From de�nition (33) we get immediately
1

|e|
[vv2 − vv1 ] = reE ∀E ∈ Ωh, ∀e ∈ EE

h , (36)where v1 = v1(e) and v2 = v2(e) have the usual meaning, simply by evaluatingthe left hand side as the di�erene along two ad-ho hosen paths whih di�eronly by the edge e. By de�nition, identity (36) implies ∇hvh = rh. Moreover,by seleting a path along the boundary and realling that the values of rh onboundary edges are null, it orretly follows that vh is null on all boundarynodes. Finally, the uniqueness of vh follows immediately from the fat thatthe kernel of ∇h on Wh redues to the trivial one. ⊓⊔By using the previous lemma, we an write
γh = ∇hψh + curlh ph, (37)with ψh ∈ Wh and ph ∈ Qh. By using the same deomposition for the testfuntion
δh = ∇hξh + curlh qh,we obtain that Method 1 is equivalent to the following problem:Find (ψh,βh, ph, wh) ∈Wh ×Hh ×Qh ×Wh suh that





[∇hψh,∇hvh]Γh
= (g, vh)h ∀vh ∈Wh

ah(βh,ηh) − [curlh ph, Πhηh]Γh
= [∇hψh, Πhηh]Γh

∀ηh ∈ Hh,

− [Πhβh, curlh qh]Γh
− κ−1t2[curlh ph, curlh qh]Γh

= 0 ∀qh ∈ Qh,

[∇hwh,∇hξh]Γh
= [Πhβh,∇hξh]Γh

+ κ−1t2[∇hψh,∇hξh]Γh
∀ξh ∈Wh.(38)Using (29) and (28) we get that for all qh ∈ Qh and ηh ∈ Hh,

[curlh qh, Πhηh]Γh
= [qh, rotΓh

(Πhηh)]Qh
= [qh, rotHh

ηh]Qh
. (39)Therefore, problem (38) �nally beomes: �nd (ψh,βh, ph, wh) ∈ Wh ×Hh ×

Qh ×Wh suh that





[∇hψh,∇hvh]Γh
= (g, vh)h ∀vh ∈Wh,

ah(βh,ηh) − [ph, rotHh
ηh]Qh

= [∇hψh, Πhηh]Γh
∀ηh ∈ Hh,

− [rotHh
βh, qh]Qh

− κ−1t2[curlh ph, curlh qh]Γh
= 0 ∀qh ∈ Qh,

[∇hwh,∇hξh]Γh
= [Πhβh,∇hξh]Γh

+ κ−1t2[∇hψh,∇hξh]Γh
∀ξh ∈Wh.(40)



16 L. Beirão da Veiga, D. MoraProblem (40), whih is the ombination of two Poisson-like problems (�rstand last lines) and a rotated Stokes-like problem (seond plus third lines),is going to be used in the error analysis. Due to Lemma 1 the existene of aunique solution for problem (40) follows easily from that of Method 1.5 Error estimatesIn this setion we estimate the error between the ontinuous problem (5) andthe disrete problem (40). The main result of this setion is the followingbound.Theorem 1 Let (ψ,β, p, w) and (ψh,βh, ph, wh) be the solutions of problems(5) and (40), respetively. Let the regularity bound (6) holds. Then, thereexists a onstant C independent of h and t suh that
‖ψI − ψh‖Wh

+ ‖β
I
− βh‖Hh

+ ‖pπ − ph‖Qh

+ t‖ curlh pπ − curlh ph‖Γh
+ ‖wI − wh‖Wh

≤ Ch‖g‖0,Ω.The proof of the above result will follow by ombining the three proposi-tions 2, 3 and 4 shown in the following.5.1 Error estimate for variable ψ.From now on, given an element E we use the subsript |E to denote therestritions of the involved unknowns to E. For instane Wh|E will denotethe restrition of Wh to the nodes belonging to E.Let ψh be the solution of the disrete problem (40)1, ψ be the solution ofthe ontinuous problem (5)1 and ψI its interpolant in Wh. Let ψℓ be a piee-wise linear disontinuous funtion on Ω whih is an approximation of ψ. Therestrition of ψℓ to E, ∀E ∈ Ωh, is denoted by ψℓ
E and is de�ned as the

L2(E)-projetion of ψ onto the polynomials of degree ≤ 1. We will also on-sider the loal interpolant (ψℓ
E)I ∈ Wh|E and a pieewise linear disontinuousfuntion f ℓ suh that

curl f ℓ
E = ∇ψℓ

E ∀E ∈ Ωh. (41)In the following we will need two lemmas whih has been proved in [17℄.The �rst one is a tehnial bound.Lemma 2 Let ω1
E, . . . , ω

kE

E be positive weights suh that ∑kE

i=1 ω
i
E = |E|,for all E ∈ Ωh with kE verties. For every vertex v1 ∈ VE

h , and for every
vh ∈ Wh|E there exists a onstant C independent of h, suh that

kE∑

i=1

[vv1 − vvi ]2ωi
E ≤ Ch2

E‖vh‖
2
Wh,E .The seond lemma shows the existene of a stable lifting operator.



A mimeti disretization for Reissner-Mindlin plates 17Lemma 3 For all E ∈ Ωh, it exists a linear operator RE
h , from the spae ofnodal unknownWh|E into the Sobolev spae H1(E)∩C0(Ē), with the followingproperties:(P1) (RE

h vh)(v) = vv ∀v ∈ VE
h ∀vh ∈ Wh|E,(P2) RE

h vh|e is a linear funtion ∀e ∈ EE
h ∀vh ∈ Wh|E,(P3) |RE

h vh|21,E ≤ C‖vh‖2
Wh,E ∀vh ∈Wh|E,(P4) ‖RE

h vh − vv‖2
0,E ≤ Ch2

E‖vh‖2
Wh,E ∀v ∈ VE

h ∀vh ∈Wh|E.We have the following result:Proposition 2 Let ψ and ψh be the solutions of problems (5)1 and (40)1,respetively. Let assumption (6) holds. Then, there exists a onstant C > 0independent of h and t suh that
‖ψI − ψh‖Wh

≤ Ch‖g‖0,Ω.Proof. Using (12), property (S1), the �rst equation of problem (40) andadding and subtrating (ψℓ
E)I, we get

c1||ψI − ψh||
2
Wh

= c1||∇h(ψI − ψh)||2Γh
= c1

∑

E∈Ωh

||∇h(ψI − ψh)||2Γh,E

≤
∑

E∈Ωh

[∇h(ψI − ψh),∇h(ψI − ψh)]Γh,E

=
∑

E∈Ωh

[∇hψI −∇h(ψℓ
E)I,∇h(ψI − ψh)]Γh,E − (g, ψI − ψh)h

+
∑

E∈Ωh

[∇h(ψℓ
E)I,∇h(ψI − ψh)]Γh,E . (42)We ontinue with the last term in the above estimate. First, from thede�nitions of our interpolants, we have

∇h(ψℓ
E)I = (∇ψℓ

E)II in Γh|E , (43)thus, using (43), (41), property (S2) and the fat that rotΓh
∇hvh = 0, weobtain

∑

E∈Ωh

[∇h(ψℓ
E)I,∇h(ψI − ψh)]Γh,E =

∑

E∈Ωh

[(curl f ℓ
E)II,∇h(ψI − ψh)]Γh,E

= −
∑

E∈Ωh

( ∑

e∈EE
h

(∇h(ψI − ψh))eE

∫

e

f ℓ
E

)
.(44)Let the global operator Rh : Wh → H1

0 (Ω) be de�ned by (Rhvh)|E =
RE

h (vh|E) for all vh ∈ Wh and for all E ∈ Ωh. Then, for eah vh ∈Wh|E andeah E ∈ Ωh, due to (P1) and (P2)
(∇hvh)eE =

1

|e|
(vv2 − vv1) =

1

|e|

(
RE

h vh(v2) −RE
h vh(v1)

)

=
1

|e|

∫

e

∇RE
h vh · te

E = ∇RE
h vh · te

E ∀e ∈ EE
h ,



18 L. Beirão da Veiga, D. Morawhere v1 and v2 are the verties of e, oriented suh that te

E points from v1to v2. Thus, it follows
∑

E∈Ωh

( ∑

e∈EE
h

(∇h(ψI−ψh))eE

∫

e

f ℓ
E

)
=
∑

E∈Ωh

( ∑

e∈EE
h

∫

e

f ℓ
E(∇RE

h (ψI−ψh) ·te

E)
)
.(45)Using an integration by parts on eah element E for the last term of (45),applying again (41) and adding and subtrating the exat solution ψ, from(44) we get that

∑

E∈Ωh

[∇h(ψℓ
E)I,∇h(ψI − ψh)]Γh,E =

∑

E∈Ωh

(∫

E

curl f ℓ
E · ∇RE

h (ψI − ψh)

−

∫

E

f ℓ
E rot∇RE

h (ψI − ψh)
)

=
∑

E∈Ωh

∫

E

∇ψℓ
E · ∇RE

h (ψI − ψh)

=
∑

E∈Ωh

∫

E

∇(ψℓ
E − ψ) · ∇RE

h (ψI − ψh) +

∫

Ω

∇ψ · ∇Rh(ψI − ψh).(46)Therefore, using the �rst equation of problem (5), we obtain from (42) and(46)
c1||ψI − ψh||

2
Wh

≤
∑

E∈Ωh

[∇hψI −∇h(ψℓ
E)I,∇h(ψI − ψh)]Γh,E

+
∑

E∈Ωh

∫

E

∇(ψℓ
E − ψ) · ∇RE

h (ψI − ψh)

+
[
(g,Rh(ψI − ψh))0,Ω − (g, ψI − ψh)h

]
= T1 + T2 + T3.(47)For the �rst term in the above bound, by a Cauhy-Shwarz inequality and(S1) give for all E ∈ Ωh

[∇hψI −∇h(ψℓ
E)I,∇h(ψI−ψh)]Γh,E

≤ C||∇hψI −∇h(ψℓ
E)I||Γh,E||∇h(ψI − ψh)||Γh,E ,whih, using an approximation result (Lemma 6.3 from [17℄), yields

[∇hψI −∇h(ψℓ
E)I,∇h(ψI − ψh)]Γh,E ≤

(
Ch2

E |ψ|
2
2,E

)1/2
||∇h(ψI − ψh)||Γh,E .(48)Summing on the elements, from bound (48) it follows

T1 ≤ Ch|ψ|2,Ω||∇h(ψI − ψh)||Γh
≤ Ch‖g‖0,Ω||ψI − ψh||Wh

, (49)where in the last inequality, we have used (12) and (6).For the seond term in (47), by a Cauhy-Shwarz inequality and using
(M5) and (P3), we get

∫

E

∇(ψℓ
E − ψ) · ∇RE

h (ψI − ψh) ≤ ChE |ψ|2,E ||ψI − ψh||Wh,E .



A mimeti disretization for Reissner-Mindlin plates 19Summing on the elements and using again (6), the above bound yields
T2 ≤ Ch|ψ|2,Ω||ψI − ψh||Wh

≤ Ch‖g‖0,Ω||ψI − ψh||Wh
. (50)Now, we bound T3. It is easy to see that for eah vertex v ∈ VE

h , E ∈ Ωh, wehave
ḡ|E

kE∑

i=1

(ψI − ψh)vωi
E = ḡ|E

kE∑

i=1

(ψvI − ψv)ωi
E = ḡ|E

∫

E

(ψvI − ψv)

=

∫

E

g(ψvI − ψv).

(51)Thus, using the de�nition of the loading term (·, ·)h in (20), adding andsubtrating the term ∫
E g(ψ

v1I − ψv1), where v1 is any �xed vertex of E, forall E ∈ Ωh, from (51) we obtain
T3 =

∫

Ω

gRh(ψI − ψh) −
∑

E∈Ωh

ḡ|E

kE∑

i=1

(ψviI − ψvi)ωi
E

=
∑

E∈Ωh

∫

E

g
(
RE

h (ψI − ψh) − (ψv1I − ψv1)
)

+
∑

E∈Ωh

ḡ|E

kE∑

i=1

((ψv1I − ψv1) − (ψviI − ψvi))ωi
E .Using the Cauhy-Shwarz inequality, we get

T3 ≤
∑

E∈Ωh

‖g‖0,E‖R
E
h (ψI − ψh) − (ψv1I − ψv1

h )‖0,E

+
∑

E∈Ωh

(
kE∑

i=1

ḡ|2Eω
i
E

)1/2( kE∑

i=1

[(ψv1I − ψv1) − (ψviI − ψvi)]2ωi
E

)1/2

.Finally, from (P4), Lemma 2 and the fat that |E|2|ḡ|E | ≤ ‖g‖2
0,E, we obtain

T3 ≤ Ch‖g‖0,Ω‖ψI − ψh‖Wh
. (52)The result follow ombining (47) with the above bounds for T1, T2, T3.

⊓⊔5.2 Error estimate for variables β and p.Now, let (βh, ph) be the solution of the disrete problem given by (40)2−3,and (β, p) be the solution of the ontinuous problem given by (5)2−3.The following inf-sup ondition holds



20 L. Beirão da Veiga, D. MoraLemma 4 There exists C > 0 independent of h suh that for every qh ∈ Qhthere exists ηh ∈ Hh satisfying:
[rotHh

ηh, qh]Qh
≥ C‖qh‖Qh

,

||ηh||Hh
≤ 1.Proof. Changing DIVh to rotΓh
and rotating the �elds 90◦ in Lemma 4.2 of[11℄ prove the result. ⊓⊔We introdue the following disrete bilinear form

At
h((βh, ph), (ηh, qh)) :=ah(βh,ηh) − [ph, rotHh

ηh]Qh

− [rotHh
βh, qh]Qh

− κ−1t2[curlh ph, curlh qh]Γh
.(53)As a onsequene of Lemma 4 and property (S1a), following standardtehniques of mixed �nite element methods [19℄, it is easy to show the follow-ing stability estimate for the disrete Stokes-like problem given by (40)2−3.Lemma 5 There exists C > 0 independent of h and t suh that

sup
ηh∈Hh
qh∈Qh

At
h((βh, ph), (ηh, qh))

‖ηh‖Hh
+ ‖qh‖Qh

+ t‖ curlh qh‖Γh

≥

C(‖βh‖Hh
+ ‖ph‖Qh

+ t‖ curlh ph‖Γh
)for all (βh, ph) ∈ Hh × Qh, and where the sup is taken on non-null ouplesof funtions.The following lemma states the existene of a stable lifting operator alsofor the rotation variable.Lemma 6 For all E ∈ Ωh, it exists a linear operator RE

h from the spae
Hh|E into the Sobolev spae [H1(E) ∩ C0(Ē)]2 with the following properties:(O1) (RE

h ηh)(v) = ηv ∀v ∈ VE
h ∀ηh ∈ Hh|E,(O2) ‖ε(RE

h ηh)‖2
0,E ≤ C‖ηh‖

2
Hh,E ∀ηh ∈ Hh|E ,(O3) (RE

h ηh|e) · n
e

E is a linear funtion ∀e ∈ EE
h ∀ηh ∈ Hh|E ,

(RE
h ηh|e) · t

e

E is a quadrati funtion ∀e ∈ EE
h ∀ηh ∈ Hh|E,(O4) ∫

e

(RE
h ηh) · te

E = |e|ηe

E +
|e|

2
[ηv1 + ηv2 ] · te

E ∀e ∈ EE
h ∀ηh ∈ Hh|E,where as usual v1 and v2 are the verties of the edge e.The proof of the above lemma an be found in the Appendix. The liftingoperatorRE

h is an extension of those in [11,17℄, with the additional importantproperty of preserving linear funtions.Note that as a onsequene of (O3) it holds
∫

e

(RE
h ηh)·ne

E =
|e|

2
[ηv1+ηv2 ]·ne

E ∀e ∈ EE
h ∀ηh ∈ Hh|E ∀E ∈ Ωh, (54)



A mimeti disretization for Reissner-Mindlin plates 21while, due to of (O4), we have
∫

E

rot(RE
h ηh) = |E|(rotHh

ηh)E ∀ηh ∈ Hh|E ∀E ∈ Ωh. (55)Finally, we de�ne the global operator Rh : Hh → [H1
0 (Ω)]2 by (Rhηh)|E =

RE
h (ηh|E) for all ηh ∈ Hh and for all E ∈ Ωh. The image of Rh is indeed in

[H1
0 (Ω)]2 due to property (O3).Now, we are able to state and prove our seond onvergene result.Proposition 3 Let (β, p) and (βh, ph) be the solutions of problems (5)2−3and (40)2−3, respetively. Let the bound (6) holds. Then,
‖β

I
− βh‖Hh

+ ‖pπ − ph‖Qh
+ t‖ curlh pπ − curlh ph‖Γh

≤ Ch‖g‖0,Ω,where C is independent of h and t.Proof. We divide this rather long proof into two parts. In step 1 we boundthe error as a sum of various terms, whih will be bounded separately in step2.Step 1. From Lemma 5, we have that there exists (ηh, qh) ∈ Hh × Qh suhthat
‖ηh‖Hh

+ ‖qh‖Qh
+ t‖ curlh qh‖Γh

≤ 1 (56)and
C(‖β

I
− βh‖Hh

+ ‖pπ − ph‖Qh
+t‖ curlh pπ − curlh ph‖Γh

)

≤ At
h((β

I
− βh, pπ − ph), (ηh, qh)).

(57)Now, we an rewrite the right hand side of (57), using (40)2−3 as follows:
At

h((β
I
− βh, pπ − ph), (ηh, qh)) = At

h((β
I
, pπ), (ηh, qh)) − [∇hψh, Πhηh]Γh

.Therefore, from (53), we have
At

h((β
I
− βh, pπ − ph), (ηh, qh)) =ah(β

I
,ηh) − [pπ, rotHh

ηh]Qh

− [rotHh
β

I
, qh]Qh

− κ−1t2[curlh pπ, curlh qh]Γh

− [∇hψh, Πhηh]Γh

=A1 −A2 −A3 −A4 −A5.We also onsider a pieewise linear disontinuous funtion βℓ whih is anapproximation of β on eah element E. The restrition of βℓ to E, E ∈ Ωh,is denoted by βℓ
E and is de�ned as the L2(E)-projetion of β onto the spaeof linear vetor valued funtions de�ned on E. We also onsider the loalinterpolant (βℓ

E)I ∈ Hh|E .



22 L. Beirão da Veiga, D. MoraIn that follows, we will manipulate the terms Ai, i = 1, . . . , 5. We beginwith term A1: adding and subtrating (βℓ
E)I, we obtain

A1 =
∑

E∈Ωh

(
aE

h (β
I
− (βℓ

E)I,ηh) + aE
h ((βℓ

E)I,ηh)
)

= B1 +
∑

E∈Ωh

aE
h ((βℓ

E)I,ηh).Using assumption (S2a), we get
∑

E∈Ωh

aE
h ((βℓ

E)I,ηh) =
∑

E∈Ωh

( ∑

e∈EE
h

[ (
Cε(βℓ

E)ne

E · ne

E

)( |e|
2

(ηv1 + ηv2) · ne

E

)

+
(
Cε(βℓ

E)ne

E · te

E

)(
|e|ηe

E +
|e|

2
(ηv1 + ηv2) · te

E

)])
.First, from (54), (O4) and then using an integration by parts, we obtain

∑

E∈Ωh

aE
h ((βℓ

E)I,ηh) =
∑

E∈Ωh

(
∑

e∈EE
h

[ (
Cε(βℓ

E)ne

E · ne

E

) ∫

e

(RE
h ηh) · ne

E

])

+
(

Cε(βℓ
E)ne

E · te

E

)∫

e

(RE
h ηh) · te

E

=
∑

E∈Ωh

(
∑

e∈EE
h

∫

e

Cε(βℓ
E)ne

E ·RE
h ηh

)
=
∑

E∈Ωh

∫

E

Cε(βℓ
E) : ε(RE

h ηh)

=
∑

E∈Ωh

∫

E

Cε(βℓ
E − β) : ε(RE

h ηh) +

∫

Ω

Cε(β) : ε(Rhηh)

= B2 +

∫

Ω

Cε(β) : ε(Rhηh). (58)Using (5)2, from (58) we get
∑

E∈Ωh

aE
h ((βℓ

E)I,ηh) = B2 +

∫

Ω

p rot(Rhηh) +

∫

Ω

∇ψ · Rhηh,and thus
A1 = B1 +B2 +

∫

Ω

p rot(Rhηh) +

∫

Ω

∇ψ · Rhηh.



A mimeti disretization for Reissner-Mindlin plates 23We ontinue with the term A2. Using the de�nition of [·, ·]Qh
, (55) andadding and subtrating the exat solution p, we obtain

A2 =
∑

E∈Ωh

|E|(pπ)E(rotHh
ηh)E =

∑

E∈Ωh

∫

E

rot(RE
h ηh)(pπ)E

=
∑

E∈Ωh

∫

E

rot(RE
h ηh)((pπ)E − p) +

∫

Ω

rot(Rhηh)p

= B3 +

∫

Ω

rot(Rhηh)p.Now, we rewrite A3, using (26) as follows:
A3 = [(rotβ)π, qh]Qh

= −κ−1t2[(rot(curl p))π , qh]Qh
,where in the last equality we have used that rotβ = −κ−1t2(rot(curl p))whih is a onsequene of (4) and (1)3. Then, using (25) and (29), we get

A3 = −κ−1t2[rotΓh
((curl p)II), qh]Qh

= −κ−1t2[(curl p)II, curlh qh]Γh
. (59)We now onsider pℓ a pieewise linear disontinuous funtion whih is anapproximation of p on Ω. The restrition of pℓ to E, E ∈ Ωh, is denotedby pℓ

E and is de�ned as the L2(E)-projetion of p onto the polynomials ofdegree ≤ 1. Using (59), (29) and adding and subtrating the term (curl pℓ
E)IIon eah element, we get

A4 +A3 = κ−1t2
(
[pπ, rotΓh

(curlh qh)]Qh
−
∑

E∈Ωh

[(curl pℓ
E)II, curlh qh]Γh,E

+
∑

E∈Ωh

[(curl(pℓ
E − p))II, curlh qh]Γh,E

)
.From assumption (S2) and the identity

[pπ, rotΓh
(curlh qh)]Qh

=
∑

E∈Ωh

∫

E

p rotΓh
(curlh qh)|E ,we obtain

A4 +A3 = κ−1t2
( ∑

E∈Ωh

[(curl(pℓ
E − p))II, curlh qh]Γh,E

+
∑

E∈Ωh

[ ∫

E

(p− pℓ
E)(rotΓh

(curlh qh))E +
∑

e∈EE
h

∫

e

pℓ
E(curlh qh)eE

])

= B4 +B5 +B6.



24 L. Beirão da Veiga, D. MoraThus, olleting all the previous bounds for terms Ai, i = 1, . . . , 5, weobtain the following inequality:
At

h((β
I
− βh, pπ − ph), (ηh, qh)) =A1 −A2 −A3 −A4 −A5

≤B1 +B2 −B3 −B4 −B5 −B6

+

∫

Ω

∇ψ · Rhηh − [∇hψh, Πhηh]Γh
.(60)De�ning

B7 :=

∫

Ω

∇ψ ·Rhηh − [∇hψh, Πhηh]Γh
,from (57) and (60) we get

C(‖β
I
− βh‖Hh

+ ‖pπ − ph‖Qh
+ t‖ curlh pπ − curlh ph‖Γh

) ≤
7∑

i=1

|Bi|.(61)Step 2. We bound eah term Bi, i = 1, . . . , 7 with a onstant C indepen-dent of h and t.Estimate of |B1|. Using assumption (S1a), the Cauhy-Shwarz inequality,(11), (56), the estimates (4.31) and (4.36) from [11℄ and �nally (6), we obtain
|B1| ≤ C

∑

E∈Ωh

‖β
I
− (βℓ

E)I‖Hh,E‖ηh‖Hh,E

≤ C
( ∑

E∈Ωh

‖β
I
− (βℓ

E)I‖
2
Hh,E

)1/2( ∑

E∈Ωh

‖ηh‖
2
Hh,E

)1/2

≤ C
( ∑

E∈Ωh

|||β
I
− (βℓ

E)I|||
2
Hh,E

)1/2

‖ηh‖Hh

≤ Ch‖β‖2,Ω ≤ Ch‖g‖0,Ω.Estimate of |B2|. We apply the Cauhy-Shwarz inequality, the estimateof the interpolation error (M5), property (O2) of the lifting operator RE
h (·),(56) and (6); we obtain

|B2| ≤
∑

E∈Ωh

|β − βℓ
E |1,E‖ε(RE

h ηh)‖0,E

≤
( ∑

E∈Ω

|β − βℓ
E |

2
1,E

)1/2( ∑

E∈Ω

‖ε(RE
h ηh)‖2

0,E

)1/2

≤
( ∑

E∈Ω

Capph
2
E |β|

2
2,E

)1/2( ∑

E∈Ω

C‖ηh‖
2
Hh,E

)1/2

≤ Ch‖β‖2,Ω‖ηh‖Hh
≤ Ch‖g‖0,Ω.



A mimeti disretization for Reissner-Mindlin plates 25Estimate of |B3|. Using the Cauhy-Shwarz inequality, the estimate ofthe interpolation error (M4), the Korn inequality [27℄, property (O2) of thelifting operator RE
h (·), (56) and (6), we get

|B3| ≤
∑

E∈Ωh

‖p− (pπ)E‖0,E‖ rot(RE
h ηh)‖0,E

≤
( ∑

E∈Ω

‖p− (pπ)E‖
2
0,E

)1/2( ∑

E∈Ω

|RE
h ηh|

2
1,E

)1/2

≤
( ∑

E∈Ω

C∗
apph

2
E |p|

2
1,E

)1/2

|Rhηh|1,Ω

≤ Ch‖p‖1,Ω‖ε(Rhηh)‖0,Ω ≤ Ch‖p‖1,Ω

( ∑

E∈Ω

‖ε(RE
h ηh)‖2

0,E

)1/2

≤ Ch‖p‖1,Ω

( ∑

E∈Ω

C‖ηh‖
2
0,E

)1/2

≤ Ch‖p‖1,Ω‖ηh‖Hh
≤ Ch‖g‖0,Ω.Estimate of |B4|. Using assumption (S1), the Cauhy-Shwarz inequalityand the de�nition of the norm ‖ · ‖Γh,E , we get

|B4| ≤ κ−1t2
∑

E∈Ωh

‖(curl(pℓ
E − p))II‖Γh,E‖ curlh qh‖Γh,E

≤ κ−1t2
( ∑

E∈Ωh

‖(curl(pℓ
E − p))II‖2

Γh,E

)1/2( ∑

E∈Ωh

‖ curlh qh‖
2
Γh,E

)1/2

= κ−1t2
( ∑

E∈Ωh

|E|
∑

e∈EE
h

∣∣(curl(pℓ
E − p))II)eE∣∣2 )1/2

‖ curlh qh‖Γh
.Now, using the de�nition of the interpolant (·)II, the Cauhy-Shwarz in-equality, properties (M3), (M1) and the estimate of the interpolation errorprovided by (M5), yields

∑

e∈EE
h

∣∣(curl(pℓ
E − p))II)eE∣∣2 =

∑

e∈EE
h

∣∣∣∣
1

|e|

∫

e

curl(pℓ
E − p) · te

E

∣∣∣∣
2

≤
∑

e∈EE
h

1

|e|

∫

e

∣∣curl(pℓ
E − p) · te

E

∣∣2 ≤
∑

e∈EE
h

1

|e|

(
h−1

E ‖ curl(pℓ
E − p)‖2

0,E

+ hE | curl(pℓ
E − p)|21,E

)
≤ C

Ne

hE

(
h−1

E |pℓ
E − p|21,E + hE|p|

2
2,E

)

≤ C
Ne

hE

(
h−1

E Capph
2
E |p|

2
2,E + hE |p|

2
2,E

)
≤ C|p|22,E .Therefore, using the above estimate, bound (56) and (6) we obtain

|B4| ≤ κ−1t2
( ∑

E∈Ωh

C|E||p|22,E

)1/2

‖ curlh qh‖Γh
≤ Ch‖g‖0,Ω.



26 L. Beirão da Veiga, D. MoraEstimate of |B5|. Due to (M2), the de�nitions of rotΓh
and || · ||Γh

yieldthe following inverse estimate
|E|1/2(rotΓh

δh)E ≤ Ch−1
E ||δh||Γh,E ∀δh ∈ Γh, ∀E ∈ Ωh. (62)Therefore, using also the Cauhy-Shwarz inequality and the estimate of theinterpolation error (M5), we obtain the following development:

|B5| ≤ κ−1t2
∑

E∈Ωh

‖p− pℓ
E‖0,E |E|1/2(rotΓh

(curlh qh))E

≤ κ−1t2
∑

E∈Ωh

h2
E |p|2,E h−1

E || curlh qh||Γh,E

≤ Cκ−1t2
( ∑

E∈Ωh

h2
E |p|

2
2,E

)1/2( ∑

E∈Ωh

|| curlh qh||
2
Γh,E

)1/2

.

(63)
Finally, from (63), (56) and bound (6) it follows

|B5| ≤ Cκ−1t2h2|p|2,Ωh
−1‖ curlh qh‖Γh

≤ Ch‖g‖0,Ω.Estimate of |B6|. Using the same argument as in Lemma 5.3 of [21℄, bound(56) and (6), we an prove that
|B6| ≤ Cht2‖p‖2,Ω‖ curlh qh‖Γh

≤ Ch‖g‖0,Ω,where C is independent of h and t.Estimate of |B7|. In order to estimate this term, we split it as follows.Adding and subtrating the terms ∇ψℓ
E and ∇h(ψℓ

E)I on eah element E, weget
B7 = B1

7 +B2
7 +

∑

E∈Ωh

[ ∫

E

∇ψℓ
E · RE

h ηh − [∇h(ψℓ
E)I, Πhηh]Γh,E

]
, (64)where

B1
7 =

∑

E∈Ωh

∫

E

∇(ψ−ψℓ
E) ·RE

h ηh , B2
7 =

∑

E∈Ωh

[∇h((ψℓ
E)I−ψh), Πhηh]Γh,E .(65)



A mimeti disretization for Reissner-Mindlin plates 27Using (41) and (43), integrating by parts and �nally using assumption (S2),from (64) we obtain
B7 =B1

7 +B2
7 +

∑

E∈Ωh

[ ∫

E

curl f ℓ
E ·RE

h ηh − [(curl f ℓ
E)II, Πhηh]Γh,E

]

=B1
7 +B2

7 +
∑

E∈Ωh

[ ∫

E

f ℓ
E rot(RE

h ηh) −
∑

e∈EE
h

∫

e

f ℓ
E(RE

h ηh · te

E)
]

−
∑

E∈Ωh

[ ∫

E

f ℓ
E(rotΓh

(Πhηh))E −
∑

e∈EE
h

∫

e

f ℓ
E(Πhηh)eE

]

=B1
7 +B2

7 +
∑

E∈Ωh

[ ∫

E

f ℓ
E(rot(RE

h ηh) − (rotΓh
(Πhηh))E)

]

+
∑

E∈Ωh

[ ∑

e∈EE
h

∫

e

f ℓ
E

(
(Πhηh)eE − (RE

h ηh · te

E)
) ]

=B1
7 +B2

7 +B3
7 +B4

7 .Thus, in order to bound the term B7, we have to bound eah term Bi
7,

i = 1, 2, 3, 4 separately.Estimate of |B1
7 |. Using the Cauhy-Shwarz inequality, the estimate ofthe interpolation error (M5), the Korn inequality [27℄, property (O2), (56)and (6), we get

|B1
7 | ≤

( ∑

E∈Ωh

‖∇(ψ − ψℓ
E)‖2

0,E

)1/2( ∑

E∈Ωh

‖RE
h ηh‖

2
0,E

)1/2

≤ Ch‖ψ‖2,Ω‖ε(Rhηh)‖0,Ω ≤ Ch‖ψ‖2,Ω‖ηh‖Hh
≤ Ch‖g‖0,Ω.Estimate of |B2

7 |. We begin this estimate by using assumption (S1), theCauhy-Shwarz inequality, adding and subtrating ∇hψI, and applying thetriangular inequality. We obtain
|B2

7 | ≤
∑

E∈Ωh

‖∇h((ψℓ
E)I − ψh)‖Γh,E‖Πhηh‖Γh,E

≤
( ∑

E∈Ωh

‖∇h((ψℓ
E)I − ψh)‖2

Γh,E

)1/2( ∑

E∈Ωh

‖Πhηh‖
2
Γh,E

)1/2

≤ C
(
‖∇h(ψI − ψh)‖2

Γh
+
∑

E∈Ωh

‖∇h((ψℓ
E)I − ψI)‖2

Γh,E

)1/2

‖Πhηh‖Γh
.(66)We now note that the following inequality holds, as shown in the Appendix:

‖Πhθh‖Γh
≤ C||θh||Hh

∀θh ∈ Hh. (67)



28 L. Beirão da Veiga, D. MoraTherefore, �rst using identity (12), Proposition 2, Lemma 6.3 from [17℄ and(67) in (66), then applying the bounds (56) and (6) yields
|B2

7 | ≤ C
(
Ch2‖g‖2

0,Ω +
∑

E∈Ωh

Ch2|ψ|22,E

)1/2

||ηh||Hh

≤ Ch‖g‖0,Ω‖ηh‖Hh
≤ Ch‖g‖0,Ω.Estimate of |B3

7 |. From (28) and (55) it follows
∫

E

rot(RE
h ηh) =

∫

E

(rotΓh
(Πhηh))E = |E|(rotΓh

(Πhηh))E . (68)Let f̄ ℓ
E = 1

|E|

∫
E
f ℓ

E for all E ∈ Ωh. Using identity (68) it follows
|B3

7 | =
∣∣∣
∑

E∈Ωh

∫

E

(f ℓ
E − f̄ ℓ

E) rot(RE
h ηh)

∣∣∣,whih, using a Cauhy-Shwarz inequality, gives
|B3

7 | ≤
∑

E∈Ωh

‖f ℓ
E − f̄ ℓ

E‖0,E‖ rot(RE
h ηh)‖0,E .Now, using the estimate of the interpolation error (M4), the Korn in-equality [27℄, the fat that |f ℓ

E |1,E = |ψℓ
E |1,E ≤ ||ψ||1,E , property (O2), (56)and �nally (6), we obtain

|B3
7 | ≤

( ∑

E∈Ωh

‖f ℓ
E − f̄ ℓ

E‖
2
0,E

)1/2( ∑

E∈Ωh

|RE
h ηh|

2
1,E

)1/2

≤
( ∑

E∈Ωh

Ch2
E |f

ℓ
E |

2
1,E

)1/2

|Rhηh|1,Ω

≤
( ∑

E∈Ωh

Ch2
E |ψ

ℓ
E |21,E

)1/2

‖ε(Rhηh)‖0,Ω

≤Ch‖ψ‖1,Ω

( ∑

E∈Ωh

‖ηh‖
2
Hh,E

)1/2

= Ch‖ψ‖1,Ω‖ηh‖Hh
≤ Ch‖g‖0,Ω.Estimate of |B4

7 |. Similarly to the previous ase, from (68) and the de�-nition of rotΓh
in (23), we get
∫

e

RE
h ηh · te

E =

∫

e

(Πhηh)eE = |e|(Πhηh)eE . (69)
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|B4

7 | =
∣∣∣
∑

E∈Ωh

[ ∑

e∈EE
h

∫

e

f ℓ
E

(
(Πhηh)eE − (RE

h ηh · te

E)
) ]∣∣∣

=
∣∣∣
∑

E∈Ωh

[ ∑

e∈EE
h

∫

e

(f ℓ
E − f̄ ℓ

E)
(
(Πhηh)eE − (RE

h ηh · te

E)
) ]∣∣∣

≤
∑

E∈Ωh

[ ∑

e∈EE
h

‖f ℓ
E − f̄ ℓ

E‖0,e‖R
E
h ηh · te

E − (Πhηh)eE‖0,e

]

≤
∑

E∈Ωh

( ∑

e∈EE
h

‖f ℓ
E − f̄ ℓ

E‖
2
0,e

)1/2( ∑

e∈EE
h

‖RE
h ηh · te

E − (Πhηh)eE‖
2
0,e

)1/2

.Using (M3), (M4), one dimensional interpolation estimates, the fat that
|f ℓ

E |1,E = |ψℓ
E |1,E ≤ ||ψ||1,E and a trae inequality, gives
|B4

7 | ≤
∑

E∈Ωh

(
h−1

E ‖f ℓ
E − f̄ ℓ

E‖
2
0,E + hE |f

ℓ
E |

2
1,E

)1/2

( ∑

e∈EE
h

he|R
E
h ηh · te

E |21/2,e

)1/2

≤Ch1/2
∑

E∈Ωh

(
hE |f

ℓ
E |

2
1,E

)1/2

‖RE
h ηh‖1/2,∂E

≤Ch
∑

E∈Ωh

|ψℓ
E |1,E‖R

E
h ηh‖1,E .The Cauhy-Shwarz inequality, the Korn inequality [27℄, property (O2), (56)and (6) now yield

|B4
7 | ≤ Ch|ψ|1,Ω‖Rhηh‖1,Ω ≤ Ch‖ψ‖1,Ω‖ε(Rhηh)‖0,Ω

≤ Ch‖ψ‖1,Ω

( ∑

E∈Ωh

‖ηh‖
2
Hh,E

)1/2

= Ch‖ψ‖1,Ω‖ηh‖Hh
≤ Ch‖g‖0,Ω.Combining (61) with all the above bounds for the Bi, i = 1, .., 7, givesthe proof of the proposition. ⊓⊔5.3 Error estimate for variable w.Let wh be the solution of the disrete problem (40)4 and w be the solution ofthe ontinuous problem (5)4. Using essentially the same arguments used to
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c1||wI − wh||

2
Wh

≤
∑

E∈Ωh

[∇hwI −∇h(wℓ
E)I,∇h(wI − wh)]Γh,E

+
∑

E∈Ωh

∫

E

∇(wℓ
E − w) · ∇RE

h (wI − wh)

+(β,∇Rh(wI − wh))0,Ω − [Πhβh,∇h(wI − wh)]Γh

+κ−1t2(∇ψ,∇Rh(wI − wh))0,Ω

−κ−1t2[∇hψh,∇h(wI − wh)]Γh
.

(70)
From (70), repeating the same tehniques used in Setions 5.1 and 5.2,the bounds for the de�etion variable follow.Proposition 4 Let w and wh be the solutions of problems (5)4 and (40)4,respetively. Let bound (6) holds. Then, there exists a onstant C > 0 inde-pendent of h and t suh that

‖wI − wh‖Wh
≤ Ch‖g‖0,Ω.We are now in a position to prove Theorem 1.Proof of Theorem 1. The proof follows easily by ombining Propositions 2,3 and 4. ⊓⊔Moreover, the following important remark holds.Remark 3 The �bubble� edge degrees of freedom in the rotation spae areadded in order to guarantee the validity of Lemma 4, i.e. the stability of thedisrete system, and do not enhane the approximation apabilities of Hh.In [9℄ the authors show that, under ertain onditions on the adopted mesh,the nodal degrees of freedom alone are su�ient to derive Lemma 4. Suhonditions on the mesh are not very strit, and inlude for example a largearray of meshes made with polygons with more than 4 edges. Although theresults of [9℄ are intended for the Stokes problem, a �rotation of 900� allowsimmediate appliation also to our ase. One Lemma 4 is proven, the restof our proofs extend almost identially to the ase with no edge degrees offreedom. Therefore, under the favorable mesh onditions of [9℄, it is easyto hek that the same plate method presented here, but with the smallerrotation spae

Hh = {ηh | ηh = {ηv}
v∈V0

h
},is stable, and the same O(h) error estimates hold. This is interesting sineit allows to use the same degrees of freedom both for rotations and displae-ment.6 ConlusionsWe presented a mimeti disretization method for the Reissner-Mindlin platebending problem. The fundamental idea of the mimeti disretization method-ology lays in writing the variational problem diretly in terms of the degrees



A mimeti disretization for Reissner-Mindlin plates 31of freedom, without speifying the underlying basis funtions. The presentsheme adopts one degree of freedom in eah mesh vertex for the de�etions,and two degrees of freedom in eah mesh vertex for the rotations, plus anadditional degree of freedom on eah edge (that is not always needed). Afterbuilding all the neessary tools, suh as disrete bilinear forms and opera-tors, we presented the method and proved linear onvergene with respet tothe mesh size, uniformly in the plate thikness. The latter result is ahievedrewriting the disrete problem as a ombination of di�erent sub-problems viaa disrete Helmholtz deomposition.7 AppendixIn the �rst part of this setion we brie�y show, for all E ∈ Ωh, the existeneof a lifting operator
RE

h : Hh|E −→ [H1(E) ∩ C0(Ē)]2whih satis�es the onditions in Lemma 6. In the seond part we will provebound (67).Existene of a lifting operator. We will build the lifting operator in two stepstaking full advantage of the results in [17,11℄. Note that we an not use di-retly the (rotated) operator of [11℄ sine it does not preserve linear funtions,whih is needed to prove (O2).We start with a slightly modi�ed onstrution of the lifting operator in[17℄, whih we all R̃E
h . Given ηh ∈ Hh|E , the vetor funtion R̃E

h ηh isglobally ontinuous and pieewise linear on the sub-triangulation Th andde�ned in the following way. On the verties v ∈ VE
h we set R̃E

h ηh(v) = ηv.On the remaining nodes of Th that lay on the boundary, R̃E
h ηh is de�nedby linear interpolation of the two vertex values of the edge. On the internalnodes of E, we do instead the following onstrution. Given any internalnode v of Th, we all Ξv the set of nodes whih share an edge with v and aredi�erent from v. Then, it is easy to hek that v, whih lays in the onvexhull determined by the nodes {v̄}v̄∈Ξv

, an be expressed (in a non uniqueway) as a weighted sum
v =

∑

v̄∈Ξv

wv

v̄
v̄ (71)with wv

v̄
non-negative real numbers suh that∑

v̄∈Ξv

wv

v̄
= 1. For eah internalnode v, we then enfore the ondition

R̃E
h ηh(v) −

∑

v̄∈Ξv

wv

v̄
R̃E

h ηh(v̄) = 0 .This set of onditions provides a square linear system whih determines thevalue of R̃E
h ηh in the internal nodes. Indeed, it is immediate to verify that theassoiated matrix is an M-matrix, whih in partiular implies the existeneof a unique solution and a disrete maximum priniple. In addition, due to



32 L. Beirão da Veiga, D. Morathe identity (71), this operator preserves linear vetor funtions, in the sensethat
R̃E

h (p1)I,E = p1 for all linear vetor funtions p1 on E .Following the same argument as in [17℄, from the maximum priniple it fol-lows that the operator R̃E
h satis�es the following properties(O'2) |R̃E

h ηh|
2
1,E ≤ C|||ηh|||

2
Hh,E ∀ηh ∈ Hh|E ,with C independent to the partiular element E of the mesh family. Further-more, by de�nition of R̃E

h ηh it holds(O'1) (R̃E
h ηh)(v) = ηv ∀v ∈ VE

h ∀ηh ∈ Hh|E ∀E ∈ Ωh.(O'3) RE
h ηh|e is a linear (vetor) polynomial for all e ∈ EE

h ∀ηh ∈ Hh|E ∀E ∈
Ωh.We then build our �nal lifting operator RE

h as a orretion of R̃E
h by theaddition of tangential edge bubbles, as done in [11℄. More preisely

RE
h = R̃E

h + R
E,b
h ,where the image of the operator R

E,b
h lays in the span of {ϕet

e

E}e∈EE
h
with ϕesalar edge bubble funtions (whih are quadrati along the edge e). Brie�yspeaking, the oe�ients of the bubble part R

E,b
h are hose in order to satisfy(O4); we refer to [11℄ for the details.Given the above properties (O'1)-(O'3), following the same proof shownin [11℄ one immediately obtains that RE

h satis�es (O1), (O3), (O4) and thebound(O�2) |RE
h ηh|

2
1,E ≤ C|||ηh|||

2
Hh,E ∀ηh ∈ Hh|E ∀E ∈ Ωh.Furthermore, sine the added bubble part is null on linear funtions, it stillholds that RE

h (p1)I,E = p1 for all linear vetor funtions p1 on E. Let now
A : E → R

n×n, n ∈ N be a symmetri matrix �eld and B : E → R
n×n ananti-symmetri matrix �eld. Then, from the orthogonality with respet tothe ontration operator A : B = 0, we get

||A+B||20,E = ||A||20,E + ||B||20,E ≥ ||A||20,E . (72)First, using de�nition (10), then property (O�2) and �nally that the operator
RE

h preserves linear vetor funtions, yields
‖ηh‖

2
Hh,E = min

c∈R

|||ηh − c([−ȳ, x̄])I,E |||
2
Hh,E

≥ C′ min
c∈R

‖ ∇RE
h (ηh − c([−ȳ, x̄])I,E) ‖2

0,E

= C′ min
c∈R

‖∇RE
h ηh − c∇[−ȳ, x̄]‖2

0,E .

(73)for all ηh ∈ Hh|E . Splitting ∇ RE
h ηh into its symmetri and anti-symmetripart and observing that ∇[−ȳ, x̄] is an anti-symmetri matrix, from (72),(73) we obtain

‖ηh‖
2
Hh,E ≥ C′‖ε(RE

h ηh)‖2
0,E ∀ηh ∈ Hh|E ∀E ∈ Ωh,whih is property (O2).



A mimeti disretization for Reissner-Mindlin plates 33Proof of bound (67). The norm appearing on the left hand side of inequality(67) is a disrete L2 norm, while that appearing on the right hand side isa ||ε(·)||L2 type norm. Therefore, due to the boundary onditions on Hh,bound (67) is quite natural. Although relation (67) does not involve thelifting operator, but only the degrees of freedom of Hh, for simpliity we willprove it making use of the lifting Rh appearing above. A more diret proofshould involve in partiular a �disrete Korn inequality", whih is beyond thesopes of the paper.By de�nition and due to (M2) it immediately follows
‖Πhθh‖

2
Γh

≤ C
∑

E∈Ωh

|E|
( ∑

e∈EE
h

|θe

E |
2 +

∑

v∈VE
h

||θv||2
) (74)

||θh||
2
Hh

≥ C
∑

E∈Ωh

∑

e∈EE
h

|θe

E |
2 + ||θv1 − θv2 ||2 (75)where v1 and v2 are as usual the two verties of the edge e. Therefore thebound on the bubble part follows immediately from (74) and (75) observingthat |E| ≤ |Ω| for all elements E:

∑

E∈Ωh

|E|
∑

e∈EE
h

|θe

E |
2 ≤ C||θh||

2
Hh
. (76)From the de�nition of Rh, for all E ∈ Ωh

|E|
∑

v∈VE
h

||θv||2 ≤ |E| ||RE
h θh||

2
L∞(E). (77)Let now hmin

E indiate the diameter of the smaller element of Th|E . Firstapplying an inverse inequality (see for instane Lemma 4.15 of [44℄), thenusing that due to (H1)-(H2) the ratio hE/h
min
E is uniformly bounded, we get

||RE
h θh||

2
L∞(E) ≤ C

(
1 + log

( hE

hmin
E

)) (
|RE

h θh|
2
1,E + |E|−1||RE

h θh||
2
0,E

)

≤ C|E|−1||RE
h θh||

2
1,E . (78)Combining (77), (78), summing over the elements, applying the Korn in-equality on Ω and �nally property (O2) yields

∑

E∈Ωh

|E|
∑

v∈VE
h

||θv||2 ≤ C||Rhθh||
2
1,Ω ≤ C||ε(Rhθh)||20,Ω ≤ C||θh||

2
Hh
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estimates for the finite volume discretization for the porous medium equation

2009-18 Raimund Bürger, Kenneth H. KARLSEN, Hector Torres, John D. Tow-
ers: Second-order schemes for conservation laws with discontinuous flux modelling
clarifier-thickener units

2009-19 Maria G. Armentano, Claudio Padra, Rodolfo Rodŕıguez, Mario Sche-
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